
DISTRIBUTED

MULTIMEDIA SYSTEMS

Course

Independent Study
Instructor

Prof. Dr. Geoffrey Fox

Prepared by

Hasan Bulut

31. INTRODUCTION

42. MULTIMEDIA APPLICATIONS

42.1
Broadcast Video

42.2
Video-on-Demand (VOD)

42.3
Hypermedia and Multimedia Databases

52.4
Virtual Worlds: Collaborative Computing

73. COMPONENTS OF A DISTRIBUTED MULTIMEDIA SYSTEM

73.1
Application Software

73.2
Document Store

83.3
Image and Still Video Store

83.4
Audio and Full-Motion Video Store

93.5
Object Directory Service Agent

103.6
Component Service Agent

113.7
User Interface Service Agent

113.8
Network

124. DISTRIBUTED CLIENT-SERVER OPERATION

124.1
Clients in Distributed WorkGroup Computing

124.2
Servers in Distributed Workgroup Computing

134.3
Database Operations

134.4
Middleware in Distributed Workgroup Computing

155. MULTIMEDIA OBJECT SERVERS

155.1
Simple Multimedia Server Architecture

165.2
Distributed Multimedia Server Architecture

175.3
Types of Multimedia Servers

185.4
Multimedia Server Design Issues

185.4.1
Application Requirements

195.4.2
Business Deployment Requirements

195.4.3
Architectural Requirements

205.5
Overview of Software QoS Components

226. DISTRIBUTED MULTIMEDIA DATABASES

236.1
Database Organization for Multimedia Applications

236.1.1
Data Independence

236.1.2
Common Distributed Database Architecture

246.1.3
 Multiple Data Servers

246.2
Transaction Management for Multimedia Systems

256.3
Managing Hypermedia Records as Objects

266.3.1
Object Linking and Embedding

27Embedding

287. REFERENCES

1. INTRODUCTION

A typical multimedia environment is shown in figure 1 below. In a distributed system, the performance parameters of the network become an extremely important issue. These parameters determine the level of functionality available to the users for their multime​dia applications. Before describing the components of a distributed multimedia, lets discuss some types of multimedia systems.

[image: image1.png]ctwork component

Figure 1: Multimedia system environment

2. MULTIMEDIA APPLICATIONS

The example multimedia applications and their requirements presented below demonstrate the diverse characteristics of multimedia applications. It is very challenging to design a common platform for supporting these diverse applications.

2.1
Broadcast Video

The simplest type of application is one where a video server is used to play back a single stream, because all multimedia servers must have the ability to store and play back a video. Even in such a simple application, multimedia servers pos​sess advantages over traditional tape-recording technology. With error correction, digital video servers can offer greater reliability than tape players. This is particularly important for a broadcast because failure can result in the loss of a very large-number of users. Tape players are less flexible. Because they need more time to update spontaneously the list of clips to be played. Also, a production staff can easily preview videos with a video server.

2.2
Video-on-Demand (VOD)

Over a large, geographically dispersed area, there may be a potentially large number of clients viewing video. These include the necessity of nonsequential viewing and networking complexities. In VOD applications, the important point is to give users more control over the video. That is, increased user control over naviga​tion through the video; users should be able to use VCR controls (pause, rewind, and fast-forward) through the video. But a new delivery stream is required for each individual user requiring such operations. Such systems are important for commercial customers. Also, in these applications, it is important to search and retrieve a video segment. This can be achieved by hypermedia.

2.3
Hypermedia and Multimedia Databases

System that presents multimedia documents with embedded links gives greater navigational facility. Such a document is referred to as a composite multimedia document. It may contain multiple images, videos, and graphics. The explicit links in a multimedia document are generated by the author. Collections of multimedia documents with explicit links are referred to as hypermedia. Implicit links between documents are not generated, but exist because the documents have common content. Multimedia database is a collection of multimedia documents with searchable content.
Composite multimedia documents may contain visible objects (e.g., buttons) that will cause the display of a related document when clicked. Alternatively, click​ing on an object in the image may bring up information regarding that object. In VOD applications this may cause synchronization problems. Two video streams may need to be transmitted synchronistically. An efficient method for storing multiple-language versions of a movie is to store a single video track and multiple audio tracks. In this case, the video and audio tracks have to be tightly synchronized. Support for such applications is more complex than the support for simple VOD applications.

Hypermedia documents on the Web can be specified using the Structured Multimedia Interchange Language (SMIL) of the World Wide Web Consortium (W3C). The components of the multimedia documents are specified using URLs. SMIL, just like HTML, it does not specify the type of documents that comprise the document. To support the requirements of hypermedia, SMIL contains tags to specify the order and synchronism among var​ious media objects.

