
Algorithms and Heuristics for Combinatorial

Optimization Problems: Case Study of Academic Course

Scheduling

by

M. A. Saleh Elmohamed

Abstract of Dissertation – Second Draft

August, 2000

Abstract

In this dissertation we try to answer the following question: How do we go about

solving the problem of academic scheduling at the university level, in particular? we

give a detailed answer to this question, and shed some light on the case of tackling

optimization problems in general.

Combinatorial optimization problems involve choosing the best solution from a

finite set of mutually exclusive outcomes and are often deceptively difficult to solve.

To summarize, we have investigated a variety of optimization algorithms, in par-

ticular, random search, hill climbing, knowledge-based systems (or rule-based expert

systems), mean-field annealing, and simulated annealing methods to solve a large

scale optimization problem, namely university academic course scheduling, repre-

sented as generalized assignment-type problems. The core heuristics of our approach

are annealing-based and includes mean-field annealing, simulated annealing with three

different cooling schedules, and the use of two types of preprocessors, namely rule-

based and graph coloring. Moreover, preprocessors are only used with simulated

annealing to provide a good starting point for the algorithm.

Along with the use of preprocessing we also have investigated a number of tech-

niques to accelerate (i.e. ‘speed up’) the convergence of annealing to a good quality

solution. These techniques include the selection of appropriate annealing schedules

and its subsequent parameter fine-tuning, as well as recording the best solution en-

countered in an annealing run. In terms of convergence speedup as well as solution

quality, the best results were obtained using simulated annealing with adaptive cool-

ing and reheating as a function of cost, and a rule-based preprocessor. This approach

enabled us to obtain valid schedules for the course scheduling problem for a large

university, using a complex cost function that includes student preferences. None of

the other methods we investigated were able to provide a complete valid schedule.

The same approach using a graph-coloring preprocessor did extremely well but not

as good as the approach with the rule-based preprocessor.

Algorithms and Heuristics for Combinatorial
Optimization Problems: Case Study of Academic

Course Scheduling

by

M. A. Saleh Elmohamed

M.S., Syracuse University

Dissertation

August, 2000

ALGORITHMS AND HEURISTICS FOR
COMBINATORIAL OPTIMIZATION PROBLEMS: CASE

STUDY OF ACADEMIC COURSE SCHEDULING

By

M. A. Saleh Elmohamed

M.S., Syracuse University

DISSERTATION

submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in computer science and engineering in the

Graduate School of Syracuse University

August, 2000

Approved

Dr. Geoffrey Fox

Date

c© Copyright 2000

M. A. Saleh Elmohamed

Abstract

In this dissertation we try to answer the following question: How do we go about

solving the problem of academic scheduling at the university level, in particular? we

give a detailed answer to this question, and shed some light on the case of tackling

optimization problems in general.

Combinatorial optimization problems involve choosing the best solution from a

finite set of mutually exclusive outcomes and are often deceptively difficult to solve.

To summarize, we have investigated a variety of optimization algorithms, in par-

ticular, random search, hill climbing, knowledge-based systems (or rule-based expert

systems), mean-field annealing, and simulated annealing methods to solve a large

scale optimization problem, namely university academic course scheduling, repre-

sented as generalized assignment-type problems. The core heuristics of our approach

are annealing-based and includes mean-field annealing, simulated annealing with three

different cooling schedules, and the use of two types of preprocessors, namely rule-

based and graph coloring. Moreover, preprocessors are only used with simulated

annealing to provide a good starting point for the algorithm.

Along with the use of preprocessing we also have investigated a number of tech-

niques to accelerate (i.e. ‘speed up’) the convergence of annealing to a good quality

solution. These techniques include the selection of appropriate annealing schedules

and its subsequent parameter fine-tuning, as well as recording the best solution en-

countered in an annealing run. In terms of convergence speedup as well as solution

quality, the best results were obtained using simulated annealing with adaptive cool-

ing and reheating as a function of cost, and a rule-based preprocessor. This approach

enabled us to obtain valid schedules for the course scheduling problem for a large

university, using a complex cost function that includes student preferences. None of

the other methods we investigated were able to provide a complete valid schedule.

The same approach using a graph-coloring preprocessor did extremely well but not

iii

as good as the approach with the rule-based preprocessor.

iv

Acknowledgements

v

Contents

Acknowledgements v

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Objectives . 2

1.2 Outline . 3

2 Combinatorial Optimization and Heuristics 4

2.1 Concept of Optimization . 5

2.2 Optimization Problems . 6

2.3 Optimization Algorithms . 7

2.4 Type of problems addressed . 8

2.5 Local Search . 9

2.5.1 The Reasoning Behind Local Search 10

2.5.2 Examples of neighborhoods 11

2.5.3 Considerations to keep in mind 12

2.5.4 Local Search Variations . 13

2.6 Algorithms, Landscapes, and Problem Classes 21

2.7 Combinatorial Optimization . 22

2.8 Computational Complexity . 23

vi

2.8.1 Algorithms and Problems . 23

2.8.2 Polynomial Time . 24

2.8.3 Characteristic of NP-Complete Problems 25

2.8.4 The Classes P and NP . 26

2.8.5 The Meaning of NP-Completeness 27

2.9 Approximation Algorithms . 29

2.10 More on Design of Heuristics . 29

2.11 Algorithmic paradigms . 31

2.12 Conventional Methods . 33

2.12.1 Cutting plane techniques . 33

2.12.2 Branch-and-bound . 33

2.12.3 Dynamic programming . 34

3 The Course Scheduling Problem 36

3.1 Introduction to the Problem . 36

3.1.1 Constraints of the Problem . 37

3.1.2 Strategy for Problem Solving 39

3.1.3 Constraint handling in Course Scheduling – problem solving

strategies . 43

3.1.4 Cost Function . 45

3.2 As a Generalized Assignment-Type Problem 46

3.2.1 Representation of Course Scheduling as GATP 48

4 The Rule-Based (Expert) Systems 51

4.1 Introduction . 51

4.2 Examples of Rule-based Constraints 53

4.2.1 Time and Space . 53

4.2.2 Type of Room . 54

4.2.3 Room Priority . 55

4.2.4 Forward and Backward Rules 56

4.2.5 The Rationale of Using a Preprocessor 56

vii

5 Simulated Annealing and Energy Landscapes 58

5.1 Energy Landscapes . 60

5.2 Good and Bad Energy Landscapes 62

5.3 On the Application of Annealing . 63

5.4 Timetabling Using the Annealing Algorithm 65

5.5 Interpretation of the Solution Space 68

5.6 The Annealing Schedules . 68

5.6.1 Cooling Parameters . 69

5.6.2 Dependence on Initial Temperature 70

5.7 Our Experimental Schedules . 72

5.7.1 Comments . 76

5.8 Annealing in Comparison with Other Algorithms 76

6 Multi-Phase (Hybrid) Approach to Scheduling 78

6.1 The Structure of Our Method . 78

6.1.1 The Preprocessor Phase . 78

6.1.2 The Core Heuristics . 80

6.1.3 The Postprocessor . 80

6.1.4 The Choice of Moves . 80

6.2 More Analysis of the Simulation . 85

6.2.1 Preprocessing and the Problem’s Structure 88

6.3 Conclusions . 89

7 Optimization Networks 96

7.1 Neural Methods as Optimization Paradigms 96

7.2 The Hopfield Network . 97

7.2.1 Structure and Dynamics of the Net 100

7.2.2 Operation of the Network . 100

7.2.3 Updating of the States of the Neurons 102

7.2.4 Stability of the Net . 102

7.2.5 Updating the States of the Net 102

viii

7.2.6 Mapping the Problem onto the Network 103

7.2.7 Shortcomings of the Hopfield Model 105

7.3 Mean Field Annealing for Timetabling 106

7.3.1 Introduction and Motivation 106

7.3.2 Potts Neurons . 108

7.3.3 Mean-Field Approximation . 108

7.3.4 Mapping of Optimization Problems onto the Potts Model . . . 110

7.3.5 The Mean-Field Annealing Algorithm 110

7.3.6 Observations on the Algorithm 113

7.3.7 Definitions and Constraints 113

7.3.8 More Definitions and Constraints 123

7.3.9 General Comments on the Algorithm 129

7.3.10 Some Implementation Details 129

7.3.11 Performance Issues of MFA on Timetabling 130

7.3.12 Mapping Timetabling onto the Potts Neural Nets 131

7.4 Experimental Results . 134

7.5 Combinatorial applications of optimization networks 135

8 Scheduling as a Graph Coloring Problem 136

8.1 Introduction . 136

8.2 Mapping Scheduling onto Graph Coloring 137

8.3 Graph Coloring Algorithm . 139

8.3.1 Spatial Hard Constraints . 143

8.3.2 Structure of Code . 144

8.4 Group Assignment Problem . 144

8.4.1 Revising Section Assignment 145

8.5 Group Assignment Heuristics . 147

8.6 Hybrid Heuristics for GC . 147

8.6.1 RLF . 148

8.6.2 XRLF . 149

ix

9 Airline Crew Scheduling versus Course Scheduling 150

9.1 Airline Crew Scheduling . 150

9.1.1 Crew Scheduling vs. Course Scheduling 152

9.2 Multi-Phase approach to Airline Scheduling 153

10 Complexity of Course Scheduling 154

10.1 Notes on Complexity of the Problem 154

10.2 Constraint Satisfaction . 156

10.2.1 Basic definitions . 156

10.3 Complexity of Section Assignment Problem 158

A Glossary and Definitions 159

Bibliography 166

x

List of Tables

6.1 Size of the data set for each of the three semesters. 91

6.2 The sparseness ratios of the problem for the data sets for each of the

three semesters. Lower values indicate a harder problem. 91

6.3 A three-semester sparseness ratio (including students) computed by

R(Nsp/(NxNt), ((number majors * average number of classes taken

per students) / number of students)). The smaller the ratio, the less

sparse the problem is and for this problem the ratio is based on Nt =

15 time slots each with a duration of 55 minutes. The first slot starts

at 8:00 am and the last slot ends at 10:55 pm. 92

6.4 Percentage of classes scheduled using the different methods. The aver-

ages and highest and lowest values were obtained using 10 independent

runs for simulated annealing (SA) and mean-field annealing (MFA).

The expert system (ES) is deterministic so the results are from a sin-

gle run. No preprocessor was used with the three methods. 93

6.5 Percentage of scheduled classes, averaged over 10 runs for the same ini-

tial temperature and other parameters, for three terms using simulated

annealing with a graph-coloring preprocessor for the set of science and

engineering data, and an expert system preprocessor for the rest of the

data. 94

6.6 Percentage of scheduled classes, averaged over 10 runs for the same ini-

tial temperature and other parameters, for three terms using simulated

annealing with an expert system as preprocessor. 95

xi

List of Figures

2.1 A very nice state space. 11

2.2 A state space with many local optima; it will be hard to find the best

solution. The global optimum (x∗) is at the dark circle, while open

circles represent local optima. 12

2.3 Random Search Algorithm . 14

2.4 Hill Climbing Algorithm . 15

2.5 Tabu search paradigm . 18

2.6 Genetic Algorithm . 20

5.1 A landscape that is bad for annealing. 60

5.2 A landscape that is good for annealing. 61

5.3 The Simulated Annealing Algorithm 64

5.4 Illustrating a problem for which annealing won’t work very well. The

state here is a one-dimensional, with the energy of a state as shown.

At low temperature an energy barrier confines the simulation for long

periods of time to either the small region on the left or the larger

region on the right. The small region contains the global minimum,

but annealing will likely direct the simulation to the larger region, since

the tiny region in the vicinity of the global minimum has negligible

influence on the distribution at high temperatures where the energy

barrier can easily be traversed. (See also Figure 5.1) 66

6.1 A schematic view of the system three-phase architecture. 79

xii

6.2 A schematic view of some of the main components of the system, col-

leges with their associated departments and a list of buildings. 81

6.3 A schematic view of department(s) and their buildings. Here, it in-

dicates that the home building for the CIS department is building C,

and its classes can be scheduled in buildings A, B, and D, as well as C. 82

6.4 A schematic view of four different colleges (or schools) and their associ-

ated departments. The sketch shows class swapping between individual

departments within the same school and others outside it. The dotted

arrows denote swaps either within the same department or between two

departments belonging to two different schools; while the solid arrows

denote swaps between departments within the same school. 83

7.1 A graph bisection problem. 98

7.2 A schematic view of the Hopfield network. 101

7.3 A graph partition problem. 111

7.4 The Generic Mean-Field Annealing Algorithm 112

7.5 A one-way arrow indicates that the “end-of-arrow” entity depends on

the “begin-of-arrow” entity; while a two-way arrow indicates a mutual

dependency between the two entities. 132

7.6 Percentage of scheduled classes versus number of spare room/time slots 134

8.1 A proper graph coloring using three colors. 138

8.2 A graph representing temporal hard constraints. 139

8.3 DSatur Graph Coloring Algorithm – version (I) 140

8.4 DSatur Graph Coloring Algorithm – version (II) 141

8.5 Time slots belonging to two overlapping sets. 143

8.6 The overall structure of the course scheduling algorithm. 145

8.7 Clustering students that choose course v 148

xiii

Chapter 1

Introduction

In this dissertation we try to answer the following question: How do we go about

solving the problem of academic scheduling at the university level, in particular? we

give a detailed answer to this question, and shed some light on the case of tackling

optimization problems in general.

Combinatorial optimization problems involve choosing the best solution from a

finite set of mutually exclusive outcomes and are often deceptively difficult to solve.

To summarize, we have investigated a variety of optimization algorithms, in par-

ticular, random search, hill climbing, knowledge-based systems (or rule-based expert

systems), mean-field annealing, and simulated annealing methods to solve a large

scale optimization problem, namely university academic course scheduling, repre-

sented as a generalized assignment-type problem. The core heuristics of our approach

are annealing-based and include mean-field annealing, simulated annealing with three

different cooling schedules, and the use of two types of preprocessors, namely rule-

based and graph coloring. Moreover, preprocessors are only used with simulated

annealing to provide a good starting point for the algorithm.

Along with the use of preprocessing we also have investigated a number of tech-

niques to accelerate (i.e. ‘speed up’) the convergence of annealing to a good quality

solution. These techniques include the selection of appropriate annealing schedules

1

CHAPTER 1. INTRODUCTION 2

and its subsequent parameter fine-tuning, as well as recording the best solution en-

countered in an annealing run.

In terms of convergence speedup as well as solution quality, the best results were

obtained using simulated annealing with adaptive cooling and reheating as a func-

tion of cost, and a rule-based preprocessor. This approach enabled us to obtain valid

schedules for the timetabling problem for a large university, using a complex cost

function that includes student preferences. None of the other methods we have inves-

tigated were able to provide a complete valid schedule. The same processing method

using a combination of graph-coloring and rule-based expert system preprocessor did

quite well but not as good as the approach of using only the rule-based expert system

as a preprocessor.

1.1 Objectives

The primary objective of this dissertation is to present a detailed analysis on deriving

an approximate solution to the problem of university course scheduling, and also to

shed some light on how we go about solving similar optimization problems, in general.

Particularly, we briefly discuss airline scheduling by comparing it to academic course

scheduling and how we our problem solving approach ca be used to tackle the airline

crew pairing problem. Our analysis would also involve the determination of how

varying the parameters of the method(s) used would affect the quality of the results

obtained.

The optimization problem we have closely tackled is university course scheduling,

and summarized as follows:

Given data sets of classes and their days, enrollments, and instructors; rooms

and their capacities, types, and locations; distances between buildings; priorities of

each building for different departments; and students and their class preferences; the

problem is to construct a feasible class schedule satisfying all the hard constraints and

minimizing the medium and soft constraints. Hard constraints are space and time

constraints that must be satisfied, such as scheduling only one class at a time for any

CHAPTER 1. INTRODUCTION 3

teacher, student, or classroom. Medium and soft constraints are student and teacher

preferences that should be satisfied if possible.

1.2 Outline

Chapter 2 is an introduction to combinatorial optimization along with discussion of

the inherent difficulty of many combinatorial problems, as well as look at some tailored

and generally applicable heuristics. We introduce the problem of course scheduling

in chapter 3, giving a definition and associated three types of constraints. Also,

the chapter outlines the general form of an assignment-type problem and outlines a

representation of course scheduling as a generalized assignment type.

In chapter 4 we look into the structure of the preprocessor used, namely the rule-

based expert system giving a sample of of some of the rules that were used. Then

we start the discussion about the core processor in chapter 5; including important

discussion and analysis of energy landscapes and annealing schedules. Chapter 6

looks into our multi-phase (or hybrid) approach and its main components, discussing

strategies on the choice of moves during the simulation followed by set of experimental

results.

Our approach to mean field annealing is given in some details in chapter 7. Fol-

lowed by discussion in chapter 8 on the use of graph coloring as a tool for course

scheduling. We have used the graph-coloring approach as a method part of the pre-

processing stage in our multi-phase approach. Finally, in chapter 9 we outline com-

mon characteristics between the two problems of airline crew scheduling and course

scheduling, briefly sketching how our approach can also be used to tackle the air-

line scheduling problem. We conclude with discussion on the complexity of course

scheduling and its components in chapter 10. A number of key terms used throughout

the thesis are defined in an appendix A.

Chapter 2

Combinatorial Optimization and

Heuristics

Unlike many topics in computer science, that of optimization is something with which

we are all familiar with in our everyday lives, be it through finding the shortest route

home from the office, or arranging a diary to accommodate competing demands on

our time each day. A vast number of such problems, in which the task is to find

the optimal solution amongst a space of possible solutions subject to external con-

straints on that choice, arise throughout science, engineering, and industry. Problems

in which the possible solutions from a finite set are termed combinatorial optimization

problems. It is a general class of optimizing problems restricted to a finite, discrete

solution space. Also, for this class of problems the standard function of maximiza-

tion/minimization techniques of differential calculus are clearly not applicable. Since

the 1940s however, new developments in mathematics, e.g. linear programming and

advances in graph theory, have led to a large body of knowledge – termed operations

research – concerning these problems and methods for their exact or approximate

solution.

Combinatorial optimization problems are of great interest in many fields of re-

search for two reasons. First, from a practical viewpoint, due to their applicability to

real world situations, good answers to combinatorial problems are often vital to the

4

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 5

success or failure of various projects. Second, from a more theoretical viewpoint, they

represent an intriguing challenge due to their simplicity of statement coupled with

a difficulty of solution. It is because of this difficulty in attempting to solve many

combinatorial optimization problems that algorithms designed to produce solutions

to such problems are forced to be heuristic in nature, i.e. are not guaranteed to re-

turn the best solution possible. When designing a heuristic algorithm, the amount of

information used that is specific to the problem can vary. This categorizes algorithms

into two arbitrary groupings: tailored algorithms, that use a lot of problem specific

knowledge and generally applicable algorithms, that seek to minimize the amount of

problem specific information used.

2.1 Concept of Optimization

In summary, optimization is primarily concerned with determining the value of a

variable that is best for some purpose. This is formalized as follows: We have an

objective function f(x, p) where x is a variable to be varied and p represents problem

data which is fixed. The function f evaluates to a number and we assume that x

is to minimize this function. Then optimization is to minimize f(x, p) as a function

of x. It is often convenient to identify constraints that must be satisfied by x. In

principle these can be incorporated into f but in practice it is often easier to keep

them separated so the optimization problem can then be restated as to minimize

f(x, p) as a function of x subject to the constraints c(x, p) = 0.

Note that the theory and practice of optimization is very closely related to that

of solving nonlinear equations. For example, the value of x that minimizes f(x, p)

is one which solves df(x, p)/dx = 0. Also, traditional optimization involves various

standard mathematical functions for f(x, p) and the constraints involved.

Optimization theory and practice has generated many ideas and methods. Some

of these methods are very general, such as gradient descent, convex minimization,

and penalty functions for constraints. These can be and have been used in the deter-

mination of “best” or “good” values for the parameters of selection forms.

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 6

2.2 Optimization Problems

Optimization problems are synonymous with search problems, and the most widley

studied problem involving search is the traveling salesman problem (TSP) which is a

combinatorial optimization problem defined as follows:

The TSP is the problem of finding the shortest closed path around a number of

points. Formally, each instance is specified by a set of N points (the ‘cities’) labeled

i = 1, . . . , N , and N X N matrix of positive inter-city ‘distances’ dij. Each tour

around the cities can be represented by a permutation π of the N points, with the

tour-length given by

Lπ =
N∑
i=1

dπ(i)π(i+1) (2.1)

where π(N + 1) = π(1). The task is to find the tour with the minimal L.

For symmetric TSPs, i.e. those where dij = dji∀i, j, there are 1
2
(N − 1)! distinct

tours, indicating that an exhaustive search strategy is untenable for large N . The

symmetric class can usefully be broken down into the Euclidean and non-Euclidean

subclasses. In the former, cities are specified by coordinates and the dij are computed

in a Euclidean metric, whereas in the latter class each instance is specified purely by

a matrix of dij terms.

A large number of practical optimization problems can be framed as TSPs, either

directly or indirectly. The 2-D Euclidean TSP, for example, describes a goods distri-

bution problem in which a truck must deliver items to a number of locations and then

return to the depot, using the shortest route. Similarly, the question of optimizing

the route of a drill which must produce thousands of holes in a circuit board can also

bee seen as a 2-D geometrical TSP. On the other hand, simple scheduling problems

can be represented by non-Euclidean TSPs. Consider for example the problem of

scheduling N jobs, i = 1 . . . N , to run sequentially on a single machine in the shortest

time. Job i requires time ti, plus a lag-time dji in which the machine is altered to

allow execution of job i after the previous job j. The initial (and final) state can be

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 7

regarded as a dummy job, indexed by 0, with t0 = 0. Representing a schedule by a

permutation π of jobs 0 . . . N , with π(N + 1) = π(0), the total run time T equals

T =
N∑
i=0

(dπ(i)π(i+1) + tπ(i)) =
N∑
i=0

dπ(i)π(i+1) +
N∑
i=0

ti (2.2)

As
∑
ti is independent of π, minimizing T is equivalent to an (N + 1)-city non-

Euclidean TSP (which may be either symmetric or asymmetric).

Further applications, extensions and variations of the basic TSP formulation can

be found in Lawler et al. [LLKS85].

2.3 Optimization Algorithms

In order to solve an optimization problem such as, for example, the TSP or scheduling,

we design a series of steps, or a procedure, which can tackle a problem instance to

which it claims to adhere and, ideally, be sure of getting a good answer in a given

amount of time. Such a procedure is known as an ‘optimization algorithm’.

