
On the design of multi-tagged event queues and their e�ects on

Distributed services and Computing�

Shrideep Pallickara Geo�rey Fox

June 19, 2000

Contents

1 Introduction 1

2 Speci�cations 1

2.1 System Model . 1

2.2 The event service problem . 2

2.3 Assumptions . 3

2.4 Properties . 3

3 The Anatomy of an Event 3

3.1 The Occurrence . 4

3.2 Attribute Information . 4

3.3 Control Information . 5

3.4 Destination Lists . 6

3.5 Derived events . 6

3.6 The constraint relation . 6

4 Event Streams and events 6

4.1 Event Stream Speci�cations . 8

4.2 Stream Properties . 9

4.3 Specifying the anatomy of an event . 9

5 The Rationale for a Distributed Model 10

5.1 Scalability . 10

5.2 Dissemination Issues . 10

5.3 Redundancy Models . 11

6 Client 11

6.1 Connection Semantics . 11

6.2 Client Pro�le . 11

6.3 Logical Addressing . 11

7 The Server Node Topology 12

7.1 Contexts . 13

7.2 Gatekeepers . 13

7.3 The addressing scheme . 15

�Northeast Parallel Architectures Center, Syracuse University, Syracuse NY 13210

CONTENTS ii

8 The problem of event delivery 16

8.1 The pro�le propagation protocol - PPP . 16

8.2 The propagation scheme . 18

8.3 The gateway propagation protocol - GPP . 19

8.4 The event routing protocol - ERP . 20

8.5 Routing real-time events . 22

8.6 Handling events for a disconnected client . 22

8.7 Routing events to a newly re-connected client . 23

8.8 Duplicate detection of events . 23

8.9 Garbage collection scheme for the stable storages . 25

9 Issues in Reliability & Fault Tolerance 26

9.1 Message losses and error correction . 26

9.2 Node failures . 27

9.3 Gateway Failures . 27

9.4 Unit Failures . 28

9.5 Network Partitions . 29

9.6 Node failures . 29

9.7 Stable Storage Issues . 32

9.8 The need for Epochs . 36

10 Implementation Details and such 39

1 Introduction 1

1 Introduction

Events are an indication of an interesting occurrence. Events point to nuggets of information which

are related to the event itself, and help us understand the event completely. When we refer to an event

we refer to the occurrence and the information it points to. The information contained in the event

comprises of

� The occurrence which snapshots the context, priority and the application.

� Attribute information which constitutes the event type.

� Control information.

� Destination Lists

The attribute information comprises of tags which specify the attributes associated with the event type

while the control information speci�es the constraints associated with that event viz. ordering, stability.

Thus say a person needs to sell stock A - the selling is the event, the general information is his account

pro�le while the control information could be a indication that he wants guaranteed delivery of the

event.

Events trigger actions, which in turn can trigger events. The event and the associated actions taken by

any part of the system share the cause-e�ect relationship. Actions are taken based on the event type

and the information contained in the event. The action taken at any node could be in
uenced not only

by di�erent causes but by subsequent e�ects too.

This paper, is about events, the organization, retrieval and speci�cation of attributes and constraints

associated with that event. This paper is also about event queues comprising of the aforementioned

events. We attempt to provide a motivation and a solution for how the queues can exist over the

network. Issues pertaining to replication and consistency will also be discussed. Finally this paper

is also about the design of an event service, specifying client and server rules, which would use these

events and the event queues.

2 Speci�cations

We now try to specify our problem. In section 2.1 we present our model of the system in which we

intend to solve the problem. In section 2.2 we formally specify our problem. Sections 2.3 and 2.4

deal with the assumptions that we make in our formalism's and the properties that the system and it

components must conform to during execution.

2.1 System Model

The system comprises of a �nite (possibly unbounded) set of server nodes, which are strongly connected

(via some inter-connection network). Special nodes called client nodes, can be attached to any of the

server nodes in the network. Client nodes are can never be attached to each other, thus they never

communicate directly with each other. Let C denote the set of client nodes present in the system. The

nodes, servers and clients, communicate by sending events through the network. This communication

is asynchronous i.e. there is no bound on communication delays. Also the events can be lost or delayed.

A server node execution comprises of a sequence of actions, each action corresponding to the execution

of a step as de�ned by the automaton associated with the server node. We denote the action of a client

node sending an event e as send(e). At the client node the action of consuming an event e is deliver(e).

2.2 The event service problem 2

Server nodes relay the events to the client nodes, en route to destination client nodes, we denote this

action relay(e). For increased availability and reduced latency, some of the server nodes have access to

a persistent store where they partially or fully replicate events and states of the nodes.

The failures we are presently looking into are node failures (client and server nodes) and link failures.

The server node failures have crash-failure semantics and could be one of the following:

(a) Crash - A faulty node stops prematurely and does nothing from that point on.

(b) Send Omission - A faulty node stops prematurely, or intermittently omits to send messages it was

supposed to send, or both.

(c) Receive Omission - A faulty node stops prematurely, or intermittently omits messages sent to it,

or both.

(d) General Omission - A faulty node is subject to send and receive omission failures.

Link Failures are of two types:

(a) Crash - A faulty link stops transporting messages. Before stopping however it behaves correctly.

(b) Omission - A faulty link intermittently omits transporting messages sent through it.

As a result of these failures the communication network may partition. Similarly virtual partitions may

stem from an inability to distinguish slow nodes or links from failed ones. Crashed nodes may rejoin

the system after recovery and partitions (real and virtual) may heal after repairs.

2.2 The event service problem

Client nodes can issue and deliver events. Any arbitrary event e contains implicit or explicit information

regarding the client nodes which should deliver the event. We denote by Le � C this destination list

of client nodes associated with an event e. The dissemination of events can be one-to-one or one-to-

many. Client nodes have intermittent connection semantics. Clients are allowed to leave the system

for prolonged durations of time, and still expect to receive all the events that it missed, in the interim

period, along with real time events on a subsequent re-join. Consistency checks need to be performed

before the delivery of real time events to eliminate problems arising from out of order delivery of certain

events.

The system places no restriction on the server node a client node can attach to, at any time, during an

execution trace � of the system. We term this behavior of the client as roam. Clients could also initiate

a roam if it suspects, irrespective of whether the suspicion is correct or not, a failure of the server node

it is attached to. The choice of the server node to attach to, during a roam or a join, is a function of

� Preferences - Clients can specify which node they wish to connect to.

� Response Times - This is determined by the system based on geographical proximity and related

issues of latency and bandwidth.

For an execution � of the system, we denote by E� the set of all events that were issued by the client

nodes. Let Ei

�
� E� be the set of events ei

�
that should be relayed by the network and delivered by

client node ci in the execution �. During an execution trace � client node ci can join and leave the

system. Node ci could recover from failures which were listed in Section 2.1. Besides this, as mentioned

2.3 Assumptions 3

earlier client nodes can roam (a combination of leave from an existing location and join at another

location) over the network. A combination of join-leave, join-crash, recover-leave and recover-crash

constitutes an incarnation of ci within execution trace �. We refer to these di�erent incarnations,

x 2 X = 1; 2; 3:::, of ci in execution trace � as ci(x; �).

The problem pertains to ensuring the delivery of all the events in E
i

�
during � irrespective of node

failures and location transience of the client node ci across ci(x; �). In more formal terms if node ci

has n incarnations in execution � then

nX

x=1

ci(x; �):deliveredEvents = E
i

�
:

All delivered events ei
�
2 E

i

�
must of course satisfy the causal constraints that exist between them prior

to delivery.

2.3 Assumptions

(a) Every event e is unique.

(b) The links connecting the nodes do not create events.

(c) A client node has to accept every message, events and control information routed to it.

2.4 Properties

(a) A client node can deliver e, only if e was previously issued.

(b) A client node delivers an event e only if that event satis�es the constraints speci�ed in its control

information.

(c) If an event e is to be delivered by client nodes c; c0 2 Le, then if c delivers e then c
0 will deliver

event e.

(d) For two events e and e
0 issued by the same client node c, if a client node delivers e before e0, then

no client node delivers e0 before e.

(e) For two events e and e
0 issued by nodes c and c

0 respectively, if a node delivers e before e0, then

no node delivers e0 before e.

Properties (d) and (e) pertain to the causal precedence relation! between two events e; e0, and can be

stated as follows 8ci 2 Le

T
Le0 if e! e

0 then e:deliver()! e
0
:deliver(). ! is transitive i.e. if e! e

0

and e
0
! e

00 then e
0
! e

00. The precise instant of time, from which point on, all these properties hold

true are addressed in section 8.1.1.

3 The Anatomy of an Event

When we refer to an event we refer to the occurrence and the information it points to. The information

contained in the event comprises of

� The occurrence which snapshots the context, priority and the application.

3.1 The Occurrence 4

� Attribute information which constitutes the event type.

� Control information.

� Destination Lists

The attribute information comprises of tags which specify the attributes associated with the event type

while the control information speci�es the constraints associated with that event viz. ordering, stability.

3.1 The Occurrence

The occurrence relates to the cause which evinces an action or a series of actions. Thus for a person

Bob, who would like to check mail, the occurrence is

``Bob wants to check his mail''

3.1.1 The event context

The event context pertains to whether the event is a normal, playback or recovery event. Also events

could be a response to some other event and associated actions.

3.1.2 Application Type

This pertains to the application which has issued a particular event. This information could be used

be used by message transformation switches to render it useful/readable by other applications.

3.1.3 Priority

Events can be prioritized, the information regarding the priority can be encoded within the event

itself. The service model for prioritized events di�ers from events with a normal priority. Some of the

prioritized events can be preemptive i.e. the processing of a normal event could be suspended to service

the priority event.

3.2 Attribute Information

The attribute information comprises of information which describe the event uniquely and completely

(tagged information).

3.2.1 Tagged Information & the event type

The tagged information contains values for the the tags which describe the event and also for the tags

which would be needed to process the event. The tags also allow for various extraction operations to be

performed on an event. The tags specify the type of the event. Events with identical tags but di�erent

values for one or more of these tags are all events of the same event type.

3.3 Control Information 5

3.2.2 Unique Events - Generation of unique identi�ers

Associated with every event e sent by client nodes in the system is an event-ID, denoted e:id, which

uniquely determines the event e, from any other event e0 in the system. These ID's thus have the

requirement that they be unique in both space and time. Clients in the system are assigned Ids,

ClientID, based on the type of information issued and other factors such as location, application domain

etc. To sum it up client's use pre-assigned Ids while sending events. This reduces the uniqueness

problem, alluded earlier to a point in space. The discussion further down implies that the problem has

been reduced to this point in space.

Associating a timestamp, e:timeStamp, with every event e issued restricts the rate (for uniquely iden-

ti�able1 events) of events sent by the client to one event per granularity of the clock of the underlying

system. Resorting to sending events without a timestamp, but with increasing sequence numbers,

e:sequenceNumber, being assigned to every sent event results in the ability to send events at a rate

independent of the underlying clock. However, such an approach results in the following drawbacks

a) If the client node issues an in�nite number of events, and also since the sequence numbers are

monotonically increasing, the sequence number assigned to events could get arbitrarily large i.e.

e:sequenceNumber!1.

b) Also, if the client node were to recover from a crash failure it would need to issue events starting

from the sequence number of the last event prior to the failure, since the event would be deemed

a duplicate otherwise.

