4: Large-scale Green’s Function simulations in GEMCI

4.1: Green’s Function Formulation and Approximations


4.1.1: Basic Equations 

Let us consider in more detail the problem addressed by the Virtual_California described in section 3 and introduced in Rundle 1988a.  If one is given a network of faults embedded in an Earth with a given rheology, subject to loading by distant stresses, and neglecting elastic waves (see discussion below), the evolution of the state of slip s(x,t) on a fault at (x,t) is determined from the equilibrium of stresses according to Newton's Laws:


 s(x,t) / t  =   { i (i) }
 (1)

where {}  is a nonlinear functional, and i(i)  represents the sum of all stresses acting within the system.  These stresses include 

1) The interaction stress int[x,t; s(x',t'); p] provided by transmission of stress through the Earth's crust arising from background tractions p, as well as stresses due to slip on other faults at other sites x' at times t';  

2) The cohesive fault frictional stress f[x,t; s(x,t)] at the site (x,t) associated with the state of slip s(x,t); and 

3) Other stresses such as those due to dynamic stress transmission and inertia.  
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The transmission of stress through the Earth's crust involves both dynamic effects arising from the transient propagation of seismic waves, and from static effects that persist after wave motion has ceased.  Rheologic models typically used for the Earth's crust between faults are all linear (e.g., Rundle and Turcotte, 1993) and include 

1) A purely elastic material on both long and short time scales; 

2) A material whose instantaneous response is elastic but whose long term deformation involves bulk flow (viscoelastic); and 

3) A material that is again elastic over short times, but whose long term response involves stress changes due to the flow of pore fluids through the rock matrix (poroelastic). 

In fig. 10A, we show the basic conceptual "wiring diagram" for the model, which indicates the interplay between loading stresses, rupture, interactions with other faults, and relaxation processes following a major earthquake.

4.1.2: The Green's Function Approximation 

Considering GEM models that assume a linear interaction rheology between the faults implies that the interaction stress can be expressed as a spatial and temporal convolution of a stress Green's function Tijkl (x-x',t - t') with the slip deficit variable (x,t) = s(x,t) - Vt, where V is the long term rate of offset on the fault.  Once the slip deficit is known, the displacement Green's function Gijk(x-x',t-t') can be used to compute, again by convolution, the deformation anywhere in the surrounding medium exterior to the fault surfaces (e.g. Rundle 1988a).  In the first implementation of GEM models, we expect to specialize in the case of quasistatic interactions, even during the slip events. Observational evidence supports the hypothesis that simulations carried out without including inertia and waves will have substantial physical meaning.  Kanamori and Anderson (1975) and Kanamori et al. (1998) estimated that the seismic efficiency , which measures the fraction of energy in the earthquake lost to seismic radiation, is less than 5%-10%, implying that inertial effects in the dynamical evolution of slip in studying large populations of earthquakes will be of lesser importance for initial calculations.  Elastic waves will be included in later simulations when errors arising from other effects are reduced to the 5%-10% level.  At present, inclusion of these effects is severely limited by available computational capability, so we anticipate that it may be only practical to include only the longest wavelengths or largest spatial scales.  This computational plan is consistent with our philosophical approach.

4.1.3: Inelastic Rheologies: 

In quasistatic interactions, the time dependence of the Green's function typically enters only implicitly through time dependence of the elastic moduli (e.g., Lee, 1955).  Because of linearity, the fundamental problem is reduced to that of calculating the stress and deformation Green's function for the rheology of interest.  For materials that are homogenous within horizontal layers, numerical methods to compute these Green's functions are well known (e.g., Okada, 1985, 1992; Rundle, 1982a,b, 1988; Rice and Cleary, 1976; Cleary, 1977; Burridge and Varga, 1979; Maruyama, 1994). Problems in heterogeneous media, especially media with a distribution of cracks too small and too numerous to model individually, are often solved by using effective medium approaches, self-consistency assumptions (Hill, 1965; Berryman and Milton, 1985; Ivins, 1995a,b), or damage models Lyakovsky et al. (1997).  Suffice to say that a considerable amount of effort has gone into constructing quasistatic Green's functions for these types of media, and while the computational problems present certain challenges, the methods are straightforward as long as the problems are linear.  In the proposed work, we will focus on elastic (with possible incorporation of damage parameters) and layered viscoelastic models only.