2.4
Virtual Worlds: Collaborative Computing

Multimedia allows the development of applications in which users can interact with each other in a sim​ulated 2D or 3D world. A common example is videoconferencing. An example of a typical collaborative videoconferencing system is Auditorium from the PlaceWare Corporation. The system is written in Java and hence is portable across many environments. Auditorium is accessed via a Java-enabled Web browser with an audio plug-in. Users can access the virtual meeting either as presenters or as part of the audience. Audience members see an audience con​sole that has a seating chart showing the other members of the audience as seen in the figure. The console also has text areas for writing comments to other audi​ence members or the speaker, and a slide display area. The presenter console has presentation facilities as well as decision-making facilities. The presentation facilities include support for broadcasting speech to the audience, displaying slides, and drawing pictures. Decision-making support includes facilities for polling the audience as well as asking multiple-choice questions and tabulating the results on-line.

[image: image2.png]==

BobsNow I gt

s ™ s =
M Hary M Hary
o Carol _Karen ad Carol_Karen
| (oo
e EEE
S o Mg
i s ey et i boldent et gion.
T o e 5. T Fowdo o ot

Figure 2: Typical collaborative application

In Auditorium users access a video server that manages the conference. An alternative design can be based upon adapting peer-to-peer videoconferencing. Each participant broadcasts video to all other members of the conference and listens to all participants via different channels. But these systems are less scalable than conferencing systems. Because setting up multiple communica​tion channels and the distributed management of the conference increase the complexity. On the other hand, video conferencing systems are using a centralized video server

Another requirement for videoconferencing applications is low latency. If the latency for the delivery of the video is high, different members of the audience may see the video at significantly different times. This leads to confusion.

3. COMPONENTS OF A DISTRIBUTED MULTIMEDIA SYSTEM

A multi-user system should consist of a number of system components in order to support multimedia applications for a large number of users. These components and the functions supported by them form a system environment for multimedia applications.

A typical multi​media application environment consists of the following components:

3.1
Application Software

The application software is the multimedia application that generates, edits, or renders multimedia objects. The application functionality determines how multimedia objects are manipulated and to which extent the user can control the rendering of the multimedia objects.

The basic tasks in an application consist the followings:

· Object selection: The user selects a database record or a hypermedia document from a file system, database management system or document server.

· Object retrieval: The application retrieves the base object. The base object is displayed. The user should be able to display or playback the associated multimedia objects.

· Object component display: When the user moves mouse pointer or cursor to the field or button associ​ated with the multimedia object, some document components are displayed automatically.

· User initiated display: User action is required before playback/display of some document components

· Object display management and editing: User is allowed to control playback or edit the compo​nent object, by invoking a component-control subapplication.

3.2
Document Store

The container may be a hypermedia document or a database record (or object). A container object store is used to store container objects in a network object server. Typical repositories for container objects include relational databases, object-oriented databases, and document databases (such as Lotus Notes).

A document store is required to store large volumes of documents. Some characteristics of document stores are:

· Primary document storage: A file system or database that contains primary document objects (container objects).

· Linked object storage: Embedded components, such as text and formatting informa​tion, and linked components, such as pointers to image, audio, and video components contained in a document, may be stored on separate servers.

· Linked object management: Link information contains the name of the component, service class/type, general attributes, and hardware and software requirements for rendering.

3.3
Image and Still Video Store

An image/still video store is a database system optimized for storage of images and still video. Docu​ment images can be stored on WORM (write once read many) optical disk servers. Most systems use optical disk libraries. Optical disk libraries are called jukeboxes. The optical disk server may provide image-caching func​tions through associated magnetic disks.

The characteristics of image and still video stores are as follows:

· Compressed information: The images are stored in compressed form. They must be decompressed before display.

· Multi-image documents: Document images require another layer of linkage to iden​tify images that form the sequential pages of a document. Many systems use look-ahead features to prefetch the next page.

· Related annotations: There may be associated images that are superimposed for display, or may be image annotations. Annotations may be stored as separate images or together with the main image in TIFF files.

· Large volumes: Document image stores consist of large numbers of image files. These images need to be indexed and stored.

· Migration between high-volume media and high-speed media: Maintaining on-line cache storage and migrating storage of image objects to slower near-line or off-line media is critical for maintaining very large image databases.

· Shared access: The image and still-video stores provide shared access to multiple users.

3.4
Audio and Full-Motion Video Store

An audio/video component store is the storage resource used for storing audio and video objects. Audio and video objects are isochronous; that is, they must be played back at a constant rate. Audio or video objects may be edited on a time-scale basis. That is, the video is being edited in the time domain, and frames are added, deleted, or moved for resequencing. For isochronous playback, audio and video objects need fast magnetic disk drives. Lossy compression algorithms are used to compress data.

Some characteristics of audio and full-motion video object stores are:

· Large-capacity file system: There is need for large amount of storage. Since, even for one minute of a compressed video object we may need several Mbytes.

· Temporary or permanent storage: Video objects may be stored temporarily on client workstations, servers providing disk caches, and multiple audio or video object servers. They may be purged or migrated to more permanent storage.

· Migration to high-volume/lower-cost media: For video objects, migration and man​agement of storage is of much greater importance and more complex than for images.

· Playback isochronicity: Playing back a video object requires consistent speed without breaks. The storage repository must be able to retrieve objects in a constant stream mode.

· Multiple shared access: The object must be able to play multiple streams that are not synchronized.