A combination of timestamp and sequence numbers solves these problems. The timestamp is cal-

culated the �rst time a client node starts up, and is also calculated after sending a certain num-

ber of events sequenceNumber:MAX . In this case the maximum sending rate is related to both

sequenceNumber:MAX and the granularity of the clock of the underlying system. Thus the event ID

comprises of a tuple of the following named data �elds : e:PubID, e:timeStamp and e:sequenceNumber.

Events issued with di�erent times t1 and t2 indicate which event was issued earlier, for events with the

same timestamp the greater the timestamp the later the event was issued.

3.3 Control Information

The control information speci�es the delivery constraints that the system should impose on the event.

This control information is speci�ed either implicitly or explicitly by the client. Each of these speci�ers

have a default value which would be over-ridden by any value speci�ed by the client. Control Information

is an agreement between the issuer, the system and the intended recipients on the constraints that should

be met prior to delivery at any client.

3.3.1 Time-To-Live (TTL)

The TTL identi�er speci�es the maximum number of server hops that are allowed before the event is

discarded by the system.

3.3.2 Correlation Identi�ers

Correlation identi�ers help impose the causal delivery constraints on the request!reply events.

1When events are published at a rate higher than the granularity of the underlying system clock, its possible for events

e and e
0 to be published with the same timestamp. Thus, one of these events e or e' would be garbage collected as a

duplicate message.

3.4 Destination Lists 6

3.3.3 Qualities of Service Speci�ers

QoS speci�ers pertains to the ordering and delivery constraints that events should satisfy prior to

delivery by clients.

3.4 Destination Lists

A particular event may be consumed by zero or more clients registered with the system. Events have

implicit or explicit information pertaining to the clients which are interested in the event. In the former

case we say that the destination list is internal to the event, while in the latter case the destination list

is external to the event.

An example of an internal destination list is \Mail" where the recipients are clearly stated. Examples

of external destination lists include sports score, stock quotes etc. where there is no way for the issuing

client to be aware of the destination lists. External destination lists are a function of the system and

the types of events that the clients, of the system, have registered their interest in.

3.5 Derived events

The notion of derived events exists to provide means to express hierarchical relationships. These derived

events add more attributes to the base event attribute information discussed in Section 3.2.1. Derived

events can be processed as base events and not vice versa.

3.6 The constraint relation

In addition to derived events, clients could specify matching constraints on some of the event attribute

information. A constraint speci�es the values which some of the attributes, within an event type, can

take to be considered an interesting event. Constraints on the same event type t can vary, depending

on the di�erent values each attribute can take and also depending on the attributes included within the

constraint. A constraint g(t) on an event type t could be stronger, denoted > than another constraint

f(t) on the same event type i.e. g(t) > f(t). The constraint relation >
� denotes the transitive closure

of >.

Consider an event type with attributes a; b; c; d. Consider a constraint g which speci�es values for

attributes a; b and a constraint f which speci�es values for attributes a; b; c then f > g. However no

relation exists between 2 constraints f and g if

� They specify constraints on di�erent event types i.e. f(t); g(t0)

� They specify constraints on identical attributes

� They specify constraints on attributes within the same event type which do not share a sub-

set/superset relationship.

Formally f(t):attributes � g(t):attributes
T
f(t):attributes � g(t):attributes

4 Event Streams and events

An event stream denoted E is a stream of events fe0; e1; � � � ; eng that are logically related to each

other. Events within an event stream, E :ei are related to each other. This relationship is usually

4 Event Streams and events 7

the precedence relationship ; shared by events within a event stream i.e. e0 ; e1 ; � � � en. The

precedence relationship ; is transitive, if ei ; ej and ej ; ek then ei ; ek. Besides this individual

events with an event stream could contain dependencies to one or more events in one or more other

event streams. This dependency could be a direct association with events in other streams viz. one to

one mapping. This dependency could also be a logical mapping, thus resulting in a mapping which is

not exactly a one-to-one correspondence between the events in the event streams. It is conceivable that

the information contained in events from multiple event streams are necessary to describe an event. In

such cases the event in question, E :ei, could be a container for the information contained within events

in other event streams.

Streams merging in a
hypothetical sense

A C

B
D

Figure 1: Existence of multiple event streams.

Events within an event stream could depend2 on events from multiple event streams. Thus hypotheti-

cally we can assume that these related event streams merge. Consider three event streams EA, EB , EC

which merge to form an event stream E
D as depicted in Fig 1. Every event within the event streams

contain information which describe the event. This information could pointers to events contained in

other event streams, in which case we say that the event encapsulates events from other event streams.

Thus if EA
:ei encapsulates E

B
:ej ;E

C
:ek besides containing information pertaining to E

A
:ei we say

that E
A is a container for streams E

A, EB and E
C . Clients need not be aware of the existence of

streams E
B
;E

C or E
D. The information contained within E

A
:ei determines the streams that need

to merged. Besides this there should also be a precise indication of the events within other streams

(the streams need to be identi�ed unambiguously �rst of course) that are needed to describe an event

completely. This indication could be a -

(a) A one-to-one mapping among events in all the streams. In our example this would be E
A
:ei

encapsulating E
B
:ei, E

C
:ei. The corresponding event in the merged event stream being E

D
:ei.

(b) Based on the information contained in individual events of the streams. This could be dependent

on the tags contained in the events and the values that these tags could take.

(c) The dependency speci�cation could take complex forms in which the information pointed to need

2The scenario I am looking at is where a lecture is in progress, and the main stream is the lecture stream which contain

the foils in text, however the events within this stream could point to information contained in the audio stream, video

stream, images stream. These streams could be issued by streaming servers hosted at di�erent locations. The video feed

could be from Houston, audio feeds from Boston, Foils from Syracuse. The streams could have an independent stream

created, which could be questions, questions may or may not arise for certain foils (thus correlation between events in

di�erent streams could get arbitrarily complex). The chat stream could originate from Jackson state while the responses

could originate from Tallahassee. What we are looking at could be converted into a 24x7x365 education portal. Where

chat streams and responses could be used to build a FAQ stream.

4.1 Event Stream Speci�cations 8

not be a unique one and there could be several such events in the co-event streams which match

the speci�cation. In this case the dependency could take forms like

(c.1) The �rst event which matches the constraint.

(c.2) If there is an event which matches the constraint.

(c.3) All the events that match this constraint.

4.1 Event Stream Speci�cations

In this section we formally specify the streams, and the dependencies that exist between the events in

one stream to the events within other streams. The dependencies are speci�ed by the stream interaction

rules within the event streams and controlled by the occurence vector which dictates the number of

events from a speci�c stream that an event can have a dependency on. We also formulate the resolution

of these dependencies and how this subsequently leads to the creation of merged event streams. The

event streaming problem is one of routing these merged event streams to clients.

Equation (4.1) speci�es the relationships that exist within the events of an event stream. The events

within an event stream could be precedence related (;) or could have a simple logical relationship with

each other. In the former case the event stream is an ordered set of events, while in the second case

the stream is an unordered set which could be logically ordered based on the relationship that events

would share with each other.

E =

Ordered Setz }| {
fe0 ; e1 ; � � �g j

Unordered Setz }| {
fe0; e1; e2; � � �g (4.1)

In equation (4.2), ,! is the dependency operator, if E ,! E
j we say that E has a dependency on E

j .

The dependency, ,! of a stream E on multiple streams is determined by the dependency of every event

e within the stream. The set � contains all the streams that events in E could possibly be interested

in. As an aside, E would be the stream that clients would express their interest in and not E j
2 �.

E ,! � = fE
1
;E

2
;E

3
; � � � ; E

N
g (4.2)

The occurrence vector O is used to determine the number of events within other individual streams in

� that an event e in E is interested in. In equation (4.3) we de�ne the values which elements in the

occurence vector can take. This value speci�ed could be one of ? (once or not at all), + (at least once),

�(zero or more) and ? (one and only one).

Occurence Vector O = f?;+; �; ?g (4.3)

Events within an event stream could have a simple mapping which snapshots their dependencies on

events within other streams. This mapping $ could be a simple one to one mapping, or a pre de�ned

mapping which is consistent for all events within an event stream. Equation (4.4) is one of the forms

that stream interaction rules could take.

E $ E
j
) E :ei ,! Ej :e

j

i
j E :ei ,! E

j
:e
j

i�N
where $ speci�es the mapping rule (4.4)

Equation (4.5) speci�es one of the more complex forms that stream interaction rules can take. The

function e
func could specify either a constraint or a more complex rule which needs to be satis�ed

by the events within other event streams. The equation 4.5 snapshots the second half of the stream

4.2 Stream Properties 9

interaction rules that could exist between di�erent streams and which is used as the basis for the

resolution of dependencies that exist within streams.

E
j(efunc) =

X
e
j
2 E

j
3 e

j satis�es e
func

i
(4.5)

Equation (4.6) speci�es the resolution of an events dependency. A speci�c event within an event stream

E has a dependency to events within streams in � or a subset of the streams contained in �, denoted �0.

The # operator is the cardinality of a set. The operator � is the re�nement of the stream interaction

rules with an element of the occurrence vector O. This re�nement pin points the precise event/events

in E
j
2 � that an event in E is dependent on. As is clear, the result of this dependency resolution is

either a Null (if ei ,! �0 and #�0 = 0) or either an event or an array of events as determined by #�0

and the occurrence vector. The array of events could comprises of zero or single or multiple events from

each of the event streams in �.

8ei 2 E ; ei ,! �0
� � �

Impliedz }| {
ei(data)[

#�
0X

j=1

Stream Interaction Rulesz }| {
fE $ E

j
j E

j(erule
i

) j E j(e
tags

i
)g�

Occurrancez }| {
oi 2 O (4.6)

� Null j e j e[] (4.7)

Equation (4.8) details the creation of a merged event stream after the resolution of dependencies within

� of every event ei within an event stream E as speci�ed by the event dependency resolution in equation

(4.6). The event dependency resolution of every event within E results in the creation of the merged

event stream.

#EX

i=0

ei ,! �0
� � = E

MergedStream (4.8)

4.2 Stream Properties

(a) For an event stream E = fe0 ; e1 ; � � �g and ei; ej 2 E , if ei ; ej then no client can deliver ej
before ei. Also clients cannot deliver ej unless the dependencies of ei are resolved.

(b) If E ,! E
j and E :ei ,! E

j
:e
j based on the stream interaction rules and the occurrence vector

then no client delivers ej before ei.

(c) For a client interested in an event stream E and E ,! � then every such client evetually delivers

the merged event stream
P

#E

i=0
(ei ,! �0

� �).