Sometimes we may be happy with (or forced to accept) a less than optimal so-

lution, in which case it may be easier to find a suitable algorithm. We would like

our algorithms to return as good an answer as possible in as little time as possible,

and these will be important comparative judges of the merit of different algorithms.

Again, this is more subtle than it seems in that the time will vary from problem in-

stance to another, and we have to decide whether we want to minimize the best case,

the worst case or the average case. The reason NP-complete problems∗ are consid-

ered difficult is that all known algorithms which guarantee the optimal solution will

operate in exponential time in the size of the problem in the worst case scenario. For

reasonably large problem instances this is impractical and so we reduce our expec-

tations of the solution from ‘optimal’ to ‘good’, and seek algorithms which can still

search effectively in these difficult search spaces. As well as average versus best/worst

∗See sections on NP-completeness.

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 8

case in time-requirements, we also want to understand average versus best/worst case

in quality of solution found.

There were a number of studies discussing the issue of the distribution of the fit-

ness or “goodness” of solutions to a given problem and the time required to find those

solutions. Generally, those studies were for the idealized cases of complete algorithms

which guarantee the best possible solutions (and therefore, sometimes take a very large

amount of time). However, comparisons of such complete algorithms with stochastic

optimization approaches in studies in phase transitions [HHW96, Mou84] in problem

difficulty have shown empirically that the results are unchanged [GW93, GW94], and

therefore of relevance to some of the issues raised in this thesis. Furthermore, such

studies have shown how the time required to find good solutions by stochastic algo-

rithms such as Simulated Annealing increases as the phase transition is approached.

Hence, the phase transition results are also relevant to the search for good (not just

optimal) solutions.

2.4 Type of problems addressed

A question to ask here is that: What problems can stochastic optimization algorithms

such as simulated annealing address?

Most of the algorithms we have examined adhere to a simple set of requirements

upon the space of problems to which they apply. In fact we require no more of a

problem than that:

1. We can generate a random solution.

2. A ‘local perturbation’ to a solution is defined.

3. Such perturbations over all relevant parts of the solution space (this is usually

naturally satisfied).

All of the algorithms discussed in this thesis, with some minor variations, fall

within this category. Also note that because we search directly in the problem space,

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 9

all the algorithms we consider will return both the actual solution and its cost (or

value of utility depending upon the context). One can also envisage algorithms which

only return a bound upon the solution cost, and not the actual solution. Whilst of

theoretical value, in most practical instances we would ordinarily require the solution

as well. Finally, it is important to note that:

• Individual problem instances may vary enormously in difficulty. The average

versus best or worse case difficulty (or complexity) of search and problem solving

may depend in quite particular fashions on the method of problem selection.

These issues are addressed later in greater depth.

• These algorithms may not specify a natural termination condition, and in such

cases heuristic principles must be used. Possibilities include: maximum running

time, solution quality, time since last improvement; or combinations thereof.

2.5 Local Search

Local search is meant to represent a large class of similar techniques that can be used

to find a good solution from a problem. The idea is to think of the solution space as

being represented by an undirected graph. That is, each possible solution is a node

in the graph. An edge in the graph represents a possible move we can make between

solutions. For an optimization problem such as scheduling, even if we want to, we

could never hope to write down the graph of the problem search space.

Therefore, the simple idea of local search is that we never actually try to write the

whole graph down; we just move from one possible solution to a “nearby” possible

solution, either for as long as we like, or until we happen to find an optimal solution.

To set up a local search algorithm, we need to have the following:

1. A set of possible solutions, which will be the vertices in our local search graph.

2. A notion of what the neighbors of each vertex in the graph are. For each vertex

x, we will call the set of adjacent vertices N(x). The neighbors must satisfy

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 10

several properties: N(x) must be easy to compute from x (since if we try to

move from x we will need to compute the neighbors), if y ∈ N(x) then x ∈ N(y)

(so it makes sense to represent neighbors as undirected edges), and N(x) cannot

be too big, or more than polynomial in the input size (so that the neighbors of

a node are easy to search through).

3. A cost function, from possible solutions to the real numbers. For example,

f(s∗) : RN →R.

2.5.1 The Reasoning Behind Local Search

The idea behind local search is clear; if the solution we get keeps getting better and

better, we should end up with a good one. Pictorially, if we “project” the state space

down to a two dimensional curve, we are hoping that the picture has a sink, or a

global optimum, and that we will quickly move toward it. See Figure 2.1.

There are two possible problems with this line of thinking. First, even if the space

does look this way, we might not move quickly enough toward the right solution.

Also, for any reasonably large scale optimization problem, such as scheduling, if we

start with a bad solution (i.e. something with a very large cost), it will take a lot of

moves to reach the minimum. Generally, however, this is not much of a problem, as

long as the cost function is reasonably simple.

The more important problem is that the solution space might not look at all

the way as shown in Figure 2.1. For example, our cost function might not change

smoothly when we move from a state to its neighbor. Also, it may be that there

are several local optima, in which case our local search algorithm will hone in a local

optimum and get stuck. See Figure 2.2.

The second problem, that the solution space might not “look nice”, is crucial, and

it underscore the importance of setting up the problem. When we choose the possible

moves between solutions — that is, when we construct the mapping that gives us

the neighborhood of each node — we are setting up how local search will behave,

including how the cost function will change between neighbors, and how many local

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 11

f(x)

x

x*, global optimum

Figure 2.1: A very nice state space.

optima there are. How well local search will work depends tremendously on how

smart one is in setting up the right neighborhoods, so that the solution space really

does look the way we would like it to.

2.5.2 Examples of neighborhoods

• Course Scheduling [EFC96, EFC97]: A possible neighborhood structure is two

assignments of a set of classes to a set of rooms over a give set of time slots,

if the two assignments differ only in one class assignments. That is in the first

assignment, class (A) is assigned to room (B) and class (C) is assigned to room

(D); while in the second assignment, class (A) is assigned to room (D) and class

(C) to room (B).

• MAX3SAT [SY91]: A possible neighborhood structure is two truth assignments

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 12

f(x)

x

����

Figure 2.2: A state space with many local optima; it will be hard to find the best
solution. The global optimum (x∗) is at the dark circle, while open circles represent
local optima.

are neighbors if they differ in only one variable. A more extensive neighbor-

hood could make two truth assignments neighbors if they differ in at most two

variables; this trades increased flexibility for increase size in the neighborhood.

• Traveling Salesman Problem (TSP) [JM97]: The k-opt neighborhood of x is

given by all tours that differ in at most k edges from x. In practice, using

the 3-opt neighborhood seems to perform better than the 2-opt neighborhood,

and using 4-opt or larger increases the neighborhood size to a point where it is

inefficient.

2.5.3 Considerations to keep in mind

There are several aspects of local search algorithms that we can vary, and all can have

an impact on performance. For example:

1. What are the neighborhoods N(x)?

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 13

2. How do we choose an initial starting point?

3. How do we choose a neighbor y to move to? (Do we take the first one we find,

a random neighbor that improves f , the neighbor that improves f the most, or

do we use other criteria?)

4. What if there are ties?

There are other practical things to consider. Can we re-run the algorithm several

times? Can we try several of the algorithms on different machines? Issues like these

can have a big impact on actual performance. However, perhaps the most important

issue is to think of the right neighborhood structure to begin with; if this is right, then

other issues are generally secondary, and if this is wrong, the likelihood of success is

not that great.

2.5.4 Local Search Variations

There are several approaches that take advantage of search strategies in which cost-

deteriorating neighbors are accepted. In the descriptions of the following search meth-

ods, we will assume we are supplied with a function ‘FITNESS:
∑→ R’, where

∑
is

the search landscape or space, which supplies us with the solution quality. Without

loss of generality, we assume higher fitnesses are better.

Random Search

If we don’t have enough time to search all possible solutions, we could just generate

solutions randomly for the length of time available, and retain the best one as our

result. See Figure 2.3 for a sketch of the algorithm.

It is quite clear that unless good solutions are pretty dense in the search space, a

random search will almost always not perform well. However, another use of random

search is as a benchmark — a standard level from which to compare other algorithms

and with which to produce a very simple measure of how difficult a problem is (such

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 14

Random Search (Σ)

1. Pick a random solution σ ∈ Σ

2. repeat

3. Pick a random solution σ’ ∈ Σ

4. If FITNESS(σ’) > FITNESS(σ)

5. then σ ← σ’

6. until No time remains

7. return σ

Figure 2.3: Random Search Algorithm

comparisons will never be ideal, however, for at least the reason that different com-

puter architectures and compilers may have different levels of performance across

different types of computer code).

Choices for termination condition in the random search include time or solution

quality. However since we cannot expect solutions of very good quality, the only

practical condition is on the allowable search time.

Hill-climbing

A simple modification of the random search strategy is to pick solutions randomly

and then examine their neighborhood in the search space. Viewed graphically, in this

method one would move in the search space to a vertex of lower (or possibly equal)

cost. See Figure 2.4 for a sketch of the algorithm.

This algorithm is called hill-climbing†, because the inner loop (steps 4-8) move

uphill (not necessarily in the steepest direction in the basic algorithm) until a summit

is reached. The outer loop (steps 2-11) mean that the algorithm tries to find further

†The term hill-climbing implies a maximization problem, but the equivalent descent method is
easily envisioned for minimization problems. So for convenience, the term hill-climbing will be used
here to describe both methods without any implied loss of generality.

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 15

Hill Climbing (Σ)

1. Pick a random solution σbest ∈ Σ

2. repeat

3. Pick a random solution σ ∈ Σ

4. repeat

5. σ’ ← Perturbation(σ)

6. if FITNESS(σ’) > FITNESS(σ)

7. then σ ← σ’

8. until No fitter perturbations of σ exist

9. if FITNESS(σ) > FITNESS(σbest)

10. then σbest ← σ

11. until No time remains

12. return σbest

Figure 2.4: Hill Climbing Algorithm

hills if given enough time, and finally returns the highest peak it has visited when

time runs out (this algorithm is sometimes called ‘iterated hill climbing’ because of

the existence of the outer loop).

To use this algorithm we would assume that the perturbation function is either

defined or already given.

There are several weaknesses with hill-climbing algorithms, in general:

• They usually terminate at solutions that are only locally optimal.

• There is no information as to the amount by which the discovered local optimum

deviates from the global optimum, or perhaps even other local optima.

• The optimum that’s obtained depends on the initial configuration.

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 16

• In general, it is not possible to provide an upper bound for the computation

time.

On the other hand, there is one alluring advantage for hill-climbing techniques:

they’re very easy to apply. All that’s needed is the representation, the evaluation

function, and a measure that defines the neighborhood around a given solution.

We also can view whether hill-climbing works well as an optimization algorithm

in terms of an image of fitness landscape. That is depending on the local‡ structure of

the landscape. So, if high points in the landscape are surrounded by a smooth slopes

leading away long distances in the space, then any points picked on those slopes will

lead to the top of the hill. The set of all such points is known as the ‘attracting

set’, or ‘capture basin’ of the peak of the hill. If, on the other hand, tall peaks are

surrounded by great crevasses then hill climbing will perform poorly.

Hill-climbing methods, just like all local search methods, use an iterative improve-

ment techniques, and it is applied to a single point – the current point – in the search

space. During each iteration, a new point is selected from the neighborhood of the

current point. If that new point provides a better value in light of the evaluation

function, the new point becomes the current point. Otherwise, some other neighbor

is selected and tested against the current point. The method terminates if no further

improvement is possible, or we run out of time or patience.

It’s clear that such hill-climbing methods can only provide locally optimum values,

and these values depend on the selection of the starting point. Moreover, there’s no

general procedure for bounding the relative error with respect to the global optimum

because it remains unknown. Given the problem of converging on only locally optimal

solutions, we often have to start hill-climbing methods from a large variety of different

starting points. The hope is that at least some of these initial locations will have a

path that leads to the global optimum. We might choose the initial points at random,

or on some grid or regular pattern, or even in the light of other information that’s

available, perhaps as a result of some prior search (e.g. based on some effort someone

‡Local being defined by the perturbation operator.

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 17

else made to solve the same problem). There are a few versions of hill-climbing

algorithms, and differ mainly in the way a new solution is selected for comparison

with the current solution.

Simulated Annealing

SA is a method based on the Metropolis rule which says: Pick a random neighbor,

and if the cost is lower, move there. If the cost is higher, move there with some

probability (that is usually set to depend on the cost differential). The idea is that

possibly moving to a worse state helps avoid getting trapped at local minima.

With simulated annealing, the difference is that the probability of going to a

higher cost neighbor varies with time and is gradually decreased in the course of the

algorithm’s execution. Lowering the acceptance probability is controlled by a set of

parameters whose values are determined by a cooling schedule. Like most local search

algorithms, simulated annealing is normally used as an approximation algorithm, for

which much faster convergence rates are acceptable [AK89].

SA at constant temperature is called the Metropolis algorithm, and the stochastic

process (actually a Markov chain) on which it is based is the Metropolis process. For

more details, see chapter on simulated annealing.

Tabu Search

Tabu Search (TS) [GL98, Glo89, Glo90a, Glo90b] based on procedures designed to

cross boundaries of feasibility or local optimality, which were usually treated as bar-

riers. It is often referred to as a meta-heuristic, and usually used in conjunction with

traditional search techniques to enhance their performance. It guides a local heuristic

search procedure to explore the solution space beyond local optimality.

Also, TS combines the deterministic iterative improvement algorithm with a pos-

sibility to accept cost-increasing solutions. In this way the search is directed away

from local minima, such that other parts of the search space can be explored. The

next solution visited is always chosen to be a legal neighbor of the current solution

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 18

1. begin TABU

2. select an initial solution i ∈ S;
3. initialize tabu list T and aspiration function A;

4. while the stopping condition is not met do

5. compute the best i
′
in N(i)

6. subject to tabu list T and aspiration function A;

7. i← i
′
;

8. update tabu list T ;

9. update aspiration function A;

10. end while

11. end TABU

Figure 2.5: Tabu search paradigm

with the best cost, even if the cost is worse than that of the current solution. The

set of legal neighbors is restricted by a tabu list designed to prevent us going back to

recently visited solutions. The tabu list is dynamically updated during the execution

of the algorithm, and defines solutions that are not acceptable in the next few itera-

tions. However, a solution on the tabu list may be accepted if its quality is in some

sense good enough, in which case it is said to attain a certain aspiration level. See

Figure 2.5 for sketch of the algorithm.

Genetic Algorithms

This search strategy, see Figure 2.6, is based on a theme borrowed from Holland’s

genetic algorithms approach [Hol75, Gol89]. Holland uses concepts from population

genetics and evolution theory to construct algorithms that try to optimize the fitness

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 19

of a population of elements through recombination and mutation of their genes. There

are many variations known in the literature of algorithms that follow these concepts.

One example is genetic local search. The general idea is as follow (see Figure 2.6 for

sketch of the algorithm):

• Step 1, initialize. Construct an initial population of n solutions.

• Step 2, improve. Use local search to replace the n solutions in the population

by n local optima.

• Step 3, recombine. Augment the population by adding m offspring solutions;

the population size now equals n +m.

• Step 4, improve. Use local search to replace the m offspring solutions by m

local optima.

• Step 5, select. Reduce the population to its original size by selecting n solutions

from the current population.

• Step 6, evolute. Repeat Step 3 through 5 until a stop criterion is satisfied.

Evidently, recombination is an important step, since here one must try to take ad-

vantage of the fact that more than local optimum is available, i.e., one most exploit

the structure present in the available local optima.

Generally, genetic algorithms depend greatly on the power of recombination of

partial solutions. This begins with a randomly generated population of feasible solu-

tions, then all tested against the cost function, and the solutions are kept and used

to generate a new population by reproduction. The reproduction process typically

involves combining features from two or more parent solutions to produce a child

solution. Mutations of individual solutions are allowed. The key to a good genetic

algorithm lies in the design of good reproduction rules. With effective rules, the next

generation will typically contain better solutions than the previous one. The best of

these solutions then reproduce to form a new generation, and so on, until a solution

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 20

Genetic Algorithm (Σ)

1. Pick a population P = {σ1, . . . , σn} drawn randomly from Σ

2. repeat

3. Form a selection:

4. S ← Selection(P , Fitness())

5. P ← ∅
6. repeat

7. Pick a pair σa,σb from S

8. Form the offspring:

9. σab,1,σab,2 ← Crossover(σa,σb)

10. P ← P ∪ {σab,1,σab,2}
11. until Population is full: |P | = n

12. until P ≈ converged to a single solution

13. return σ = arg maxσ∈Σ {Fitness(σ)}

Figure 2.6: Genetic Algorithm

of acceptable quality is found, or successive generations no longer show significant

improvements.

Artificial Neural Networks

Consist of networks of elementary nodes (neurons) that are linked through weighted

connections. The nodes represent computational units, which are capable of perform-

ing a simple computation, consisting of a summation of the weighted inputs, followed

by the addition of a constant called the threshold or bias, and the application of a

nonlinear response function. The result of the computation of a unit constitutes its

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 21

output. This output is used as an input for the nodes to which it is linked through an

outgoing connection. The overall task of the network is to achieve a certain network

configuration, for instance a required input-output relation, by means of the collective

computation of the nodes. This process is often called self-organization. Over the

years a large variety of neural network models have been proposed, which differ in

the network architecture and the computational model used for self-organization. In

many models, the self-organization of the network tries to find a stable network con-

figuration. For models such as the Hopfield network [HT85, TH86] or the Boltzmann

machine [AK89], the self-organization can be modeled in terms of local search. Here

the issue of escaping from local optima is again of prime importance. In a number

of cases it is resolved by applying probabilistic methods, as in simulated annealing.

This takes us to the mean field annealing model outlined in another chapter.

2.6 Algorithms, Landscapes, and Problem Classes

There is much to be learned by examining the interaction between optimization algo-

rithms and landscapes, both in terms of understanding the structure of landscapes,

and towards improving the algorithms we use: as well as phase transitions in problem

difficulty, there are many other robust and interesting structural properties which

deserve further research. One useful approach to the understanding of algorithms

in that context can be obtained by generating landscapes according to certain rules,

and studying the statistical properties of the ensemble. So, for example, given a

set of statistical properties of landscapes, one can begin to determine which of these

properties the algorithms would require to perform well.

It is not at all clear on which problem classes these algorithms are expected to

perform well. If we are presented with a new problem demanding a solution we would

like to be able to know a priori which of these algorithms is expected to perform best.

To do this, we need a formal interpretation of their dynamics, motion in search space

and convergence properties. From these we can derive a set of tests or summary

of inherent advantages and disadvantages which will let to pick the best algorithm

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 22

for a given purpose. Given that our search problem is difficult, it is unlikely that a

first guess approach will yield sufficiently good answers (for whatever purpose we had

in mind), so we cannot be happy with that status quo. Somehow the structure of

the search space (the almost infinite set of possible perturbation operators and the

generated fitness landscapes) is vital in dictating how the space should be searched

efficiently.

In more direct terms, we must think about a process for generating or transforming

solutions in a manner which we intuitively feel takes into account the deep structure of

the problem. In short, without an understanding of the manner in which optimization

algorithms operate, for every new case we need to invent a new heuristic, or rule of

thumb, which seems particularly relevant. Clearly, this poses great difficulties for the

unfortunate algorithm designer.

2.7 Combinatorial Optimization

Combinatorial optimization refers to the problem of minimizing a function of a large

but finite set of variables. The cost function or energy function E(�x) assigns a real

number to each possible state �x of the system. The configuration space X is given

by the finite set of all possible system configurations {�x}. The problem is then that

of finding the global minimum of E(�x) over all �x in X.

The existence of a large number of local but not global minima of E(�x) in con-

figuration space conspires against the success of heuristic optimization methods. Al-

gorithms such as simulated annealing is an improvement upon downhill algorithms

in that it provides a mechanism for getting out of such local minima. It should be

noted that while the notion of global minima is an absolute one that depends only

on the cost function E(�x), the concept of local minima is relative to the topology

since it implies comparing the value of E(�x) with that of E(�x
′
) for those �x

′
which are

neighbors of �x.

The topology of configuration space is defined by the neighbor relation. A natural

definition of neighborhood for optimization problems is given by the move set: a small

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 23

rearrangement of the system that produces a new trial configuration from the present

one. Distance d(�x, �x
′
) between two states is then defined as the minimum number of

moves needed to turn one into other; and the neighborhood of a given state �x is the

set of all states �x
′
which can be reached from �x with one move, i.e. d(�x, �x

′
) = 1.

2.8 Computational Complexity

Computational complexity was developed largely in the 1970s to evaluate whether

algorithms should be classified as ‘easy’ or ‘hard’. Parker and Rardin [PR88] define

the goal of complexity theory as:

“. . .seeking to classify problems in terms of the mathematical order of the compu-

tational resources required to solve the problems via digital computer algorithms.”

Combinatorial optimization has given computational complexity many motiva-

tions and insights and has served as a test-bed for many new algorithmic ideas.

2.8.1 Algorithms and Problems

An algorithm is a step-by-step procedure for solving a problem. A problem can be

viewed as a domain of problem instances, with a question that can be asked about

any of the instances. A problem can be described as a generic instances together with

a question that can be asked about this generic formulation.

An algorithm A solves a problem P if, given any instance I of P as input data,

it will generate the answer to P ’s question. It is known that for some problems no

algorithm exists (i.e. an algorithm that will generate an answer to the problem’s

question for all instances). In problems like the TSP however, at least one algorithm

does exist, that of complete enumeration.

When estimating the running time of an algorithm A, ‘time’ is expressed as a

function of the problem size (in the case of the TSP this is the number of cities n),

and measures ’steps’ rather than the actual time taken to run the algorithm. Order

notation (or O-notation) is used to express this running time. If A has a running time

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 24

of O(f(n)) then there is some constant c such that the algorithm’s running time for

all instances is bounded by cf(n) (complete enumeration for problems such as TSP

takes time O((n− 1)!)). For more on order notation, see Cormen et al. [CLR90].

An algorithm may or may not be well behaved. It is well behaved if the number

of steps required can be accurately predicted for a given problem instance, and this

prediction does not vary from one instance to another with the same size. Some

algorithms however are not well behaved and the number of steps required to solve

problem instances of the same size can vary widely. Assigning a complexity func-

tion to a problem requires a unique ’time’ value for each problem size. There are

two approaches in measuring how long an algorithm takes. Either the average or

the maximum number of steps can be counted over all instances of the same size.

The second form of measurement, worst-case-analysis, has the disadvantage that bad

performances might be very rare in practice. Average-case analysis involves choosing

a probability function for the instances of the same size, a potentially difficult task.