4.2: Friction Models:
Friction models to determine the slip condition must augment the overall differential equations. At the present time, six basic classes of friction laws have been incorporated into computational models.

1. 
Two basic classes of friction models arise from laboratory experiments:
Slip Weakening   This friction law (Rabinowicz, 1965; Bowdon and Tabor, 1950; Beeler et al., 1996; Stuart, 1988; Li, 1987; Rice, 1993; Stuart and Tullis, 1995) assumes that the frictional stress at a site on the fault f = f[s(x,t)] is a functional of the state of slip.  In general, f[s(x,t)] is peaked at regular intervals.  The current state of the system is found from enforcing the equality f[s(x,t)] = int[x,t; s(x',t'); p] prior to, and just after, a sliding event.

Rate and State .  These friction laws are based on laboratory sliding experiments in which two frictional surfaces are slid over each other at varying velocities, usually without experiencing arrest (Dieterich, 1972; 1978; 1981; Ruina, 1983; Rice and Ruina, 1983; Ben Zion and Rice, 1993; 1995; 1997; Rice, 1993; Rice and Ben Zion, 1996).  In these experiments, the laboratory apparatus is arranged so as to be much “stiffer” than the experimental “fault” surfaces.  The rate dependence of these friction laws refers to a dependence on logarithm of sliding velocity, and the state dependence to one or more state variables i(t), each of which follows an independent relaxation equation.  

2. 
Two classes of models have been developed and used that are based on laboratory observations, but are computationally simpler.
Coulomb-Amontons  These are widely used because they are so simple (e.g., Rundle and Jackson, 1977; Nakanishi, 1991; Brown et al., 1991; Rundle and Brown, 1991; Rundle and Klein, 1992; Ben Zion and Rice, 1993, 1995, 1997).  A static failure threshold, or equivalently a coefficient of static friction S is prescribed, along with a residual strength, or equivalently a dynamic coefficient of friction D.  When the stress at a site increases, either gradually or suddenly, to equal or exceed the static value, a sudden jump in slip (change of state) occurs, that takes the local stress down to the residual value.  These models naturally lend themselves to a Cellular Automaton (CA) method of implementation.

Velocity Weakening This model (Burridge and Knopoff, 1967; Carlson and Langer, 1989) is based on the observation that frictional strength diminishes as sliding proceeds.  A constant static strength f = F is used as above, after which the assumption is made that during sliding, frictional resistance must be inversely proportional to sliding velocity. 

3.
Two classes of models are based on the use of statistical mechanics involving the physical variables that characterize stress accumulation and failure.  Their basic goal is to construct a series of nonlinear stochastic equations whose solutions can be approached by numerical means:

Traveling Density Wave  These models (Rundle et al., 1996; Gross et al., 1996) are based on the slip weakening model.  The principle of evolution towards maximum stability is used to obtain a kinetic equation in which the rate of change of slip depends on the functional derivative of a Lyapunov functional potential.  This model can be expected only to apply in the mean field regime of long range interactions, which is the regime of interest for elasticity in the Earth.  Other models in this class include those of Fisher et al (1997) and Dahmen et al (1997).

Hierarchical Statistical Models.  Examples include the models by Allègre et al. (1982, 1996); Smalley et al. (1985); Blanter et al. (1996); Allègre and Le Mouel (1994); Heimpel (1996); Newman et al. (1996); and Gross (1996).  These are probabilistic models in which hierarchies of blocks or asperity sites are assigned probabilities of failure.  As the level of external stress rises, probabilities of failure increase, and as a site fails, it influences the probability of failure of nearby sites.

4.3: Multipole Methods and Fast Numerical Simulation
4.3.1: Introduction
 


The GEM group has started to investigate the use of advanced parallel solvers for the codes described in section 3 developed by Rundle and Tullis.  Here we consider for definiteness the Virtual_California code from Rundle. The Green’s function approach can be formulated numerically as a long-range all-pairs interaction problem and this can be straightforwardly parallelized using well-known algorithms. However one cannot reach the required level of resolution without switching from an order O(N2) to one of the O(N) or O(N logN) approaches. As in other fields, this can be achieved by dropping or approximating the long-range components and implementing a neighbor-list based algorithm. However it is more attractive to formulate the problem as interacting dipoles and adapt existing fast-multipole technology developed for particle dynamics problems. We have already produced a prototype general purpose “fast multipole template code” by adapting the very successful work of Salmon and Warren (1997). These codes have already simulated over 300 million gravitating bodies on a large distributed memory system (a 4500-processor subset of the ASCI “Red” machine), so we expect these parallel algorithms to scale efficiently up to the problem sizes needed by GEM. 