The characteristics of multimedia objects play an important role in the type and processing capability of the server hardware and software. There are issues in terms of distributed access to multi​media objects, managing simultaneous playback transactions, and managing multiple tempo​rary copies.

3.5
Object Directory Service Agent

An object directory service agent is a distributed service that provides a directory of all multi​media objects on the server. It is responsible for assigning identification for all multime​dia object types managed by that agent. The identification must be unique for the network and over time. The object directory agent service is then used by the component service agents for generating objects as well as locating existing multimedia objects for linking with documents and database records. The directory service is also used for retrieval and playback.

The directory service agent allows tracking each multimedia object, its replicated copies on the network, its cur​rent use status, and its migration patterns.

The services provided by a directory service agent are:

· Directory service: The directory service lists all multimedia objects by class and server location.

· Object assignment: A directory service agent assigns unique identification to each multimedia object. The identification must be unique throughout the network and must remain throughout the life of that object.

· Object status management: The directory service must track the current usage status of each object. So that the object is not archived or purged while a user workstation is using it.

· Directory service domains: The directory service should be modular to allow setting up domains constructed around groups of servers. The domain may map a complete operating facility of the cor​poration, a division, or even a department.

· Directory service server elements: Each multimedia object server must have an associated directory service element. This element may reside either on the server or on some other shared resource.

· Network access: The directory service agent must be accessible from any workstation on the network. Direct access may be controlled at the domain level. The directory service agent can manage the access from outside the domain.

3.6
Component Service Agent

A component service agent is responsible for providing a service such as locating each embedded or linked compo​nent object of a multimedia container, and managing proper sequencing for rendering of the multimedia objects.

The component service agent addresses all server-related functions, i.e. locating objects, preparing them for the class of ser​vice desired by the user interface display agent, playing them out at a rate negotiated with the user interface service agent (for audio and video objects), and transferring objects to other servers on request.

The characteristics and types of services provided by each multimedia component are:

· Object generation service: Obtains identification for generating a new object from the directory service agents. The user interface ser​vice agent can store the new object captured/created/edited at the user workstation.

· Playback service: Provides a set of standard services, such as play, seek, search, copy, delete, and so on, for isochronous components.

· Component object service agent: Provides the services mentioned above for a spe​cific object type, such as a video component.

· Service agents on servers: Co-resides wherever objects of its type are stored. Multiple component agents may be co-resident on a server if the server stores multiple component objects.

· Multifaceted services: Operates on an object, which can be in com​pressed or uncompressed form. It can also translate objects between forms.

3.7
User Interface Service Agent

The user interface service agent resides on each user workstation. It is responsible for managing the display windows, interacting with the user, sizing the display windows, and scaling the decom​pressed object to the selected window size. Some services of the client application may use it as a channel. It does this by transferring the requests to other service agents.

The user interface service agent is the client side of the service agents.

The services provided by the user interface service agent are:

· Window management: When a multimedia object is invoked, it generates a new window for it and registers it. It handles all messages for that window.

· Object creation and capture: Requests component service agent to set up a new object, obtains the identification for client application, and captures and stores new object.

· Object display and playback: Sets up object for decompression; scales and adjusts frame speed for display or playback of object.

· Services on workstations: Usually resides on a workstation and provides services to display or playback audio, video, image, or other multi​media components.

· Using display software: Interacts closely with the nor​mal display manager of the workstation.

3.8
Network

The network is the enterprise-wide net​work consisting of all LAN and WAN interfaces required for supporting a particular applica​tion for a specific group of users.

4. DISTRIBUTED CLIENT-SERVER OPERATION

The development of distributed workgroup computing and the dis​tributed object computing considerably changed the relationship between clients and servers. There are client and server custom views in a large distributed database. In the basic case, clients are custom-designed for the server. Several custom views provide decoupling between the physical data and the user. The conceptual schema is not affected when the physical organization of the data is changed. Similarly, logical independence is achieved, and the conceptual schema can be changed without affecting the external views.

In tra​ditional relational databases, real-world knowledge is abstracted into a data model. Knowledge about relations among entities is stored in the database in a data dictionary and these data dictionaries provide the data linkages for performing queries against the database.

In multimedia databases, there is a combination of real-world data objects and projections in images, sound, and video. Multimedia objects are not meaningful to the database. The database must assign some form of identification and an understanding of the data. Moreover, these objects may need special processing before being rendered on user screens.

4.1
Clients in Distributed WorkGroup Computing

Clients in distributed workgroup computing are the end users with workstations run​ning multimedia applications. These client systems interact with the data servers in any of the following ways:

· Request specific textual data

· Request specific multimedia objects embedded or linked in retrieved container objects

· Require activation of a rendering server application to display/playback multimedia object

· Generate and store multimedia objects on servers

· Request directory information on locations of objects on servers

In true distributed object computing, the user is primarily concerned with the data object and the manipulation of the data object relative to other data objects. While in true distributed operation, the clients have no specific knowledge of where the data servers are and how the data is organized.