4.3 Specifying the anatomy of an event

These sets of equations follow from our discussions in section 3 and section 4.1. Equation (4.9) follows

from our discussions in section 3.2.2 regarding the generation of unique identi�ers. This tuple is created

by the issuing clients.

eventId =< clientId ; timeStamp; seqNumber ; incarnation > (4.9)

The tuple in 4.10 discriminates between live events and recovery events (which occur due to failures or

prolong disconnects).

liveness =< livejrecovery > (4.10)

5 The Rationale for a Distributed Model 10

The type of an event is dictated by the event signature. These signatures could change, to accomodate

these changes we include the concept of versioning in our event signatures. This along with liveness

(equation 4.10) describe the event type completely.

eventType =< signature; versionNum; liveness > (4.11)

Destination lists within an event could be internal to the event in which case it would be explicitly

provided or it could be external to the event in which the destination lists would be computed by the

system.

destinationLists =<

Externalz }| {
Implied j

Internalz }| {
Explicit > (4.12)

The dependency indicator follows from our discussions in section 4.1 and equations (4.3) through (4.6).

dependencyIndicator =<? j � j + j ? > � < mapping j rules j constraints > (4.13)

The data within the event is contained within the values which di�erent attributes in the attributesList

can take.

event = < eventId ; eventType; attributesList ; dependencyIndicator ;

stream; applicationType; destinationLists > (4.14)

5 The Rationale for a Distributed Model

One of the reasons why one would use a distributed model is high availability. Having a centralized

model would imply a single server hosting multiple clients. While, this is simple model, the inherent

simplicity is more than o�set by the fact that it constitutes a single point of failure. Thus all the clients

present in the system would be unable to use any of the services provided by the system till a recovery

mechanism kicks in.

A highly available distributed solution would have data replication at various server nodes in the

network. Solving issues of consistency while execution operations, in the presence of replication, leads

to model where other server nodes can service a client despite certain server node failures.

5.1 Scalability

We envision the system comprising of thousands of clients. Having all these clients being serviced by

one central server raises a lot of issues in scalability and associated problems like average response times

and latencies.

5.2 Dissemination Issues

Clients of the system could be scattered across wide geographical locations. Having a distributed model

distributed model enables the client to connect to server nodes with better response times and lower

communication latencies.

5.3 Redundancy Models 11

5.3 Redundancy Models

To ensure guaranteed services for clients, a distributed model lends itself very easily for the construc-

tion of redundancy levels. This redundancy can be achieved through replication, multiple levels of

connectivity and ensuring consistency.

6 Client

A Client is a user of the system. Client's can generate and consume events in the system. The three

issues which describe a client are

� Connection Semantics

� Client Pro�le

� Logical Addressing

6.1 Connection Semantics

Events in the system have an underlying continuity associated with them. Events are continuously

generated and consumed within the system. Clients on the other hand have an inherently discrete

connection semantics. Clients can be present in the system for a certain duration of time and can

be disconnected later on. Clients reconnect at a later time and receive events which it was supposed

to receive as well as events that it is supposed to receive during its present incarnation. Clients can

issue/create events while in disconnected mode, which would be held in a local queue to be released to

the system during a reconnect.

6.2 Client Pro�le

A client pro�le keeps track of information pertinent to the client. This includes

(a) The application type.

(b) The events the client is interested in.

(c) The server node it was attached to in its previous incarnation, and its logical address (discussed

in Section 6.3) in that incarnation.

(d) Its current IP address and its IP address in its previous incarnation.

6.3 Logical Addressing

Given its connection semantics (Section 6.1), a client at the epoch of its present incarnation needs to -

� Receive events intended for it from earlier incarnations.

� Issue events which it created while in disconnected mode

� Receive any event currently being issued within the system

7 The Server Node Topology 12

The dissemination of this information needs to be done in a timely (real time for events currently being

published) and eÆcient (minimum number of hops or some function of bandwidth, speed and hops)

manner. The issue of logical addressing pertains to this problem of event delivery. At the epoch of the

new incarnation there should be a logical address associated with the client which would help specify

the fastest routing of events to the client.

7 The Server Node Topology

The smallest unit of the system is a server node and constitutes level-0 of the system. Server nodes

grouped together from a cluster and level-1 of the system. Clusters could be clusters in the traditional

sense, groups of server nodes connected together by high speed links. A single server node could also

decide to be part of such traditional clusters, or along with other such server nodes form a cluster con-

nected together by geographical proximity but not necessarily high speed links. The only requirement

that a cluster must satisfy is that at least one node should have access to stable storage. This is to aid

the recovery process in case of unit and gateway failures (both transient and permanent) which may

take place.

Cluster-A

Cluster-D Cluster-C

Cluster-B

dc

a b

lk

i j

po

m n

hg

e f

Figure 2: A Super Cluster - Cluster Connections

Several such clusters grouped together as an entity comprises the level-2 of our network and are referred

to as super-cluster, shown in Fig. 2. Clusters within a super-cluster have one or more more links with

at least one of the other clusters within that super-cluster. When we refer to the links between two

clusters, we are referring to the links connecting the nodes in those individual clusters. Referring to

Figure 2 Cluster-A has links to Clusters B, C and D while Cluster-B has links to Clusters A and C. For

two clusters with at least one link between them, any node in either of the clusters can communicate

with any other node of the other cluster. In general there would be multiple links connecting a single

cluster to several other clusters. This approach provides us with a greater degree of fault-tolerance, by

providing us with multiple routes to reach other clusters.

This topology could be extended in a similar fashion to comprise of super-super-clusters (level-3) as

shown in Fig. 3, super-super-super-clusters (level-4) and so on. A Client thus connects to a server

node, which is part of a cluster, which in turn is part of a super-cluster and so on and so forth. We

limit the number of super-clusters within a super-super-cluster, the number of clusters within a super

cluster and the number of nodes within a cluster viz. the block-limit to 64. In a N-level system this

7.1 Contexts 13

SuperCluster-I

SuperCluster-II

SuperCluster-III

SuperCluster-IVSuperCluster-V

Figure 3: A Super-Super-Cluster - Super Cluster Connections

scheme allows for 26
N�1� 26

N�2� � � � 2
6

0
i.e 26�N server nodes to be present in the system comprising of

one super-super-super-cluster which encompasses all the nodes within the system.

7.1 Contexts

Every unit within the system, has a unique context associated with it. In an N-level system, a server

exists within the context C1

i
of a cluster, which in turn exists within the context C2

j
of a super-cluster

and so on. In general a context C`

i
at level l exists within the context C`+1

j
of a level (` + 1). In a

N-level system the following hold -

C
0

i
= (C1

j
; i) (7.1)

C
1

j
= (C2

k
; j) (7.2)

...

C
N�2
p

= (CN�1
; p) (7.3)

C
N�1
q

= q (7.4)

In an N-level system, a unit at level ` can be uniquely identi�ed by (N � `)context identi�ers of each

of the higher levels. Of course, the units at any level l within a context C`+1

i
should be able to reach

any other unit within that same level. If this condition is not satis�ed we have a network partition.

7.2 Gatekeepers

Within the context C2

i
of a super-cluster, clusters have server nodes at least one of which is connected

to at least one of the nodes existing within some other cluster. In some case cases there would be

7.2 Gatekeepers 14

multiple links from a cluster to some other cluster within the same super-cluster C2

i
. These nodes thus

provide a gateway to the other cluster. This architecture provides for a higher degree of fault tolerance

by providing multiple routes to reach the same cluster. We refer to such nodes as the gatekeepers.

Similarly, we would have gateways existing between di�erent super-clusters within a super-super-cluster

context C3

i
. In a N � level system similar such gateways would exist at every level within a higher

context. A gateway at level ` within a higher context C`+1

j
denoted g

`

i
(C`+1

j
) comprises of -

� The higher level Context C`+1

j

� The Gateway identi�er i

� The list of gateways in level ` that it is connected to within the context C`+1

j
.

SSC-A

SC-1

SC-2

SC-3

e

g

c

b

f

d

a

SSC-BSC-4

SC-5

SC-6

l

n

i

j

m

k

h

SSC-C

SC-7

SC-8

SC-9

s

u

o

q

t

r

p

SSC-D

SC-11

y

z

SC-10

w

x

v

Link connecting super-super-cluster gateways.

Link connecting super-cluster gateways.

Link connecting cluster gateways.

Figure 4: Gatekeepers and the organization of the system

It should be noted that a gatekeeper at level l need not be a gatekeeper at level (`+1) and vice-versa.

Fig 4 shows a system of 78 nodes organized into a system of 4 super-super-clusters, 11 super-clusters

and 26 clusters. When a node establishes a link to another node in some other cluster, it provides a

gateway for dissemination of events. If the node it connects to is within the same super-cluster context

C
2

i
both the nodes are designated cluster gateways. In general if a node connects to another node,

7.3 The addressing scheme 15

and the nodes are such that they share the same context C`+1

i
but have di�ering contexts C`

j
, C`

k
, the

nodes are designated gateways at level� ` i.e. g`(C`+1). Thus in Fig 4 we have 12 super-super-cluster

gateways, 8 super-cluster gateways (6 each in SSC-A and SSC-C, 4 in SSC-B and 2 in SSC-D) and 4

cluster-gateways in super-cluster SC-1.

7.3 The addressing scheme

The addressing scheme provides us with a way to uniquely identify each server node within the system.

This scheme plays a crucial role in the delivery of events (discussed in Section 8.7). As discussed earlier

units at each level are de�ned within the context of a unit at the next higher level. In a N -level system

the context C`

j
is C`

i
=

N�lz }| {
C
N

j
(CN�1

k
(� � � (C`+1

m
(C`

i
)) � � �)). Thus in a 4-level system, to identify a server

node, the addressing scheme speci�es the super-super-cluster C3

i
, super-cluster C2

j
and cluster C1

k
that

the node is a part of along with the node-identi�er within C
1

k
. Thus for server node a, within cluster

B, within super-cluster C and super-super-cluster D the logical address within the system is D.C.B.a.

8 The problem of event delivery 16

8 The problem of event delivery

The problem of event delivery pertains to the eÆcient and reliable delivery of events to the destinations

which could be internal or external to the event. In the latter case the system needs to compute the

destination lists pertaining to the event. The system merely acts as a conduit to reliably deliver the

events from the issuing client to the interested clients. To snapshot the event constraints that need to be

satis�ed by an event prior to dissemination within a unit we use the Pro�le Propagation Protocol (PPP)

discussed in Section 8.1. Providing precise information for routing of these events, and the updation of

this information in response to the addition, recovery and failure of gateways is in the purview of the

Gateway Propagation Protocol (GPP) discussed in Section 8.3. In Section 8.4 we present the Event

Routing Protocol (ERP) which uses the information provided by GPP to eÆciently disseminate events.

The problem of routing events is a three pronged problem, which needs to address the basic routing

scheme, the routing of real-time events (section 8.5) and events to a newly reconnected client (section

8.7). To ensure the fastest dissemination of events the following are the desirable objectives -

(a) We need to route the event to the highest order gateway �rst or as soon as possible. In the case

of an N � level system we are of course referring to the gN�1(CN). What this provides us, is the

optimum amount of concurrency in the dissemination of events.

