
3 Implementation Strategy - Transport level Details

Each node contains the following -

• The maximum number of nodes that are allowed in the cluster.

• The IP-discrimination scheme employed by the nodes within the cluster. This scheme is used
to determine if a node can be part of the cluster. One of the reasons why we employ such a
scheme is that, nodes within a cluster would communicate using UDP. Losses are very low, and
communication very fast while using UDP between nodes on the same token ring in the network.
In the case of a node not on the same token ring as the rest of the cluster, losses incurred due to
UDP communication would be inordinately high. These high losses would serve to divert the rest
of the nodes, towards error correction and handling of messages over the erring link, from their
basic task of effiecient dissemination of messages received at the cluster gateways.

• There is also a connection set up vector, which specifies the maximum number of concurrently
active connections that a node can maintain at any given time. Associated with every connection
between nodes (server or client) there is a receiver thread per transport protocol, and sender
threads propotional to the number of active connections and the number of transport protocols
supported by the node and nodes connected to it. There is thus a price to be paid (CPU-dollars)
for maintaining active concurrent connections to multiple nodes. In addition using UDP, Multicast
require regular polling since there are no outtage notifications (akin to ICMP provided by the TCP
core porotocol set) in response to socket failures. A node hosted on a slower machine could thus
tune its processing to the capabilities existing in the underlying system and also on the number of
processes active on the system.

In addition to this every node, can communicate using TCP, UDP, Multicast. Every node publishes
the TCP port, UDP port and the Multicast group over which it monitors connection requests and message
interchange. In the case of UDP and Multicast, though the communication is fast the communication
is unreliable. UDP and Multicast communication provide no guarantees on the delivery and ordering
of message packets. As a result messages received could contain holes in the intended sequence and the
messages could also be out of order. Thus we employ an error detection and correction mechanism atop
the UDP and Multicast transports for our protocol needs. The other disadvantage of UDP communication
is that there are no outtage notifications.

4 The DTD for the event

Events conform to XML DTDs. Not all fields within the DTDs need to be present, some fields are
however mandatory. At every server node hop, the DTD definition for the event needs to be referenced.
There are two ways for this information to be included within the XML event

(a) Include the DTD definition within the event itself. This is ruled out as the information contained
within the XML event would increase.

(b) Include a pointer to the DTD definition. This would entail a lot of network traffic with every
arrived event resulting in a network operation to fetch the document definition.

To work around items (a) and (b) we employ the following approach. The first time that an event
type is encountered at a server node, the DTD definition is fetched1 and cached at the server node. Thus
we circumvent the network operation.

An event exists within the context of a stream, thus the specification of an event includes the
stream that this event is a part of, this is specified by the StreamId. Every event needs to have an Id,
Mspaces:EventId, that is unique in space and time. Events also should be able to specify the linkages
that exist between them and events within other streams, this constitutes the Mspaces:EventLinkage.

1This DTD definition could be fetched either from the pointer contained within the event or from the node which routed
the event to this node in the first place.

3

Resolution of the event linkage is a precursor to the creation of merged streams. We also need an indi-
cation of the type of event that this event is, i.e. live or recovery and the security constraints contained
within the event. This is included in Mspaces:EventType. Events could also possibly specify zero or
applications that it is a part of. The event summary, which could occur once or not at all, provides a
synopsis of the event itself. Thus an Event definition could be the following.

<!ELEMENT Mspaces:Event (Mspaces:StreamId, Mspaces:EventId, Mspaces:EventType,
Mspaces:EventLinkage, Mspaces:ApplicationType*,
Mspaces:Summary?)>

This specification dictates that the various elements should appear in the order Mspaces:StreamId first,
then Mspaces:EventId and so on. The StreamId representation is a simple (#PCDATA) representation.

<!ELEMENT Mspaces:StreamId (#PCDATA)>

The Mspaces:EventId, needs to be unique in space and time. Having a unique Client Id, Mspaces:ClientId
reduces the uniqueness problem to a point in space. Mspaces:TimeStamp provides the uniqueness in the
time domain, while the sequence number (contained in Mspaces:SequenceNumber) scheme ensures issue
rates which are higher than that dictated by the constraint imposed on uniquely identifiable events by
the granularity of the underlying clock. Mspaces:IncarnationNumber’s are essential to avoid conflicts
when an issuing client initiates a roam. The duplicate detection loop hole exists since no process has
access to a global clock and also since the clocks on individual machines are never synchronized. Even if
the clocks were synchronized, the rates at which these individual clocks tick are different. The following
definition for the eventId specifies a an ID unique in space and time.

