High Performance Computing in Java

Java does not realize as high a performance as some other languages. Often Java’s powerful frameworks, safety, software engineering and other advantages outweigh the performance issue. However some applications have performance requirements that make Java less attractive at the moment than either Fortran or C++. Large scale Science and Engineering computations fall into this class. An effort summarized at http://www.javagrande.org has studied issues affecting Java’s performance and has investigated a variety of topics. These include Java’s floating point semantics, support of complex numbers and efficient arrays, mathematical libraries, operator overloading and support of lightweight objects. These address efficient handling of typical scientific data while other topics studied include performance of Java in large scale parallel and distributed computing. A very successful set of conferences has developed these ideas and the next one (http://www.extreme.indiana.edu/java00/) will be held in San Francisco just before JavaOne 2000. Research into new compilers has identified ways of greatly improving Java’s performance in scientific computations. Productizing these advances and adoption of some of the proposed enhancements to Java would be helped by greater user pressure on the vendors. Scientific computing is for instance at best a few percent of the computing market and it is not so easy to make a business case for investing in improving Java’s performance. 

In this challenge, we ask the readers to produce the most compelling demonstration code that will energize the interest in performance by the broad Java community. We give two examples below and suggest that the links http://www.epcc.ed.ac.uk/javagrande/ and http://gams.nist.gov/javanumerics/ have several interesting examples. Any submission must be 100% Java and not include native code even though that today is an important way of getting good performance.

1) Example 1: Teraflop Parallel Java
Large scale parallel computers – whether of custom design or gotten by clustering PC’s – are now deployed in many government, academic and commercial sites. In particular the Department of Energy’s ASCI program has already deployed three 3 teraflop (3 1012 operations per second) computers and planning larger machines. This performance is only achieved using “yesterday’s languages” – especially Fortran. We challenge the reader to produce parallel Java code that can achieve a teraflop performance on an existing parallel machine. Probably you don’t have access to such a machine. Then produce the application on a small system and explain why it will scale to the largest machines. Evaluation of this challenge will include both performance and interest of the code. For instance so-called “pleasingly parallel codes” – where every node of the parallel machine acts essentially independently are discouraged. One can also present your results as a ratio of Java to Fortran or C++ performance.

2) Example 2: Pervasive Parallel Computing

In a previous challenge, we asked for an asteroid game for a handheld device. Maybe parallel machines made of PC’s are just part of a rapidly disappearing past nightmare and true parallelism is billions of palm and cell phone-like devices. These could more easily benefit from Jini and the portability of Java. One interesting application is Genetic (optimization) algorithms, which are nontrivial (not pleasingly parallel) but have modest communication or synchronization constraints. Here the challenge is to build a Java code that can non trivially scale not to 10,000 PC like nodes as in ASCI machines but rather to a million or so game controllers or Palm devices. Again we will judge the results on the quality of the application and an attached argument as to how you will scale from whatever you can do with current resources to the future large-scale application.