Another difficulty of average-case analysis is the dependence between the stages of

many algorithms, making statistical analysis complicated. Generally, when evaluat-

ing a problem instance the average running time is not really an issue, but through

worst-case analysis there is at least guarantee of how long it will take. The worst-case

approach leads to the theory of NP-completeness.

2.8.2 Polynomial Time

An algorithm is considered ‘good’ when it is efficient enough to use in practice. Here

efficiency is defined as having worst-case complexity bounded by a polynomial func-

tion of the problem size n. This splits algorithms into two distinct classes, polynomial

and exponential. Although exponential algorithms may do better than polynomial

algorithms for small n, exponential algorithms will perform much worse than polyno-

mial algorithms as the problem size increases.

The precise definition of problem size can have a large bearing on the function

derived for the worst-case complexity. But as long as the size is a measurement in

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 25

some sense of the problem dimension, a polynomial algorithm will remain polynomial

and an exponential algorithm will remain exponential, regardless of the choice of the

definition§.

2.8.3 Characteristic of NP-Complete Problems

If we pick three different and known NP-complete problems, let say Satisfiability,

Knapsack, and Clique, we would notice the following characteristics about them.

• Each is solvable, and a relatively simple approach solves it (although the ap-

proach may be time-consuming). For each of them, we can simply enumerate

all the possibilities: all ways of assigning the logical values of n variables, all

subsets of the set S, all subsets of n vertices in G. If there is a solution, it will

appear in the enumeration of all possibilities; if there is no solution, testing all

possibilities will demonstrate that.

• There are 2n cases to consider if we use the approach of enumerating all possi-

bilities (where n depends on the problem). Each possibility can be tested in a

relatively small amount of time, so the time to test all possibilities and answer

yes or no is proportional to 2n.

• They come from different fields; logic, number theory, and graph theory, respec-

tively.

• If it were possible to guess perfectly, we could solve each problem in relatively

little time. For example, if someone could guess the correct assignment or the

correct subset, we could simply verify that the formula had been satisfied or

a correct sum had been determined, or a clique had been identified, etc. The

verification process could be done in time bounded by a polynomial of the size

of the problem.

§The theory requires that the measure of input size must reflect (to within a polynomial) the
actual length of a concise encoding of the problem instance as a sequence of symbols (i.e. as it would
be stored in a computer).

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 26

2.8.4 The Classes P and NP

Let P be the collection of all problems for which there is a solution that runs in time

bounded by a polynomial function of the size of the problem. For example, you can

determine whether an item is in a list in time proportional to the size of the list

(simply by examining each element in the list to determine whether it is the correct

one), and you can sort all items in a list into ascending order in time bounded by

the square of the number of elements in the list (using, for example, the well-known

bubble sort algorithm.) There may also be faster solutions; that is not important

here. Both the searching problem and the sorting problem are in P because they can

be solved in time n and n2, respectively.

For most problems, polynomial time algorithms are about the limit of feasible

complexity. Any problem that could be solved in time n1,000,000,000 would be in P,

even though for large values of n, the time to perform such an algorithm might be

prohibitive. Notice also that we do not have to know an explicit algorithm, we just

have to be able to say that such an algorithm exists.

By contrast, let NP be the set of all problems that can be solved in time bounded

by a polynomial function of the size of the problem, assuming the ability to guess

perfectly. (in the literature, this “guess function” is called an oracle machine or a

nondeterministic Turing machine.) This guessing is called nondeterminism.

Of course, no one can guess perfectly. Guessing is simulated by cloning an algo-

rithm and applying one version of it to each possible outcome of the guess. Essentially,

the idea is equivalent to a computer programming language in which IF statements

could be replaced by GUESS statements: instead of testing a known condition and

branching depending on the outcome of the test, the GUESS statements would cause

the program to fork, following two or more paths concurrently.

The ability to guess can be useful. For example, instead of deciding whether to

assign the value TRUE or FALSE to variable v1, the nondeterministic algorithm can

proceed in two directions: one assuming TRUE had been assigned to v1, and the

other assuming FALSE. As the number of variables increases so does the number of

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 27

possible paths to be pursued concurrently.

Certainly every problem in P is also in NP because the guess function does not

have to be invoked. There is also a class EXP, which consists of problems for which

a deterministic solution exists in exponential time, cn for some constant c. As noted

earlier, every NP-complete problem has such a solution. Every problem in NP is also

in EXP so P ⊆ NP ⊆ EXP.

2.8.5 The Meaning of NP-Completeness

The notion of NP-completeness tries to capture the “hardest” problems in the class

NP. In other words, the way the class of NP-completeness is defined, if ever we were

able to find a polynomial time algorithm for Q, an NP-complete problem, we can then

find a polynomial time algorithm for any problem X that is in the class NP (and hence

for every NP-complete problem). This follows by the definition of NP-completeness.

Stephen Cook [Coo71] showed that the satisfiability problem is NP-complete,

meaning that it can represent the entire class NP. His important conclusion was

that if there is a deterministic, polynomial time algorithm (one without guesses) for

the satisfiability problem, then there is a deterministic, polynomial time algorithm

for every problem in NP; that is, P = NP.

Richard Karp [Kar72] extended Cook’s result [Coo71] by identifying several other

problems, all of which shared the property that if any one of them could be solved in

a deterministic manner in polynomial time, then all of them could. The knapsack and

clique problems were identified by Karp. The results of Cook and Karp included the

converse: if for even one of these problems (or any NP-complete problem) it could be

shown that there was no deterministic algorithm that ran in polynomial time, then

no deterministic algorithm could exist for any of them.

Be careful to distinguish between a problem and an instance of a problem. An

instance is a specific case: one formula, one specific graph, or one particular set S.

Certain simple graphs or simple formulas may have solutions that are very easy and

fast to identify. A problem is more general; it is the description of all instances

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 28

of a given type. For example, the formal statements of the satisfiability, knapsack,

and clique sections are statements of problems because they tell what each specific

instance of that problem must look like. Solving a problem requires finding one

general algorithm that will solve every instance of that problem.

There are problems known to be solvable deterministically in polynomial time

(P), and there are problems known not to have a polynomial time solution (EXP

and beyond), so that P ⊆ EXP and P �= EXP, meaning P ⊂ EXP. The class NP fits

somewhere between P and EXP: P ⊆ NP ⊂ EXP. It may be that P = NP, or that P

�= NP.

The significance of Cook’s result is that NP-complete problems have been studied

for a long time by many different groups of people: logicians, operations research

specialists, electrical engineers, number theorists, operating systems specialists, and

communications engineers. If there were a practical (polynomial time) solution to

any one of these problems, you would hope that someone would have found it by

now. See Garey and Johnson’s N-completeness catalog [GJ79].

Polynomial-time Reduction

Let Π and Π
′
be two problems and let A be an algorithm. We say that A is a

polynomial-time reduction of Π
′
to Π if A is a polynomial-time algorithm (‘solving’

Σ∗), so that any allowed sequence starting with w and ending with v one has: w ∈ Π
′

if and if v ∈ Π. A problem Π is called NP-complete, if Π ∈ NP and for each problem

Π
′
in NP there exists a polynomial-time reduction of Π

′
to Π. It is not difficult to

see that if Π belongs to P and there exists a polynomial-time reduction of Π
′
to Π,

then also Π
′
belongs to P. It implies that if one NP-complete problem can be solved

in polynomial time, then each problem in NP can be solved in polynomial time.

Moreover, if Π belongs to NP, Π
′
is NP-complete and there exists a polynomial-time

reduction of Π
′
to Π, then also Π is NP-complete.

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 29

2.9 Approximation Algorithms

When facing an NP-complete optimization, we may want to consider algorithms that

do not produce optimum solutions, but solutions guaranteed to be close to the opti-

mum. Suppose that we wish to obtain such solutions for an optimization problem,

maximization or minimization. For each instance x of this problem, there is an opti-

mum solution with value opt(x); let us assume that opt(x) is always a positive integer.

Suppose now that we have a polynomial algorithm A which, when presented with

instance x of the optimization problem, returns some solution with value A(x). Since

the problem is NP-complete and A is polynomial, we cannot realistically hope that

A(x) is always the optimum value. But suppose that we know that the following

inequality hold:

|opt(x)− A(x)|
opt(x)

≤ ε (2.3)

where ε is some positive real number, hopefully very small, that bounds from above

the worst-case relative error of algorithm A. (The absolute value in this inequality

allows us to treat both minimization and maximization problems within the same

framework.) If algorithm A satisfies this inequality for all instances x of the problem,

then it is called an ε-approximation algorithm.

Once an optimization problem has been shown to be NP-complete, the following

question becomes most important: Are there ε-approximation algorithms for this

problem? And if so, how small can ε be? Let us observe at the outset that such

questions are meaningful only if we assume that P �= NP, because, if P = NP, then

the problem can be solved exactly, with ε = 0.

2.10 More on Design of Heuristics

How in general we go about designing or just applying an existing algorithm for a

particular purpose? Looking at the algorithms previously outlined in this chapter, we

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 30

see that they are derived from a wide array of fields of knowledge [AL97] but share

the same design goals.

For example, simulated annealing and tabu search are both designed for the pur-

pose of escaping local optima, but differ in the methods used for achieving this goal.

Tabu search usually makes uphill moves only when it is stuck in local optima, whereas

simulated annealing can make uphill moves at any time. Also, SA is stochastic

whereas tabu search is deterministic algorithm.

In comparison to classic algorithms such as greedy, divide and conquer, simplex

method, and dynamic programming, both SA and TS work on complete solutions. In

addition, SA and TS have more parameters to worry about, such as temperature, rate

of reduction, size of memory, etc. than those classic methods. When dealing with

methods such as SA, one would have to think not only whether the algorithm makes

sense for the given problem but also how to choose the parameters of the algorithm

so that it performs optimally. This is quite pervasive issue that accompanies the vast

majority of algorithms that can escape local optima.

In addition to these general purpose optimization methods there are also spe-

cific heuristics, such as Kernighan-Lin method [JM97, LK73, KL70] used to tackle

problems such as TSP and graph partitioning.

It is not at all clear on which problem classes these algorithms are expected to

perform well. If we are presented with a new problem demanding a solution, we would

like to be able to know a priori which of these algorithms is expected to perform best.

To do this, we need a formal interpretation of their dynamics, motion in search space

and convergence properties. From these we can derive a set of tests or summary of

inherent advantages and disadvantages which will hopefully help us in picking the

best algorithm for a given purpose.

It is known that effective search techniques provide a mechanism for balancing

two apparently conflicting objectives: exploiting the best solutions found so far and

at the same time exploring the search space.¶ Hill-climbing methods exploit the best

¶This balance between exploration and exploitation was noted as early as the 1950s by the famous
statistician G.E.P. Box [BV55].

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 31

available solution for possible improvement but neglect exploring a large portion of

the search space S. In contrast, a random search – where points are sampled from S

with equal probabilities – explore the search space thoroughly but foregoes exploiting

promising regions of the space. Each search space is different and even identical spaces

can appear very different under different representations and evaluation functions. So

there’s no way to choose a single search method that can serve well in every case.

Getting stuck in local optima is a serious problem. It’s one of the main deficiencies

that plague industrial applications of numerical optimization. Almost every solution

to real-world problems in factory scheduling, academic scheduling, airline scheduling,

demand forecasting, land management, and so forth, is at best only locally optimal.

What can we do? How can we design a search algorithm that has a chance to

escape local optima, to balance exploration and exploitation, and to make the search

independent from the initial configuration? There are few possibilities, and we’ll

discuss our approaches in the upcoming chapters, but keep in mind that the proper

choices are always problem dependent. One option is to execute the chosen search

algorithm for a large number of initial configurations of the problem. Moreover,

it’s often possible to use the results of previous trials to improve the choice of the

initial configuration for the next trial. It might also be worthwhile to introduce a

more complex means for generating new solutions, or enlarge the neighborhood size.

It’s also possible to modify the criteria for accepting transitions to new points that

correspond with a negative change in the evaluation function. That is, we might

want to accept a worse solution from the local neighborhood in the hope that it will

eventually lead to something better.

2.11 Algorithmic paradigms

Heuristic algorithms seek good solutions to problems without providing any guarantee

of optimality. Also, they generally fall into one three classes: construction algorithms,

(partial) enumeration techniques, and iterative improvement methods. Construction

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 32

algorithms operate by starting with an initial partial solution‖, iteratively augmenting

it in an appropriate way to finally produce a full solution to the problem at hand.

Enumeration techniques apply a more brute force approach to achieve their goals,

searching through a list of solutions to find the best solution to the problem. Although

the size of the solution space for most interesting combinatorial optimization problems

prevents full enumeration from being a viable option, by excluding regions of the

solution space, the list of enumerated solutions can be greatly reduced making such a

partial enumeration algorithms more manageable. Iterative improvement algorithms

begin with an initial solution to the problem and iteratively attempt to find a better

solution by altering the current solution in some manner while (generally) maintaining

feasibility. The iterative process generally terminates when no better solution can

easily be obtained.

Each of the above algorithmic paradigms has strengths and weaknesses largely

depending on the problem to which the technique is applied. For example there are

some optimization problems where iterative improvement algorithms are hopelessly

inadequate, and yet other problems where the reverse holds true.

For both exact and heuristic algorithms the distinction can be made between gen-

eral and tailored algorithms. A tailored algorithm uses problem-specific information

and can only be applied to a small set of problems, requiring the development of

a new algorithm for each type of combinatorial optimization problem. Conversely,

general algorithms are largely problem independent and will work for any number of

different problem types. As with exact and heuristic algorithms, trade off is generally

encountered. Either a tailored algorithm can be used, which makes use of problem

structure and is comparatively quick but has limited applicability, or a general algo-

rithm can be used, which is usually slower but has a wide potential for application. In

this thesis, the emphasis is on generally applicable heuristic algorithms, particularly,

annealing-based methods.

‖A partial solution to a problem requires that a full solution be composed of a number of separate
components. Taking a subset of these solution components results in a partial solution which can
become a full solution to the problem if it is extended or enlarged in a suitable manner.

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 33

2.12 Conventional Methods

Despite the negative news from the computational complexity front regarding prob-

lems such as TSP, a variety of approaches has been developed which usually offer a

trade-off between solution quality and running time for practical problems. This re-

flects the fact that the complexity results just discussed are worst-case results, which

may, of course be unrelated to the average-case behavior. This section briefly sketches

few of the approaches commonly cited in the operations research literature for tackling

problems such as scheduling and TSP.

2.12.1 Cutting plane techniques

Exact approaches to combinatorial optimization divide into two main classes. First,

there are cutting plane techniques, originally due to Gomory [Gom58]. From an in-

teger linear programming perspective, the idea behind this method is to successively

add extra constraints which reduce the size of the constraint polytope, without ex-

cluding any feasible integer points. After each new constraint (or cut) has been added,

the LP-relaxation solution is found using the simplex algorithm. At each step, ei-

ther the LP-relaxation is an integer, at which point the problem is solved, or else

the LP-relaxation solution is used to generate a new cut. Cutting plane algorithms

describe how to generate cuts so that no feasible points are excluded at each cut, and

so that the algorithm converges in a finite (exponentially bounded) number of steps.

For more details on these algorithms, see for example [PS82].

2.12.2 Branch-and-bound

In addition to cutting plane techniques, there are the enumerative methods, based

on intelligent enumeration of all feasible solutions. The most common enumerative

procedure is branch-and-bound, well surveyed up to 1966 in [LW66]. At each stage of

the branch-and-bound procedure, the set of possible solutions is partitioned into ever

smaller mutually exclusive sets: this is the branch operation. An efficient algorithm

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 34

is then used to compute a lower bound on the cost of any solution in each set: this

is the bound operation. As the sets become smaller, and clearly in the limit of the

sets containing only a single solution, it becomes possible to identify the best feasible

solution in a set: at this point exploration of this set can cease. Also, exploration

of a set can be halted if the lower bound is inferior to any feasible solution found

so far. Eventually it is possible to stop exploring all the remaining solution sets, for

one of the above two reasons. At this point the problem is solved, since the best

feasible solution found must be the optimal solution to the problem. The branch-

and-bound algorithm provides a way of enumerating all feasible solutions without

having to consider each and every one. However, this can still take some time, and

its is often necessary to terminate the branch-and-bound algorithm before optimality

is reached. In such a situation a lower bound on the optimal solution is available, as

well as the best solution found so far, so the maximum error from the optimum can

be calculated.

2.12.3 Dynamic programming

Another enumerative technique is dynamic programming, which is comprehensively

surveyed in [DL77]. Before the method can be applied, the problem must be posed as

a multi-stage decision process: a process in which a sequence of decisions is made, the

choices available being dependent on the previous decisions. Dynamic programming

exploits the principle of optimality: An optimal sequence of decisions has the property

that whatever the initial state and initial decision are, the remaining decisions must

be an optimal sequence of decisions with regard to the state resulting from the first

decision [RND77]. Essentially, this means that solutions to subproblems can be used

to prune the search for solutions to larger subproblems, and finally to the problem

itself. Dynamic programming works well with many common problems, providing,

for example, a pseudo-polynomial time algorithm for the knapsack problem [GJ79].

In practice, enumerative methods have found many more applications than cut-

ting plane methods. Full descriptions of all these approaches can be found in integer

CHAPTER 2. COMBINATORIAL OPTIMIZATION AND HEURISTICS 35

programming texts [Hu69, GN72, Shr86, SM89], or more general combinatorial opti-

mization texts [NW88, RND77, PS82].

Chapter 3

The Course Scheduling Problem

3.1 Introduction to the Problem

A course schedule is characterized by a triplet (t,g,a) – or assignments, where t is

timetabling assignment of time slots to a set of events, g is assignment of students to

sections of the given courses, and a is classroom assignment to the course sections,

all subject to constraints on these assignments.

The NP-complete professors and classes scheduling problem is a constraint satis-

faction problem that can be briefly stated as follows [ECF98]:

For a certain school with Np professors, Nq classes, Nx classrooms and lecture

halls, and Ns students, it is required to schedule Nl professor-class pairs within a

time limit of Nt time slots producing a legal schedule. A legal schedule needs to be

found such that no professor, class, or student is in more than one place at a time,

and no room is expected to accommodate more than one lesson at a time or more

students than its capacity.

In addition to that, we wish to schedule all available sections in no more than Nt

time slots, and to place Ns into sections of the courses listed in their schedules in a

way that maximizes the number of non-conflicts in students’ schedules.

36

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 37

Researchers have tried to solve different versions of this problem using an assort-

ment of methods and techniques, such as tabu search [Her92, Her91, Cos94], inte-

ger/linear programming [Tri92, GT86], network flow [OdW83], genetic algorithms

[CDM92], logic programming techniques [FD92], and a host of other techniques sur-

veyed by Schaerf [Sch95]. Some of these approaches are for high school scheduling,

others dealt only with examination scheduling at the college level, and many other

approaches used either randomly generated data or small sets of real data dealing

with only faculty/staff scheduling or course scheduling for a particular department.

None of these approaches have dealt with student scheduling according to student

preferences and majors.

3.1.1 Constraints of the Problem

University course scheduling, like almost all practical problems pose constraints in

varying degrees that need to be satisfied in order to generate feasible solution(s) to

the problem. Perhaps at first we might think that constraining problems like this

would make things easier – after all, we’ll have a smaller search space to worry about

and therefore fewer possibilities to consider. Well, that may be partially true but we

need to keep in mind that to search for improved solutions we may have to be able to

move from one solution to the next. Therefore, we need some kind of ‘operators’ that

will act on feasible solutions and hopefully in turn generate new feasible solutions

that are an improvement over what we have already found. It is really here where

the geometry of the search space gets quite complicated as we found out dealing with

a real world large scale academic scheduling problem.

To start with, for a single semester, we have to make a list of all the courses that

will be offered. Then, we need a list of all students assigned to each class, and the

professor assigned to each class too. Also, we need a list of all available classrooms

noting the location, size, and other facilities that each offer (e.g. white boards, video

projectors, lab equipments, and so forth). In addition, we would like to have a list of

buildings including the actual distances between them.

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 38

Given the above data we have tackled the problem with respect to three types of

constraints: hard, medium and soft.

Hard constraints are usually constraints that physically cannot be violated. They

absolutely must be satisfied in order to have a feasible solution. This type of con-

straints includes events that must not overlap in time, such as:

• classes taught by the same professor;

• classes held in the same room;

• a class and a recitation or a lab of the same class.

Another examples are space or room constraints:

• Room Type∗: Some classes, such as laboratories, require a certain type of

room with the requisite facilities for the type of instruction. For example, a

chemistry lab must have beakers, Bunsen burners, the appropriate chemicals,

safeguards, etc.)

• Room Size: A class cannot be assigned to a particular room unless the capacity

of the room (denoted by Rc) is greater than or equal to the class enrollment

(denoted by Ce). The smaller the difference between these two sizes, the better

the assignment.

There is a cost associated with any violation of these constraints.

For the Room Size constraint our cost function Crs computes the magnitude of

the difference between the room capacity Rc and the class enrollment Ce as follows:

Crs =

 (Ce −Rc)

2 if Ce > Rc ,

tanh((1.0− Ce

Rc
)βγ)(Rc − Ce) otherwise.

(3.1)

In our experiments, the parameters β and γ were set to 0.4 and 0.8, respectively.

When the class enrollment is larger than the room size, this function will always yield

∗Perhaps, this can be relaxed a little and considered as a medium constraint.

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 39

a much higher cost than the cost incurred from the assignment of a class with an

enrollment that is smaller than the room size. The use of tanh function is to non-

linearize the cost and not to make its increase directly proportional to the difference

between room size and class enrollment.

There is also a cost assigned to any violation to the constraint that certain classes

cannot be scheduled at the same time or have any overlap in the scheduled times.

This is called exclusion cost Cx and derived for classes ci and cj as follows:

Cx =

(end(ci)− s(cj))Rlen(ci, cj) if (s(cj) > s(ci)) and (end(ci) ≥ s(cj)) ,
(end(cj)− s(ci))Rlen(ci, cj) if (s(cj) < s(ci)) and (end(cj) ≥ s(ci)) ,
(end(cj)− s(ci))Rlen(ci, cj) if (s(cj) ≥ s(ci)) and (end(ci) ≥ end(cj)) ,
(end(ci)− s(cj))Rlen(ci, cj) if (s(ci) ≥ s(cj)) and (end(cj) ≥ end(ci)) .