(b) It is possible that we may encounter lower-level gateways en route. The dissemination of events

can proceed once the event has been routed on its way to the highest order gateway.

(c) The nodes must be fairly smart enough to decide which is the next best node to route this event

to. Of course we will be using gateways to get across to nodes within a di�erent context.

(d) A gateway g` could use the g`�1 information within the same context C`+1

i
to ensure delivery to

other gateways g`(C`+1

i
).

8.1 The pro�le propagation protocol - PPP

A gatekeeper at level � ` needs to snapshot the behavior of all the client nodes that exist in the unit

within the context C. This information could be used by the gatekeepers to decide if the event needs

to be routed within the unit.

Clients specify the constraints (Section 3.6 on page 6) on the kinds of events that they are interested

in. The organization of our system needs to be exploited so that units not interested in the event are

ooded by events that don't satisfy the constraints speci�ed by any of the client attached to server

nodes within that unit. Each server node, which could be considered as a gatekeeper at level-0 for the

client nodes attached to it, keeps track of these constraints for every client node attached to it. The

server node pro�le is the pro�le of all the client nodes attached to it.

Gatekeepers at level� ` snapshot the pro�le of the system from level�0 to level� l within the context

C
`+1

i
. We refer to this snapshot as the range of the gatekeeper. Thus, the range of a cluster gatekeeper

is the server nodes within that cluster while that of a super-cluster is all the clusters within that super-

cluster. Gatekeeper pro�les keep track of the weakest constraints that exits within its system range.

The gatekeeper pro�le should be able to -

� Capture the commonalities of the server nodes (albeit expressed by the client nodes that are

attached to that node) within its range

� Expressive enough to snapshot the pro�le of each and ever client connected to every server node

within its system range.

8.1 The pro�le propagation protocol - PPP 17

When a new client joins in, or just changes its pro�le, the server checks to see if this new pro�le change

would result in a change in the server's pro�le. If this does result in a change all the gatekeepers with

the server's cluster are noti�ed about this change. The same procedure is followed at the higher levels of

the system, causing super-cluster gatekeepers to be noti�ed when any of the cluster gatekeepers within

its context report a pro�le change. The range at gatekeeper g`
i
, denoted !

`

i
, snapshots the pro�le of all

clients attached with the level-` unit. Pro�le changes are initiated by clients, this pro�le change could

be stronger (+Æ!) or weaker (�Æ!) than the original one. As we discussed earlier the node to which

the client is attached can be considered a level-0 gatekeeper. At g` for a pro�le change +Æ!/+Æ! the

following cases are possible.

!
`

old
[+Æ! �! !

`

new
(8.1)

!
`

old
[+Æ! �! !

`

old
(8.2)

!
`

old
[�Æ! �! !

`

new
(8.3)

!
`

old
[�Æ! �! !

`

old
(8.4)

Equations (8.1) and (8.3) result in pro�le change propagation while equations (8.2) and (8.4) do not

need any pro�le change propagation. In general if there's a change in the pro�le of a gatekeeper g`
i

within the context C`+1

j
, all the level-(`+1) gatekeepers, g`+1, at context C`+1

j
within C

`+2

k
are noti�ed

about this change. In an N � level system this process of `higher level' gatekeeper pro�le updation

stops if the pro�le update occurs at a level ` = N � 1.

When a pro�le change just adds/deletes the number of units interested in the event type - not much

of updation needs to be done. A server node keeps track of the number of clients interested in a

speci�c event constraint. While a cluster gateway keeps track of the server nodes interested in the

event constraint. It is quite possible that a pro�le change at a client could change the pro�le of the

server node, which in turn could cause a change in the pro�le of cluster gateway.

8.1.1 Active pro�les

The pro�le propagation protocol aids in the creation of destination lists at units within di�erent levels.

These destination lists are then employed at each level for �ner grained disseminations. Since the pro�le

add/change propagates through the system to higher level gateways, it is possible that a gateway at

a higher level hasn't yet been noti�ed about the pro�le add/change. Thus though it may receive an

event which would match the pro�le change, the destination list may not include the lower level unit.

It is possible that a client may receive events issued by clients within a certain unit, though it may not

receive similar events from clients published by units within a di�erent context.

What interests us is the precise instant of time from which point on we can say that all events that

satisfy the client's pro�le will be delivered to the client. To address this issue we introduce the concept

of active pro�les, which provides guarantees in the routing of events within a unit. The active pro�le

approach provides us with a unit-based incremental approach towards achieving system guarantees

during a pro�le add/change. If a pro�le is super-cluster active all events issued by clients attached

to any of the server nodes within a super-cluster C
2

i
will be routed to the interested client. Thus

the �rst event that is received by the client is an indication that all subsequent events routed to that

unit, matching the same pro�le would also be delivered by the client. When we say that a pro�le is

unit-active
3 what we mean is that for every event that is being routed within that unit the destination

3The unit we are referring to in this case are the clusters, super-clusters, super-super-clusters etc. Of course these

units are assumed to be within some higher level context of the server node to which the interested client is attached to

or was last attached to

8.2 The propagation scheme 18

lists calculated would include information to facilitate routing to the client. Since a client pro�le is unit

active all events, issued within the unit, will be routed to the client if it satis�es the client pro�le.

Theorem 8.1 For a change +Æ! in a client's pro�le, if this client delivers an event e corresponding to

the +Æ! and if the routing information contained in the client di�ers with the contextual information

of the client, and if the di�erence (bottom-up) is at level-` then this client will deliver all events issued

by clients within the same context (till level-`) from that point on.

When a client (after it has initiated a pro�le add/change) receives an event with just the cluster routing

information, it is cluster active. Every node is part of a cluster, which in turn is part of a super-cluster

and so on. Similarly if it receives an event with routing information (discussed in section 8.4) pertaining

to contexts di�erent from the node it is attached to, the highest such unit where this di�erence occurs

forms part of the pro�les active unit. Reception of events with di�ering contextual information also

implies that the pro�le propagation has has been successfully completed. This is because if the pro�le

propagation hadn't been completed the event wouldn't be routed to that gateway in the �rst place.

Its quite possible that the pro�le propagation can continue to the highest level. If the contextual

information which di�ers is that at level-2 the client's pro�le is said to be super-cluster active.

Of course if a client pro�le change doesn't result in pro�le change propagation beyond the cluster,

the changed pro�le is system active. A system active pro�le ensure system wide guarantees for the

properties listed in section 2.4 The pro�le remains active from then on till a change is made to the

pro�le. Also, it is quite possible that no events (matching the pro�le change) are being issued by any

client throughout the system. But the client needs to be aware of it system guarantees as the pro�le

propagation process is taking place. To accommodate such a scenario we also require the gateways to

route these system guarantee events once the pro�le change has e�ected that unit.

Theorem 8.2 For an N-level system, for a pro�le change �Æ! initiated by a client eventually the client

pro�le change �Æ! is N � 1 active.

8.1.2 Pro�le changes which are weaker than the original one (�Æ!)

The question we are trying to address here concerns a pro�le change which introduces a weaker con-

straint than the original one. This results in a client with this weaker constraint receiving some of the

events which have been routed due to the existing stronger constraint. The client would thus assume

that its pro�le is system active, which is not the case since there would be events arriving at the higher

level gateways4 (which haven't been noti�ed about this weaker constraint by the PPP) which wouldn't

be disseminated within the unit.

To account for such a scenario we augment our active pro�les concept to also send noti�cations to a

client informing the weaker constraint currently being added, and thus wait for system noti�cations

regarding the active pro�le status instead of conjecturing based on the event routing information.

8.2 The propagation scheme

It should be understood that a client is attached to a server node which is part of a cluster, super-

cluster and so on. Now this node itself could be a gatekeeper g` where ` = 1; 2; � � � ; N � 1 in a N-level

system. It is also possible that the cluster this node is a part of may possess gatekeepers g` where

` = 1; 2; � � � ; N � 1, the pro�le propagation scheme which proceeds in an incremental manner needs to

be clearly de�ned to account for such scenarios.

4These gateways share a higher level context with the node to which the client, initiating a pro�le change, is attached

to.

8.3 The gateway propagation protocol - GPP 19

8.3 The gateway propagation protocol - GPP

The gateway propagation protocol (GPP) accounts for the process of the addition of a gateway. How-

ever, GPP should also account for failure suspicions/con�rmations of nodes and links, and provide

information for alternative routing schemes. Addition or deletion of links are events of relatively low

occurrence. These operations could thus be allowed to be reasonably expensive. Routing should work

�ne if -

� All the nodes at level-` within a context C`+1

i
are aware of all the level-` gateways g`(C`+1

i
).

� The nodes are aware of the precise locations and connectivities of each of these gateways. In a

N-level system, we could visualize each node having a stack comprising of level� 0; 1; � � � ; N � 1

gateway information.

This scheme though it serves the purpose, is highly ineÆcient and would entail almost every node in

the system being aware of almost5 every other node in the system. However, if you optimize by having

only gateways g`(C`+1

i
) being aware of a newly added gateway g

`

j
(C`+1

i
) the problem lies in the fact

that the objectives in the earlier section that we set out to meet are not met.

The �rst time a new gateway is added, the level� ` gateway g`(C`+1

i
) sends a message to be routed to

all the nodes within C`+1. This message could take di�erent routes to reach the other level�` gateways

within C
`+1

i
. When the message is being disseminated the message keeps track of the hops it is taking.

Now when a message is received by a gateway, the �rst such message provides the fastest route to reach

the new gateway from the existing one and vice-versa. The message is routed in a similar way back to

the new gateway. All the nodes en route to this new gateway keep track of the reachability vector for

this gateway.

Every node is aware of -

� Every level� l, where 0 < l < N , gateway that exists within the cluster it belongs to.

Every gateway at level-l is aware of all the other gl(Cl+1

j
) within the context C`+1

j
. Thus every cluster

gateway maintains a list of all the cluster gateways within a speci�c super-cluster. When a new gateway

is added at level-` this information is disseminated within the context C`+1

j
. All other gateways g`(C`+1

j
)

then update their information to include this new gateway.

What a node also needs to decide is when it is futile to try and �nd a higher order gateway, and also

when all the higher level units that could possibly be covered are covered. Of course it also must know

if there's a higher order gateway that needs to be reached. This decision is based on the event routing

information provided by the event routing protocol (discussed in section 8.4) and the information

pertaining to gateways that's available at a node. If there's no such unit that needs to be reached the

event routing would proceed with lower order disseminations. However if there's a unit that needs to

be reached gateways would need to be employed to reach this unit as fast as possible.

At the same time we would need to understand and utilize the concept of proximity while routing over

gateways. If the event routing information doesn't include a speci�c unit, it doesn't imply that the

event hasn't reached that unit. The event routing information contained with an event simply indicates

the units which were present en route to reception at the node. Now based on the information that an

event was at a certain unit we can conjecture whether the event was routed to a particular unit. As

discussed in Section 7.2 gatekeepers are employed to across units within or across levels. If the system

is aware of the precise location of these gateways, the system can deduce if the event was delivered by

any node within that unit.

