
A Grid Message Service

Shrideep Pallickara∗ Geoffrey Fox†

March 17, 2001

1 Introduction

Distributed messaging systems broadly fall into the three different categories. These include queuing
systems, remote procedure call based systems and publish subscribe systems. Message queueing systems
with its store-and-forward mechanisms come into play where the sender of the message expects someone
to handle the message while imposing asynchronous communication and guaranteed delivery constraints.
The two popular products in this area include include IBM’s MQSeries [IBM00] and Microsofts MSMSQ
[Hou98]. A widely used standard in messaging is the Message Passing Interface Standard (MPI). MPI
is designed for high performance on both massively parallel machines and on workstation clusters. Mes-
saging systems based on the classical remote procedure calls include CORBA [OMG00c], Java RMI
[Jav99] and DCOM [EE98]. Publish subscribe systems form the third axis of messaging systems and
allow for decoupled communications between clients issuing notifications and clients interested in these
notifications.

The decoupling relaxes the constraint that publishers and subscribers be present at the same time,
and also the constraint that they be aware of each other. The publisher also is unaware of the number of
subscribers that are interested in receiving a message and requires no synchronization with subscribers.
The routing of messages from the publisher to the subscriber is within the purview of the message oriented
middleware (MOM) which is responsible for routing the right content to the right consumers. The publish
subscribe paradigm can support both the pull/push paradigms. In the case of pull, the subscribers retrieve
messages from the MOM by periodic polling. The push model allows for asynchronous operations where
there are no periodic pollings. Industrial strength products in the publish subscribe domain include
solutions like TIB/Rendezvous [TIB99] from TIBCO and SmartSockets [Cor00b] from Talarian. Variants
of publish subscribe include systems based on content based publish subscribe. Content based systems
allows subscribers to specify the kind of content they are interested in. These content based publish
subscribe systems include Gryphon [BCM+99, ASS+99], Elvin [SA97] and Sienna [CRW00]. The system
we are looking at MSpaces is also in the realm of content based pub/sub systems with the additional
feature of location transparency for clients.

The shift towards pub/sub systems and its advantages can be gauged by the fact that message
queuing products like MQSeries have increased the publish subscribe features within them. Similarly
OMG introduced services that are relevant to the publish subscribe paradigm. These include the Event
services [OMG00b] and the Notification service [OMG00a]. The push by Java to include publish subscribe
features into its messaging middleware include efforts like JMS [HBS99] and JINI [AOS+99]. Various
JMS implementations include solutions like SonicMQ [Cor99] from Progress, JMQ [iPl00] from iPlanet,
iBus [Inc00] from Softwired and FiranoMQ [Cor00a] from Firano. We envision a system with thousands
of server nodes providing a distributed event service in a federated fashion. The grid message service
(GMS) Mspaces, provides the architecture and protocols for achieving this.

∗Dept. Of Electrical Engineering & Computer Science, Syracuse University
†Computational Science a& Information Technology, Florida State University

1



2 System Model

The system comprises of a finite (possibly unbounded) set of server nodes, which are strongly connected
(via some inter-connection network). Special nodes called client nodes, can be attached to any of the
server nodes in the network. Client nodes can never be attached to each other, thus they never com-
municate directly with each other. Let C denote the set of client nodes present in the system. The
nodes, servers and clients, communicate by sending events through the network. This communication is
asynchronous i.e. there is no bound on communication delays. Also the events can be lost or delayed.
Some of the server nodes have access to a persistent store to facilitate delivery in the presence of failures
and prolonged client disconnects. The failures we are presently looking into are node failures (client and
server nodes) and link failures. The server node failures have crash-failure semantics. As a result of
these failures the communication network may partition. Similarly virtual partitions may stem from an
inability to distinguish slow nodes or links from failed ones. Crashed nodes may rejoin the system after
recovery and partitions (real and virtual) may heal after repairs.

2.1 The event service problem

Client nodes can issue and deliver events. Every event e is time stamped message. Any arbitrary event
e contains implicit or explicit information regarding the client nodes which should deliver the event. We
denote by Le ⊆ C this destination list of client nodes associated with an event e. The dissemination of
events can be one-to-one or one-to-many. Client nodes have intermittent connection semantics. Clients
are allowed to leave the system for prolonged durations of time, and still expect to receive all the events
that it missed, in the interim period, along with real time events on a subsequent re-join. The system
places no restriction on the server node that a client node can attach to, at any time, during an execution
trace σ of the system. We term this behavior of the client as roam. Clients could also initiate a roam
if it suspects, irrespective of whether the suspicion is correct or not, a failure of the server node it is
attached to.