4.2
Servers in Distributed Workgroup Computing

Basic functionality of servers is to store data objects. They also provide functions as follows:

· Provide storage for a variety of object classes

· Transfer objects on demand to clients

· Provide hierarchical storage for moving unused objects to optical disk librar​ies or optical tape libraries media

· Back up stored data

· Direct high-speed LAN and WAN server-to-server transport for copying multi​media objects

· Make sure that sufficient copies of data objects are available to meet user throughput requirements

· Make sure that replicated copies of data objects remain synchronized.

· Make sure that the user perceives the distributed storage system as a single storage entity.

4.3
Database Operations

Some operations performed in multimedia databases are different than those performed in conventional databases. Also some of them may not be required in non-multimedia databases.

Search: The primary function of this operation is to find an object (record) in response to a query. For distributed multimedia objects, search​ing may involve additional transactions to locate a copy of the required object and to obtain a copy from a remote server onto a local server for further client operations. The query may require special programs to scan the multimedia object to recognize components in it.

Browse: It is not very common in relational databases except where specifi​cally programmed in an application. In information and document databases, browse func​tion is much more useful. The browse function is used to retrieve attribute information about the objects, and render frames of the object contents.

Retrieval: These functions are different for images, audio, and video from symbolic text-only databases. Before rendering these three multimedia objects, they need to be processed by spe​cialized decompression engines. The important issue is where the decomposition is performed; at the server, at the client, or in a specialized decompression server.

Create and store: In relational databases, the primary concern for these functions is finding the tables in which the data has to be stored and updating distributed storage indexing information. Multimedia objects are stored in a separate server and require an object directory to provide indexing information for retrieval.

4.4
Middleware in Distributed Workgroup Computing

Back-end database servers and front-end clients are linked to each other a middleware in a highly flexible and loosely connected network model. A loosely connected network model means that servers may go off-line and be unavailable. Also clients may go off-line tempo​rarily and continue local operations; when they connect later, they can operate as a part of the network and resynchronize their databases. Middleware provides the glue for dynamically redirecting client requests to appropriate servers that are on-line. Also it provides a potential load-balancing function under demanding conditions. Middleware is the core part of a distributed network between servers and clients.

Middleware performs a number of functions in this environment:

· Provides the user with a local index, an object directory

· Provides automatic object directory services for locating available copies of objects

· Provides protocol and data format conversions between the client requests and the stored formats in the server

· Provides unique identification throughout the enterprise-wide network for every object through time

The middleware is capable of accessing multiple databases and combin​ing information for presentation to the user. Middleware can perform the following functions:

(
Access a document database to locate a pointer to the required multimedia object

(
Locate an object using a distributed object directory database

(
Access an object database to retrieve an object

(
Retrieve object-preprocessing information from an object description database

(
Combine all of this information and preprocess the object before passing it on to a client

These actions of middleware are called content-based processing. Content-based processing can be done without affecting the servers or the cli​ents. Content-based processing allows the middleware to address temporal characteristics of certain multimedia objects such as audio and video. Content-based processing also allows a variety of editing and updating functions on stored multimedia objects.

5. MULTIMEDIA OBJECT SERVERS

Multimedia systems consist of a number of information objects, including text, binary files, images, voice, and full-motion video. Many objects are shared by a number of users or are routed from one user to another. To achieve this functionality, the information objects must be stored on network resources accessible to all users who need to access them.

Servers are the resources where information objects are stored. These information object servers (object serv​ers) may reside on file servers dedicated to a single class of objects or share the file server with other object servers. For example, a database server may be on a network resource separate from a video object server, or the two may share the same network resource.

5.1
Simple Multimedia Server Architecture

Figure 3 illustrates a typical architecture for a multimedia server. The storage subsystem, which may contain devices of different types (e.g., disks, CDs) with different characteristics, stores the multimedia data. Network subsystem is used for the transmission of multimedia data to the clients.

[image: image3.png]

Figure 3: Architecture of a distributed multimedia server

The software processes executing in the processor subsystem are responsible for the management and operation of the multimedia server. The application server receives application commands from the client. Application commands are likely to be application specific because multimedia applications can be quite diverse (shopping or med​ical applications, videoconferencing, etc.) and may involve many geographi​cally distributed users. The application server converts these application commands into multimedia server commands for displaying specific images or video files.

The control server receives the multimedia server commands. The control server has three major functions. First, there are many control decisions that need to be made before the multimedia data can flow. For example, sufficient system and network resources need to be reserved for this request to be served. The decisions that will be made to reserve the resources are actually optimizations that have an impor​tant impact on the overall efficiency of the multimedia server. Therefore, the second function of the control server is to perform various opti​mizations that increase overall server efficiency. The third function of the control server, in more complex configurations, is to hide the complexity of the configu​ration from the application server.

Finally, the data server is responsible for the actual retrieval arid delivery of the multimedia data. A major distinguishing character​istic of multimedia applications is their QoS requirements. Providing data delivery while satisfying the QoS requirements is the most important function of the data server.

5.2
Distributed Multimedia Server Architecture

The capacity of the simple multimedia server is limited. For larger systems, it is necessary to build a distributed multimedia server from simple servers.