5This is possible in the case of a strongly connected network. In such a situation, the order of the nodes present in

the system approaches that of the gatekeepers present in the system

8.4 The event routing protocol - ERP 20

We are of course assuming that the gateways across the units are fully functional. This scheme works

�ne since it is the responsibility of the unit to deal with failures to nodes, gatekeepers and gateways

within that unit. Thus in a 4-level system if there's a level-3 gateway between super-super-clusters 1

and 2, and if the routing information for a event e is e:f1; 3; 4; 9gfb; d; ggfC;Eg at a node 7:k:C we can

decide that event was indeed routed to 2.

Thus the rationale for all gatekeepers being aware of all other gatekeepers does seem to hold water.

But what we need most importantly as an optimization feature are the following -

� Gatekeepers should possess the minimal information to go about their routing schemes.

� How do they use this minimal information to extrapolate and arrive at conjectures based on the

event routing information.

� What does it entail to have all gatekeepers being aware of each other, and how do we plan to

relax this. How do we propagate these changes fast and reliably.

8.4 The event routing protocol - ERP

Event routing is the process of determining the next node that the event must be relayed to. Every

event has a routing information associated with it, which could be used by the system to determine

the route the event would take next. This routing information is not added by the client issuing this

event but by the system to ensure faster dissemination and recovery from failures. When an event is

�rst issued by the client, the server node that the client is attached to adds the routing information to

the event. This routing information is the contextual information (see Section 7.1) pertaining to this

particular node in system. As the event
ows through the system, via gateways the routing information

is modi�ed to snapshot its dissemination within the the system which is then used to avoid routing the

event to the same unit twice.

A gateway g
`(C`+1

i
) is responsible for the dissemination of events throughout the unit at level � `

with context C`+1

i
. This is a recursive process and the the gateway g

` delegates this to the lower

level gateways g`�1; � � � ; g1 to aid in �ner grained dissemination. Thus a super-super-cluster gateway is

responsible for disseminating the event to all the super-clusters which comprise the super-super-cluster

that it is a part of. A gateway g` is concerned with the routing information from level� ` to level�N .

When a event has been routed to a gatekeeper g` the routing information associated with the event

is modi�ed to re
ect the fact that the event was received at this particular unit. It is the gatekeeper

g
`'s responsibility to ensure that the event is routed to all the nodes within the level � ` unit, using

the delegation mechanism described earlier. Prior to routing an event across the gateway a level � `

gatekeeper takes the following sequence of actions -

� Check the level� ` routing information for the event to determine if the event has already been

consumed by the unit at level� `. If this is the case the event will not be sent over the gateway.

There could be multiple links connecting a unit to some other unit. This scheme provides us

with a greater degree of fault-tolerance. This also leads to the situation6 where the event could

be routed to the same unit over multiple links. The duplicate detection algorithm detects this

duplicate event and halts any further routing for this event.

� In case the gateway decides to send the event over the gateway, all routing information pertaining

to lower level disseminations are stripped from the event routing information.

This is because the routing information pertaining to the lower level de�nitions are within the

context of that level� ` and the unit identi�er. Also, in general a higher order gateway would be

6One of the reasons that this situation arises is a fork in the event's routing which send it to two gateways to the same

unit

8.4 The event routing protocol - ERP 21

SSC-A

SC-1

SC-2

SC-3

e

g

c

b

f

d

a

SSC-BSC-4

SC-5

SC-6

l

n

i

j

m

k

h

SSC-C

SC-7

SC-8

SC-9

s

u

o

q

t

r

p

SSC-D

SC-11

y

z

SC-10

w

x

v

e.{B}

e

e.{B} {6}

e.{B} {6,4}

e.{B} {6,4} {k}

e.{B,A}

e.{B}

e.{B}
e.{B}

Figure 5: Routing events

more overloaded7 compared to a lower order gateway. Reducing the amount of information being

transferred over the gateway helps conserve bandwidth.

Fig 5 depicts the routing scheme which we have discussed so far. The routings depicted in the �gure

are self explanatory and no further explanation is needed in this regard.

In addition to the information regarding where the event has been already, events need to contain

information regarding the units which an event should be routed to. Gatekeepers g`(C`+1) decide the

level � ` units which are supposed to the receive the event. This decision is based on the pro�les

available at the gatekeeper as de�ned in the pro�le propagation protocol. The calculation of target

units is a recursive process where the lower order disseminations being handled by the lower order

gatekeepers. Thus two levels of routing information are contained within an event

(a) Units where an event should be routed within a unit.

(b) Units which have already received the event.

7This is because a lower order gateway is primarily employed for �ner grained dissemination of events, and only rarely

if at all would be used to get to a higher order gateway. Besides this a higher order gateway g
`

i
(C`+1

i
) is the one responsible

for deciding if the event needs to be routed to any of the lower units comprising the level � `.

8.5 Routing real-time events 22

This routing scheme plays a crucial role in determining which events need to be stored to stable storage

during failures and partitions.

8.5 Routing real-time events

Real time events can have destination lists (see section 3.4) which are internal or external to the event.

In each case the routing di�ers, in the case of internal lists the destination's location needs to be precisely

located by the system. Routing events with external destination lists involves the system calculating

the destination's for delivery.

8.5.1 Events with External Destination lists

When an event arrives at a gatekeeper g`, the gatekeeper checks to see if the event satis�es its pro�le.

The pro�le maintained at g` snapshots the pro�le of the level � ` unit that the gatekeeper belongs

to. This check is necessary to con�rm if the event needs to be disseminated within the level � ` unit.

Routing events based on the gatekeeper pro�le is the process which calculates the destination lists. This

is a recursive process in which each higher order gatekeeper performs this check before disseminating

the event to lower order gatekeepers.

When an event doesn't match the gatekeeper g`'s pro�le, g` decides upon the next route that event

would take based on the routing information encoded into the event by the event routing protocol.

� The gatekeeper g`
j
(C`+1

i
) checks the routing information provided by ERP to see if it needs to

relay the event to other gatekeepers g` within the context C`+1

i
.

� The gatekeeper also uses the information provided by ERP to check if it could route the event to

a higher order gateway which hasn't received the event.

In the event that these steps lead to no actions on part of the gatekeeper g` the gatekeeper takes no

further actions to route this event. If the gatekeeper decides to route this event to other level� ` and

higher order gatekeepers, the system can employ lower order gateways within the context C`+1

i
to relay

this event.

8.5.2 Events with Internal Destination lists

These are events which require the system to be able to route the event to a speci�c client in the system.

Clients which are interested in receiving point-to-point events thus need to include their identi�er in

their pro�le. The sequence of steps that are needed to route the event are similar to the steps we take

to route events with external destination lists as discussed in section 8.5.1.

8.6 Handling events for a disconnected client

This problem pertains to one of the most important issues that needs to be addressed by our system.

A client node has intermittent connection semantics, and are allowed to leave the system for prolonged

durations of time and still expect to receive all the events that it 'missed' in the interim period, along

with real time events. Consistency issues pertaining to out of order delivery real time events and

recovery events aside, our solution to this problem delegates this responsibility to the server node that

this client was attached to prior to a disconnect/leave.

8.7 Routing events to a newly re-connected client 23

This node serves as a proxy for the client node. Now we could store all the events pertaining to

a disconnected client at this node. Storing it within the process executing the node could result in

precious main memory utilization in case the client is disconnected for a rather long duration and the

number of events it has missed increases steadily over time. Also, it is not possible that every node has

access to a stable storage. As mentioned earlier (section 7) one of the requirements of the system is

that there should be at least on stable storage within a cluster. This stable storage could be used for

storing events. We would deal with the garbage collection scheme for these events in section 8.9

8.7 Routing events to a newly re-connected client

Clients keep track of the last server node that they were connected to, this information is usually stored

in their logical address. When a client disconnects the events that need to be routed to that client are

still routed to the server. All event routed to a cluster are stored at one of the available stable storages

within the cluster. We will address the garbage collection issues pertaining to these stable storages in

Section 8.9. Both the server node and the formerly connected client keep track of the last message that

they believe was routed to the client.

Events are routed to the client from the last message that was routed to it. A simple �lter routes the

appropriate events from the stable storage. These recovery/roam events have a destination list which is

internal to the event. This destination list comprises of a single entry - the logical address of the server

node that the client is now attached to. Thus the routing scheme for these roam events are signi�cantly

di�erent from what we discussed in section 8.5.2.

When the client issues a event recovery process, the logical address of the client is changed to its present

address. The client could once again roam while these events are being routed to its present logical

address. In that case that server node is now responsible for ensuring that the client doesn't loose any

events that it is interested in.

8.8 Duplicate detection of events

Multiple copies of an event can exist in the system. This occurs due to multiple gateways existing

between units and also due to events taking multiple routes to the reach destinations in response to

failure suspicions. Events need to be duplicate detected because for any event e which is a duplicate

event the path taken by the event as dictated by ERP is exactly the same as that taken by the event

e which was previously received. In section 3.2.2 we discussed the generation of unique identi�ers for

events. This scheme of unique ID generation provides us with information pertaining to unrelated

events (events issued by di�erent clients) and in the case of related events (events issued by the same

client) the order of their occurrence. In our scheme of duplicate event detection we use this unique ID

generation as the basis for our duplicate event detection scheme.

Our unique ID generation scheme allows us to determine which of two related events e and e0 was issued

earlier. If the last event delivered at a node is e if the node receives a related event e0 our duplicate

detection scheme works as follows -

� If e0 > e then e
0 was not delivered earlier else it was and is duplicate detected.

Consider the case in Fig 6.(a) at nodes A and B events e1; e2; e3; e4 and e5 are all events issued by the

same client. Node C maintains the last event that was delivered. The links we assume in the system are

unreliable and unordered. Since these links allow the events to over take each other, if node C delivers

e3 �rst node C could errantly conclude that it had received e1 and e2. To resolve this we impose the

requirement that the events be delivered in order (this is more so in the case of events issued by the

same client), that is we do not let events overtake each other in the delivery sequence at any node

within the system.

8.8 Duplicate detection of events 24

A

B

C

e1,e2,e3,e4,e5

e1,e2,e3,e4,e5

A

C

B

e 1,
e 2,

e 3

e1,e2,e3,e4,e5

(a) (b)

Figure 6: Duplicate detection of events

Now even though the events arrive at di�erent times, since they arrive in order, the event e (either from

A or B) which arrives �rst is not duplicate detected while the event e which arrives later is.

from-A e1 e2 e3 e4 e5

from-B e1 e2 e3 e4 e5

at-C e
A

1
e
B

2
e
B

3
e
A

4
e
A

5

t! 1 2 3 4 5 6 7 8 9

Table 1: Delivery of events at C

Consider the case in Fig 6.(b), node A has sent events e1; e2 and e3 over link lAC at time t. At time

t+ Æ node A suspects a node C failure which could either be due to an overcrowded link lAC or a slow

process at C. Now if A were to compute the alternate route to C which goes via B, if it doesn't send

e1; e2; e3 prior to sending e4 and e5 e1; e2; e3 would be duplicate detected if e4 arrives before e1. Once

we make this minor change of re-sending unacknowledged events across the alternate route in response

to suspicions it simply reduces to the case depicted in Fig 6.(a). As an optimization feature we could

include send anti-events down the failed/slow link whenever we resort to computing an alternate route.