For an execution σ of the system, we denote by Eσ the set of all events that were issued by the client
nodes. Let Ei

σ ⊆ Eσ be the set of events ei
σ that should be relayed by the network and delivered by

client node ci in the execution σ. During an execution trace σ client node ci can join and leave the
system. Node ci could also recover from failures. Besides this, as mentioned earlier client nodes can
roam (a combination of leave from an existing location and join at another location) over the network.
A combination of join-leave, join-crash, recover-leave and recover-crash constitutes an incarnation of ci

within execution trace σ. We refer to these different incarnations, x ∈ X = 1, 2, 3..., of ci in execution
trace σ as ci(x, σ).

The problem pertains to ensuring the delivery of all the events in Ei
σ during σ irrespective of node

failures and location transience of the client node ci across ci(x, σ). In more formal terms if node ci has
n incarnations in execution σ then

n∑

x=1

ci(x, σ).deliveredEvents = Ei
σ.

2.2 Assumptions

(a) Every event e is unique.

(b) The links connecting the nodes do not create events.

(c) A client node has to accept every message, events and control information routed to it.

(d) Not all events can have zero targeted clients.

(e) If a client issues an event e infinitely often, eventually the event would be disseminated within the
system.

Items (d) and (e) constitute the liveness property eliminating trivial implementations in which all events
are lost or all events have no targeted clients.

2



3 The Server Node Topology

The smallest unit of the system is a server node and constitutes level-0 of the system. Server nodes
grouped together from a cluster and level-1 of the system. A single server node could also decide to be
part of a traditional clusters, or along with other such server nodes form a cluster connected together
by geographical proximity but not necessarily high speed links. Several such clusters grouped together
as an entity comprises the level-2 of our network and is referred to as a super-cluster. Clusters within
a super-cluster have one or more links with at least one of the other clusters within that super-cluster.
This topology could be extended in a similar fashion to comprise of super-super-clusters (level-3) and
so on. In general there would be multiple links connecting a single unit to several other units, which
provides for a higher degree of fault tolerance by providing multiple routes to reach the same unit. We
limit the number of super-clusters within a super-super-cluster, the number of clusters within a super
cluster and the number of nodes within a cluster viz. the block-limit to 64. In a N-level system this
scheme allows for 26

N−1 × 26
N−2 × · · · 26

0 i.e 26∗N server nodes to be present in the system.

SSC-A

SC-1

SC-2

SC-3

e

g

c4 5

6

b

f

d

a

SSC-BSC-4

SC-5

SC-6

l

n

i

j

m

k

h

SSC-C

SC-7

SC-8

SC-9

s

u

o

q

t

r

p

SSC-D

SC-11

y

z

SC-10

w

x

v

Figure 1: Connectivities between units

In general a context C`
i at level l exists within the context C`+1

j of a level (`+1). Connections between
nodes within different unit, provide gateways to the other units. We refer to such nodes as gatekeepers.
A gateway at level ` exits within a higher context C`+1

j and is denoted g`
i (C

`+1
j ), g`

i for short. Fig 1
shows a system of 78 nodes organized into a system of 4 super-super-clusters, 11 super-clusters and 26
clusters. In general if a node connects to another node, and the nodes are such that they share the
same context C`+1

i but have differing contexts C`
j , C`

k, the nodes are designated gateways at level − `

3



i.e. g`(C`+1). Thus in Fig 1 we have 12 super-super-cluster gateways, 8 super-cluster gateways (6 each
in SSC-A and SSC-C, 4 in SSC-B and 2 in SSC-D) and 4 cluster-gateways in super-cluster SC-1.

4 The problem of event delivery

The problem of event delivery pertains to the efficient and reliable delivery of events to the destinations
which could be internal or external to the event. In the latter case the system needs to compute the
destination lists pertaining to the event. The system merely acts as a conduit to reliably deliver the
events from the issuing client to the interested clients.