<!ELEMENT Mspaces:EventId (Mspaces:ClientId, Mspaces:TimeStamp,
Mspaces:SequenceNumber, Mspaces:Incarnation)>

<!ELEMENT Mspaces:ClientId (#PCDATA)>
<!ELEMENT Mspaces:TimeStamp (#PCDATA)>
<!ELEMENT Mspaces:SequenceNumber (#PCDATA)>
<!ELEMENT Mspaces:Incarnation (#PCDATA)>

Earlier we discussed our approach to circumventing network operations while parsing the XML events.
DTD’s could however change, and the cache rendered useless, to account for this scenario we need to
include the concept of version Number within the DTD fields. When the event is parsed a look at the
Mspaces:versionNumber field could tell us if the cache needs to be updated. If the DTD definition for
the event is changed the clients interested in the events conforming to the old DTD definition need to
be notified about this change. These clients could then decide if their profiles need to be updated to
reflect this change. This notification of the change in the DTD of the event that a client is interested is
included in the field Mspaces:LatestVersionNumber. Also nodes need to maintain the DTD definitions
for different versions of the same DTD. It is concievable that there are events being published within the
system or there are recovery events which would conform to the old versions of the DTD. Information
regarding these version numbers along with the security constraints and liveness indicator consitute
Mspaces:EventType.

<!ELEMENT Mspaces:EventType (Mspaces:VersionNum, Mspaces:LatestVersionNum?)
<!ATTLIST Mspaces:EventType

Securitylevel (low | med | high) ‘‘med’’
Liveness (live|recovery) ‘‘live’’>

<!ELEMENT Mspaces:VersionNum (#PCDATA)>
<!ELEMENT Mspaces:LatestVersionNum (#PCDATA)>

If an Mspaces:EventType created does not specify values for the SecurityLevel and Liveness at-
tributes, the EventType is assumed to be a “live” event of “med” security. Recovery events are the
events which clients have missed either during a roam operation or during a prolonged disconnect.

The Mspaces:EventLinkage specifies the dependencies that exist between events in multiple streams.
The linkage should provide for resolution of the spatial and timing dependencies in an implicitly or

4

explictly specified order. Besides these we also need the ability to create bundles of events within a
given stream. The bundles that we create need an identifier, this is provided by Mspaces:BundleId.
However, there could be situations where the bundle we consider is the stream itself. Bundles need to
also indicate the methodology that needs to be in place to decide upon the merging schemes. This is
provided by the enumeration of Mspaces:TimeConstraint and Mspaces:MergeScheme. Some bundles
however, may not impose any scheme on the merging of bundles. We account for such a scenario
by including “None” in the enumeration for the linkage schemes which we mentioned earlier. Events
within a bundle also have monotonically increasing sequence numbers assigned to events within the
bundle. This is in addition to the sequence numbers that events possess to determine a uniqueID. The
Mspaces:BundleNumber however, comes into play only in the presence of a Mspaces:BundleId within the
event stream. The Mspaces:BundleOrder specifies the ordering scheme that should be in place for events
which are “concurrent” based on the merging methodology that is specified by Mspaces:BundleLinkage.

<!ELEMENT Mspaces:EventLinkage ((Mspaces:BundleId, Mspaces:BundleNumber)? ,
Mspaces:BundleLinkage, Mspaces:BundleOrder)

<!ELEMENT Mspaces:BundleId (#PCDATA)>
<!ELEMENT Mspaces:BundleNumber (#PCDATA)>
<!ELEMENT Mspaces:BundleLinkage NONE | (Mspaces:TimeConstraint?, Mspaces:MergeScheme?)>
<!ELEMENT Mspaces:TimeConstraint (#PCDATA)>
<!ELEMENT Mspaces:MergeScheme (#PCDATA)>
<!ELEMENT Mspaces:BundleOrder (Mspaces:StreamId+ | Mspaces:BundleId+)>

A brief note about the Mspaces:EventLinkage is in order. If an event is allowed to be part of
multiple bundles within the same stream with multiple BundleNumber’s the ? should be * in the
Mspaces:BundleId, Mspaces:BundleNumber grouping. The listing of the DTD in section 4.1 and ele-
ment analysis in table 1 assumes the ? occurance operator.

4.1 The complete DTD

The event routing information as specified by the event routing protocol (ERP) and the information
contained within the event during recoveries are not included within the definition for the DTDs. The
event itself is encapsulated within an XML document, however the routing is not. Below we include the
complete definition of the event, which follows from our discussions so far.