[image: image4.png]Simple Simple
multimeda | | multimedia
— —— |
—
Simple Simple
multimedia | | multimedia

Simple
mulimedia

Todient

Figure 4: Architecture of a distributed multimedia server

Distributed multimedia servers will have the same hardware and software components as simple servers (e.g., storage subsystem, processor subsystem with application, control, and data servers). However, these components should be arranged in a way such that they act as a sin​gle and efficient large server. Each arrangement of components may result in different sets of advantages and disadvantages.

In large-scale servers, multiple client requests for the same media component can be batched together and served with a single retrieval stream. In the event the client requests for the same continuous media segment cannot be batched, a small running buffer can be used to cache the data retrieved by a preceding client data stream for serving the following client stream. This is referred to as interval caching.

In designing large-scale servers, it is difficult to achieve good utilization of both bandwidth and storage capacities of heterogeneous devices via well-known techniques—striping, for example, where the successive blocks of a single file are placed uniformly across the devices.

5.3
Types of Multimedia Servers

While describing conventional database fields a few hundred bytes may be enough, an image, audio, or video object may need size from tens of kilobytes to several megabytes. Entities of this size are unmanageable or too heavy for conventional data​bases. When this is combined with alphanumeric data objects, it reduces the overall database performance. Image, audio, and video objects need separate servers to ensure performance by customizing each server for the type of objects stored in it.

In an ideal case, each object type would have its own dedicated server optimized for the type of data maintained in that object. The number of servers depends directly on the types of data objects supported by the multimedia system. A network consists of some combination of the following different types of servers:

Data-processing servers supporting RDBMSs and ODBMSs:

They contain alphanumeric data. In a relational database, data fields are stored in columns in a table. In an object-oriented data​base, these fields become attributes of the object. For both of them, indexing some fields or attributes is essential for fast access to data. The databases are designed for rapid searches of objects using one of the indexed fields or attributes.

Document database servers:

They are used for electronic mail databases and docu​ment-based information repositories. They are also predominantly alphanumeric and may contain some indexed alphanu​meric fields. In addition to that they contain special text fields that may be indexed within themselves using a hypertext engine. Also text fields that support hypermedia documents may have embedded or linked binary files, images, audio, and video objects.

Document imaging and still video servers:
They store and manage image and still-video objects. An image object may be several tens to several hundreds of kilobytes in size. These objects may be in the form of basic operating-system-level files, or server files indexed in some man​ner for rapid location of the required image. In an object database, they may be indexed as per​sistent objects. A file or an object may contain a complete document consisting of multiple pages. To speed up access to images, the server should have special cach​ing mechanisms.

Audio and voice mail servers:
They are used for applications such as voice mail, voice annotations, and voice help messages. Audio servers may serve two different types of applications: tra​ditional telephone-based voice mail, and voice mail messages linked with the document ​based messaging system. Audio objects are large even in compressed form.

Full-motion video servers:

They are designed to manage very large objects. In addition to that, video servers are made intelligent to support the isochronous playback requirements for video objects by reserving network bandwidth.

Each object type doesn’t necessarily have its own dedicated server. Some or all of these may be combined on the same hardware. Using separate servers for different object types not only improves the performance but also makes server management easier. It is preferable to dedicate specialized servers for multimedia objects.

The types and numbers of servers’ impact required network topology. There is no need to have a corresponding document, image, and audio/video server for every alphanumeric database server. Since not every alphanumeric record has an associated hypertext or hypermedia document and not every hyper​media document has an image or an audio/video object associated with it. Also the number of alphanumeric records or hypermedia documents that share the same audio/video object play important in the architecture and topology design of multimedia object servers.

5.4
Multimedia Server Design Issues

Multimedia servers need to satisfy many requirements in order to support the vast diversity of multimedia applications. The requirements are imposed the appli​cation and by the business objectives.

5.4.1
Application Requirements

Multimedia data is time-sensitive. They have to be displayed according to the time relationships defined by the application designer (e.g., continuous streaming of a media segment, synchro​nized display of multiple media segments). Application requirements are:

· To make applications portable and hide the complexities of the under​lying system on which multimedia applications are deployed.

· To specify the informa​tion on time-sensitive display of data using standard interfaces.

· To specify the capabilities of the underlying infrastructure (i.e., bandwidth, storage, and compute capabilities of the clients, networks, and servers) such that multimedia applications can be appropriately partitioned.

Time sensitivity: Successive frames have to be delivered subject to time constraints because multimedia files are generally too large to download completely. These constraints (quality of service (QoS) requirements) should be satisfied. Hence, some policies should be set for efficient scheduling of disks, memory buffers, and other system resources. If the appli​cation requires the delivery of multiple video and audio streams, then streams should be synchronized. Also, collabora​tive applications may require low-latency delivery.

Open interfaces: Applications need interfaces for specifying their particular requirements. The interfaces should be open and standard to facilitate portability and networking of applications. A number of characteristics are desirable in such interfaces. The interfaces should hide details of the structure of the multimedia server. Multimedia servers also should support common interfaces so that most precomposed applications can be deployed on them.

Client, network, and server capabilities: For simple VOD applications, clients need to support continuous retrieval and display of video contents as well as sup​port VCR control commands. Networks connecting the clients to the servers need to support continuous streaming or back channels for carrying user commands. Multimedia servers should support streaming of media content.