(3.2)

where s(ci) and s(cj) are functions denoting the start time of class ci and cj ,

respectively, and end(ci) and end(cj) denote the end times. The relation between the

two class durations is defined as follows:

Rlen(ci, cj) =

 len(ci)/len(cj) if len(ci) ≥ len(cj) ,
len(cj)/len(ci) otherwise.

(3.3)

where the functions len(ci) and len(cj) denote the length or duration of classes

ci and cj , respectively. The first and second choices of Cx take care of any partial

overlaps between ci and cj, while the third and fourth choices handle any complete

overlaps between the two classes.

3.1.2 Strategy for Problem Solving

As mentioned above, hard constraints must be satisfied to have a feasible solution. So,

from what we have presented so far, we could say that any assignment that meets those

hard constraints would solve our problem. This means that our task is quite similar

to the satisfiability problem (SAT) [SKC96, SLM92, SK93, GJ79, CLR90, Pap94]:

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 40

to find an assignment of classes (as compared with Boolean variables) such that

an overall evaluation function returns a value of TRUE. Anything that violates the

constraints means that our evaluation function returns a value of FALSE. But this

alone does not give us sufficient information to guide the search for a feasible solution.

Well, we might be able to employ a certain strategy that could provide this ad-

ditional information. For example, we might judge the quality of the solution not

just by whether or not it satisfies the constraints, but for those assignments that fail

to meet the constraints, we could tally the number of times that the constraints are

violated (for example, each time a student is assigned to two classes that meet at the

same time we increase the tally). This would give us a quantitative measure of how

poor our infeasible solutions were, and it might be useful in guiding us toward suc-

cessively better solutions, minimizing the number of constraint violations. We could

apply different operators for reassigning courses to classrooms, professors to courses,

and so forth, and over time we would hope to generate a solution that satisfies the

available constraints. But then we have other types of constraints to worry about,

and those are medium and soft.

Medium constraints are usually considered to be those constraints that fall into the

gray area between the hard and soft constraints [EL87]. In our implementation, we

define medium constraints to be constraints such as time and space conflicts which,

like hard constraints, cannot physically be violated (for example, it is not possible

for one person to be in two different classes at the same time). However we consider

these constraints to be medium rather than hard if they can be avoided by making

adjustments to the specification of the problem. The primary example is student

preferences. We cannot expect to be able to satisfy all student class preferences, in

some cases, certain students will have to adjust their preferences since certain classes

will clash, or will be oversubscribed.

Medium constraints have a high penalty attached to them, although not as high

as that associated with the hard constraints. In the final schedule the penalty of these

constraints should be minimized and preferably reduced to zero. Some examples of

medium constraints are:

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 41

• Avoid time conflicts for classes with students in common.†

• Eligibility criteria for the class must be met.

• Do not enroll athletes in classes that conflict with their sport practice time (of

course, depending on the sport).

• The predecessor-successor relation between the topics is satisfied. That is, if

undergraduate prerequisite courses are scheduled for the same day as their coun-

terpart graduate courses, they should be given earlier than the graduate course

(this facilitate learning foundational material prior to advanced material in the

same day).‡

• Two courses of a same topic are scheduled on two different working days.§

Soft constraints are preferences that do not deal with time conflicts, and have a

lower penalty (or cost) associated with them. We aim to minimize the cost, but do

not expect to be able to reduce it to zero. Some examples are:

• Balance or spread out the lectures over the week. That is, courses that meet

three times per week should preferably be assigned to Mondays, Wednesdays,

and Fridays. Other assignments are not desired. Also, courses that meet twice

a week should preferably be assigned to Mondays and Wednesdays or Tuesdays

and Thursdays. Having these courses meet on consecutive days or with two or

more days in between is not desired.

• For each student, balance the three-day (Mon, Wed, Fri) as well as the two-day

(Tue, Thu) schedules.

• Balance enrollment in multi-section classes.

• Lunch and other break times may be specified.

†Alternatively, this can be considered a hard constraint.
‡Alternatively, we can consider this as soft constraint.
§This can be further relaxed and considered to be soft constraint.

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 42

• Professors may request periods in which their classes are not taught.¶

• Professors may have preferences for specific rooms or types of rooms.

• Number of lecturers assigned to a course in each semester should be bounded

between a lower and an upper bounds on the number of sections of that course.

• Only professors (as opposed to teaching assistants) can teach graduate courses.

• No professor can teach more than a specified number of graduate courses per

year.

• Once a class enrollment exceeds the upper limit, the class is split into multi-

sections.

• Minimize the distance between the room where the class is assigned and the

building housing its home department.‖

Some soft constraints may have higher priority (and thus higher cost) than oth-

ers. For example, preferences involving professors will have higher priority than the

preferences of students.

We have dealt with the distance minimization constraint in the following way.

Given the various building preferences of the departments, we have constructed a

matrix MIJ between all the academic departments I and all the buildings involved

in scheduling J . Using MIJ in conjunction with the (appropriately scaled) distance

between all buildings involved in the process, a final distance matrix Q is derived and

directly used in the scheduling process. Also, unless otherwise stated, a department’s

home building is always the first preference for the department classes to be assigned.

Let B denote the set of all k buildings, D denote the set of all n departments. Also

for department di where 1 ≤ i ≤ n the distance to all buildings B is a vector denoted

by < di, bj > where bj ∈ B and 1 ≤ j ≤ k. At each step of the scheduling process

and according to di space preferences, di classes would be scheduled into buildings B
′

¶In some cases, this must be met and therefore considered as medium or hard constraint.
‖This can be considered as medium constraint by assigning it a higher cost.

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 43

where |B′| ≤ |B| (number of di’s buildings of preference is usually less than the overall

available number of buildings), and the distance is denoted by the vector � di, bj �
where bj ∈ B′

. In addition, let |B′ | = k
′
.

Now the cost associated with the distance of department di is computed as follows:

Cdist
di

=

∑k
′

j=1 � di, bj �∑k
j=1 < di, bj >

k
′
, 1 ≤ i ≤ n (3.4)

The cost function is the distance ratio of department di buildings of preference to

all available buildings multiplied by the number of di preferred buildings. Notice that

for a particular department the denominator of equation 3.4 stays fixed throughout

the scheduling process.

Other constraints that may need to be taken into account during the scheduling

process:

• It is not the case, in general, that all classrooms are available for all subjects.

In reality, many subjects require special purpose rooms.

• Some rooms may be declared unavailable during any time period.

• Daily limits must be specified to restrict the assignment of more than a specified

number of classes per day to each professor.

3.1.3 Constraint handling in Course Scheduling – problem

solving strategies

Certainly there are many more soft constraints than those listed above. Any assign-

ment that meets the hard constraints is feasible, but not necessarily optimal in light

of the medium and soft (non-hard) constraints. Here is where the problem gets quite

tricky. First, we have to quantify each of the non-hard constraints into mathemat-

ical terms so that we can evaluate any two candidate assignments and decide that

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 44

one is better than the other. Next, we have to be able to modify one feasible solu-

tion and, hopefully, generate another feasible solution that better meets the non-hard

constraints.

In terms of the first issue: each non-hard constraint has to be quantified. For

example, consider the above first soft constraint, we could say that for each case

where a solution is feasible, we could count up the number of times twice-a-week

courses become separated by two or more days, or are placed on consecutive days,

and use this as a penalty term. The lower the term, the better the solution. In

fact, we could employ a similar approach to each of the non-hard constraints. But

what would we do when we are done? We would still need an overall method for

considering the degree of violation of each of these constraints. That is, we would

have to determine the answers to questions such as: which is worse, scheduling a

certain percentage of students to have back-to-back classes, or scheduling back-to-

back classrooms at the opposite ends of the campus? each of these possible tradeoffs

would have to be considered and quantified in some evaluation function, which poses

quite a challenge!

Of course it is worse than that, because even after all these non-hard constraints

have been quantified, we are still left with the problem of searching for the best

assignment: the solution that is both feasible and minimizes our evaluation function

for the non-hard constraints. Suppose we have a feasible solution, but it does not

do very well with regard to the non-hard constraints. Say, we apply some variation

operators (i.e swapping rooms or classes) to this solution and significantly improve the

situation with respect to the soft constraints, but in so doing, we generate a solution

that violates one hard constraint. Now what? We might choose to discard the solution

since it is infeasible, or we might see if we can repair it to generate a feasible solution

that still handles the non-hard constraints well. Either way, this is typically a difficult

task. It would be even better to come up with variation operators that never corrupt

a feasible solution into an infeasible solution while still searching vigorously over the

space of feasible solutions to find those that best handle the non-hard constraints, or

the soft constraints in particular.

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 45

Overall, as we found out this is one of the most challenging real-world constrained

problems to handle. We have tackled it through a multi-phase heuristic approach. It

successfully produced legal schedules, including those of students, satisfying the hard

as well as the medium and most of the soft constraints.

3.1.4 Cost Function

The cost function measures the quality of the current schedule and generally involves

the weighted sum of penalties associated with different types of constraint violations.

The aim of the optimization technique is to minimize the cost function. We consider

the following as part of the cost function:

• Class cost is the sum of costs incurred from scheduling a class in a particular

time period, including having a certain class and its lab scheduled in the same

time period; spreading classes over the week and within each of the weekdays;

and gluing to fill in holes in the timetable and allow contiguous time periods

for a class that requests them.

• Professor cost is the sum of costs associated with each professor, including

teaching two or more classes that overlap in time; being assigned more classes

than the maximum number allowed to be taught; and not having a long enough

time interval between classes taught by the same professor.

• Student cost is the sum of costs associated with each student, including clashes

in class times; not having the classes evenly spread out over the week; having to

schedule a class from the list of alternates rather than the list of first preferences;

or classes that do not satisfy eligibility criteria.

• Room cost is the sum of costs associated with each classroom, including the

distance cost obtained from the distance constraint; not being able to schedule

a room of the specified type; and the room size cost obtained from the room

constraint.

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 46

3.2 As a Generalized Assignment-Type Problem

The notion of the assignment-type problem and its generalized version appear to be

powerful modeling tools. In particular, such models are very appropriate for formu-

lating timetabling and scheduling problems where time periods have to be determined

for activities according to several specific constraints.

The Assignment-Type Problem (ATP) [FHL96, FL92] can be summarized as fol-

lows:

Given n items and m resources, denote by cij the cost of assigning (scheduling)

item i to resource j. The problem is to determine an optimal assignment of items to

resources minimizing the total cost and satisfying K additional side constraints.

The mathematical model associated with an ATP is formulated as follows:

(ATP)

Min F (x) (3.5)

subject to

Gk(x) ≤ 0 1 ≤ k ≤ K (3.6)

and

x ∈ X(1) (3.7)

where

X(1) = {x :
∑
j∈Ji

xij = 1, 1 ≤ i ≤ n; xij = 0 or 1, 1 ≤ i ≤ b, j ∈ Ji} (3.8)

and Ji ⊂ {1, 2, . . . , m} is the set of admissible resources for item i, 1 ≤ i ≤ n.
The decision variables xij are such that:

xij =

 1 if item i assigned to resource j

0 otherwise.
(3.9)

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 47

The objective function F and the side constraints Gk, 1 ≤ k ≤ K, are only

required to be calculable.

A Generalized Assignment-Type Problem (GATP) is an ATP where each item i

has to be assigned to ai resources, ai ≥ 1. The mathematical model associated with

a GATP is:

(GATP)

Min F (x) (3.10)

subject to

Gk(x) ≤ 0 1 ≤ k ≤ K (3.11)

and

x ∈ X(a) (3.12)

where

X(a) = {x :
∑
j∈Ji

xij = ai, 1 ≤ i ≤ n; xij = 0 or 1, 1 ≤ i ≤ n, j ∈ Ji} (3.13)

and

a = [a1, a2, . . . , an]
T (3.14)

and a1 ≥ 1 and integer 1 ≤ i ≤ n. It is easy to see that an ATP is a GATP where

a = [1, 1, . . . , 1]T .

The constraints x ∈ X(a) underly several timetabling and scheduling problems.

Furthermore, to take advantage of the simple structure of the constraints x ∈ X(a),

a penalty approach is used to deal with GATP. In this approach, let Vk(x) denote the

violation of constraint Gk(x) ≤ 0; i.e.

Vk(x) = Max {0, Gk(x)}. (3.15)

Hence, for each x ∈ X(a), let V (x) denote the total weighted violation:

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 48

V (x) =
K∑
k=1

βkVk(x) (3.16)

where βk ≥ 0 is proportional to the relative importance of the kth constraint.

Then, instead of solving GATP, the solution techniques already introduced, are ap-

plied to the following penalized version of GATP:

(PGATP)

Min x∈X(a)P (x) = αF (x) + V (x) (3.17)

where α ≥ 0. The values of α and βk, 1 ≤ k ≤ K, are parameters that can

be adjusted according to the specific application. For instance, larger values for βk,

1 ≤ k ≤ K, allow putting more emphasis on feasibility.

3.2.1 Representation of Course Scheduling as GATP

Consider the problem of establishing the schedule of lectures accounting for individual

student registrations, lecturers (or professors), and classroom availabilities. Note that

this formulation allows for classes (lectures) of different length. Hence, to formulate

this problem as a GATP [AF89], the classes are the items and the starting times

allowed are the resources; then for each class i, 1 ≤ i ≤ n, and starting time j ∈ Ji
(the set of admissible starting times for class i) such that Ji = {1, 2, . . . , m}:

xij =

 1 if class i starts at timej

0 otherwise.
(3.18)

The objective function accounts for the lecturer preferences:

F (x) =
n∑
i=1

∑
j∈Ji

cijxij (3.19)

where cij is the cost of starting class i at time j specified in terms of lecturer

preferences (cij = 0 if j is the most preferred starting time for class i).

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 49

A first set of side constraints is specified to eliminate the conflicting situations

where students or lecturers are involved in classes taking place simultaneously.

Define: Γij = {(k, l): classes i and k have students or lecturers in common, and

they overlap in time if class i starts at time j and class k at time l }. The conflicting

constraints are specified as follows:

xijxkl ≤ 0 (k, l) ∈ Γij , 1 ≤ i ≤ n , j ∈ Ji . (3.20)

Other side constraints are introduced to account for classroom availability. Par-

tition the set of classrooms available into several subsets including classrooms of the

same type.

Define: B = number of classroom types Ub = number of classrooms of type

b , 1 ≤ b ≤ B. For each class, a unique classroom type is specified.

Define: Kbt = {(i, j): class i requires a classroom of type b and it takes place

during teaching hour t of the week whenever its starting time is j }. The classroom

availability constraints are as follow:

∑
(i,j)∈Kbt

xij − Ub ≤ 0 1 ≤ b ≤ B , 1 ≤ t ≤ T (3.21)

where T is the total number of teaching hours of the week.

The course timetabling problem can be summarized as follows:

Min
n∑
i=1

∑
j∈Ji

cijxij . (3.22)

Subject to:

xijxkl ≤ 0 (k, l) ∈ Γij, 1 ≤ i ≤ n , j ∈ Ji (3.23)

Next, we need to derive the associated penalized version of this problem (i.e.

the penalized GATP), with weights specified to indicate the relative importance of

violating the corresponding constraints. For the conflicting constraints, the weights

account for the length of the conflict and the number of individuals involved. Define:

CHAPTER 3. THE COURSE SCHEDULING PROBLEM 50

• Lijkl = length (in number of hours) of the conflict (k, l) ∈ Γij , 1 ≤ i ≤ n , j ∈
Ji .

• δik = number of students taking both classes i and k, 1 ≤ i ≤ n , 1 ≤ k ≤ n .

• γik =

 M + δik if classes i and k have lecturers in common

δik otherwise

For 1 ≤ i ≤ n, 1 ≤ k ≤ n .

where M is a parameter to indicate the relative importance of conflicts due to

lecturers. Let V ij
kl (x) denote the violation of the conflicting constraints:

V ij
kl (x) = Max {0, xijxkl} = xijxkl . (3.24)

Let Vbt(x) denote the violation of the classroom availability constraints:

Vbt(x) = Max {0, ∑
(i,j)∈Kbt

xij − Ub} . (3.25)

Furthermore, let the weight βijkl associated with V ij
kl (x) be specified as follows:

βijkl = γikLijkl . (3.26)

Also, let the weight βbt associated with Vbt(x) be equal to a scalar ρ for all 1 ≤
b ≤ B , 1 ≤ t ≤ T . Then, the penalized GATP for this problem is as follows:

Min x∈X(1)

n∑
i=1

∑
j∈Ji

αcijxij + ∑

(k,l)∈Γij

γikLijklxijxkl

+ ρ

B∑
b=1

T∑
t=1

Max

0,

∑
(i,j)∈Kbt

xij − Ub

 .

(3.27)

The weight parameters α, ρ, and M are selected according to the specific context.

For instance, if the priority is to reduce the conflicts, then α and ρ take smaller values.

Chapter 4

The Rule-Based (Expert) Systems

4.1 Introduction

We have implemented a fairly complex rule-based expert system for solving the course

problem, for three reasons. Firstly, it gives us a benchmark as to how well other

methods do in comparison to this standard technique. Secondly, a simplified version

of the rule-based system is used to provide sensible choices for moves in the simulated

annealing algorithm, rather than choosing swaps completely at random, and this

greatly improves the proportion of moves that are accepted. Thirdly, we have used

this system as a preprocessor for simulated annealing, in order to provide a good

initial solution.

Simulated annealing is a very time-consuming, computationally intensive proce-

dure. Using an expert system as a preprocessor is a way of quickly providing a good

starting point for the annealing algorithm, which reduces the time taken in the an-

nealing procedure, and improves the quality of the result. Our results clearly support

this rationale for the case of academic course scheduling.

The rule-based expert system consists of a number of rules (or heuristics) and

conventional recursion to assist in carrying out class assignments. We have devel-

oped this system specifically for the problem of academic scheduling. The basic data

structures or components of the system are:

51

CHAPTER 4. THE RULE-BASED (EXPERT) SYSTEMS 52

1. Distance matrix of values between each academic department and every other

building under use for scheduling.

2. Class data structure of each class scheduled anywhere in campus. These struc-

tures are capable of linking with each other.

3. Room data structure of each room (regardless of type) involved in the scheduling

process. Like classes, room structures are also linked with each other.

4. Data structures for time periods to keep track of which hour or time slot was

occupied and which was not.

5. Department inclusion data structure giving department inclusion within other

larger departments or colleges.

6. Students structures indicating classes of various degree of requirements and

preferences for each student.

The basic function of the system is tackling the three assignment-type problems

(t, g, a) of timetabling, grouping, and class assignment as follows: given data files of

classes, rooms and buildings, department-to-building distance matrix, students data,

and the inclusion data, using the abovementioned data structures, the system builds

an internal database which in turn is used in carrying out the scheduling process. This

process involves a number of essential sub-processes such as checking the distances

between buildings, checking building, room type and hours occupied, checking and

comparing time slots for any conflicts, checking rooms for any space conflict, and

keeping track of and updating the hours already scheduled.

The rule-based system uses an iterative approach. The basic procedure for each

iteration is as follows. The scheduling of classes is done by department, so each

iteration consists of a loop over all departments. The departments are chosen in

order of size, with those having the most classes being scheduled first. The system

first loops over all the currently unscheduled classes, and attempts to assign them

to the first unoccupied room and timeslot that satisfies all the rules governing the

CHAPTER 4. THE RULE-BASED (EXPERT) SYSTEMS 53

constraints. Since constraints involving capacity of rooms are very difficult to satisfy,

larger classes are scheduled first, to try to avoid not having large enough rooms later

for those class sections with large enrollments.

In some cases the only rooms and timeslots that satisfy all the rules will already

be occupied by previously scheduled classes. In that case, the system attempts to

move one of these classes into a free room and timeslot, to allow the unscheduled

class to be scheduled.

Next, the system searches through all the scheduled classes, and selects those

that have a high cost, by checking the medium and soft constraints such as how

closely the room size matches the class size, how many students have time conflicts,

whether the class is in a preferred time period or a preferred building, and so on.

Selecting threshold values for defining what is considered a “high” cost in each case is

a subjective procedure, but it is straightforward to choose reasonable values. When

a poorly scheduled class is identified, the system searches for a class to swap it with,

so that the hard constraints are still satisfied, but the overall cost of the medium and

soft constraints is reduced.

This process of swapping rooms continues provided all the rules are satisfied and

no “cycling” (swapping of the same classes) occurs. Once all the departments have

been considered, this completes one iteration. The system continues to follow this

iterative procedure until a complete iteration produces no changes to the schedule.

4.2 Examples of Rule-based Constraints

There are many rules dealing with space and hours, type of room, and priority of room.

Many are quite complex, but some of the basic rules, such as those implementing the

hard constraints, can be quite straightforward.

4.2.1 Time and Space

The following is the basic rule for dealing with time and space conflicts for a room:

CHAPTER 4. THE RULE-BASED (EXPERT) SYSTEMS 54

IF [room(capacity) > class(space-requested)] and [no time conflict in this room]

THEN assign the room to the class.

[If more than a room having an identical availability time are present in the

database, then choose the one with the minimal magnitude of the difference between

room(capacity) and course(space-requested)].

Input: Course CPS-615 requests space for 75 students and meeting hours of

[MWF 10:40 - 11:35 am].

In the database we have, for example, the following rooms:

• room: 1-218 CST , capacity: 45 students, and pre-occupied hours: none.

• room: 207 HL, capacity 120 students, and pre-occupied hours: [MW 09:45 -

11:10 am].

• room: Kitt-Aud HBC, capacity: 127 students, and pre-occupied hours: [TTH

10:40 - 12:00 am].

Output: Room Kitt-Aud is assigned to CPS-615.

4.2.2 Type of Room

IF [room(capacity) > course(space-requested)] and [no time conflict in assigning this

room] and [type(room) matches type(requested)] THEN assign the room to the course:

[If identical rooms in type are present in the database, then choose the one with

the minimal magnitude of the difference between room(capacity) and course(space-

requested)].

Input: Course BIO-615 requests space (not biology lab) for 35 students and meet-

ing hours in [MW 10:40 - 11:35].

In the database we have, for example, the following rooms:

• room: 1-218 CST, capacity: 45 students, type: classroom, and pre-occupied

hours: none.

CHAPTER 4. THE RULE-BASED (EXPERT) SYSTEMS 55

• room: 124-SIMS, capacity: 40 students, type: laboratory, and pre-occupied

hours: none.

Output: Room 124-SIMS is assigned to BIO-615.

4.2.3 Room Priority

Rooms are classified as:

1. General Purpose: used by all users.

2. Priority Rooms: are used based on certain priority of the class or the depart-

ment.