4.1 Gateway Propagation Protocol - GPP

Gateway Propagation Protocol (GPP) is responsible for the dissemination of connection information
within relevant parts of the sub system to facilitate creation of abbreviated system interconnection
graphs. Providing precise information for routing of events, and the updating of this information in
response to the addition, recovery and failure of gateways is in the purview of GPP.

6

SC
-2

SSC-
B

ba

54

SSC-
C

SSC-
D

SC
-3

6

4

6

5

4

3

2

1

0 0

2

level-0

level-1

level-2

level-3

SSC-A.SC-1.c.6

Figure 2: The connectivity graph at node 6.

Figure 2 depicts the connectivity graph that is constructed at the node SSC-A.SC-1.c.6 in Figure
1. The abbreviated system view at each node is different, this reflects the nodes view of the inter-
connections within the system. Along each edge is the cost associated with traversal along that link.
The cost associated with communication between units at different levels increases as the levels of the
units increases. One of the reasons we have this cost scheme is that the dissemination scheme employed
by the system is selective about the links employed for finer grained dissemination. In general a higher
level gateway is more overloaded than a lower level gateway.

4.2 Profile Propagation Protocol - PPP

To snapshot the event constraints that need to be satisfied by an event prior to dissemination within
a unit and subsequent delivery at a client we use the Profile Propagation Protocol (PPP). PPP is
responsible for the propagation of profile information to relevant nodes within the system to facilitate
hierarchical dissemination of events. We use the organization and matching scheme based on the general
matching algorithm presented in [ASS+99] of the Gryphon system to organize profiles and compute the
destinations associated with the events. Constraints from multiple profiles are organized in the profile
graph. Associated with every edge we maintain the units that are interested in its traversal. And for

4



each of these units we maintain the number of predicates δω within that unit that are interested in the
traversal of that edge.

A

B

D C

C

C

a [s1,s2][1,1]

f [s
3][1]

d [s3][1] c [s3][1]

b [s2][1]
c [s2][1]

* [s1][1]
c [s2][1]

s1= {A=a, B=*, C=c}
s2= {A=a, B=b,C=c}
s3= {A=f, D=d, C=c}

Figure 3: The complete profile graph with information along edges.

In the hierarchical dissemination scheme that we have, gateways g`+1 compute destination lists for
units u` that it serves as a g`+1 for. A gateway g`+1 should thus maintain information regarding the
profile graphs at each of the units u`. When a profile change occurs at any level, the updates need to
be routed to relevant destinations. The connecivity graph provides us with this information. From the
connectivity graph in figure 2, it can be seen that node 4 is the cluster gateway thus changes in profiles at
level -0 i.e. δω0 at any of the node are routed to 4. δω1 changes need to be routed to level two gateways
with SSC-1. The way this is calculated is the following -

(a) Locate the level-(`) node in the connectivity graph.

(b) The uplink from this node of the connectivity graph to any other node, indicates the presence of a
level-` gateway at that node.

When we send the profile graph information over to the higher level gateways g`, the information
contained along the edges in the graph needs to be updated to reflect the nodes logical address at that
level. Thus when a node propagates the clients profile to the cluster gateway, it propagates the edges
created/removed with the server as the destination. In the figure 2, any δω0 changes need to be routed
to node 4. Any δω1 changes at node 4 need to be routed to 5, and to a node in cluster 5. Similarly
δω2 changes at node 5 needs to be routed to the level-3 gatekeeper in cluster a and superclusters SC-3,
SC-2. When such propagations reach any unit/super-unit the process is repeated till such time that the
gateway that the node seeks to reach is reached. Every profile change has a unique-id associated it, with
aids in ensuring that the reference count scheme that we have does not fail due to delivery of the same
profile change multiple times within the unit.

4.3 Event Routing Protocol - ERP

The Event Routing Protocol (ERP) uses the information provided by PPP to compute hierarchical
destinations. Information provided by GPP, such as system inter-connections and shortest paths, are
then employed to efficiently disseminate events within the units and to clients subsequently. The problem
of routing events is a two pronged problem, which needs to address the basic routing scheme and the
routing of real-time events. A gateway g`(C`+1

i ) is responsible for the dissemination of events throughout
the unit at level − ` with context C`+1

i . This is a recursive process and the gateway g` delegates this to
the lower level gateways g`−1, · · · , g1 to aid in finer grained dissemination. A gateway g` is concerned
with the routing information from level− ` to level−N . When a event has been routed to a gatekeeper
g` the routing information associated with the event is modified to reflect the fact that the event was

5



received at this particular unit. In case the gateway decides to send the event over a gateway g`, it
first checks level − ` routing information for the event to confirm that theevent was not routed to the
unit. If it decides to route the event to that unit over g` all routing information pertaining to lower level
(`, ` − 1. · · · , 0) disseminations are stripped from the event routing information.