For more complex applications client capabilities may in​clude supporting complex user interfaces, computing capabilities for dynamic composition of presentation, and complex data retrieval protocols as well as at​tached local storage for dealing with variable bandwidth. The networks need to support complex data retrieval protocols as well as command and data channels. The server capabilities include, in response to client requests, identification and retrieval of various media segments from the database on time, composition of presentation, and streaming of these media segments via one or multiple retrieval streams.

5.4.2
Business Deployment Requirements

The conditions are varying. There may be a large or small number of users. Also the demand for videos may be rapidly changing. The multimedia server should operate well under all these varying conditions.

Scalability: The multimedia server should be capable of operating effi​ciently over a large range of numbers of users. Since the number of users may grow with time, the multimedia server should allow for easy incremental growth.

Reliability: By using redundant components as backup, multimedia servers can offer very high reliability.

Dynamic adaptation to workload: In a multimedia system, the workload may change unpredictably. It may also vary with time. Policies that allow the multimedia server to adapt to varying loads may be required.

5.4.3
Architectural Requirements

The characteristics of preexisting system components (e.g., processing speed, space, connectivity) strongly in​fluence the structure of multimedia servers and the optimization policies used to address cost performance.

Standard logical subcomponents: To achieve using standard utilities (e.g., backup programs) for managing multimedia servers, the multimedia server should be architected in terms of standard logical subcomponents.

Topology: The topology of the multimedia server has an important influ​ence on its performance. The underlying design of the components used to build the multime​dia server may dictate a particular topology (e.g., centralized, partitioned).

Cost performance: Particularly in large-scale multimedia servers, small increases in efficiency may lead to large reductions in multimedia server costs. For example, caching popular videos in memory may reduce disk storage costs. With network bandwidth being significant bottleneck, caching and prefetching in the network may be important.

5.5
Overview of Software QoS Components

The figure 5 shows the software interactions required for guaranteeing continuous delivery and how multiple multimedia applications can cooperate to share the same multimedia server. The multimedia server in the figure is supporting two multimedia applications-a videoconferencing applica​tion and a video-on-demand application. The videoconference manager handles videoconference requests from the videocon​ferencing clients. The video-on-demand manager handles requests for stored videos from its clients. Both application servers interact with the control server to obtain resource reservations. Typically, the applications will specify their requirements in application-specific terms. For example, the videoconference manager may specify a particular bit-rate for the video or a maximum allowable transmission delay. The control server has to sup​port a common set of requests that is general enough to allow most applications to specify their requirements.

After receiving an application request, the control server decides how to sat​isfy it. This involves interaction between the server optimization and admission control components. The server optimization component im​plements policies that attempt to satisfy the application’s QoS requirements while maximizing server efficiency. These policies will depend upon values that are maintained by the admission control component.

The control server next interacts with the data server to execute the application request. There may be multiple data servers. There are two modes in which the control server can interact with the data server. In the first mode, the control server may be aware of the internal structure and capacities of the devices in the data server. In the second mode, the control server may regard the data server as a sort of “black box” with a certain capacity. In this case, the optimizations possible will be less sophisticated. In either case, the data server will have internal scheduling components (disk scheduler, network scheduler, etc.) that will ensure the data server devices are shared fairly between the streams.

[image: image5.png]

Figure 5: QoS architecture of a multimedia server

6. DISTRIBUTED MULTIMEDIA DATABASES

“Here is a multimedia information processing cycle in figure 6. Authoring concerns the indexing and structuring of multimedia information. However there is a problem of managing large multimedia databases. Especially when dealing with distributed heterogeneous structures, a data model flexible enough for managing multimedia information elements in a unified way is crucial to database design. Multimedia databases should be organized to support a variety of groupware applications.

[image: image6.png]

Figure 6: The handling of multimedia information “

Groupware applications share information from a variety of distributed sources. In addition to that, group​ware applications must be able to integrate information from external sources with internally stored information. Then results should be distributed to other members of the workgroup, and also be transferred back to external databases. Also the data generated through the workgroup process will become useful to other groupware applications and users who are not part of the immediate workgroup. Users, as well as the groupware applications in which they work, must be able to update external databases given the proper permissions.

A multimedia database may consist of relational database records, object-oriented databases with objects for alphanumeric attributes, and storage servers for multimedia objects such as images, still video, audio, and full-motion video. An image or a video object may be included in a relational database as a binary large object (BLOB). Also it is possible to include an object as an attribute in an object. But for performance and accessibility to large volumes of information, alphanumeric text, hypertext, or the text component of hypermedia documents should be stored separately from multimedia objects such as image, audio, and video objects.

There are issues to be solved in organizing distributed databases with distinct storage mechanisms for various components in order to increase reliability and efficiency. These issues are:

· The location of objects.

· Generation, storing and management of composite objects and recompilation of them for playback.

· Maintenance of various classes of services for rendering of objects to ensure that voice (sound) and video objects are serviced for isochronous delivery.

· Identification of objects uniquely in an enterprise-wide network.