4.3.2: Multipolar Representation of Fault Systems

A primary key to a successful implementation of GEM models of faults systems will be to utilize computationally efficient algorithms for updating the interactions between fault segments. Converting the Green's function integrals to sums, without truncation or approximation, would require O(N2) operations between earthquakes, and possibly more for segments of faults experiencing an earthquake. For quasistatic interactions, the Green's functions Tijkl and Gijk for linear elasticity have a simple time dependence. Moreover, the Green's functions for linear viscoelasticity and for linear poroelasticity can be obtained from the elastic Green's functions using the correspondence principle (e.g., Lee, 1955; Rundle 1982a,b). These simplifications strongly suggest that multipole expansions (Goil, 1994; Goil and Ranka, 1995) will be computationally efficient algorithms. 


The stress and displacement Green's functions Tijkl and Gijk represent the tensor stress and vector displacement at x due to a point double couple located at x' (Steketee, 1958). The orientation at x' of the equivalent fault surface normal vector, and of the vector displacement on that fault surface, are described by the indices i and j. Displacement and stress indices at the field point x are described by indices k and l.  Integration of Tijkl and Gijk over the fault surface then corresponds to a distribution of double couples. For that reason, representation of the stress over segments of fault in terms of a multipole expansion is the natural basis to use for the GEM computational problem. In fact, the use of multipolar expansions to represent source fields in earthquake and explosion seismology was introduced by Archambeau (1968) and Archambeau and Minster (1978), and later revisited from a different perspective by Backus and Mulcahy (1976).  Minster (1985) gives a review of these early representations. 

4.3.3: Application of Fast Multipole Methods to GEM

In the gravitational N-body problem, each body interacts with every other one in the system according to the familiar law of gravitational attraction. Simply computing all pairs of interactions requires N(N-1)/2 separate evaluations of the interaction law. This formulation of the problem has some important advantages: it is easy to code, it is easy to vectorize and parallelize, it is readily expressible in HPF, and it is even amenable to special-purpose hardware [e.g. GRAPE]. Nevertheless, even today's fastest special-purpose systems, running in a dedicated mode for extended times at rates of nearly 1 TERAFLOP, cannot simulate systems larger than about 100,000 bodies. 


Tremendous computational savings may be realized by combining bodies into “cells” and approximating their external field with a truncated multipole expansion. When this idea is applied systematically, the number of interactions may be reduced to O(N logN) (Appel, 1985; Barnes and Hut, 1986) or O(N) (Greengard and Rokhlin, 1987; Anderson, 1992). The cells are generally arranged in a tree, with the root of the tree representing the entire system, and descendants representing successively smaller regions of space. Salmon and Warren (1997) have demonstrated that such codes can run in parallel on thousands of processors and have simulated highly irregular cosmological systems of over 300 million bodies using ASCI facilities. 


There is a direct analogy between the bodies in an astrophysical N-body system and the fault segments in a GEM. In both cases, there exists a pair-wise interaction that seems to require O(N2) interactions. But if we represent the distribution of sources in a region by a multipole expansion, the external field generated by a large number of bodies can be computed to any desired degree of accuracy in constant time. Thus, the GEM problem can also be reduced to O(NlogN) or O(N) total interactions, so that large calculations are tractable. On the other hand, although multipole methods can deliver large performance gains, they also require a considerable infrastructure. This is especially true of efficient parallel implementations. We will develop the multipole version of GEM using a library that has been abstracted from Salmon and Warren's successful astrophysical N-body codes. The continued development of this library, and in particular any new features needed to support GEM will be supported by the project. This new library is: 

Modular - The “physics” is cleanly separated from the “computer science”, so that in principle, alternative physics modules such as the evaluation of the GEM Green's functions, can simply be “plugged in”. The first non-gravitational demonstration was a vortex dynamics code written by Winckelmans et al. (1995). The interface to the physics modules is extremely flexible. A general decision-making function tells the treecode whether or not a multipole, or any other approximation, is adequate for a given field evaluation. Short-range interactions, which vanish outside a given radius, can be handled as well. 