1 a

54

3

2
e1,e2,e3

e4,e5

a

Client a 'roam'
Slow /
Overloaded Link

Figure 7: Duplicate detection of events during a client roam

Fig 7 depicts the scenario where a client roam could lead to duplicate detection of events which are not

truly duplicate events. The case in which our duplicate detection scheme breaks down, is detailed in

table 2. To account for such a scenario we include the incarnation number in our duplicate detection

scheme. Incarnation numbers would be incremented for every roam and reconnection of the issuing

client. The events would then be treated as events with a di�erent clientID thus preventing the

duplicate detection of events which shouldn't have been duplicate detected in the �rst place.

8.9 Garbage collection scheme for the stable storages 25

t! t+� t+ 2� t+ 3� t+ 4� t+ 5�

at 2 e1; e2; e3

at 1 ACK(e1; e2; e3) roam + send(e4; e5)

at 4 e4; e5 e1; e2; e3

Table 2: Delivery of events at 4 ... client roam

8.9 Garbage collection scheme for the stable storages

Every event is stored along with a bit vector, < 011001 � � �010 >, identifying the server nodes within

that cluster which are interested in that event. Each of the nodes have a pre-determined position in

this storage vector. A 0 in this bit vector indicates that the event was not routed to the corresponding

indexed node, while a 1 indicates that the event was routed to the corresponding node.

A server node issues a storage retrieval message only after it has received an acknowledge from each of

the clients (connected to it) which are interested in that event. Upon receipt of this acknowledge the

bit vector associated with the event is updated through a logical bitwise & operation with a 0 in place

of the index associated with the server node sending the acknowledge and a 1 in every other location.

Once the vector associated with the event is zero i.e < 00 � � �0 > the event can be garbage collected.

This scheme works �ne in the case of a system without network partitions. However in the case of a

network partition this scheme would fail during subsequent partition mergers. This failure stems from

the fact that the events would get garbage collected due to the 'local' reference counting, and thus

would not be available for delivery during mergers. To account for this scenario we augment the scheme

to to account for gateway failures, by considering the far end of the gateway to be a client attached at

the gatekeeper node in the cluster. Thus if an event needs to be sent over a gateway, the event isn't

garbage collected till such time that we have received a con�rmation regarding the receipt of that event

at the intended gatekeeper.

9 Issues in Reliability & Fault Tolerance 26

9 Issues in Reliability & Fault Tolerance

The system we are considering could have the failures listed in section 2. Each of these failures could

lead to network partitions. In a distributed asynchronous system, it is impossible to distinguish a

crashed process from a failed one, and a failed link from an overloaded one. In addition to the failures

we are considering, incorrect suspicions may result due to overloaded links and slow processes. These

failure suspicions, both correct and incorrect, can also lead to network partitions. We need to ensure

that partitions make safe progress, during the network partitions in concurrent views of the network and

also that there are no contradictions during the partition merges after the partition has been repaired.

Failures could also manifest themselves in the form a node failure, consecutive node failures, cluster

failures and so on. The objective that we are trying to meet is to ensure safe progress of operations and

meeting system guarantees in the presence of failures. In the remainder of these sections we address

each issue separately and then come up with solutions which solve this problem.

9.1 Message losses and error correction

With respect to mechanisms for error correction, protocols can be broadly separated into two categories:

sender-initiated and receiver-initiated. A sender-initiated protocol is one in which the sender gets

positive acknowledgments (ACKs) from all the receivers periodically and releases messages from its

bu�er only after an indication that the message has been received at all the intended destinations. A

receiver-initiated protocol is one in which the receivers send negative acknowledgments (NAKs) when

they detect message losses. In receiver initiated protocols the assumption at the sender is that the

message has been received at the receiver unless indicated otherwise by the NAKs. The NAKs indicate

the holes in message sequences, also the receivers never send any ACKs to the sender.

We employ a combination of ACk's and NAK's to address this problem. In short, error correction on

the link is handled using NAKs while garbage collection is performed using the ACKs.

9.1.1 Message losses due to consecutive node failures

In Fig 8.(a) we have a situation where the two nodes ensure reliable delivery using a series of positive

acknowledgements (ACKs). Node A won't garbage collect a messagem until it has received an ACK(m)

from B. However it is possible that node B experiences a crash-failure immediately after issuing an

ACK(m) to A. Message m would thus never be delivered by C. We could try and rectify this situation

as in Fig 8.(b) by requiring that a receiving node issue an ACK only after it has forwarded the message.

This would solve our earlier problem, but this simply pushes the problem further in space, since the

scheme would breakdown in case of successive broker failures after an ACK(m) has been issued by the

soon to fail node B (the other one being C). Brokers B,C fail after B has issued an ACK(m) and C has

been unable to forward m to D. Thus, m is lost since A has already garbage collected it and D doesn't

know if it should have received m (for that matter it wouldn't even know about the existence of m to

even detect its loss) in the �rst place.

This problem can be circumvented by augmenting the client nodes with re-issue behavior till such time

that the event has been stored onto a stable storage. Once an event is stored onto stable storage, the

guarantee is that it can be recovered in the event of failures which could take place. For every event e

issued by a client, and held in the client's local queue, there is a timer associated with the event. Unless

the client receives a storage noti�cation before the timer's expiry the message would be re-issued and

the timer reset. The timers associated with events in the local queue are updated every �t. The timer

associated with the event is reduced by �t after every failure to receive a storage noti�cation within

the �t, prior to the timer expiry. If a storage noti�cation is received prior to this timers expiry the

corresponding event is garbage collected from the clients local queue.

9.2 Node failures 27

B CA

m

ACK(m)

B C DA

m

ACK(m)

m

(a)

(b)

Figure 8: Message losses due to successive node failures

9.2 Node failures

The state of a server node is the list of pro�les of clients connected to the server node. The state of a

server could be re
ected to server nodes to allow reconstruction of state from other nodes. The state

is updated during the pro�le changes as de�ned by the PPP (section 8.1).Thus a server node could

behave as some other server node. If node A fails node B could take over the role of node A while also

being node A at the same time.

9.3 Gateway Failures

There could be multiple gateways connecting di�erent units. Gateways could also su�er transient

failures which could be a result of overloaded links etc. It could also su�er a permanent failure due to

a failure of the link or the gatekeeper at the other end which comprises the gateway.

9.3.1 Transient gateway failures

In this case the events are stored at the gatekeeper experiencing problems. The gatekeeper node

regularly tries to re-send these events over the gateway. In addition some of the events could be

garbage collected based on the gateways awareness of the units interconnection scheme and information

provided by gatekeepers which provide gateways to the same unit.

We use multiple gateways to provide us with a greater degree of fault tolerance. We need to use this

information to also determine whether certain events need to be stored at a gatekeeper, the gateway

which it provides having transient or permanent failures.

9.3.2 Permanent gateway failures

This would call for updation of the information by the gateway propagation protocol. This information

would be used by the nodes in tandem with the routing information contained in the event to decide

the next route that the event would take.

9.4 Unit Failures 28

9.4 Unit Failures

When we refer to unit failures, we are referring to the failure of all the nodes and gateways within that

unit. The cases that we need to consider include failures that last forever, recovery of the complete unit

and partial recoveries of the unit. The issues to be considered in each case and the associated recovery

mechanism are described in the sections below.

9.4.1 Unit remains failed forever

In the event that a unit never recovers, all the nodes with this unit would eventually be deemed failed

by the attached client nodes. This failure con�rmation would result in a roam of all the attached client

nodes. The system would already have treated all the client nodes within that unit as disconnected

clients, and would have proceeded to store events for eventual routing. The re-routing of events to the

client which has 'roamed' to a new location is identical to the scheme which we discussed in section

8.6 with one notable di�erence. The di�erence stems from the fact that the original node to which the

client was attached to is no longer available. Thus the unit which has stored the events which should

have been routed to the client needs to intercept the request for a re-route and then proceed with

applying the �lter operation to recovery of events.

Cluster-A

1 2

dc

a b

Failed Node

Client initiating a
roam

Figure 9: Client `roam' in response to a node failure.

9.4.2 Unit doesn't remain failed forever

If a unit doesn't remain failed forever and the associated nodes recover and the gateways are re-instated,

events that were missed by this unit (excluding the ones which were garbage collected due to clients

recovering events during the roam and subsequent reconnect), are routed to the unit. It is possible that

there were some some clients which were disconnected during the unit failure, and have just re-connected

after the failure. These clients would need to be serviced by this unit.

Pro�les for such clients may be lost, we also need a mechanism for recovering the pro�les of the clients

which were connected. Besides we also need information on which clients shouldn't be reconstructed.

How we know which client was attached to which node is another issue which we need to address.

9.4.3 Partial recovery of a unit

Not all units may recover at the same time or at all. Some units though they have recovered based on

their earlier connection schemes would still be network partitioned. We discuss recovery mechanisms

for such partitioned units in the section 9.5.

9.5 Network Partitions 29

9.5 Network Partitions

Network partitions can be caused both by link failures and node8 failures. The issues to deal with in

the case of network partitions di�er considerably from the unit failure cases. Unlike the unit failure

cases where the clients can initiate a roam, it is possible that a client is attached to a node within a

partition which is fully functional. Thus we need mechanisms to -

� Detect partitions.

� Ensure safe progress in concurrent partitions.

� Merge partitions while maintaining consistency.

9.5.1 Detection of Network partitions

When a gateway is deemed failed, a decision needs to be reached about the existence of a partitions.

When g`(C`+1

j
) fails all other g`

i
(C`+1

j
)'s are noti�ed or attempts are made to submit such noti�cations.

Gatekeepers could then decide on whether a partition exists or not. Detection of these partitions are

far more complex in this case since not only g
`'s are involved in this decision making process but also

higher order gatekeepers g`+1's and lower order gatekeepers gjell�1's. A unit which has experienced a

g
` failure could have other g's which could compensate or o�set such failures from causing a network

partition. Thus nodes need to be aware of every other level � ` gateway with the unit-ell that it is a

part of. We would need such information to arrive at partitioning decisions and garbage collection of

replicate data and avoiding too many replications of events.

9.6 Node failures

If a node fails, it may lead to partition if it is en route to other nodes within the cluster. If this node

is a gatekeeper, three issues need to be taken into consideration -

(a) This gatekeeper is the only gatekeeper within the cluster. This would result in a minor partition

within the cluster.

(b) There are additional gatekeepers g`, where ` = 1; 2; � � � ; N � 1, within this cluster.