· Maintenance of multiple copies of objects to provide efficient and reliable access to all objects from any workstation in the network.

· Migration of objects through storage classes and purge of them from on-line storage.

These issues have significant impact on the performance and functionality of distrib​uted multimedia applications. A key design issue is to store different classes of objects and to access them.

6.1
Database Organization for Multimedia Applications

The cost of multimedia document storage is reduced by optical disk storage technology by a significant factor. Distributed architectures have opened the way for a variety of applications distributed around a network accessing the same data​base in an independent manner. The key issues of data organization for multimedia systems are as follows:

6.1.1
Data Independence

The basic idea is to make the data independent from the application so that future applications can access the data without constraints related to a previous application. To design a data-independent environment one should consider the followings:

· Storage design is independent of specific applications.

· Explicit data definitions are independent of application programs.

· Users need not know data formats or physical storage structures.

· Integrity assurance is independent of application programs.

· Recovery is independent of application programs.

6.1.2
Common Distributed Database Architecture

The data independence presents the opportunity to employ common distrib​uted database architectures. Key features are:

· The ability for multiple independent data structures to coexist in the system

· Uniform distributed access by clients

· Single point for recovery of each database server

· Convenient data re-organization to suit requirements

· Tunability and generation of object classes

· Expandability

A key point is the architectural division of functions between the database and the application. This architectural division allows networking a number of processing resources (CPUs) optimized for the database as well as the application functions. Computer resources are applied where they provide the most effective performance.

6.1.3
 Multiple Data Servers

On a network a number of applications can access to a dedicated database server. There may be bottlenecks when there are excessive accesses to the same resource. Because the server may not keep up with excessive number of demands. Setting up multiple data servers that have copies of the same resources solves this problem. In an object-oriented server arrangement, the same data object may be copied to a number of servers. The servers are not mirror images. Not all objects are duplicated in each server. Only objects in heavy demand are replicated on multiple servers. Even the duplicated objects are always identical, replicated objects may not be identical for short durations until the next sequenced synchronization activity.

The net​work capacity for data objects can be increased by increasing the number of data servers, and retrieval performance of individual objects can be enhanced by maintaining a larger number of replicated copies of the object.

6.2
Transaction Management for Multimedia Systems

A multimedia trans​action can be defined as the sequence of events that starts when a user makes a request to generate, render, edit, or print a hypermedia document. When the user releases the hypermedia document and stores back any edited versions or discards the copy in memory or local storage, the transaction is complete. During the transac​tion, the user may add new data elements, including live full-motion video using a video camera attached to the workstation.

The transac​tions based on text and textual or numeric data may become complex when data has to be retrieved from multiple data servers that can be accessed simultaneously by a large number of users. When two users attempt to read from or write to the same data record, conflicts arise. In most RDBMS-based applications, all data resides within the addressable areas of the database manager. However, many implementations of document imaging applications use separate optical disk jukeboxes with their own storage management. So the application must manage the sequencing of events to ensure that the transaction is performed correctly. Because the access to the image stor​age is outside the database manager.

In multi​media systems document text, associated data fields, images, video frames, and audio or video clips may be stored separately on independent filing systems. After all of the hypermedia docu​ment’s components are available and negotiations have been completed with the servers to play out the data, the hypermedia docu​ment can be presented successfully. This negotiation is needed because of the size of data being transferred in data objects. The transaction manager should manage the sequence of selecting, editing, and writing back the data, and, handle conflicts when multiple users access the same record. In addition to that it must also man​age the sequencing and negotiations for the retrieval rate of the data components.

In object-oriented databases, all components of a hypermedia document can be referenced within an object as attributes. So there is also a solution for the three-dimensional transaction management problem in the concepts of objects. Andleigh and Gretzinger originally introduced this concept in their book (Distributed Object-Oriented Data Systems Design, Prentice Hall, 1992).

This approach is expanded on the basic concepts developed for the object request broker (ORB) by the Object Management Group (0MG) and is combined with their transaction management approach. As seen in the figure in addition to the object request broker (the ORB object), a transaction control object (the TCO object) is used. A hypermedia document display object (an HD object) places a trans​action request, and its TCO object is generated to handle the complete request. The TCO analyzes the request and instructs the ORB to locate the required data component, ensure availability, determine the storage format, and establish the ability to play it back dynamically for each of the various objects required for the hypermedia document. Based on the analysis of the results of these actions provided by the ORB; the TCQ determines if it can proceed, or can only partially satisfy the request or it can terminate the transaction. The HD may have a different decom​pression and display hardware and software than the stored format. HD may specify a certain rate at which it can accept playback or it may require information in decompressed form.

[image: image7.png]Otpoct Server 1

,”.':I';:, =) [
[1= = rarossa|
iy
[=1
=) == =)
=) - =
— =) =
e B OB Qrcs
Ao Gyeasemr (Transackon 2

Figure 7: Object-Based Scheme for Multimedia Transactions

The TCO isolates the workstation from the storage servers. The TCO and, ORB allow the two levels of negotiations so that the stored format can be con​verted to a standard intermediate format and then to the display format. The TCO can man​age these conversions based on its own list of standard conversions and the nodes that provide those conversions. The ORB responds to requests from the TCO and plays back infor​mation to the HD under control of the TCO.