5 Mananging synchronous asynchronous streams

The real time delivery of events when clients are present in the system constitutes the synchronous
streams. In our system a client is allowed to have a prolonged dis-connect or roam across to a new
location in response to a failure suspicion. When the client joins the system in its new incarnation, it
has missed some events during the intervening period. These events need to be recovered for the client.
In addition to this, based on the clients profile any new events being issued within the system need to
be routed to this client. The system allows for playback of missed events by allowing for events to be
seamlessly archived for fault tolerance at different locations within the system.

Routing of these interim events are done based on the last epoch ξ associated with the client, and the
replication scheme that exists in the sub system that the client was originally a part of. The replicator
nodes construct recovery queues for clients based on events which were to be delivered by clients attached
to nodes within units that the node is servicing. The clients then discard events which were not meant
for it and for events which were meant for it, reduce the reference count associated with the event.

6 An agent based approach

A client’s profile comprises of a set of predicates which the client mandates that a certain event satisfy
prior to the client being targetted as one of the destinations for the event. In addition to this associated
with the client are a set of properties which could be used to further refine the destinations associated
with an event. The refinement process is carried out by a server side agent responsible for further refining
the events targetted for a client. This scheme is depcited in figure 4.

Database

Server
Message

Input Queue
Agent

Combines MessageProperties,
User profiles and user properties to

decide on message recepient

Central
Knowledge

Subscriber
Profiles

Subscriber
Properties

Publishers
Subscribers

Figure 4: An agent based approach

Traditionally matching of events and calculation of destinations have been based on text properties
with SQL like selections or on a static set of tag-value pairs contained in the client’s profile. JMS employs
the earlier approach while most content based pub/sub systems employ the latter approach. We seek
to augment this matching process by allowing for topics to be matched to clients based on not just
the profiles, but also the properties associated with the client. In addition to the matching based on

6



string properties or tag-value matching, the advantage of this scheme is that it allows for matching to
be based on more dynamic features like the state of the system (bandwidth constraints etc.), a clients
content handling capabilities and other similar constraints . This operation is performed by a server side
agent which is responsible for this more powerful matching. The decision to route an event is based not
only the properties contained in the event, but also on the constraints specified/detected within the user
property set.

As an example an event would be routed based on not just the headers describing the event but also
on the clients content handling capabilities. Thus we would use the pub/sub matching engine for routing,
but we will narrow the destination lists associated with the event based on the clients content handling
capabilities. Another example would be of a lecture being in progress, which reuires that interested
students should have already completed a pre-requisite successfully. This information is accessed by the
agent which can access a client’s properties. Even though the event matches the client’s profile the event
will not be routed to the client if the pre-requisite constraint is not satisfied by the client. This feature
could also be employed in collaborative systems, where only certain clients within a session could be
allowed to deliver a certain event based onproperties accessed by the server side agent.

6.1 The execution Model - GXOS, MyXos & RDF

To deal with the large volume of objects, the objects need to be made self-defining. We make explicit all
the necessary metadata to enable functions such as searching, accessing, unpacking, rendering, sharing,
specifying of parameters, and streaming data in and out of them. This metadata is defined using a
carefully designed XML schema GXOS and exploiting the new RDF framework. The XML meta-objects
point to the location of the object they define and can initiate computations and data transfers on
them. Objects can be identified by a URI and referenced with this in either RDF resource links (such as
<rdf:description about="URI" .. ) or fields in the GXOS specification. Three important URI’s are
the GXOS name such as gndi://gxosroot/halld/users/, and the web location of either the meta-object
or object itself. All objects in GXOS must have a unique name specified in a familiar (from file systems)
hierarchical syntax.