Tunable - Careful attention to analytical error bounds has led to significant speed-ups of the astrophysical codes, while retaining the same level of accuracy. Analytic error bounds may be characterized as quantifying the fact that the multipole formalism is more accurate when the interaction is weak:  when the analytic form of the fundamental interaction is well-approximated by its lower derivatives; when the sources are distributed over a small region; when the field is evaluated near the center of a “local expansion"; when more terms in the multipole expansion are used, and when the truncated multipole moments are small. These issues are primarily the concern of the “physics” modules, but the library provides a sufficiently powerful interface to make these parameters adjustable. The formulation is general enough that the same library can be used to support evaluation of O(N), O(NlogN) and O(N2) approximation strategies, simply by changing the decision criteria and interaction functions. 

Adaptive - The tree automatically adapts to local variations in the density of sources. This can be important for GEM as it is expected that large earthquakes are the result of phenomena occurring over a wide range of length and time scales. 

Scalable - The library has been successfully used on thousands of processors, and has sustained 170 Gflops aggregate performance on a distributed system of 4096 200Mhz PentiumPro processors. 

Out of core - The library can construct trees, and facilitates use of data sets that do not fit in primary storage. This can allow one to invest hardware resources into processing rather than memory, resulting in more computations at constant resources. 

Dynamically load balanced - The tree data structure can be dynamically load-balanced extremely rapidly by sorting bodies and cells according to an easily computed key. 

Portable - The library uses a minimal set of MPI primitives and is written entirely in ANSI C. It has been ported to a wide variety of distributed memory systems - both 32-bit and 64-bit. Shared memory systems are, of course, also supported simply by use of an MPI library tuned to the shared memory environment. 

Versatile - Early versions of the library have already been applied outside the astrophysics and molecular dynamics area. In particular the Caltech and Los Alamos groups have successfully used it for the vortex method in Computational Fluid Dynamics. 


In the full GEM implementation, we have a situation similar to the conventional O(N2) N-body problem but there are many important differences. As the most obvious difference, the GEM case corresponds to double-couple interactions, which correspond to a different force law between “particles” from the gravitational case. Further the critical dynamics -- namely earthquakes -- are found by examining the stresses at each time step to see if the friction law implies that a slip event will occur. As discussed above, many different versions of the friction law have been proposed, and the computational system needs be flexible so we can compare results from different laws. Noting that earthquakes correspond to large-scale space-time correlations including up to perhaps a million 10-to-100 meter segments slipping together shows analogies with statistical physics. As in critical phenomena, clustering occurs at all length scales and we need to examine this effect computationally. However, we find differences with the classical molecular dynamics N-body problems not only in the dynamical criteria of importance but also in the dependence of the Green’s function (i.e. “force” potential) on the independent variables. Another area of importance, which is still not well understood in current applications, will include use of spatially dependent time steps (with smaller values needed in active earthquake regions). An important difference between true particles and GEM is that in the latter case, fault positions are essentially fixed in space. Thus the N-body gravitational problem involves particles whose properties are time-invariant but whose positions change with time, while GEM involves “particles” whose positions are fixed in time, but whose properties change with the surrounding environment. Of course a major challenge in both cases is the issue of time-dependent “clustering” of “particles.” It may be possible to exploit this in the case of GEM - for example by incrementally improving parallel load balancing.
4.4: Computational Complexity

Current evidence suggests that forecasting earthquakes of magnitude ~6 and greater will depend upon understanding the space-time patterns displayed by smaller events; i.e., the magnitude 3's, 4's and 5's.  With at least 40,000 km2 of fault area in southern California, as many as 108 grid sites (10-meter segment size) will be needed to accommodate events down to magnitude 3.  Extrapolations based upon existing calculations indicate that using time steps of ~100 sec implies that ~108 time steps will be required to simulate several earthquake cycles.  This leads to the need for teraflop class computers in this as in many physical simulations. 

Here we make the conservative assumption that the GEM dipole-dipole Green's function evaluations are ten times as computationally expensive as the Newtonian Green's functions evaluated in Salmon and Warren's code. At this stage, we cannot guess how far the teraflop class of computer will take us and the systems needed to support research, crisis managers or insurance companies assessing possible earthquake risk, may require much higher performance.

Fig. 10A: Logical Structure for model of  Section 4