6.3
Managing Hypermedia Records as Objects

A hypermedia document can be stored in a document database, as a (binary large object) BLOB in a relational database, or in an object-oriented database. If the hypermedia record is stored as an object in an object-oriented database, multimedia objects may be included as attributes of the hypermedia object.

Instead of multimedia objects, a reference can be embedded in the database record or a hyperme​dia document, and the multimedia object can reside separately in its own database. This approach allows the same object to be shared by a number of records or documents. Each record or document embeds a reference or generates a link to the multimedia object.

The information items that can be included in an embedded reference are:

(
The object type for the multimedia object (text, image, voice, or video)

(
A unique network-wide Object ID for the multimedia object

(
A file name used for generation

(
Size of the object

(
The network server where it was generated

(
The application that generated the object

(
Time and date of generation

(
The application or player required to display or play it back

(
Object display or playback characteristics -compression type, resolution, orienta​tion (for image objects), and playback speed at normal compression

(
Related objects that must be retrieved at the same time for playback or display

(
Indexing information for indexed

In addition to the above information items, the application can advise the user to make retrieval decisions based on parameters such as time to transfer the data, memory and storage requirements, and display quality.

6.3.1
Object Linking and Embedding

Usually a linked object contains only the followings:

· the data needed to represent the object (its pre​sentation data)

· a pointer to an actual file that contains the original data plus information needed to edit the object (its native data).

An embedded object has the object itself along with the information needed to edit the object. That is, it includes both presentation and native data. Embedding makes a document large but the original copy of the object is not affected when an embedded copy is edited. But when the hypermedia document includes one or more video objects, embedded video objects cause the database to become very large, slowing data retrieval for all components of the hypermedia document.

OLE (Microsoft’s Object Linking and Embedding) provides an object-oriented framework for compound documents. Objects can nest inside of other objects to several levels of nesting. A user can drag an object from one window to another window. This allows the embedded object to be edited using the tools provided in its generator application without changing the context. But this results the same multimedia object to be included in a number of database records or hypermedia documents.

The following table summarizes the differences between linking and embedding:

	Linking
	Embedding

	Allows object to be stored in a specialized object server
	Causes the object to be stored with the container

	A linked object depends resolving the link to a copy on the accessible server
	An embedded object is always available with the container

	Editing a link copy affects all container documents that reference it
	Editing an embedded object affects only the embedded copy

7. REFERENCES

1. Prabhat K. Andleigh, Kiran Thakrar; “Multimedia Systems Design”, pages 496-531,Prentice Hall, 1996

2. Dinkar Sitaram and Asit Dan, “Multimedia Servers: Applications, Environments, and Design”, pages 5-13; 47-66, Morgan Kaufmann Publishers, 2000

3. Dimitris N. Chorafas, “Intelligent Multimedia Databases”, page 315, Prentice Hall, 1994

�Dinkar Sitaram and Asit Dan, “Multimedia Servers: Applications, Environments, and Design”, page 5, Morgan Kaufmann Publishers, 2000

� Dinkar Sitaram and Asit Dan, “Multimedia Servers: Applications, Environments, and Design”, pages 5-10, Morgan Kaufmann Publishers, 2000

� Dinkar Sitaram and Asit Dan, “Multimedia Servers: Applications, Environments, and Design”, page 9, Morgan Kaufmann Publishers, 2000

� Prabhat K. Andleigh, Kiran Thakrar; “Multimedia Systems Design”, pages 496-501,Prentice Hall, 1996

� Prabhat K. Andleigh, Kiran Thakrar; “Multimedia Systems Design”, pages 502-505,Prentice Hall, 1996

� Dinkar Sitaram and Asit Dan, “Multimedia Servers: Applications, Environments, and Design”, pages 47-49, Morgan Kaufmann Publishers, 2000

� Dinkar Sitaram and Asit Dan, “Multimedia Servers: Applications, Environments, and Design”, pages 49-50, Morgan Kaufmann Publishers, 2000

� Prabhat K. Andleigh, Kiran Thakrar; “Multimedia Systems Design”, pages 505-508,Prentice Hall, 1996

� Dinkar Sitaram and Asit Dan, “Multimedia Servers: Applications, Environments, and Design”, pages 10-13, Morgan Kaufmann Publishers, 2000

� Dinkar Sitaram and Asit Dan, “Multimedia Servers: Applications, Environments, and Design”, pages 64-66, Morgan Kaufmann Publishers, 2000

� Prabhat K. Andleigh, Kiran Thakrar; “Multimedia Systems Design”, pages 523-531,Prentice Hall, 1996

� Dimitris N. Chorafas, “Intelligent Multimedia Databases”, page 315, Prentice Hall, 1994

� Prabhat K. Andleigh, Kiran Thakrar; “Multimedia Systems Design”, page 527,Prentice Hall, 1996

PAGE
27

_1039469421.psd

_1039471371.psd

_1039472825.psd

_1039502146.psd

_1039472254.psd

_1039469948.psd

_1039468496.psd

