Event Bus Architecture Design

Objectives

· Realize the event bus design described in research paper in a Java API definition

· Explore implementation options for underlying event bus transport (iBus)

Feature Requirements (For API Definition)

This is a high level API used by the sharedlets that we will develop.

Deficiencies in current API definition

The current work seems to be focused on the implementation of the event bus itself rather than the high level API’s that the applications can use (i.e. Sharedlet).

For example, most of the application level API’s are not yet defined. Some of the following are examples:

· Event Message definition

· Channel management API’s (hierarchical channels, create, destroy, find)

· Publisher/Subscriber API’s

Requirements
Release

· JMS Compliant where possible.
1

Investigate JMS for feasibility as the API definition.

· Support for Major/Minor Events
1

· Continuous & Discrete Event Streams
1
This is necessary for distinguishing whether to playback certain event streams to synchronize the state of a new client. For example, we wouldn’t want to play back any video/audio streams from the last major event.

· Per Channel Reliable delivery
1
Must have for whitboard, text chat, …

· Hierarchical Channel Structure
1
Channel namespace and easy manipulation of channels within a session.

· Event Relationship Definition
1
Able to define message A is dependent upon message B in some way (according to research paper). A follows B, A in channel X follows B in channel Y, A is a minor event depending on major event B.

· Publisher/Subscriber Model w/ filtering mechanism
1
Be able to search for a particular channel and subscribe to it. For example findChannel(“x-application-sharedlet/*”). Subscriber can also filter events within a channel through some mechanism provided by the API.

· Firewall Penetration
1
Makes it through NAT, Stateful Inspection, Packet Filtering, & Proxy firewalls (Typically some form of HTTPS tunneling approach)

· Secure Access
2
Some user authenticated access methodology. Event Bus should have a hook on the server side to allow insertion of user authentication module.
· Per Channel Best effort delivery
2
Loosely Connected
2
Allow clients to connect/disconnect and still be able to recover all messages not received while disconnected for a particular session.

· Transmission Delay Tolerant
2
The event bus should be able to recover from periodic network congestion where data is delayed on reception. The client module should playback in “fast forward” until caught up.

· For video and other realtime streaming applications. The performance hopefully should be sufficient to support streaming media applications.

· Data Encryption
2
The event bus should support encryption of event streams
· Distributed Architecture
2
The event bus should support a geographically disperse architecture.
· Closest Node Connection
2
The client module should use some semi-intelligent algorithm to pick the closest event bus node to connect to. (In case of distributed architecture).
Implementation Exploration

· Explore the use of the following event buses as possible implementations of architecture:

(1) iBus (high priority)

· Architectural extensions on top of existing event bus implementations to achieve full functionality.