In such cases we need to decide if the presence of these gatekeepers within the cluster helps

compensate or o�set the failure of a gatekeeper node. We would speci�cally be interested in the

presence of higher order gatekeepers than the one which has just failed.

(c) The node could be providing us with multiple gateways (not necessarily of the same order). In

such cases we need to address the e�ects of losing each gateway that this node was providing us.

In Fig. 10 SSC-C and SSC-D should know that it has su�ered a partitioning if [d,p] and [n,x] have

su�ered failures. Similarly SC-10 would would know that it has su�ered a partitioning if [n,x] and [w,z]

have failed. This decision can be reached based on the routing information available at the gatekeepers.

Failures in gatekeepers are propagated to the appropriate units. Thus if g`(C`+1

j
) experiences a failure

all the units within C
`+1

j
are noti�ed about this failure. Higher order gatekeeper failures would thus

be much more expensive than lower order gatekeeper failures.

However its possible that a gatekeepers failure doesn't lead to a partition. This could be due to alternate

routing route provided by the higher-order gatekeepers, or similar-order gatekeepers within the unit in

8In this case the node could be a gatekeeper, or is on the route to a gatekeeper. If this is the only node which leads

to a speci�c gatekeeper, a failure in this node leads to a network partition

9.6 Node failures 30

SSC-A

SC-1

SC-2

SC-3

e

g

c

b

f

d

a

SSC-BSC-4

SC-5

SC-6

l

n

i

j

m

k

h

SSC-C

SC-7

SC-8

SC-9

s

u

o

q

t

r

p

SSC-D

SC-11

y

z

SC-10

w

x

v

Link connecting super-super-cluster gateways.

Link connecting super-cluster gateways.

Link connecting cluster gateways.

[n,x]

[w,z]

[u,z]

[d,p]

Figure 10: Partitioning issues related to node failures

question. Thus [w,z] could fail and we wouldn't have a partition due to the existence of higher order

gateways [u,z] and [n,x]. However lower order gatekeepers cannot compensate/o�set the loss of higher

order gatekeepers within the unit. Thus the rule is -

Conjecture 9.1 If a gatekeeper g
`
fails (or rather a gateway fails) check to see if there are gatekeepers

g
`+x

where x = 0; 1; � � � ; (N � `� 1) within that unit which can compensate for this failure.

9.6.1 Issues in event routing and pro�le propagation

This section speci�cally tries to address the issues, pertaining to event routing and pro�le propagation,

which arise out of the partitioning between units of a super-unit, but not necessarily a network partition

within the system. ERP provides information regarding the units which an event must be routed to

and also the units where an event has been routed to. One of the objectives of having multiple gateways

between units is to have a higher degree of resilience to failures which may take place within the system.

ERP, however delegates the responsibility of event dissemination recursively9 to the units which exist

9A super cluster gatekeeper delegates the responsibility to the clusters, which in turn delegate it to the server nodes

9.6 Node failures 31

within a super-unit. Thus in Fig 10 if [w,z] has failed , leading to a unit partition between SC-10 and

SC-11 within SSC-D, it is conceivable that an event e may arrive at SSC-D within an indication that

the event was routed to SSC-D. If [w,z] has failed the premise that since the event routing information

contains a reference to SSC-D the event was routed within SSC-D is not true. This case needs to be

accounted for, where SSC-D noti�es SSC-B and SSC-C about the unit partition which exists within

SSC-D. Thus we need to relax routing rules for units which sub-unit partitioning, since the system

could otherwise conclude that the sub-units have received the relevant events.

PPP also experiences problems in this regard, where it needs to decide on the pro�le of a super-unit

whose units have been partitioned. Since its the gatekeeper g`+1(C`+2

j
) which maintains the pro�le of

the units at level � ` the pro�le of all the sub-units wouldn't be lost. However it is also possible that

the partitioned sub-units receive events which satisfy the other sub-units pro�le.

9.6.2 Ensuring progress in concurrent partitions

Concurrent partitions may contain clients which issue events and also other clients which are interested

in those events. The interested clients should thus be able to receive events which are currently being

issued within that partition. All these events would of course need to be stored onto a stable storage,

for re-routing during partition mergers.

9.6.3 Partition Mergers

Each partition keeps track of the last events that were received by the gatekeepers in individual par-

titions. Based on this information appropriate events are routed. Of course prior to this we need to

also account for the pro�le reconstruction since there could be clients which have initiated a roam.

Similarly events issued by clients, either during disconnected mode operations or server node failures,

and subsequently held in the client's local queue would be fed back in to system.

9.7 Stable Storage Issues 32

9.7 Stable Storage Issues

Systems can slow down considerably because of this process of storing to stable storages. Storages exist

en route to destinations but decisions need to be made regarding when and where to store and also

on how many replications we intend to have. Events can be forwarded only after the event has been

written to stable storage. Thus the greater the stable storage hops the greater the latency in delivering

events to their destinations. Of course we would be optimizing this scheme. We also need to address

the issues pertaining to the control of the replication scheme.

9.7.1 Replication Granularity

In our storage scheme data can be replicated a few times, the exact number being proportional to the

number of units within a super unit also on the replication granularity which exists within a speci�c unit.

For a level-` system if there's at least one stable storage servicing the unit, we denote the replication

granularity of that part of the sub system as r`. Thus if the replication strategy is one of replicating

within every cluster in case of a 3-level system with N units at each level a certain event which would be

delivered by all the clients within the system would be replicated 2N � 2N � 2N times. Of course what

we are considering here is the extreme case, but nevertheless its an exemplar of how the replication

strategy is a crucial element of the system. Besides, the garbage collection also ensures that the storage

space doesn't increase exponentially.

Stable storages exist within the context of a certain unit, with the possibility of multiple stable storages

within the same unit. We don not impose a homogeneous replication granularity through out the

system. Instead we impose a minimum replication scheme for the system. This is of course the coarsest

grained replication scheme, there could be units present in the system which have a replication strategy

which is more �nely grained.

The interaction between the stable storages of a unit and the stable storages within the sub units needs

to address both the redundancy and garbage collection issues. Stable storages store events that the

unit it is servicing, is interested in. This is ensured by the ERP which would ensure the routing of only

the interesting events. The node which best serves this purpose is the gatekeeper node. As discussed

earlier (section 8.1) PPP ensures that a gatekeeper g`
i
(C`+1

j
) snapshots the pro�le of level � ` unit i

within the context Cj . Thus if we �x the replication granularity at ` at least one gatekeeper g`(C`+1

j
)

among others within the context C`+1

j
is responsible for the event storage. One of the advantages of

this scheme is that we store only those events that we are interested in.

Fig 11 depicts the di�erent replication strategies that can exist within a sub system. As can be seen

super-super-cluster SCC-B has a replication granularity r3, while super-cluster SC-4 within SSC-B has

a replication granularity r2. Cluster l has a replication granularity of r1. The �gure demonstrates the

di�erent replication granularities that can exist within di�erent parts of the sub system. Table 3 depicts

the replication granularities available at di�erent nodes within the sub system depicted in �g 11.

Nodes Granularity r` Servicing Storage

10,11,12 r3 1

1,2,3,4,5,6,7,8,9 r2 9

16,17,18,19,20,21 r2 21

13,14,15 r1 14

Table 3: Replication granularity at di�erent nodes within a sub system

Requirement 9.1 There should be at least one stable storage present in the system.

9.7 Stable Storage Issues 33

SSC-BSC-4

SC-5

SC-6

l
13 14

15

n
19 20

21

i
4 5

6

j
7 8

9

m
16 17

18

k
10 11

12

h
1 2

3

1 21

14

9

Cluster Storage

Super Cluster Storage

Super Super Cluster Storage

Figure 11: The replication scheme

9.7.2 Stability

The presence of a stable storage within a unit at level� (`�1) for a system with replication granularity

` delegates the stability responsibilities for events within the level� (`� 1) to the the stable storage at

the lower level. Every event in the system should be stable because we should be able to retrieve it in

case of failures. Stable storages need to wait for noti�cations prior to the garbage collection of events.

This noti�cation varies from unit to unit. For a unit which possesses no stable storage this noti�cation

is issued only if

1. All the clients attached to the nodes within this unit have received this event.

2. There are no other units where this event needs to be forwarded to. This is determined by the

event routing protocol. If there is at least one such unit where the events are forwarded to then

no noti�cations can be used till a noti�cation is received from all the units to which this event

was forwarded to.

In case of unit with a stable storage, this noti�cation is issues once the stable storage has stored this

event to stable storage.

9.7 Stable Storage Issues 34

9.7.3 Delivering events without storage noti�cations

In section 9.1.1 we have described the scheme which ensures the storage of events to the �rst stable

storage. This re-issue behavior of the issuing client continues till the event is stored to at least one stable

storage within the system. Thus we don't really need to be very conservative when we are delivering

events, we could in e�ect deliver events without the receipt of storage noti�cations. There are a few

reasons which contribute to this optimistic approach despite the possible failures within any unit -

Lemma 9.1 The client reissue behavior ensures the storage of the event to at least one stable storage.

Proof: Section 9.1.1 and Requirement 9.1 on page 32.

Lemma 9.2 If there is at least one client which hasn't delivered the event, then there is at least one

stable storage which hasn't garbage collected that event.

Proof: Section 9.7.2.

Lemma 9.3 If there is such a stable storage, for the scenario described in Lemma 9.2, then the system

will locate this stable storage when the client missing this event issues a request for it.

Proof: Conjecture 9.2 on page 35 and requirement 9.2 on page 34.

Theorem 9.1 For an event e issued by a client, all clients within the implicit or explicit destination

list contained within the event will eventually deliver e.

9.7.4 Storage scheme

Events need to also indicate or provide information if they have been stored to stable storage somewhere

in the system and also if they have been stored to stable storage at one of the locations within the unit.

The primary issues which we need to address are -

(a) Finding the route to the nearest stable storage.

(b) A single unit could be served by multiple stable storages. During partition mergers how do we

deal with the routing scenario and how does this scenario come into the picture. Is there any way

around such a situation

(c) When a client has initiated a roam in response to a failure, how does the system decide where

to go and fetch the missed events. This follows directly from (b). This scenario holds true for a

disconnected client too, which isn't yet aware of the unit failure.

9.7.5 Stable storage failures

When a stable storage node fails, the events that it stored wouldn't be available to the system. A

new client trying to retrieve its events is prevented from doing so. The stable storage also misses any

garbage collect noti�cations that were intended for it.

Requirement 9.2 A stable storage cannot remain failed forever, and must recover within a �nite

amount of time.

9.7 Stable Storage Issues 35

Stable storages could be removed, however the delegation of storage responsibilities can be delegated

only to a higher level storage.

9.7.6 Finding stable storages which have stored a certain event

One of the disadvantages of having a client keep track of the servicing stable storages is that when the

client is operating in the disconnected mode, there could be other stable storages which are servicing

the unit to which the client was last connected. However, the client is not aware of this new stable

storage and could possibly loose events which it was supposed to receive.