3. Special Purpose: are only assigned to specific users.

• IF [room(priority) == general] and [room(capacity) > course(space-requested)]

and [no time conflict in assigning this room] and [type(room) matches type(requested)]

THEN assign any user to this room.

• IF [room has a priority user] and [the user is already assigned] and [room(capacity)

> course(space-requested)] and [no time conflict in assigning this room] and

[type(room) matches type(requested)]

THEN assign other users.

• IF [room(priority) == special purpose] and [user belongs to the special users of

this room] and [room(capacity) > course(space-requested)] and [no time conflict

in assigning this room] and [type(room) matches type(requested)]

THEN assign the room to the user.

• IF [room has a priority user] and [the user is already assigned] and [room(capacity)

> course(space-requested)] and [no time conflict in assigning this room] and

[type(room) matches type(requested)]

THEN assign other users.

CHAPTER 4. THE RULE-BASED (EXPERT) SYSTEMS 56

• IF [room(priority) == special purpose] and [user belongs to the special users of

this room] and [room(capacity) > course(space-requested)] and [no time conflict

in assigning this room] and [type(room) matches type(requested)]

THEN assign the room to the user.

4.2.4 Forward and Backward Rules

Our expert system also make use of the forward and the backward chaining approach

of Petrie et al. [PCSD89]. This approach is quite suitable for planning/assignment-

type problems such as course scheduling. The problem’s model can be viewed in

a framework as one where possible interpretations for each state (i.e. teacher) are

already specified at the outset as a constrained ordered set of courses (the course

database). Therefore, in order to generate a solution, the problem-solver uses a

generate-and-test strategy based on this ordering.

An example to illustrate how forward/backward chaining works can be considered

given the following scenario: Suppose Johnson wants to teach physics 300 (phy300)

in the fall, and he has alternatives to phy300 in the fall, namely phy310 and phy318.

Suppose that the maximum allowable sections of phy300 have already been allocated

for fall, and suppose Johnson is now up for consideration (Richards has already been

considered for phy300). The rules will try to assign phy300 to Johnson in the fall but

fail because the maximum constraint has been satisfied for the semester.

4.2.5 The Rationale of Using a Preprocessor

• It is a good practice when using heuristics such as simulated annealing, to start

at a good point in the search space or with a partial solution of the problem;

regardless of the difficulty of the problem.

• A good starting point can only have a positive effect on the overall solution,

and that is improving its quality.

CHAPTER 4. THE RULE-BASED (EXPERT) SYSTEMS 57

• A good starting point or a partial solution will also have a positive effect on the

convergence of the system; faster convergence to the final solution.

When the rule-based system is used as a preprocessor, it produces a partial sched-

ule as an output, since it is usually unable to assign all of the given classes to rooms

and times slots. The output is divided into two parts: the first consists of classes, with

their associated professors and students, assigned to various rooms; and the second

is a list of classes that could not be assigned due to constraint conflicts.

Chapter 5

Simulated Annealing and Energy

Landscapes

Simulated annealing (SA) – also known as Monte Carlo annealing, statistical cooling,

probabilistic hill-climbing, stochastic relaxation, and probabilistic exchange algorithm

– has been widely used for tackling different combinatorial optimization problems,

particularly academic scheduling [TD95, Abr91, Vid93]. The basic algorithm is out-

lined in Figure 5.3.

As with any search algorithm, simulated annealing requires the answers for the

following problem-specific questions:

• What is a solution?

• What are the neighbors of a solution?

• What is the cost of a solution?

• How do we determine the initial solution?

These answers yield the structure of the search space together with the definition

of a neighborhood, the evaluation function, and the initial starting point. Note,

however, that simulated annealing also requires answers for additional questions:

58

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 59

• How do we determine the initial temperature T?

• How do we determine the cooling ratio of T (or the cooling schedule)?

• How do we determine the length of each homogeneous Markov chain?

• How do we determine the halting criterion?

Before talking about possible answers to these questions, first we would like to

briefly outline our intuition about annealing. It is logically clear to us that the success

of annealing in many ways depends on both the cost function to which it is applied

and the move set used. First, imagine the move set used is that of the complete graph.

Then by randomly generating moves, annealing is randomly generating states. At the

least, it could keep the best random state found so far; even that would be a terrible

algorithm. But if the temperature is nonzero it does still worse, since it may relinquish

an optimal state. On the other hand, if the move set is terribly sparse, it may simply

be impossible to get from a bad state to a good one in a reasonable number of moves.

Finally, imagine that a “good” move set has been chosen, but energies have been

randomly assigned to the states. In that case no information is known about a state

before it is visited, and the only way to find a particularly good state is to visit many

states.

Note that this is not the case for, say, a smooth energy function. For a smooth

energy function, bounds or expectations of all nearby states are known from the

current state alone, and it might be possible to find a good state by visiting only a

small fraction of the set of all states. Of course, “smooth” in this context means that

the energy changes relatively little from move to move. So, for annealing to work

well, the energies and the move set must be well matched to one another. Therefore,

the key question to ask is that, intuitively, what properties must the landscape have

if annealing is to be efficient?

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 60

x

f

Figure 5.1: A landscape that is bad for annealing.

5.1 Energy Landscapes

In statistical physics context, energy landscapes are visualizations of the control func-

tions that determine the dynamics of multi-body (or many-body) systems. At one

level, they describe true energies in a high-dimensional space in which each “grid-

point” specifies a complete micro-state and the micro-dynamics is stochastically di-

rected through the changes in energy. Alternatively, the landscapes can describe free

energies as a function of macro-states. In other manifestations they can also be con-

ceptual guides to dynamics with detailed balance. Both microscopic and macroscopic

constraints can however lead to motion on the landscapes which is more complex

than that suggested by gradient descent. The landscape structures are determined by

global as well as local interactions between the microscopic constituents with external

agencies. Energy landscapes come in different shapes; there are smooth landscapes

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 61

2f∆

x

f

∆

1B
2

B

1f

Figure 5.2: A landscape that is good for annealing.

and there are rough, with many hills, valleys, saddles and other non-trivial topology,

describing correspondingly non-trivial dynamics, flows and attractors. This is usually

referred to as ‘complex systems’.

Such modelizations typify systems with quenched disorder and frustration in the

microscopic rules of engagement, and also include ones in which disorder is spon-

taneously self-induced through mutual interaction. Examples occur in spin glasses,

regular glasses, proteins and many other condensed matter systems, where energy

has its usual Hamiltonian meaning and the extent of the stochasticity is determined

by the temperature. Conceptually and mathematically, however, the description can

also be employed fruitfully to analyze multi-body systems outside the normal realm

of physics, for example, neural networks, hard optimization problems, evolution and

many problems involving large number of interacting agents and constraints. In these

cases ‘energy’ and ‘temperature’ are defined by analogy. In systems with such rugged

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 62

landscapes, it is necessary to reconsider much of conventional statistical physics.

On the issue of the abovementioned dynamics, they need not be restricted to

motions on the landscapes. The landscapes themselves can evolve, either via changes

in global controls or through a dynamical evolution of the interactions between the

particles of the system. The latter occurs, for example, in the modification of synapses

in neural learning (where the motion on the landscape represents the faster process

of neural association or recall), and in the slow evolutionary selection of biological

and ecological species (whose reproduction is determined by the faster motion of

their micro-entities on their energy or fitness landscape). These considerations then

lead to further considerations of co-evolving systems of agents and rules, with many

potentials for complex behavior.

5.2 Good and Bad Energy Landscapes

Suppose that the energy landscape is as sketched in the “bad” landscape of Figure 5.1.

States are represented along the x axis, with adjacent states being neighbors. On this

landscape, the energy differences between the low-energy states (the valley bottom)

are fairly small, while the energy barriers separating them (the mountains) are large.

It is well known that the time required to cross a barrier of height h at temperature

T is exponential in h/T , while the probability of a state of energy f is exponential in

−f/T . So crossing the high barriers in reasonable time demands T to be large, while

favoring the better valleys over the less good ones requires T to be small, implying

that annealing cannot work both well and quickly on this space.

On the other hand, annealing should work well on a function like that of the

“good” landscape of Figure 5.2. In this case, annealing can work in a hierarchical

fashion. Initially, the goal can be just to choose the better (left) of the two valleys

separated by the tallest barrier B1. While B1 is large, the overall energy difference

∆f1 of the two valleys is also fairly large, so with a comparably sized value of T1 we

can be in the lower-energy valley with high probability in short time.

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 63

Next we can aim to settle in the better (right) of the two valleys separated by the

smaller barrier B2. While the energy difference ∆f2 between these valleys is smaller

than ∆f1 was, B2 is also smaller than B1 and so using T2 similarly smaller than T1

again allows us to be in the lower-energy valley with high probability in reasonable

time. This process is repeated for smaller energy scales.

The success of annealing relies on the overall energy difference of collection of

states being large compared with the barriers dividing these collections. So we would

conjecture that either all the energy barriers and energy differences are of the same

scale (which really does not seem to be the case in practice), or else in smaller and

smaller areas of the landscape the energy barriers must scale down along with the

energy differences, giving a general “self-similarity” or “fractalness” like that of the

“good” landscape of Figure 5.2.

5.3 On the Application of Annealing

Depending on the problem tackled, we observed that how the cooling schedule is

chosen plays a major part in shaping the quality of the results obtained for academic

scheduling. Initially, we used the most commonly known and used schedule, which

is the geometric cooling, but later tried adaptive cooling, as well as the method of

geometric reheating based on cost [KGV83, Kir84] and [ADK99].

A comprehensive discussion of the theoretical and practical details of SA is given

in [AKvL97, OvG89, vLA87]. It suffices here to say that the elementary operation in

the Metropolis method for a combinatorial problem such as scheduling is the genera-

tion of some new candidate configuration, which is then automatically accepted if it

lowers the cost (C), or accepted with probability exp(−∆C/T), where T is the tem-

perature, if it would increase the cost by ∆(C). Also, in Figure 5.3, s is the current

schedule and s
′
is a neighboring schedule obtained from the current neighborhood

space Ns by swapping two classes in time and/or space.

Thus the technique is essentially a generalization of the local optimization strategy,

where, at non-zero temperatures, thermal excitations can facilitate escape from local

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 64

1. Generate an initial schedule s.

2. Set the initial best schedule s∗ = s.

3. Compute cost of s : C(s).

4. Compute initial temperature T0.

5. Set the temperature T = T0.

6. While stop criterion is not satisfied do:

(a) Repeat Markov chain length (M) times:

i. Select a random neighbor s
′
to the current schedule, (s

′ ⊂ Ns) .

ii. Set ∆(C) = C(s
′
)− C(s) .

iii. If (∆(C) ≤ 0 {downhill move}):
• Set s = s

′
.

• If C(s) < C(s∗) then set s∗ = s.

iv. If (∆(C) > 0 {uphill move}):
• Choose a random number r uniformly from [0, 1].

• If r < e−∆(C)/T then set s = s
′
.

(b) Reduce (or update) temperature T .

7. Return the schedule s∗.

Figure 5.3: The Simulated Annealing Algorithm

minima.

The SA algorithm has advantages and disadvantages compared to other global

optimization techniques. Among its advantages are the relative ease of implementa-

tion, the applicability to almost any combinatorial optimization problem, the ability

to provide reasonably good solutions for most problems (depending on the cooling

schedule and update moves used), and the ease with which it can be combined with

other heuristics, such as expert systems, forming quite useful hybrid methods for tack-

ling a range of complex problems. SA is a robust technique, however, it does have

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 65

some drawbacks. To obtain good results the update moves and the various tunable

parameters used (such as the cooling rate) need to be carefully chosen, the runs often

require a great deal of computer time, and many runs may be required.

Using the search space (or the landscape) metaphor, an intuitive picture on how

it works is as follows: the shape of the landscape is randomly smoothed or blurred

at high temperatures, so that local peaks don’t persist for too long. The solution

can easily move to the fitter parts of the landscape. As the temperature is gradually

reduced, the peaks begin to stick together, but the solution has escaped from their

clutches and converges gradually to the top of the highest (or a high) peak.

As shown in Figure 5.4, the distribution at high temperature is dominated by

the size of a two-energy regions, not by the depths of their lowest points. Since

the global minimum happens to be in the smaller region, annealing will in this case

direct the simulation away from the region where the equilibrium distribution will be

concentrated at very low temperatures. To avoid such a situation we would need to

be very careful about the kind of annealing schedule we choose.

In general, depending on the problem to which it is applied, SA has been shown

to be quite competitive with many of the best heuristics, as shown in the work of

Johnson et al. [JM97].

5.4 Timetabling Using the Annealing Algorithm

The most obvious mapping of the timetabling problem into the SA algorithm involves

the following constructs:

1. a state is a timetable containing the following sets:

• P : a set of professors.

• C: a set of classes.

• S: a set of students.

• R: a set of classrooms.

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 66

State

Energy

Figure 5.4: Illustrating a problem for which annealing won’t work very well. The state
here is a one-dimensional, with the energy of a state as shown. At low temperature
an energy barrier confines the simulation for long periods of time to either the small
region on the left or the larger region on the right. The small region contains the
global minimum, but annealing will likely direct the simulation to the larger region,
since the tiny region in the vicinity of the global minimum has negligible influence on
the distribution at high temperatures where the energy barrier can easily be traversed.
(See also Figure 5.1)

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 67

• I: a set of time intervals.

2. a cost or “energy” E(P,C, S,R, I) such that:

• E(P): is the cost of assigning more than maximum number of allowed

classes Mp to the same professor, plus scheduling one or more classes that

cause a conflict in the professor’s schedule.

• E(C): is the cost of scheduling certain classes at/within the same time

period in violation of the exclusion constraint, for example.

• E(S): is the cost of having two or more classes conflict in time; plus cost

of having in the schedule one or more classes that really don’t meet the

student’s major, class requested, or class requirements; plus the cost of not

having the classes evenly spread out over the week, etc.

• E(R): is the cost resulting from assigning room(s) of the wrong size and/or

type to a certain class.

• E(I): is the cost of having more or less time periods than required, plus

cost of an imbalanced class assignments (a certain period will have more

classes assigned to than others, etc.).

3. A swap (or a move) is the exchange of one or more of the following: class ci

with class cj in the set C with respect to time periods Ii and Ij , and/or with

respect to classroom Ri and Rj, respectively. Generally, this step is referred to

as class swapping.

Along with all of the necessary constraints, the simulated annealing algorithm

also takes as input data the following: the preprocessor output in the form of lists of

scheduled and non-scheduled classes and their associated professors and room types,

a list of rooms provided by the registrar’s office, a department to building distance

matrix, a list of students and their class preferences, a list of all departments and

their building preferences, and a list of classes that are not allowed to be scheduled

simultaneously.

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 68

5.5 Interpretation of the Solution Space

After setting up or mapping the problem we need to determine the following:

• A feasible solution is defined as a schedule that satisfies a subset (C
′
) of con-

straints (C) : C
′ ⊆ C ; provided that all hard constraints are part of C

′
.

• A neighboring solution is obtained by modifying the current solution space (i.e.

swapping two or more classes in time).

• Here are two guidelines in determining whether a given constraint to be included

in C
′
or not:

1. A class should never be assigned to a time period if such an assignment

induces only class schedules that do not satisfy all the constraints (specif-

ically the hard constraints).

2. A conflict between two or more classes should not be a sufficient condition

for hindering an assignment.

3. In the context of graph coloring, if all courses last one time period, this is

equivalent to changing the color of a vertex, for example.

To use simulated annealing effectively, it is crucial to use a good cooling schedule,

and a good method for choosing new trial schedules, in order to efficiently sample the

search space. We have experimented with both these areas, which are discussed in

the following sections.

5.6 The Annealing Schedules

The search of efficient cooling schedules may be thought of in two quite different ways,

which could be called “off-line” versus “on-line”, or “oracular” versus “constructive”.

In all cases, of course, what is desired is a cooling schedule which is as efficient

as possible: one which within a specified run time produces the minimum possible

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 69

expected energy, or one which produces a specified expected energy in the minimum

possible run time.

In an off-line or oracular construction, the computational cost of finding the sched-

ule itself is neglected. The extreme example of this approach is the work of Strenski

and Kirkpatrick [SK91], where (via a complete expansion of the transition matrices

as a function of temperature) the expected energy is computed as a function of the

temperature sequence T1,. . .,Tt (one move at each temperature).

The on-line or constructive approach is the one more commonly taken. Here,

all quantities of interest are estimated during an annealing run, or with a limited

amount of pre-computation. For example, it is common to try to estimate the mean

and variance of the energy in equilibrium at temperature T from the energies of the

states produced during annealing at temperature T .

In practice it is the second approach (on-line) that is usually most relevant. On the

other hand, the first approach shows what is possible, providing a yardstick against

which on-line approaches may be compared. Furthermore, on-line construction of

a good cooling schedule cannot proceed blindly. Off-line studies of optimal cooling

schedules, whether theoretical or empirical, can indicate the qualities that a good

schedule should have; it is then the job of the on-line algorithm to produce as good

as possible an approximation to this ideal.

In short, letK be the number of “generations” used for annealing, tk is the number

of attempted moves made (or “time spent”) in generation k, and Tk is the temperature

used in that generation. Then the sequence {(Tk, tk)}Kk=1 and the value K, together,

are referred to as the annealing schedule.

5.6.1 Cooling Parameters

Each cooling takes a set of parameters:

1. the temperature reduction factor,

2. time at each temperature,

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 70

3. initial temperature, and

4. final temperature,

all of which must be controlled for.

Since we desire a comparison of the cooling schedules over a range of run times

and solution qualities, the time spent at each temperature was left as an independent

variable.

The choice of initial temperature poses more of a challenge for non-geometric

schedules as we will see in the next sections. Also, for non-geometric schedules the

stopping criterion would vary, greatly depended on the structure of the schedule. For

geometric cooling, the standard stopping criterion is to terminate the run when no

moves had been accepted for some predetermined number of generations. There are

also other stopping criteria.

5.6.2 Dependence on Initial Temperature

The initial temperature, T1, is generally chosen to be high enough that the canonical

distribution is close to uniform. When the Metropolis algorithm is used with a fixed

distribution for candidate moves, a related criterion is that the temperature be high

enough that the rejection rate is very low.

For T1, we have simply used the upper bound suggested by White [Whi84], namely

the standard deviation of the energies of randomly-selected states in the space. As

indicated by Sorkin [Sor91], this can be found with sufficient accuracy with a short

run at infinite temperature. For further discussion of the run lengths needed and the

accuracy of the estimates produced, the reader is referred to [OvG89].

Interpretation, and identification of a good initial temperature

Based on the work of White [Whi84], Sorkin [Sor91] adopted an approach in which

it was pointed out that the “cooling curves” (graphs of the mean energy at each

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 71

temperature during annealing, plotted against the temperature) “quench out” at

different temperatures depending on how many moves are made at each temperature.

The interpretation of what is happening there is that, at high temperatures both

processes are in equilibrium, and so the energy difference between two states at a given

instant is a random number symmetric about 0. The difference at a later instant is

also random, but if the times are close together, the two difference will be correlated.

The time over which the correlation is significant, the “correlation length”, is the

mixing time. For two energies to be effectively independent, they must be sampled

at times more widely separated than the correlation length.

In regard to the issues of the ‘set-up’ runs to compute the initial temperature;

in order for an accurate estimate it would be best to make the set-up runs with

as nearly as possible the same number of moves n (per temperature) as the actual

runs planned. However, for the sake of efficiency, pre-computations would need to

be done over shorter runs. This question of “efficiency” is significant here since the

pre-computation runs tend to range over the full temperature scale, while the final

run will be made from a lower initial temperature, and will be that much faster.

Overall, it is quite difficult to avoid having the pre-computations consume more

time than the run itself, and it is even worse with short run times. With a very

long run, the optimal temperatures change very slowly, so it is quite reasonable to

determine the initial temperature for a very long run from a much shorter one; but

it is not always true for short runs.

Few Other Comments on the Initial Temperature

• Based on the work of White [Whi84], in principle we wish to choose the initial

temperature as the lowest temperature where the energy timeseries is stationary.

But the difficulty with this is that the energy timeseries of a single annealing

run cannot be stationary if the temperature is being changed.

• We note that if it is true that the relevant temperature range increases with

size of the problem instance, this would mean that the effect of a high estimate

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 72

for the initial temperature is relatively small, thus, making the task that much

easier.

• Although the simulated annealing literature already includes numerous sugges-

tions for stationarity tests (for example, see article of Romeo and Sangiovanni-

Vincentelli [RSV91], book of van Laarhoven and Aarts [vLA87], and book of

Otten and van Ginneken [OvG89]), none is appropriate for our problem here.

Since almost all of them claim “convergence” (in whatever sense) down to the

lowest temperatures used during annealing, this would imply that it is below

the temperature at which global equilibrium is maintained (?!!)

5.7 Our Experimental Schedules

Three annealing schedules have been used in our experiments to update the temper-

ature of the SA algorithm in Figure 5.3: geometric cooling, adaptive cooling, and

adaptive reheating as a function of cost.

The first schedule we have used is geometric cooling, where the new temperature

(T
′
) of the SA algorithm is computed using

T
′
= αT , (5.1)

where α (0 < α < 1) denotes the cooling factor. Typically the value of α is chosen

in the range 0.90 to 0.99. This cooling schedule has the advantage of being well

understood, having a solid theoretical foundation, and being the most widely used

annealing schedule. Its main disadvantage is that it doesn’t take account of the state

of the system in any way, and thus cannot adapt the intensity of the search depending

on the difficulty of the problem.

Our results obtained from using this standard cooling schedule will be used as a

baseline for comparison with those using the other two schedules, which allow the

rate of cooling to be varied.

It was noted by Sorkin [Sor91] that if the same amount of time was spent at each

temperature, then subproblems of all energy scales would be solved equally well. But

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 73

subproblems of larger energy scale will have a larger effect on the final cost. Therefore,

it is sensible to spend somewhat more time solving these large-energy problems well,

spending less time in the less important problems of smaller energy scales. We can

deduce from this statement that an optimal cooling schedule should not be geometric,

spending equal time at each temperature, but adaptive in nature.

The second annealing schedule we used is the method of reheating as a function

of cost (RFC), which was used for timetabling by Abramson et al. [ADK99], but the

idea behind it are due to Kirkpatrick et al. [KGV83, Kir84] and White [Whi84].

Before introducing this schedule we first summarize a few relevant points on the

concept of specific heat (CH). Specific heat is a measure of the variance of the energy

(or cost) values of states at a given temperature. The higher the variance, the longer

it presumably takes to reach equilibrium, and so the longer one should spend at the

temperature, or alternatively, the slower one should lower the temperature.