<!ELEMENT Mspaces:Event (Mspaces:StreamId, Mspaces:EventId, Mspaces:EventType,
Mspaces:EventLinkage, Mspaces:ApplicationType*,
Mspaces:Summary?)>

<!ELEMENT Mspaces:StreamId (#PCDATA)>

<!ELEMENT Mspaces:EventId (Mspaces:ClientId, Mspaces:TimeStamp,
Mspaces:SequenceNumber, Mspaces:Incarnation)>

<!ELEMENT Mspaces:ClientId (#PCDATA)>
<!ELEMENT Mspaces:TimeStamp (#PCDATA)>
<!ELEMENT Mspaces:SequenceNumber (#PCDATA)>
<!ELEMENT Mspaces:Incarnation (#PCDATA)>

<!ELEMENT Mspaces:EventType (Mspaces:VersionNum, Mspaces:LatestVersionNum?)
<!ATTLIST Mspaces:EventType

Securitylevel (low | med | high) ‘‘low’’
Liveness (live|recovery) ‘‘live’’>

<!ELEMENT Mspaces:VersionNum (#PCDATA)>
<!ELEMENT Mspaces:LatestVersionNum (#PCDATA)>

5

<!ELEMENT Mspaces:EventLinkage ((Mspaces:BundleId, Mspaces:BundleNumber)? ,
Mspaces:BundleLinkage, Mspaces:BundleOrder)

<!ELEMENT Mspaces:BundleId (#PCDATA)>
<!ELEMENT Mspaces:BundleNumber (#PCDATA)>
<!ELEMENT Mspaces:BundleLinkage NONE | (Mspaces:TimeConstraint?, Mspaces:MergeScheme?)>
<!ELEMENT Mspaces:TimeConstraint (#PCDATA)>
<!ELEMENT Mspaces:MergeScheme (#PCDATA)>
<!ELEMENT Mspaces:BundleOrder (Mspaces:StreamId+ | Mspaces:BundleId+)>

<!ELEMENT Mspaces:ApplicationType (#PCDATA)>
<!ELEMENT Mspaces:Summary (#PCDATA)>

Table 1 depicts the various elements, the nested elements and occurance bounds for the nested
elements within a specific element. The table also snaphots our discussions so far with brief descriptions
of the purpose of each element with the event element hierarchy.

6

Element Allowed Nested Elements Number Purpose of the
Element

Mspaces:Event Mspaces:StreamId 1 Overall root element of the
Event

Mspaces:EventId 1
Mspaces:EventType 1
Mspaces:EventLinkage 1
Mspaces:ApplicationType 0 or more
Mspaces:Summary 0 or 1

Mspaces:StreamId None Stream the event belongs to
Mspaces:EventId Mspaces:ClientID 1 The unique event ID.

Mspaces:TimeStamp 1
Mspaces:SequenceNumber 1
Mspaces:Incarnation 1

Mspaces:ClientID None The issuing Client ID.
Mspaces:TimeStamp None Time Stamp usually in mil-

liseconds
Mspaces:SequenceNumber None Issue events at rate greater

than the granularity of the
timeStamp.

Mspaces:Incarnation None Allows for duplicate detec-
tion during a issuing client
roam .

Mspaces:EventType
(attributes : live, secure)

Mspaces:VersionNum 1 Information about the ver-
sioning and liveness of an
event.

Mspaces:LatestVersionNum 0/1
Mspaces:VersionNum None The version number of the

DTD that XML event con-
forms to

Mspaces:LatestVersionNum None Inform clients about the ver-
sion change to a DTD.

Mspaces:EventLinkage Mspaces:BundleId 0/1 Specification for the linkage
of events in multiple streams.

Mspaces:BundleNumber 0/1
Mspaces:BundleLinkage 1
Mspaces:BundleOrder 1

Mspaces:BundleId None Indentifies a specific bundle
within the stream.

Mspaces:BundleNumber None Specifies the numbering with
in the bundle of a stream.
Depends on the presence of
the Bundle.

Mspaces:BundleLinkage
(Enumeration)

Mspaces:TimeConstraint 0/1 Specifies the method for
merging streams/bundle.

Mspaces:MergeScheme 0/1
Mspaces:TimeConstraint None Specifies merging based on

time.
Mspaces:MergeScheme None Specifies a merge scheme.
Mspaces:BundleOrder
(Enumeration)

Mspaces:StreamId 1 or more Specifies ordering for concur-
rent events

Mspaces:Bundle 1 or more

Table 1: Mspaces:Event Hierarchy

7