Stable storages at a higher level (minimum replication granularity) are aware of the �ner grained

replication schemes that exist within its unit. If a higher level unit is managing the lower level context

of the clients logical address, the system would use the higher level stable storage to retrieve the client's

interim events else the system would delegate this retrieval process to the stable storage which services

the client's lower level context.

Conjecture 9.2 A client's logical address provides the system with the list of stable storages that should

be used for the construction of queues containing events that were missed by the client.

It is possible that one or more of these stable storages (in case of multiple stable storages within a

context) are unavailable during a subsequent client reconnect and construction of event queues. From

Requirement 9.2 it is clear that these storages would recover within some �nite amount of time. During

such a recovery the system should be able to reconstruct the event queues which it failed to and route

the event queues to the client. This requires that

(a) The unit keep track of all the requests for event queue construction that it failed to service.

(b) Unserviced clients notify the unit about its location, every time it issues a roam.

9.7.7 How to decide when to store and where to store

9.7.8 Storing to stable storage and location proximity

In the event of failure suspicions, data needs to be logged with location proximity. To elucidate the

point further in Fig 4 on page 14 if the links connecting SSC-B.SC-6 and SSC-D.SC-10 are suspected

failed and if x receives and event efB,A,Cgf11,10gfxg, you've to acknowledge the receipt of that event

since otherwise the event would be logged in SC-6.n.

9.8 The need for Epochs 36

9.8 The need for Epochs

We digress here to discuss the need for epochs. The reference count scheme which we discussed in

section 8.9 pertains to the number of units/clients that are interested in a certain event. Consider the

following scenario. Unit sA has a total of 156 clients attached to it and unit sA fails. Clients which

detect this failure would initiate a roam. Local queues could be constructed for each client that has

initiated a roam in response to this failure. For each queue constructed and sent across the system

to it new hosting unit, the reference count associated with every event contained within the queue is

decremented by one.

However, it is conceivable that a client could have been attached to sA, which had joined the system

for the �rst time prior to the unit failure. This client is thus not the intended recipient of any of the

local queues that would be constructed in response to the servicing of roaming clients. If this client is

one of the �rst clients to initiate a roam, local queues would be constructed for it and the reference

counts of the events contained within this local queue would be decremented by one. This operation

would lead to the starvation of at least one client, if any of the 156 clients contained a pro�le which

partially matched that of the new client.

We thus need some concept of epochs, without this queues would be constructed for clients which

weren't originally interested in those events contained within the queue. Epochs provide us with a

precise indication of the time from which point on a client should receive events. Epochs are used to

aid the re-connected clients and also the recovery from failures. The reason why we can't delegate the

event queue generation scheme to the individual units is that a unit can fail and remain failed forever.

It is best that the event queue generation is handled by the system as there could be stable storages

that could be added within the system and the storage could be delegated to multiple storages within

the same context.

9.8.1 Epoch generation

Epochs, denoted �, are truly determined by the replication granularity of the system within the context

of which the client10 is a part of. For a replication granularity `, epoch generation schemes would di�er

depending on whether the event was issued either outside or within the context of the replicator. In

the former case, generation of epochs is within purview of one or more11 gatekeepers g`(C`+1

j
) within

the context C`+1

j
. In the latter case epoch generation is determined by the �nest grained stable storage

within the context of the issuing client. Some of the details pertaining to epoch generation are listed

below.

(a) Epochs should monotonically increase.

(b) For every Æ! associated with a pro�le ! there is a list of epochs �Æ! associated with it.

The list of epochs exists because of the presence of multiple gatekeepers and stable storages

within the replication granularity.

(c) Epoch advances need to coordinated between the multiple stable storages that could exist within

a context.

(d) Epochs exist within the context of the �nest grained stable storage and the gatekeepers g` with

the context having a replication granularity `.

10A client could be operating in disconnected mode. Such a client is nevertheless still serviced based on its last logical

address. The logical address serves as a proxy for the client in its absence.
11This arise primarily out of the fact that there could multiple links connecting two units, thus the same event could

be assigned di�erent epochs by each gatekeeper receiving the same event.

9.8 The need for Epochs 37

In section 9.8.2 we discuss the generation of epochs for events issued by clients attached to node outside

the context of the sub system in question, while in section 9.8.3 we discuss the epoch generation scheme

for events issued by clients attached to nodes within the sub system. Fig. 12 details the two scenarios

for generation of epochs associated with events.

SSC-BSC-4

SC-5

SC-6

l
13 14

15

n
19 20

21

i
4 5

6

j
7 8

9

m
16 17

18

k
10 11

12

h
1 2

3

1 21

14

9

Cluster Storage

Super Cluster Storage

Super Super Cluster Storage

e

Client

External Events

Figure 12: Generation of epochs associated with events

Axiom 9.1 A client will not deliver an event e unless there is an epoch, �e, associated with the event.

9.8.2 Epoch generation for external events

In this section we are focussing on the sub system which is a level-` unit(context C`

i
) within the context

C
`+1

j
and has a replication granularity r`. We restrict our scope of events to only those events which

are issued by clients attached to nodes outside the context C`

i
.

Conjecture 9.3 For an event e issued by a client attached to a node outside a context C
`

i
(C`+1

j
), if the

event needs to be routed within C
`

i
, the event needs to arrive at one of the gatekeepers g

`(C`+1

j
) �rst.

Based on conjecture 9.3 in our scheme of epoch generation for external events, for a level-` unit within

the context C`+1

j
and a replication granularity r`, epochs �e for an event e are assigned by gatekeepers

g
`(C`+1

j
). Depending on the connectivities between di�erent units u

` the same event could arrive

at di�erent gatekeepers g` of the unit u`
j
. For such events, the epochs would of course be di�erent.

9.8 The need for Epochs 38

However, our duplicate detection scheme (section 8.8) ensures that the duplicate events would be

duplicate detected. These events e with the epochs �e assigned to them then are stored at the stable

storage. For a replication granularity r` the stable storage exists at one or more of the gatekeepers g
`.

One of the reasons why we didn't delegate the epoch generation scheme to the replicators is that in

that case the clients would need to receive epochs generated by the replicator prior to delivering events

which arrived at gatekeeper g` which is not a replicator node.

For a pro�le ! associated with a client, we denote the smallest individual pro�le unit as Æ!. Events are

routed to a client based on the Æ! that exist within a pro�le !. Events conforming to the same Æ! can

be assigned epochs by any of gatekeepers within the replication granularity. For every Æ! associated

with a pro�le ! there is a list of epochs �Æ! [] associated with it, the [] depending on the number of

gatekeepers which have assigned epochs to events conforming to Æ!. For each Æ! the arrival of a new

event results in the updation/addition of the last epoch received from the epoch-assigning gatekeeper.

The replication granularity within the system could be di�erent in di�erent sub systems. Within a

sub system having a replication granularity r
`, it is possible that there is a \sub sub system" with

replication granularity r`�1; r`�2; � � � ; r0, in such cases the epochs would be assigned by the gatekeepers

g
`�1

; g
`�2

; � � � ; g
0 respectively.

9.8.3 Epoch generation in units containing issuing clients

In section 9.1.1 we discussed augmenting the client with reissue behavior to account for losses due to

consecutive node failures. As opposed to the scheme we discussed earlier (section 9.8.2, when a node

receives an event issued by clients attached to some node within the same context C`

i
, there are no

epoch numbers associated with it. However, every event needs to have an epoch associated with it

to aid in recovery and servicing of undelivered events. This epoch is provided by the stable storage

which issues a noti�cation to stop the reissue associated with a certain event. With respect to clients

attached to nodes within the same context as the clients issuing logical address, the clients shouldn't

deliver events till they have received an epoch from the stable storage servicing the context of which the

client's logical address is a part of. The clients/node may receive a certain event but may not deliver

it till such time that epoch is received for that event.

9.8.4 Servicing newly reconnected clients

For a pro�le ! associated with a client, when a disconnected client joins the system it presents the node

it connects to in its present incarnation the following -

(a) Its logical address from its previous incarnation.

(b) For every Æ! associated with its pro�le, it presents an array �[] of epochs containing the last epoch

received from each gatekeeper node g`
i
within the replication granularity r` of the sub system that

it was formerly attached to.

From conjecture 9.2 (a) provides us with the list of stable storages that has stored events for the client,

while (b) provides us with the precise instant of time from which point on event queues of events needs

to be constructed and routed to the client's new location. In case of client roam or failed storage during

reconnection there's another epoch that is associated with the client. This pertains to the time from

point on events need not be routed. Of course every recovery of a failed stable storage is a new epoch,

and for clients which couldn't be serviced during the time the storage had failed, this is the epoch from

which no events should be used in the construction of local queues.

9.8.5 Epochs and pro�le changes

10 Implementation Details and such 39

10 Implementation Details and such

Events conform to XML DTDs. Not all �elds with the DTDs need to be present; some �elds are however

mandatory. At every server node hop, the DTD de�nition for the event needs to be referenced. There

are two ways for this information to be included within the XML event

(a) Include the DTD de�nition within the event itself. This is ruled out as the information contained

within the XML event would increase.

(b) Include a pointer to the DTD de�nition. This would entail a lot of network traÆc with every

arrived event resulting in a network operation to fetch the document de�nition.

To work around items (a) and (b) we employ the following approach. The �rst time that an event type

is encountered at a server node, the DTD de�nition is fetched12 and cached at the server node. Thus

we circumvent the network operation. DTD's could however change, and the cache rendered useless,

to account for this scenario we need to include the concept of version Number within the DTD �elds.

When the event is parsed a look at the version Number �eld could tell us if the cache needs to be

updated. If the DTD de�nition for the event is changed the clients interested in the events conforming

to the old DTD de�nition need to be noti�ed about this change, so that pro�les could be updated to

re
ect this change.

<!ELEMENT EVENT (EVENT-ID, APPLICATION_TYPE*, SUMMARY*, NOTE?)>

<!ATTLIST EVENT

versionNum CDATA #REQUIRED

securitylevel (low | med | high) ``low''

eventType (normal|recovery) ``normal''>

<!ELEMENT EVENT-ID (CLIENT-ID, TIME-STAMP, SEQUENCE-NUMBER, INCARNATION)>

<!ELEMENT CLIENT-ID (#PCDATA)>

<!ELEMENT TIME-STAMP (#PCDATA)>

<!ELEMENT SEQUENCE-NUMBER (#PCDATA)>

<!ELEMENT INCARNATION (#PCDATA)>

<!ELEMENT APPLICATION-TYPE (#PCDATA)>

<!ELEMENT SUMMARY (#PCDATA)>

<!ENTITY Description ``This is the base event type''>

The event routing information as speci�ed by the event routing protocol (ERP) and the information

contained within the event during recoveries are not included within the de�nition for the DTDs. The

event itself is encapsulated within an XML document, however the routing is not.

12This DTD de�nition could be fetched either from the pointer contained within the event or from the node which

routed the event to this node in the �rst place.