Generally, in combinatorial optimization problems, phase transitions [HHW96,

Mou84] can be observed as sub-parts of the problem are resolved. In some of the

work dealing with the traveling salesman problem using annealing [Lis93], the authors

often observe that the resolution of the overall structure of the solution occurs at high

temperatures, and at low temperatures the fine details of the solution are resolved. As

reported in [ADK99], applying a reheating type procedure, depending on the phase,

would allow the algorithm to spend more time in the low temperature phases, thus

reducing the total amount of time required to solve a given problem.

In order to calculate the temperature at which a phase transition occurs, it is

necessary to compute the specific heat of the system. A phase transition occurs at a

temperature T (Cmax
H) when the specific heat is maximal (Cmax

H), and this triggers the

change in the state ordering. If the best solution found to date has a high energy or

cost then the super-structure may require re-arrangement. This can be done by raising

the temperature to a level which is higher than the phase transition temperature

T (Cmax
H). Generally, the higher the current best cost, the higher the temperature

which is required to escape the local minimum. To compute the aforementioned

maximum specific heat, we employ the following steps [ADK99, vLA87, OvG89].

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 74

At each temperature T , the annealing algorithm generates a set of configurations

C(T). Let Ci denote the cost of configuration i, C(T) is the average cost at temper-

ature T , and σ(T) is the standard deviation of the cost at T .

At temperature T , the probability distribution for configurations is:

Pi(T) =
e

−Ci
kT∑

j e
−Cj
kT

. (5.2)

The average cost is computed as:

< C(T) >=
∑
i∈C
CiPi(T) . (5.3)

Therefore, the average square cost is:

< C2(T) >=
∑
i∈C
C2
i Pi(T) . (5.4)

The variance of the cost is:

σ2(T) =< C2(T) > − < C(T) >2 . (5.5)

Now, the specific heat is defined as:

CH(T) =
σ2(T)

T 2
. (5.6)

The temperature T (Cmax
H) at which the maximum specific heat occurs, or at which

the system undergoes a phase transition, can thus be found.

Reheating sets the new temperature to be

T = K · Cb + T (C
max
H) , (5.7)

where K is a tunable parameter and Cb is the current best cost. Reheating is done

when the temperature drops below the phase transition (the point of maximum spe-

cific heat) and there has been no decrease in cost for a specified number of iterations,

i.e. the system gets stuck in a local minimum. Reheating increases the temperature

above the phase transition (see equation 5.7), in order to produce enough of a change

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 75

in the configuration to allow it to explore other minima when the temperature is

reduced again.

The third cooling schedule we have tried is adaptive cooling. In this case, a

new temperature is computed based on the specific heat, i.e. the standard deviation

of all costs obtained at the current T . The idea here is to keep the system close to

equilibrium, by cooling slower close to the phase transition, where the specific heat

is large. There are many different ways of implementing this idea, we have chosen

the approach taken by Huang et al. [HRSV86], which was shown to yield an efficient

cooling schedule. Let Tj denote the current temperature, at step j of the annealing

schedule. After calculating σ(Tj) from equation 5.5, the new temperature Tj+1 is

computed as follows:

Tj+1 = Tj · e−
aTj

σ̄(Tj) , (5.8)

where a is a tunable parameter. Following suggestions by Otten and van Gin-

neken [OvG89] and Diekmann et al. [DLS93], σ(Tj) is smoothed out in order to avoid

any dependencies of the temperature decrement on large changes in the standard de-

viation σ. We used the following standard method to provide a smoothed standard

deviation σ̄:

σ̄(Tj+1) = (1− ω)σ(Tj+1) + ωσ(Tj)
Tj+1

Tj
(5.9)

and set ω to 0.95. This smoothing function is used because it follows (from the

form of the Boltzmann distribution, see [Sor91, Whi84]) that it preserves the key

relationship:
d

dT
C(T) =

σ̄2(T)

T 2
= CH (5.10)

Note that reheating can be used in conjunction with any cooling schedule. We

have used it with adaptive cooling.

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 76

5.7.1 Comments

It is unfortunate that in most published studies of automatic cooling schedules we are

aware of, the actual form of the schedule is not presented. That is, while an algorithm

for setting the temperatures and times is given, the resulting empirical dependence

of temperature on time is not, and it is impossible to reconstruct this without re-

implementing the algorithm. There is much to be learned about these schedules. For

start, answers to these questions could be used to improve the scheduling algorithm:

Is the schedule geometric? Could it start at a lower temperature? Should it stop at

a higher temperature? How does the form change as parameters are altered?

Studies of cooling schedules also generally compare two or three algorithms – or

rather, algorithm implementations – and it is hard to judge any of them in an absolute

sense. Since geometric schedules were the de facto standard before good adaptive

schedules were developed; since a number of studies, and reasoning going back to the

work of White [Whi84], gives intuitive support for their efficiency, and since some

adaptive schedules may wind up being roughly geometric anyway; comparisons with

“ideal” geometric schedules, found by exhaustive search or any other means, would

be something quite useful to have.

5.8 Annealing in Comparison with Other Algo-

rithms

While it is valuable to know about the time versus quality tradeoff of annealing itself,

knowing whether annealing is a good algorithm to use depends on its relative per-

formance compared with other algorithms. The most significant set of experimental

comparisons is that of [JAMS89, JAMS91, JM97], where for each of a number of

problems annealing was compared against the best algorithm known for that prob-

lem. Generally speaking the specialized algorithms tailored to the particular problem

at hand ran far faster than annealing, but annealing’s results were often as good

CHAPTER 5. SIMULATED ANNEALING AND ENERGY LANDSCAPES 77

or better. Overall, if annealing was not always the best algorithm, it was at least

competitive.

Chapter 6

Multi-Phase (Hybrid) Approach to

Scheduling

Figure 6.1 illustrates the multi-phase approach [ECF98] we have taken to tackle a

large scale course scheduling problem. The second phase of this method can be

viewed as an improvement phase to the quality of the initial schedule produced in the

first phase. This is accomplished by solving three different assignment-type problems

(ATPs), namely, timetabling, grouping, and the classroom assignment. The first ATP

tries to decrease the total number of overlapping situations by modifying the starting

times of the classes. The second ATP improves the grouping of the students by

moving them from one course section to another section of the same course, with an

objective of minimizing the total number of overlapping situations involving students.

The third ATP improves the classroom assignment.

6.1 The Structure of Our Method

6.1.1 The Preprocessor Phase

As is schematically illustrated in Figure 6.1, the preprocessor is either a graph color-

ing, a rule-based expert system, or a combination of both. Since the test problem we

78

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 79

graph coloring
system

IIII: Preprocessor II: :

result

decision modules

Core Heuristics Postprocessor

Final outcome
system
rule-based
complex

micro expert sys

annealing

semi-final

solution

partial

schedules

Figure 6.1: A schematic view of the system three-phase architecture.

have tackled is quite large in the size of data and number of constraints involved, it

was quite difficult to represent or encode it graphically in its entirety for the graph

coloring approach. Instead, we partitioned it into two sets: the first set is of science

and engineering data and its associated constraints, and the second set is the rest of

the data and also its associated constraints.

Our graph coloring approach is only for the science and engineering set, while the

second set was tackled via a rule-based expert system approach. Furthermore, we

took a second approach at preprocessing by tackling the entire problem using a single

method and in this case was also a rule-based expert system.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 80

6.1.2 The Core Heuristics

Annealing-based heuristics consisting of simulated annealing using three different kind

of annealing schedules working in conjunction with micro expert systems to manage

and direct the choice of moves throughout the search space. Moreover, these embed-

ded micro rule-based expert systems generally act in ways to “cluster” the search space

into various “sub-spaces” representing the relationships and dependencies between the

different components of the problem. More on this aspect in the experimental results

sections.

6.1.3 The Postprocessor

It consists of decision modules to determine whether the semi-final solution for the

three ATPs of timetabling, grouping, and classroom assignment constitute a final

solution satisfying all the required criteria. If it is determined that there are still few

more gaps to be filled in the schedule, or maybe in spite of the solution’s low cost

it still doesn’t quite fit to be a final schedule, then each decision module using the

information given by the user would have to decide on any further course of action

to be taken regarding the results.

6.1.4 The Choice of Moves

The performance of any application of simulated annealing is highly dependent on

the method used to select a new trial configuration of the system for the Metropolis

update. In order for the annealing algorithm to work well, it must be able to effectively

sample the parameter space, which can only be done with efficient moves.

The simplest method for choosing a move is to swap the rooms or timeslots of

two randomly selected classes. However this is extremely inefficient, since most of

the time random swapping of classes will increase the overall cost, especially if we are

already close to obtaining a valid solution (i.e. at low temperature), and will likely be

rejected in the Metropolis procedure. This low acceptance of the moves means this

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 81

r3

r4 r5 r6

r2

r7 r8 r9

r1

r1 r2r1

r4r3

r6

r2

r3 r4

r5

r6
Dept CIS

Dept EE

Dept CoE

Dept MAE

Dept CiE

College (ECS)

Dept ChE

 Bldg A

r2 r3

r4 r5

r1

Bldg B

Bldg C Bldg D

Bldg E Bldg F

r5

c1 c4 c5c2

c10c6 c7 c8 c9

c3

c7 c8 c9 c10c6

c1 c2 c3 c4 c5

c5

r4 r5 r6

r1
r3

r1

r1 r2

r6

r2

c1 c2 c3 c4

r4

r5 r7r6 r8

r3

Figure 6.2: A schematic view of some of the main components of the system, colleges
with their associated departments and a list of buildings.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 82

r3r2r1

r6

r4

r8r7

r6r5

r5
r1

Building D

Building C

Building B

r2
r4

r3r2r1
r3

r9

c6c5

c4c3

c7

c12c11c10c9

c8

c2

r4
r3r2r1

r5

c1

r9r8r7
r6

Building A

Dept (CIS)

Dept (CIS)

Figure 6.3: A schematic view of department(s) and their buildings. Here, it indicates
that the home building for the CIS department is building C, and its classes can be
scheduled in buildings A, B, and D, as well as C.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 83

. . . .

. . . .
A

FED

I HG

B

D

school(i)

school(k)

A B C

D E F

school(m)

school(j)

.

.

.

.

.

.

BA
A B C

DC

C

2 different schools.

2 depts of same sch.

within same dept.

Figure 6.4: A schematic view of four different colleges (or schools) and their associ-
ated departments. The sketch shows class swapping between individual departments
within the same school and others outside it. The dotted arrows denote swaps either
within the same department or between two departments belonging to two different
schools; while the solid arrows denote swaps between departments within the same
school.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 84

simple method is very inefficient, since a lot of computation is required to compute

the change in cost and do the Metropolis step, only to reject the move.

What is needed is a strategy for choosing moves that are more likely to be accepted.

A simple example is in the choice of room. If we randomly choose a new room from

the list of all rooms, it will most likely be rejected, since it may be too small for the

class, or an auditorium when, for example, a laboratory is needed. One possibility

is to create a subset of all the rooms which fulfill the hard constraints on the room

for that particular class, such as the size and type of room. Now we just make a

random selection for a room for that class only from this subset of feasible rooms,

with an acceptance probability that is sure to be much higher. In addition, each class

in our data set comes with a “type-of-space-needed” tag which is used along with

other information to assign the class to the right room. This effectively separates

the updates into independent sets based on room type, so for example, laboratories

are scheduled separately from lectures. In our method we carry out the scheduling

of lectures first, followed by scheduling of laboratories making sure that during the

course of this process no lecture and its associated laboratory are scheduled in the

same time period.

In effect, we have embedded a simple expert system into the annealing algorithm

in order to improve the choice of moves, as well as using a more complex expert

system as a preprocessor for the annealing step. When used to choose the moves for

annealing, the main function of the rule-based system is to ensure that all the trial

moves satisfy the hard constraints. Many of the rules dealing with the medium and

soft constraints are softened or eliminated, since reducing the cost of these constraints

is done using the Metropolis update in the annealing algorithm.

Another one of the modifications to the rule-based system is that while the version

used in the preprocessor is completely deterministic, the version used in choosing the

moves for annealing selects at random from multiple possibilities that satisfy the rules

equally well. This extra freedom in choosing new schedules, plus the extra degree of

randomness inherent in the annealing update, helps prevent the system from getting

trapped in a local minimum before it can reach a valid schedule, which is the problem

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 85

with the standard deterministic rule-based system.

To improve further on the move strategy, we can take the subset of possible move

choices that we have created for each class, and choose from them probabilistically

rather than randomly. There may be certain kinds of moves that are more likely to be

effective, so our move strategy is to select these moves with a higher probability. For

example, swapping a higher level class (e.g. graduate) with a lower level class (e.g.

a first or a second year type) generally has a higher acceptance, since there is little

overlap between students taking these classes. Furthermore, we have experimented

with two kinds of swaps, those that only involve classes offered by the same depart-

ment or college and the second, swaps between classes of different departments and

colleges, as illustrated in Figure 6.4.

Generally, the swap methods we have taken here can be considered as heuristics

for pruning the neighborhood or narrowing the search space, which provides much

more efficient moves and in turn an overall improvement in the results.

Also, the abovementioned embedded micro expert systems act on the search space

by “clustering” it into various sub-spaces or constraint-based dependencies between

classes, time slots, students, departments, and buildings. Thus, giving the core an-

nealing process a better looking and a much easier to search space landscape repre-

senting the configuration of the scheduling problem.

6.2 More Analysis of the Simulation

Our computations were done with a number of goals in mind. The main objective was

to provide a schedule which satisfies all hard constraints and minimizes the cost of

medium and soft constraints, using real-life data sets for a large university [ECF98].

We also aimed to find an acceptable set of annealing parameters and move strategies

for general class scheduling problems of this kind, and to study the effects of using a

preprocessor to provide the annealing program with a good starting point. Finally,

we wanted to make a comparison of the performance of the three different cooling

schedules, geometric cooling, adaptive cooling, and reheating based on cost.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 86

We spent quite some time finding optimal values for the various parameters for the

annealing schedule, such as the initial temperature, the parameters controlling the

rate of cooling (α for geometric cooling, a for adaptive cooling) and reheating (K),

and the number of iterations at each temperature. Johnson et al. [JM97] noted in

their SA implementation for the traveling salesman problem (TSP) that the number

of steps at each temperature (or the size of the Markov chain) needed to be at least

proportional to the “neighborhood” size in order to maintain a high-quality result.

From our experiments we found the same to be true for the scheduling problem, even

though it is very different from the TSP. Furthermore, in a few tests for one semester

we fixed the number of classes and professors but varied the number of rooms and

time slots, and found that the final result improves as the number of iterations in the

Markov chain becomes proportional to a combination of the number of classes, rooms

and time slots. We also observed the same behavior when we fixed the number of

rooms and time slots but varied number of classes.

Our study case involved real scheduling data covering three semesters at Syracuse

University. The size and type of the three-semester data is shown in Table 6.1. Nine

types of rooms were used: auditoriums, classrooms, computer clusters, conference

rooms, seminar rooms, studios, laboratories, theaters, and unspecified types. Staff

and teaching assistants are considered part of the set of professors. Third semester

(summer) data was much smaller than other semesters, however, there were additional

space and time constraints and fewer available rooms. Our data was quite large in

comparison to data used by other researchers. For example, high school data used

by Peterson and colleagues [GSP89, GSP92] consists of approximately 1000 students,

20 different possible majors, and an overall periodic school schedule (over weeks). In

the case of Abramson et al. [Abr91], their data set was created randomly and was

relatively small, and they stated that problems involving more than 300 tuples were

very difficult to solve.

Table 6.1 lists all major components of the data we have used. Timetabling

problems can be characterized by their sparseness. Table 6.2 shows the sparseness

(see definition 10.1.1) of the three-semester data. Table 6.3 is also a three-semester

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 87

sparseness ratio when the students are factored in, and closely correlated with that

of Table 6.2. For university scheduling, the sparseness ratio generally decreases as

the data size (particularly the number of classes) increases, so the problem becomes

harder to solve. Including student preferences makes the problem much harder, but

these are viewed as medium and soft constraints and thus are not necessarily satisfied

in a valid solution.

Our overall results are shown in Tables 6.4, 6.6 and 6.5. These tables show the

percentage of classes that could be scheduled in accordance with the hard constraints.

In each case (apart from the expert system, which is purely deterministic), we have

done 10 runs (with the same parameters, just different random numbers), and the

tables show the average of the 10 runs, as well as the best and worst results. The MFA

results are different only due to having different initial conditions. Each simulated

annealing run takes about 10 to 20 hours on a Unix workstation, while a single MFA

run takes approximately an hour and an expert system run takes close to two hours.

As expected, each of the methods did much better for the third (summer) semester

data, which has a higher sparseness ratio. Our results also confirm what we expected

for the different cooling schedules for simulated annealing, in that adaptive cooling

performs better than geometric cooling, and reheating improves the result even fur-

ther.

When a random initial configuration is used, simulated annealing performs very

poorly, even worse than the expert system (ES). However, there is a dramatic im-

provement in performance when a preprocessor is used to provide a good starting

point for the annealing. In that case, using the best cooling schedule of adaptive

cooling with reheating as a function of cost, we are able to find a valid class schedule

every time.

In the case of mean-field annealing∗, the overall results are generally below those

of SA and ES. In addition, we have found in the implementation of this method that

the results were quite sensitive to the size of the data as well the type of constraints

involved. If we confine ourselves to the set of hard constraints, the results are as

∗See chapter 8 for more details on this method.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 88

good as or even better than the other methods. However if we take into account the

medium and soft constraints, that is, the overall cost function, this method does not

perform as well.

Student preferences are included as medium and soft constraints in our implemen-

tation, meaning that these do not have to be satisfied for a valid solution, but they

have a high priority. For the valid schedules we have produced, approximately 75%

of the student preferences were satisfied. This is reasonably good (particularly since

other approaches do not deal with student preferences at all), but we are working to

improve upon this result.

6.2.1 Preprocessing and the Problem’s Structure

As shown in Tables 6.6 and 6.5, the two different preprocessors used gave different final

results for the three semesters. As it is shown, the approach of using a single method to

deal with the entire problem yielded a much better results than the approach of using

a mix of two different methods, rule-based expert system and graph-coloring [MEY95],

as in Table 6.5.

This brings us to the question of what are the reasons behind the difference in

percentages appearing in the Tables 6.6 and 6.5?

The main components of the problem are represented by the departments and

each with its own set of data, consisting of courses, professors, timeslots, preferred

set of rooms to schedule to, etc. In spite of that, there are global interactions or

“dependencies” between these departments particularly when it comes to the issue of

space allocation and our final schedules seem to show that. We find that in order to

get no only an overall feasible schedule but one with the least possible cost, a number

of science and engineering departments need to schedule some of their courses in

buildings other than their original space preferences. The same was true for the non-

science and non-engineering departments. In other words, there was a necessity for

the two sets of departments to go outside their initial sets of space preferences in

order to satisfy the global criterion of producing an overall schedule with the least

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 89

cost possible. Therefore, dealing with the problem in partitions and having each

to be solved with a particular set of heuristics or a method would definitely not

allow the science and engineering set to schedule anything outside its original set of

space preferences. Certainly, the same is true for other involved partitions. The two

approaches or sets of heuristics work in two separate partitions that have no influence

or effects whatsoever on each other during preprocessing. While a single approach

was able to deal with and look at the overall global structure of the problem and

handle those arising dependencies in a better way. That single approach we have

used is a rule-based expert system; and again, it was mainly due to the issue of

problem representation that influnced our choice to use a rule-based system rather

than a graph-coloring approach to tackle the whole problem.

6.3 Conclusions

Academic course scheduling is only one example of a difficult planning problem; there

are many similar problems occurring in the industry and the public sector. We have

chosen this particular application since we feel that the problem is representative

enough for this class of problems and also because real data were available to us.

Our successful approach is the application of simulated annealing as a core pro-

cessing method to the the abovementioned problem of academic scheduling for a large

university. Feasible schedules were obtained for real data sets, including student pref-

erences, without requiring enormous computational effort.

Mean-field annealing† works well for small scheduling problems, but does not

appear to scale well to large problems with many complex constraints. For this

problem, both simulated annealing and the rule-based system were more effective

than MFA. It is more difficult to tune the parameters for MFA than for simulated

annealing, and because of the complexity and size of the Potts neural encoding, there

seems to be no clear way of preserving the state of a good initial configuration provided

by a preprocessor when using MFA.

†See other chapter for more details on this method.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 90

Using a preprocessor to provide a good initial state greatly improved the quality of

the results for simulated annealing. In theory, using a good initial state should not be

necessary, and any initial state should give a good result, however in practice, we do

not have an ideal cooling schedule for annealing, or an ideal method for choosing trial

moves and efficiently exploring the search space, and there are restrictions on how

long the simulation can take. In general, for very hard problems with large parameter

spaces that can be difficult to search efficiently, and for which very slow cooling would

be much too time-consuming, we might expect that a good initial solution would be

helpful. We used a fairly complex rule-based expert system for the preprocessor,

however the type of preprocessor may not be crucial. Other fast heuristics could

possibly be used, for example a graph coloring approach [MEY95] which we also have

used. Other possible option is to just use the schedule from the same semester for

the previous year. A modified version of the rule-based system was used to choose

the trial moves for the simulated annealing, and the high acceptance rate provided

by this system was crucial to obtaining good results.

As expected, for the simulated annealing, adaptive cooling performed better than

geometric cooling, and using reheating improved the results even further. The best

results were obtained using simulated annealing with adaptive cooling and reheating

as a function of cost, and with a rule-based preprocessor to provide a good initial

solution. Using this method, and with careful selection of parameters and update

steps, we were able to generate solutions to the course scheduling problem, with

student section assignment and preferences, using real data for a large university.

None of the other methods were able to provide a complete solution.

Our main conclusion from this work is that simulated annealing, with a good

cooling schedule, optimized parameters, carefully selected update moves, and a good

initial solution provided by a preprocessor, can be used to solve the academic schedul-

ing problem at a large university, including student preferences. Similar approaches

should prove fruitful for other difficult scheduling problems.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 91

First Semester Second Semester Third Semester

Rooms 509 509 120

Classes 3839 3590 687

Professors 1190 1200 334

Students 13653 13653 2600

Buildings 43 43 11

Schools and/or Colleges 20 21 17

Departments or 143 141 108
Course Prefixes

Areas of Study (majors) 200 200 200

Table 6.1: Size of the data set for each of the three semesters.