Events use the same base XML schema as the meta-objects describing the entities in the system.
The uniform treatment of events and meta-objects enables us to use a simple universal persistency
model gotten by a database client subscribing as a client to all collaborative applications. Integration
of synchronous and asynchronous collaboration is achieved by the use of the same publish/subscribe
mechanism to support both modes. Hierarchical XML based topic objects matched to XML based
subscribing profiles specified in RDF (Resource Description Framework from W3C) control this. Topics
and profiles are also specified in GXOS and managed in the same way as meta-objects. These ideas
imply new message and event services for the Grid, which must integrate events between applications
and between clients and servers. One extension of importance GMSME (GMS Micro Edition) handles
messages and events on hand held and other small devices. This assumes an auxiliary (personal) server
or adaptor handling the interface between GMS and GMSME and offloading computationally intense
chores from the handheld device.

We are currently researching different ways of reading into memory the XML meta-objects as needed
by programs running under MyXoS. SAX and DOM XML parsers are not efficient for tens of mil-
lions of XML instances at a time. Converting XML schema into Java data structures is possible
(http://castor.exolab.org/sourcegen.html) but efficiency requires this be combined with lazy parsing so
that we expand GXOS trees only as needed to refine our access. We see this as a particularly challenging
and having important programming style implications as we look at models where data structures are
defined in XML and not directly as C++ or Java classes.

6.2 Performance

References

[AOS+99] Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim Waldo, and Ann Wollrath. The Jini
Specification. Addison-Wesley, June 1999.

7



[ASS+99] Marcos Aguilera, Rob Strom, Daniel Sturman, Mark Astley, and Tushar Chandra. Matching
events in a content-based subscription system. In Proceedings of the 18th ACM Symposium
on Principles of Distributed Computing, May 1999.

[BCM+99] Gurudutt Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao, Rob Strom, and
Daniel Sturman. An Efficient Multicast Protocol for Content-Based Publish-Subscribe Sys-
tems. In Proceedings of the IEEE International Conference on Distributed Computing Sys-
tems, Austin, Texas, May 1999.

[Cor99] Progress Software Corp. Sonicmq :the role of java messaging and xml in enterprise application
integration. Technical report, http://www.progress.com/sonicmq, October 1999.

[Cor00a] Firano Corporation. A guide to understanding the pluggable, scalable connection manage-
ment (scm) architecture - white paper. Technical report, http://www.fiorano.com/ prod-
ucts/fmq5 scm wp.htm, 2000.

[Cor00b] Talarian Corporation. Everything you need to know about middleware: Mission critical
interprocess communication. Technical report, http://www.talarian.com/ products/ smart-
sockets, 2000.

[CRW00] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Achieving scalability and
expressiveness in an internet-scale event notification service. In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing, pages 219–227, Portland
OR, USA, July 2000.

[EE98] Guy Eddon and Henry Eddon. Understanding the dcom wire protocol by analyzing network
data packets. Microsoft Systems Journal, March 1998.

[HBS99] Mark Happner, Rich Burridge, and Rahul Shrama. Java message service. Technical report,
Sun Microsystems, November 1999.

[Hou98] Peter Houston. Building distributed applications with message queuing middleware - white
paper. Technical report, Microsoft Corporation, 1998.

[IBM00] IBM. IBM Message Queuing Series. http://www.ibm.com/software/mqseries, 2000.

[Inc00] Softwired Inc. iBus Technology. http://www.softwired-inc.com, 2000.

[iPl00] iPlanet. Java message queue documentation. Technical report, http://docs.iplanet.com/
docs/manuals/javamq.html, 2000.

[Jav99] Javasoft. Java remote method invocation - distributed computing for java (white paper).
http://java.sun.com/marketing/collateral/javarmi.html, 1999.

[OMG00a] The Object Management Group OMG. Corba notification service. http://www.omg.org/
technology/documents/formal/notificationservice.htm, June 2000. Version 1.0.

[OMG00b] The Object Management Group OMG. Omg’s corba event service. http://www.omg.org/
technology/documents/formal/eventservice.htm, June 2000. Version 1.0.

[OMG00c] The Object Management Group OMG. Omg’s corba services. http://www.omg.org/ tech-
nology/documents/, June 2000. Version 3.0.

[SA97] Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe notifica-
tion service with quenching. In Proceedings AUUG97, pages 243–255, Canberra, Australia,
September 1997.

[TIB99] TIBCO. Tib/rendezvous white paper. http://www.rv.tibco.com/whitepaper.html, 1999.

8