Academic Sparseness

Time Period ratio

First Semester 0.50

Second Semester 0.53

Third Semester 0.62

Table 6.2: The sparseness ratios of the problem for the data sets for each of the three
semesters. Lower values indicate a harder problem.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 92

Academic sparseness

Time Period ratio

First Semester 0.35

Second Semester 0.38

Third Semester 0.50

Table 6.3: A three-semester sparseness ratio (including students) computed by
R(Nsp/(NxNt), ((number majors * average number of classes taken per students)
/ number of students)). The smaller the ratio, the less sparse the problem is and
for this problem the ratio is based on Nt = 15 time slots each with a duration of 55
minutes. The first slot starts at 8:00 am and the last slot ends at 10:55 pm.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 93

Academic Algorithm Scheduled Highest Lowest

Time Period (average) Scheduled Scheduled

% % %

First Semester SA (geometric) 65.00 67.50 56.80
SA (adaptive) 67.80 70.15 61.20
SA (cost-based) 70.20 72.28 68.80
ES 76.65 76.65 76.65
MFA 65.60 71.00 61.00

Second Semester SA (geometric) 65.65 68.00 57.10
SA (adaptive) 68.50 70.10 60.77
SA (cost-based) 75.14 77.68 70.82
ES 79.00 79.00 79.00
MFA 67.20 75.00 65.00

Third Semester SA (geometric) 83.10 86.44 68.50
SA (adaptive) 85.80 89.00 70.75
SA (cost-based) 91.20 95.18 85.00
ES 96.80 96.80 96.80
MFA 88.00 95.00 82.00

Table 6.4: Percentage of classes scheduled using the different methods. The averages
and highest and lowest values were obtained using 10 independent runs for simulated
annealing (SA) and mean-field annealing (MFA). The expert system (ES) is deter-
ministic so the results are from a single run. No preprocessor was used with the three
methods.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 94

Academic Algorithm Scheduled Highest Lowest
Time Period (average) Scheduled Scheduled

% % %

First Semester SA (geometric) 84.50 88.00 81.00
SA (adaptive) 92.25 95.00 89.50
SA (cost-based) 94.87 97.75 92.00

Second Semester SA (geometric) 85.67 90.95 80.40
SA (adaptive) 93.00 95.00 91.00
SA (cost-based) 96.35 97.50 95.20

Third Semester SA (geometric) 96.00 97.00 95.00
SA (adaptive) 98.00 99.00 97.00
SA (cost-based) 99.00 99.50 98.50

Table 6.5: Percentage of scheduled classes, averaged over 10 runs for the same initial
temperature and other parameters, for three terms using simulated annealing with a
graph-coloring preprocessor for the set of science and engineering data, and an expert
system preprocessor for the rest of the data.

CHAPTER 6. MULTI-PHASE (HYBRID) APPROACH TO SCHEDULING 95

Academic Algorithm Scheduled Highest Lowest
Time Period (average) Scheduled Scheduled

% % %

First Semester SA (geometric) 93.90 95.12 85.20
SA (adaptive) 98.80 99.20 95.00
SA (cost-based) 100.0 100.0 100.0

Second Semester SA (geometric) 95.00 98.95 89.40
SA (adaptive) 99.00 99.50 98.50
SA (cost-based) 100.0 100.0 100.0

Third Semester SA (geometric) 97.60 98.88 90.90
SA (adaptive) 100.0 100.0 100.0
SA (cost-based) 100.0 100.0 100.0

Table 6.6: Percentage of scheduled classes, averaged over 10 runs for the same initial
temperature and other parameters, for three terms using simulated annealing with an
expert system as preprocessor.

Chapter 7

Optimization Networks

7.1 Neural Methods as Optimization Paradigms

While there already exist many effective algorithms for approximately solving com-

binatorial optimization problems, this chapter is concerned with just one family of

techniques, which we term optimization networks. The origins of optimization net-

works can be traced back to Hopfield and Tank’s pioneering work in 1985 [HT85],

though it would perhaps be more appropriate to start with a review of general Arti-

ficial Neural Networks.

It has long been noted that while conventional computers are very good at per-

forming numerically intensive tasks such as complex arithmetic, they are less well

adapted to the tasks which humans find straightforward, like speech and vision recog-

nition. For this reason a new type of computer, modeled loosely on the architecture

of the human brain, was proposed. These Artificial Neural Networks (ANNs) com-

prise a large number of simple processing elements (corresponding to single neurons

in the human brain) connected together in massive, parallel arrays. An ANN can

be trained to perform tasks such as speech and vision recognition and , like the

human brain, has the ability to learn from experience. Moreover, with the highly

parallel structure of the ANN properly exploited in electronic hardware, extremely

high information processing speeds are possible, giving ANNs a huge advantage over

96

CHAPTER 7. OPTIMIZATION NETWORKS 97

conventional computers.

7.2 The Hopfield Network

One type of ANN is the Hopfield network [Hop82], originally proposed as a form of

content addressable memory (a devise which allows stored patterns to be recalled by

presentation of noisy, corrupted versions of the same patterns). The Hopfield network

is an example of a feedback neural network, where the outputs of the individual

processing units are fed back to the inputs via a dense array of interconnections,

producing a nonlinear, continuous dynamic system.

Moreover, in [Hop82], Hopfield introduced the idea of an energy function into neu-

ral network theory (for the associative memory problem). The term energy function

originates from an analogy with magnetic spin systems, in other contexts names like

Lyapunov function, Hamiltonian, fitness function or objective function would have

been used.

The network described by Hopfield in his seminal 1982 paper [Hop82] is in fact

a special case of the additive model developed by Grossberg in the 1960’s [Gro88].

Hopfield reviewed the network’s application as a content addressable memory with

both binary [Hop82] and continuous valued [Hop84] outputs. However, after detailed

investigations into the network’s performance by a number of authors, it is now clear

that other types of content addressable memory are far more efficient [TTR91].

The Hopfield network was first proposed for combinatorial optimization applica-

tions in [HT85, HT86], where a penalty function mapping for the traveling salesman

problem was given, more or less marking the start of using artificial neural networks

techniques for optimization problems. In [HT85] the TSP was approached by mapping

it onto an energy function of the type,

E = cost+ constraints. (7.1)

This energy is expressed in terms of neurons in such a way that the minimum

CHAPTER 7. OPTIMIZATION NETWORKS 98

Figure 7.1: A graph bisection problem.

corresponds to a neuron configuration representing a solution to the problem. Hop-

field and Tank’s mapping was of a rather ad hoc nature, with separately weighted

penalty functions for each of the hard constraints. The weights were set by trial and

error, resulting, not surprisingly, in poor performance [WP88]. Nevertheless, some

researchers preserved with this approach, sometimes proposing modified networks to

correct what is essentially a sloppy mapping.

Another optimization problem that can be mapped into such an energy function

as that of equation 7.1 is the graph bisection problem, see figure 7.1. The task is to

divide a given graph (nodes and links) into two equal parts with a minimal cut size

(number of links) between them. For each node i a binary neuron, si, is assigned +1 or

−1 depending on whether the neuron is in the left box or the right box, respectively.

For each pair of nodes, let wij = 1 if a link between them exists and otherwise 0. A

suitable energy function is

E = −1

2

∑
ij

wijsisj +
α

2

(∑
i

si

)2

. (7.2)

The first term expresses the cut size cost whereas the second term is a constraint

term penalizing situations where the nodes are not equally partitioned, and α sets

the relative strength between the two terms. The cost and the constraint have to

“compete”, i.e. the problem is frustrated, this typically leads to the appearance of

many local minima. Once the energy is written down, the next step would be to

find the minimum. This could be done using methods such as mean field annealing,

CHAPTER 7. OPTIMIZATION NETWORKS 99

discussed in the next section.

Real progress in the field of optimization networks can be identified with three

main movements: rigorous investigation of network convergence, the development of

more sensible mapping techniques, and the emergence of powerful annealing proce-

dures.

• Convergence: Generalized feedback neural networks can exhibit oscillatory

[CG83] or even chaotic [LG92] behavior. It is important to determine under

what conditions a network will admit a Liapunov function for optimization ap-

plications. For simulated networks, convergence properties depend on whether

the nodes are updated in serial or parallel mode: such issues are discussed (for

discrete-valued networks) in [Bru90].

• Mapping: The development of rigorous mappings was delayed by the popu-

larity of the original, ad hoc mapping of the TSP problem. Researchers con-

centrated on finding better weights for the penalty functions, often by way of

an eigen vector analysis of Liapunov function [ANF90]: this, though correct, is

quite complicated. Simpler, more reliable mappings began to appear for specific

problems in [AF91]; some also dealt with inequality constraints [TCP88]. One

particular rigorous mapping for the most general 0-1 quadratic programming

problems onto standard Hopfield network dynamics was presented in [GP92]

• Annealing: In parallel with the development of rigorous mappings, modified

dynamics were proposed as a way of improving the quality of any valid solutions

found by the network. The most effective of these modifications typically rep-

resented some sort of annealing procedure. Mean field annealing was developed

as an approximation to simulated annealing, and will be discussed from that

viewpoint in the next section. More direct annealing procedures include hys-

teretic annealing [EDK+91], convex relaxation [OB90], and matrix graduated

non-convexity [AF91].

CHAPTER 7. OPTIMIZATION NETWORKS 100

7.2.1 Structure and Dynamics of the Net

• The network is built by connecting a large number of neurons to each other to

form a dense, parallel array. In general, any ith neuron in the net is described

by two variables: its current state (input) ui, and its output vi.

The output is related to the input by a monotonically increasing transfer func-

tion: vi = gλ(ui).

• The net’s dynamics are governed by the first order differential equation:

du

dt
= −ηu + Wv + Ib . (7.3)

• gλ(ui) = 1
1+e−2λui

, for large λ, this function approximates a step function,

forcing vi to [0, 1] =⇒ (the output of the net lies on the unit hypercube).

• Wij is the connection strength between neuron i and neuron j.

• Ibi is an input bias to neuron i.

• Neurons may be updated individually at random (asynchronously) or all to-

gether (synchronously).

7.2.2 Operation of the Network

The network (see Figure 7.2) operates as follows:

• The network’s dynamics are governed by a set of nonlinear coupled differential

equations of the form:

dui
dt

= −ui +
n∑
j=1

Wijvj + I
b
i . (7.4)

or the general form of it:

CHAPTER 7. OPTIMIZATION NETWORKS 101

W

u v

 b

 Decay

input biases

transfer functions

neuron
outputs

Interconnections

dt g(u)

 term

I

.
u - eta

Figure 7.2: A schematic view of the Hopfield network.

du

dt
= −ηu + Wv + Ib . (7.5)

where u, W, v, and I are vectors.

• The Ibi corresponds to an input bias to neuron i.

• The η term introduces an element of decay into the network’s dynamics, which

can be used to ensure that u variables remain bounded in magnitude.

CHAPTER 7. OPTIMIZATION NETWORKS 102

7.2.3 Updating of the States of the Neurons

To make sure that stability of the of the net is guaranteed, ui is updated continuously

by evaluating d
dt
ui as a function of the total input to the ith neuron.

u̇ = −ηu + Wv + Ib , (7.6)

where

v = g(u) . (7.7)

Equations 7.6 and 7.7 govern the dynamics of the network.

7.2.4 Stability of the Net

Given that W is symmetric, Hopfield proved stability for the network by showing

that with the above dynamic equations (7.6 and 7.7) the network output v evolves

so as to minimize the Liapunov function:

Eliap(v) =

−1

2

∑
ij

Wijvivj −
∑
i

Ibi vi

+ η

∑
i

∫ vi

0
g−1(V) dV . (7.8)

• v = (v1 . . . vn) is denoting the net state, therefore we have an energy function

defined throughout v ∈ [0, 1]n and dynamics which guarantee convergence to

minima.

• For a suitable W , the minima of the first term lie at the hypercube vertices.

The second term is minimized at the hypercube center but has negligible impact

at low η.

7.2.5 Updating the States of the Net

Updating of the states (or the output of the neurons) is carried out either asyn-

chronously or synchronously. From a simulation point of view, we found that syn-

chronous updating a bit more efficient, but from a theoretical point of view, it does

CHAPTER 7. OPTIMIZATION NETWORKS 103

not make much of a difference on the operation of the network as to which updating

mode is used.

7.2.6 Mapping the Problem onto the Network

A representation of the problem is needed in which the feasible solutions lie at hy-

percube vertices. Each hypercube vertex is regarded as a configuration of the prob-

lem, with an associated energy (or cost) function. Next, the partition function is

then formed by summing the Boltzmann factors of the admissible configurations. A

quadratic energy function (to be mapped onto the first term of 7.8) for which the

minima correspond to solutions and the depth of each minimum reflects the solution

quality. Aside from its intellectual interest, this approach also offers potentially great

benefits, for example, equation 7.6 can also describe the behavior of a network of

interconnected electrical amplifiers, and hence hardware circuits might be capable of

solving hard optimization problems in real time. In practice however, even at a soft-

ware level implementation, considerable difficulties have been encountered carrying

this program out for the TSP problem, which was used by Hopfield and Tank [HT85]

to test their neural model.

In summary, here are the necessary four steps to be taken to map a combinatorial

optimization problem such as the TSP or scheduling onto the Hopfield-Tank model:

1. Choose a representation scheme which allows the activation levels of the units

to be decoded into a solution of the problem.

2. Design an energy function whose minimum corresponds to the best solution of

the problem.

3. Derive the connectivity of the network from the energy function.

4. Set up the initial activation levels of the units.

These ideas can easily be applied to the design of a Hopfield-tank network in a

course scheduling context:

CHAPTER 7. OPTIMIZATION NETWORKS 104

• First, a suitable representation of the problem must be chosen. For example,

one representation is an N x M matrix of units, where each row correspond to

a particular class and each column to a particular time slot that the class is

given at. Another representation would be to have each row to correspond to a

particular teacher and each column to a particular class taught by that teacher

at a particular time slot. Therefore, on the network itself if the activation level

of a given unit, for example Vnm, is close to 1, it is then assumed that class

n is assigned to time slot m in the scheduling table. In this way, the final

configuration of the network can be interpreted as a “solution” to the problem.

Since we are dealing with a large scale scheduling problem, a very large number

of units are needed to encode into the network any worthwhile “solution” to

our problem.

• Second, the energy function must be defined. It can be formatted as a sum-

mation of various terms, and each term represents a constraint or a set of

constraints. The cost of each term is controlled by a coefficient (i.e. A, B, C,

etc.) multiplied by each term. The terms collectively define a feasible schedule

and each term’s contribution to the final cost is specified by its corresponding

coefficient.

• Third, the bias and connection weights are derived. To do so, the energy func-

tion derived in the previous step is compared to the generic energy function

defined by the problem from the given set of hard constraints. It is quite essen-

tial that any worthwhile solution the network gives would need to satisfy this

class of constraints.

• The last step is to set the initial activation value of each unit of the network to

a small constant, perhaps proportional to the size of the net or proportional to

the number of courses, plus or minus a small random perturbation (this way the

sum of the initial activations is approximately equal to the number of courses

N).

CHAPTER 7. OPTIMIZATION NETWORKS 105

7.2.7 Shortcomings of the Hopfield Model

The main shortcomings of the original Hopfield-Tank model [HT85], as pointed out

by [WP88] are as follow:

• In the case of dealing with an N-city TSP, the network would need O(N2) units

and O(N4) connections. Thus, for a reasonably large N we would end up with

a very large number of connections.

• The net’s partition function sums over a vast number of configurations (e.g. for

the TSP, it is not solved in a space of O(N !), but in a space of the 2N
2
). These

configurations, again, for the TSP, are nothing like valid tours, and even though

these offenders have small Boltzmann weights their large number inevitably

affects the thermal average quantities.

• The model performs a gradient descent of the energy function in the config-

uration space, and is thus plagued with the limitations of “hill-climbing” ap-

proaches, where a local optimum is found. As a consequence, the performance

of the model is very sensitive to the initial starting configuration.

• The model does not guarantee feasibility. In other words, many local minima

of the energy function correspond to infeasible solutions. This is related to the

fact that the constraints of the problem, in case of TSP namely that each city

must be visited exactly once, are not strictly enforced but rather introduced

into the energy function as penalty terms.

• Setting the values of the coefficients (i.e. A, B, C, etc.) in the energy function is

much more of an art than a science and requires a long “trial-and-error” process.

Setting the coefficients to small values usually leads to short but infeasible

tours in the case of the TSP. Alternatively, setting the penalty parameters

or coefficients to large values forces the network to converge to any feasible

solution regardless of the total length. Moreover, again in the TSP, it seems

CHAPTER 7. OPTIMIZATION NETWORKS 106

to be increasingly difficult to find “good” coefficient settings as the number of

cities increases.

• It usually takes a large number of iterations (in the thousands) before the net-

work converges to a solution. Moreover, the network can “freeze” far from a

corner of the hypercube in the configuration space, where it is not possible to

interpret the configuration as a solution to the problem. This phenomenon can

be explained by the shape of the sigmoidal activation function which is very

flat for large positive and large negative input. Consequently, if the activation

level of a given unit is close to zero or one, even large modifications to the input

will produce only slight modifications to the activation level. If a large number

of units are in this state, the network will evolve very slowly, a phenomenon

referred to as “network paralysis”. Paralysis far from a corner of the hyper-

cube can occur if the slope of the activation function is not very steep. In that

case, the flat regions of the sigmoidal function extend further and affect a larger

number of units (even those with activation levels far from zero and one).

• The network is not adaptive, because the weights of the network are fixed and

derived from the problem’s data, rather than taught from it.

7.3 Mean Field Annealing for Timetabling

7.3.1 Introduction and Motivation

One of the potential drawbacks of using simulated annealing for hard optimization

problems is that finding a good solution can often take an unacceptably long time.

Mean-field annealing (MFA) attempts to avoid this problem by using a deterministic

approximation to simulated annealing, by attempting to average over the statistics of

the annealing process. Essentially, the mean field approximation involves averaging

statistics of two coupled spins, and replacing a complex function with its truncated

CHAPTER 7. OPTIMIZATION NETWORKS 107

Taylor expansion around a saddle point. It is these approximations which differentiate

mean field annealing from simulated annealing.

The result is improved execution speed at the expense of solution quality. Al-

though not strictly a continuous descent technique, MFA is closely related to the

Hopfield neural network, on which we would like to state few more points. We clearly

know, and outlined in the previous section, that the original Hopfield algorithm had

difficulty constraining the network into valid solutions. Therefore, one possible way

forward is to reduce the computational burden being placed on the net. For example,

in the case of the traveling salesman problem, this can be done by constraining each

city to be “on” only once, by enforcing
∑

a Via = 1 ∀i, (Via = 1/0, which means that

the city i is (is not) the ath city visited in the tour), rather than relying on an energy

penalty term to try to explicitly do this, as is the case in the Hopfield model.

This idea was first utilized and analyzed for the TSP case by, among others,

Peterson and Söderberg [PS89]. It greatly enhances the degree of convergence to

valid solutions. Later, Peterson and colleagues somewhat extended the technique

and applied it to a case of high school timetabling [GSP92].

In [PS89] the normalization (see definition 7.3.1) occurs in the context of a mean

field annealing approach. This generally yields the same final network equations as

the “neuronal circuit” approach of Hopfield, but the exposition is a little bit clearer,

as it is laid out in a statistical mechanics framework∗. The idea is to regard each

hypercube vertex as a configuration, with an associated energy (or cost) E . The

partition function is then formed by summing the Boltzmann factors of the admissible

configurations. For example, in the Hopfield algorithm, for the TSP, all of the 2N
2

configurations are admissible, whereas if each city is restricted to being visited only

once, then only NN vertices are admissible. After taking a mean field approximation,

saddle point equations are derived (see next sections), the solutions of which pick out

the dominant states of the network at the current temperature T .

This statistical mechanics characterization gives a somewhat clearer picture of

∗This equivalence was also noted in Hopfield and Tank’s 1985 paper [HT85]. Martin Simmen (in
a personal communication) brought this point to our attention.

CHAPTER 7. OPTIMIZATION NETWORKS 108

why the normalized model (which corresponds to a type of Potts model [Wu82] in

physics, in that, again for the TSP, each city represented by a spin which can be

in only one of N states) ought to perform better than Hopfield model. The other

advantage that draws us to this derivation is that, by introducing a temperature, the

concept of annealing, i.e. reducing T during a run, can be justifiably employed.

7.3.2 Potts Neurons

It is advantageous to use a multi-valued neurons (or Potts neurons) instead of binary

neurons for many types of optimization problems, e. g. course scheduling, airline

crew scheduling, and routing problems. The use of Potts neurons when encoding a

problem can reduce the number of terms needed in the energy function (equation 7.1

of Hopfield type). Fewer energy terms in general result in a less complex energy

landscape and hence the global minimum would be much easier to locate.

7.3.3 Mean-Field Approximation

Given a problem mapped onto an energy functionE(s) (of Hopfield type) the next step

is to locate a global minimum. A gradient descent method would lead to the nearest

minimum which probably is not global minimum. Alternatively, instead of using

a stochastic method like simulated annealing, SA equations could be replaced with

deterministic equations. The basic idea is that it is possible to approximate the actual

cost or energy function E, which is a function of discrete neural variables Sia, by an

effective energy function E
′
that can be represented in terms of continuous variables

Uia and Via. These are known as mean field variables, since Via is an approximation

to the average value of Sia at a given temperature T .

This approach effectively smoothes out the energy function and makes it easier

to find the minimum value, which is obtained by solving the saddle point equations:
∂E

′

∂Via
= 0 and ∂E

′

∂Uia
= 0, which generate a set of self-consistent mean field theory (MFT)

equations in terms of the mean field variables U and V :

CHAPTER 7. OPTIMIZATION NETWORKS 109

Uia = − 1

T

∂E

∂Via
(7.9)

Via =
eUia∑
b eUib

(≡ fia) (7.10)

The MFA algorithm involves solving equations 7.9 and 7.10 at a series of progres-

sively lower temperatures T : this process is known as temperature annealing. The

critical temperature Tc, which sets the scale of T , is estimated by expanding equation

7.10 around the trivial fixed-point [PS89, GSP92] V
(0)
ia = 1

Na
, where Na is the number

of possible states of each of the network neurons. For example, for the events defined

by professor-class pairs (p, q) mapped onto classroom-timeslots (x, t), we have NpNq

neurons, each of which has NxNt possible states, in which case V
(0)
pq;xt =

1
NxNt

.

Equations 7.9 and 7.10 can be solved iteratively using either synchronous or serial

updating. The iterative dynamics to evolve the mean field variables toward a self-

consistent solution is explained in detail by Peterson et al. [GSP92] The solutions

correspond to stable states of the Hopfield model [HT85].

Observe from equation 7.10 that any solution to the MF equations respects a

continuous version of the Potts condition

∑
a

Via = 1 ∀ i. (7.11)

Definition 7.3.1 In [PS89], it was stated that the performance of MFA on certain

problems can be improved using neuron normalization. This idea was originally in-

spired by an analogy with Potts glasses in statistical physics [KS87]. Neuron normal-

izationmodifies the MFA algorithm so that constraints of the form
∑

a∈ states νia = 1

(to be consistent with our notation we instead use the form
∑

a Sia = 1) are explicitly

enforced, without the need for a penalty term. It was found by Peterson and other

to be particularly useful for mapping the TSP and graph partitioning (GP) type

problems; though the technique does not have general applicability. ✷

CHAPTER 7. OPTIMIZATION NETWORKS 110

7.3.4 Mapping of Optimization Problems onto the Potts Model

Th Mean-field annealing algorithm has been successfully applied to, as mentioned

above, high school class scheduling. For scheduling, it is advantageous to use a Potts

neural encoding to specify discrete neural variables (or neurons) for the problem.

This is defined in its simplest form as a mapping of events onto space-time slots, for

example an event i, in this case a professor-class pair (p, q), is mapped onto a space-

time slot a, in this case a classroom-timeslot pair (x, t). Now, the Potts neurons Sia

are defined to be 1 if event i takes place in space-time slot a, and 0 otherwise. In

this way, the constraints involved can be embedded in the neural net in terms of the

weights wi,j of the network, which encode a Potts normalization condition such as∑
a Sia = 1.

Another mapping example is the general graph partition problem. Here the task is

to evenly partition N nodes into K boxes with a minimal cut-size between them (see

figure 7.3). If binary neurons were to be used (as was suitable for the graph-bisection

problem), then a neuron, Sia, could encode whether node i is in box a or not. Since

a neuron only can be in one box (in the final result), an energy term enforcing

∑
b

Sib = 1 (7.12)

must be used. To reduce the available solution space an encoding using the

Potts neurons can be used. A Potts neuron has K possible values or states, �S =

(Si1, Si2, . . . , SiK) where the jth possible state is given by Sij = 1 and Sik = 0 for

k �= j. These states are then mutually orthogonal and automatically satisfy equa-

tion 7.12. A Potts neuron could then encode to which box a neuron is assigned, e. g.

�S = {0 0 1 0} means that node i is in box 3.

7.3.5 The Mean-Field Annealing Algorithm

The generic MFA algorithm appears in Figure 7.4. At high temperatures T , the mean-

field solutions will be states near the fixed-point symmetrical maximum entropy state

CHAPTER 7. OPTIMIZATION NETWORKS 111

Figure 7.3: A graph partition problem.

Via = 1/Na. At low temperatures, finding a mean-field solution will be equivalent to

using the Hopfield model, which is highly sensitive to the initial conditions and known

to be ineffective for hard problems. MFA improves over the Hopfield model by using

annealing to slowly decrease the temperature in order to sidestep these problems.

These characteristics are similar to those of simulated annealing, which is no

surprise since both it and the mean-field method compute thermal averages over

Gibbs distributions of discrete states, the former stochastically and the latter through

a deterministic approximation. It is therefore natural to couple the mean-field method

with the concept of annealing from high to low temperatures.

In addition to the structure of the energy function, there are three major interde-

pendent issues which arise in completely specifying a mean-field annealing algorithm

for a timetabling problem:

• The values of the coefficients of terms in the energy function.

• The types of dynamics used to find solutions of the MFT equations at each T .

• The annealing schedule details, i.e. the initial temperature T (0), the rules for

deciding when to reduce T and by how much, and the termination criteria.

CHAPTER 7. OPTIMIZATION NETWORKS 112

1. Choose a problem and encode the constraints into weights {wij}. That is, map
the problem onto a Hopfield type of energy function using Potts neurons.

2. Find the approximate phase transition temperature by linearizing equation
(7.10).

3. Add a self-coupling β-term if necessary. In a neural net, this corresponds to a
feedback connection from a neuron to itself.

4. Initialize the neurons Via to high temperature values 1
Na

plus a small random
term such as rand[−1, 1]× 0.001; and set T (0) = Tc.

5. Until (Σ ≥ 0.99) do:

• At each T (n), update all Uia and Via by iterating to a solution of the mean
field equations.

• T (n + 1) = αT (n), we choose α = 0.9

6. The discrete values Sia that specify the schedule are obtained by rounding the
mean field values Via to the nearest integer (0 or 1).

7. Perform greedy heuristics if needed to account for possible imbalances or rule
violations.

Figure 7.4: The Generic Mean-Field Annealing Algorithm

Peterson et al. [GSP92] introduced a quantity called saturation, Σ, defined as

Σ =
1

Ni

∑
ia

V 2
ia , (7.13)

where Ni is the number of events (in this case the number of professor-class pairs).

This characterizes the degree of clustering† of events in time and/or space, Σmin = 1
Na

corresponds to high temperature, whereas Σmax = 1 means that all the Via have

converged to 0 or 1 values, indicating that each event has been assigned to a space-

time slot.

†Other measures could also do this, e.g. an entropy measure −∑ia νialn(νia).

CHAPTER 7. OPTIMIZATION NETWORKS 113

7.3.6 Observations on the Algorithm

The first step of Figure 7.4 is to map the constraints of the problem into the neu-

ral net connection weights. In our implementation, at each Tn the MFA algorithm

(Figure 7.4) performs one update per neural variable (defined as one sweep) with

sequential updating using equations 7.9 and 7.10. If the saturation Σ, has changed

more than 10% after all neurons have been updated once, the system is re-initialized

with T (0)→ 2T (0). After reaching a saturation value close to 1 (we choose Σ = 0.99)

we check whether the obtained solutions are valid, i.e. Ehard = 0. If this is not the

case the network is re-initialized and is allowed to resettle. We repeat this procedure

a number of times until the best solution is found. A similar procedure was carried

out on high school scheduling by Peterson et al. [GSP92].

The MFA implementation was a little more complicated than the implementation

of simulated annealing and the expert system, since it had many more parameters to

handle, and it was often more difficult to find optimal values for these parameters. For

example, one complication is the computation of the critical temperature Tc, which

involved an iterative procedure of a linearized dynamic system. On the other hand, we

observed that the convergence time was indeed much less than any of the convergence

times of the simulated annealing using the three annealing schedules studied.

For a full derivation of the mean-field annealing algorithm from its roots in sta-

tistical physics, see Krogh, Hertz and Palmer [HKP91].

7.3.7 Definitions and Constraints

Here we define all of the terms and concepts used throughout this chapter for the

implementation of class scheduling on the Potts model.

Let (Np) to be a number of professors that give (Nq) classes in (Nx) rooms at (Nt)

time slots. Event-wise, (p, q) event – denoting a professor p giving a class q – takes

place in the space-time slot (x, t) – denoting room x at time t.

CHAPTER 7. OPTIMIZATION NETWORKS 114

Definition 7.3.2 Let Spq;xt denote the Potts (or multi-state) neuron, where

Spq;xt =

 1 if event (p, q) takes place in (x, t) ,

0 otherwise.
(7.14)

✷

Definition 7.3.3 We have dealt with two types of constraints:

1. Those involving professors, rooms, subjects, and time periods.

2. Those dealing with students scheduling and preferences.

In addition, some of these constraints are usually classified to be hard, others are

medium and the rest are soft. ✷

Definition 7.3.4 Here, we define a number of hard constraints of the first type

(see definition 7.3.3) .

• An event (p, q) should occupy precisely one space-time slot (x, t).

This constraint can be embedded in the neural net in terms of the Potts normalization

condition: ∑
x,t

Spq,xt = 1 (7.15)

• Different events (p1, q1) and (p2, q2) should not occupy the same space-time slot

(x, t).

EXT =
1

2

∑
x,t

∑
p1,q1

∑
p2,q2

Sp1q1;xtSp2q2;xt =
1

2

∑
x,t

(∑
pq

Spq;xt

)2

(7.16)

• A teacher p should have at most one class at a time.

EPT =
1

2

∑
p,t

∑
q1,x1

∑
q2,x2

Spq1;x1tSpq2;x2t =
1

2

∑
p,t

(∑
qx

Spq;xt

)2

(7.17)

• A class q should have at most one teacher at a time.

CHAPTER 7. OPTIMIZATION NETWORKS 115

EQT =
1

2

∑
q,t

∑
p1,x1

∑
p2,x2

Sp1q;x1tSp2q;x2t =
1

2

∑
q,t

(∑
px

Spq;xt

)2

(7.18)

✷

In [Hop84, HT85], Hopfield introduced a model with neurons having a graded

response. So given Ii a fixed input bias to neuron xi, Wij the weight of the connection

between neurons (xi, xj), and parameter T to denote the Temperature, the behavior

of xi can be stated as:

xi =
1

2
+

1

2
· tanh

(
∑
i
=j
Wijxj − Ii)× 1

T

 (7.19)

When T −→ 0, function (7.19)’s response takes on a step-wise form. These models

of [HT85] are known to be a bit sensitive to parameter tuning for real world applica-

tions, especially those of the type that involves “finding” or “searching for” 1 out-of

N type problems.

Definition 7.3.5 At a finite T , xi (of eq. 7.19) can be replaced by an MFT variable

υia, then differentiating to obtain the Potts MFT equations:

υia = − 1

T
· ∂E[�ν]

∂νia
(7.20)

νia =
eυia∑
b e

υib
(7.21)

Which enforces

∑
a

νia = 1 ∀i . (7.22)

Where a denotes the vector components or all the elements of the group. Also, we

could state that νia ≈ Probability(neuron(i) ∈ state(a)). Equations (7.20, 7.21) are

computed in an iterative manner. ✷

Definition 7.3.6 To carry out the minimization of the energy functions of definition

(7.3.2) we need to convert the neural variables {0, 1} of Si to their corresponding mean

field variables at T . These correspondences are derived (see [GSP92]) to be:

CHAPTER 7. OPTIMIZATION NETWORKS 116

Vpq;xt ≈< Spq;xt >T ; (7.23)

which is the thermal average of the original binary spines, with the following multi-

state MFT equations (see (7.20, 7.21) for a general format):

Upq;xt = − 1

T
· ∂E

∂Vpq;xt
(7.24)

Vpq;xt =
eUpq;xt∑

x′ t′ e
U

pq;x
′
t
′ (7.25)

✷

The MFT equations of υ and ν are solved iteratively either synchronously or

asynchronously, under T . Also, these equations give rise to 2 phase transitions; one

in x (space) and the other in t (time). This leads to factorization of the system by

replacing Spq;xt by X-neurons S(X)
pq;x and T ime-neurons S

(T ime)
pq;t :

Definition 7.3.7

Spq;xt = S(X)
pq;x · S(T ime)

pq;t (7.26)

With separate Potts conditions:

∑
x

S(X)
pq;x = 1 (7.27)

∑
t

S
(T ime)
pq;t = 1 (7.28)

For X-neurons and T ime-neurons, respectively. Rather than dealing with p

and q directly, an independent variable (i) -acting as an event index- to which p

and q are attributes p(i) and q(i). The value of these exits in a look-up table which

contains all the relevant information to process each event (i). Now, the above (7.27,

7.28) conditions can be re-stated as follows:

∑
x

S
(X)
i;x = 1 (7.29)

CHAPTER 7. OPTIMIZATION NETWORKS 117

∑
t

S
(T ime)
i;t = 1 (7.30)

✷

During annealing, as we go from a higher temperature to a lower one, a phase

transition is passed at (T = Tc), where Tc
‡ is the critical temperature. The value of

Tc set the scale or the range of the value of T , and it is estimated by expanding 7.25

around some trivial fixed-point such as

V
(0)
pq;xt =

1

NxNt
, at T = 0 . (7.31)

Also Tc depends on the self-coupling coefficient β, and on the method of the

update. This parameter β acts as a Lagrangian multiplier for the given energy con-

straint(s). See section on the generic Potts algorithm and [PS89].

Definition 7.3.8 Relative Clamping: During the revision process of an existing

schedule, sometimes it is desirable to have a certain cluster of events to stick together

in time (or within some specified period of time). This amounts to making the

following notational replacement:

i −→ (j, k) ; (7.32)

where (j) denotes the cluster and (k) an event within (j). In this situation, one

has a common t-neuron (S
(T ime)
j;t) for cluster j but distinct x-neurons (S

(X)
jk;x) for the

individual events. ✷

Definition 7.3.9 To deal with events that take place over two consecutive hours,

what [PS89] called effective time-neurons S̃
(T ime)
i;t are introduced:

S̃
(T ime)
i;t =

gi−1∑
k=0

S
(T)
i;t−k ; (7.33)

where gi = 1 for single hours and = 2 for double hours. For those events that occur

between one and two hours, gi can be adjusted accordingly to handle these cases. ✷

‡See pp 29-31 of [HKP91] for an approximate value in the case of Ising ferromagnets.

CHAPTER 7. OPTIMIZATION NETWORKS 118

Utilizing definition (7.3.9), constraints (7.16, 7.17, 7.18) can be put into the fol-

lowing form:

Definition 7.3.10

EXT =
1

2

∑
x,t

∑
i
=i′
S

(X)
i;x S

(X)

i′ ;x S̃
(T ime)
i;t S̃

(T ime)

i′ ;t (7.34)

EPT =
1

2

∑
p,t

∑
i
=i′
δp(i),p(i′)S̃

(T ime)
i;t S̃

(T ime)

i′ ;t (7.35)

EQT =
1

2

∑
q,t

∑
i
=i′
δq(i),q(i′)S̃

(T ime)
i;t S̃

(T ime)

i′ ;t (7.36)

✷

Definition 7.3.11 The Kronecker δq(i),q(i′) ensures that only events i and i′ with

identical “primordial” classes are, for example, summed over. Here, q(i) and q(i′)

refer to classes of the same type or 2 sections derived from the same original class.

δr,s =

 1 if r = s

0 otherwise.
(7.37)

✷

Definition 7.3.12 One important soft constraint that need to be handled is group

formation. Briefly, it can be stated as follows: for some optional subjects the classes

are broken up into option groups temporarily forming new classes. In order to account

for this, we need a formalism that allows for the breaking up of these primordial classes

and subsequent recombinations into quasi-classes. This is a common practice with

those classes where the students have many choices. To carry out such an extension to

quasi-classes one might have contributing pairs of events where the primordial classes

are different. Hence one should replace δ with a more structured overlap matrix Γ

which is given by a look-up table.

δq(i),q(i′) −→ Γq(i),q(i′) . (7.38)

✷

CHAPTER 7. OPTIMIZATION NETWORKS 119

Definition 7.3.13 From definitions (7.3.8, 7.3.12), we need to make sure that

(∀k) events within a given (j) cluster p(j, k) �= 0. This says that there can be no

“uncovered” class period or a class event (that is, periods when no professor has been

assigned to an already scheduled class). For this purpose we introduce δ̃j,k according

to:

δ̃j,k = δj,k(1− δj,0δk,0) . (7.39)

If j = 0 then ∀k , k = 0 . ✷

Definition 7.3.14 Utilizing the concepts of the above definition (7.3.12, 7.3.13),

the collision terms of definition (7.3.10) are extended to ensure that all the hard

constraints are satisfied (or the solutions obtained are legal). The extension takes the

following forms:

EXT (form 1) =
1

2

∑
jk
=j′k′

∑
x

S
(X)
jk;xS

(X)

j′k′ ;x

∑
t

S̃
(T ime)
j;t S̃

(T ime)

j′ ;t (7.40)

EXT (form 2) =
1

2

∑
j
=j′

∑
kk′

∑
x

S
(X)
jk;xS

(X)

j′k′ ;x

∑
t

S̃
(T ime)
j;t S̃

(T ime)

j′ ;t +
1

2

∑
j

gj
∑
k
=k′

∑
x

S
(X)
jk;xS

(X)

jk′ ;x

(7.41)

EPT (form 1) =
1

2

∑
p,t

∑
jk

δ̃p,p(j,k)S̃
(T ime)
j;t

∑
j′
=j

∑
k′
δ̃p,p(j′ ,k′)S̃

(T ime)

j′ ;t

 (7.42)

EPT (form 2) =
1

2

∑
j
=j′

∑
kk

′
δ̃p(j,k),p(j′ ,k′)

∑
t

S̃
(T ime)
j;t S̃

(T ime)

j′ ;t (7.43)

EQT (form 1) =
1

2

∑
qt

∑
jk

δq,q(j,k)S̃
(T ime)
j;t

∑
j′
=j

∑
k′

Γq,q(j′ ,k′)S̃
(T ime)

j
′
;t

 (7.44)

EQT (form 2) =
1

2

∑
j
=j′

∑
kk

′
Γq(j,k),q(j′ ,k′)

∑
t

S̃
(T ime)
j;t S̃

(T ime)

j′ ;t (7.45)

Note: Each “form 2” above is a derivation from its corresponding “form 1”. ✷

CHAPTER 7. OPTIMIZATION NETWORKS 120

The factorization idea of (dfn 7.3.14) can be extended to mean field variables V
(X)
jk;x

and V
(T ime)
j;t , corresponding to neurons (S

(X)
jk;x) and (S

(T ime)
j;t), respectively. V

(X)
jk;x and

V
(T ime)
j;t can be interpreted as being the probabilities that the corresponding events

occur at given x-value and t-value with normalization given by the above equations

(7.29, 7.30) .

Substituting V for S in (7.29, 7.30), the mean field equations at a finite T , are

given in terms of the local fields U
(X)
jk;x and U

(T ime)
j;t . Now, the mean field dynamics

proceed over the following local and mean field variables:

Definition 7.3.15

U
(X)
jk;x = − 1

T
· ∂E

∂V
(X)
jk;x

(7.46)

U
(T ime)
j;x = − 1

T
· ∂E

∂V
(T ime)
j;t

(7.47)

V
(X)
jk;x =

eU
(X)
jk;x

∑
x′ e

U
(X)

jk;x
′

(7.48)

V
(T ime)
j;t =

eU
(Time)
j;t

∑
t′ e

U
(Time)

j;t
′

(7.49)

The iterations of the MF dynamics over equations (7.46 - 7.49) can either be

synchronous or serial (see [GSP92]). ✷

Definition 7.3.16 Synchronous Updating: A single sweep consists of first comput-

ing all the local fields, and then updating all the neurons. That means do equations

(7.46,7.47) then perform equations (7.48,7.49). ✷

Definition 7.3.17 Serial Updating: For each neuron S
(X)
jk;x and/or S

(T ime)
j;t , the local

field is computed immediately before the corresponding neuron state is updated. That

means either do equation (7.46) followed by (7.48) and/or do equation (7.47) followed

by (7.49). ✷

CHAPTER 7. OPTIMIZATION NETWORKS 121

Next, we need to define 2 important soft constraints encountered when schedul-

ing classes.

Definition 7.3.18

• Spreading: different classes in a particular area (i.e. computer science) should

be spread over the week in a (MWF) and (TuTh) type of spread.

First, assume we have access to a subject attribute s(j, k). Second, we define an

effective “day-neuron” as follows (S̃
(T ime)
j;dh is reduced to a D-type neuron by summing

over all hours of the day):

S
(D)
i;d =

∑
h

S̃
(T ime)
j;dh = gj · S(T ime)

j;dh (7.50)

So the penalty term EQSD that spreads classes Q in a particular subject S over

different week-days D :

EQSD =
1

2

∑
qsd

∑
jk

∑
h

δq,q(j,k)δs,s(j,k)S̃
(T ime)
jk;dh

2

(7.51)

Refining the above a bit more by considering 2 different clusters (j) and (ĵ) of

classes over D : (q and s are not used in the summation, since no change occurs to

them)

EQSD =
1

2

∑
d

∑
j
=ĵ

∑
kh

∑
k̂ĥ

δq(j,k),q(ĵ,k̂)δs(j,k),s(ĵ,k̂)Ŝ
(T ime)
j;dh Ŝ

(T ime)

j;dĥ
(7.52)

Now for some day (d) of the week:

EQSD =
1

2

∑
j
=ĵ

∑
kk̂

δq(j,k),q(ĵ,k̂)δs(j,k),s(ĵ,k̂)
∑
d

S
(D)
j,d S

(D)

ĵ,d
(7.53)

• Glueing: The schedule should have as few “holes” as possible; that is lessons

should be glued together.

CHAPTER 7. OPTIMIZATION NETWORKS 122

The penalty term that rewards situations where (d, h)-events are glued to (d, h−1)-
events can be defined as follows:

EQDH = −α∑
q

∑
d,h

∑
j,k

δq,q(j,k)S̃
(T ime)
j;dh

∑
ĵ
=j

Γq,q(ĵ,k̂)S̃
(T ime)
j;d(h−1)

 (7.54)

The energy term of (7.54) can be summarized to say that: if cluster (j) with events

each symbolized by (k) occurs on hour (h) of day (d) then it would be quite desirable

to have another event (k̂) from a different cluster (ĵ) to occur on hour (h−1) of that

day.

Next, since (q) is fixed we could re-write the above equation as follows:

EQDH = −α∑
ĵ
=j

∑
k,k̂

Γq(j,k),q(ĵ,k̂)
∑
d,h>1

S̃
(T ime)
j;dh S̃

(T ime)

ĵ,d(h−1)
(7.55)

The presence of the (−) sign in front of (7.54, 7.55) indicates that such energy

functions are to be minimized. Also, the (α) in front of the the above forms governs

the strength of this reward relative to the energies of equations (7.16,7.17,7.18). This

(α) takes on a value between zero and 1.

Finding legal solutions with no collisions corresponds to minimizing the hard en-

ergy:

Ehard = combine(EXT , EPT , EQT) (7.56)

to zero. The soft energy is given by:

Esoft = combine(EQSD, EQDH) . (7.57)

The total energy E to be minimized is then:

E = combine(Ehard, Emedium, Esoft) . (7.58)

✷

CHAPTER 7. OPTIMIZATION NETWORKS 123

7.3.8 More Definitions and Constraints

Let q(i) represents a section of class q, Oq(i) indicates that section q(i) is open, and

Cq(i) is closed. Also, let b(x, t) be a balanced interval for some time period (t), R is

the overall set of students, and an arbitrary given subset is r ⊆ R.

Here, we need to introduce the R-neuron: S
(R)
r(i);(d(t)d(x) where k = 1, 2, Each

student r(i) ∈ R should have a balanced schedule over the two-group of days (MWF)

and (TuTh). We will also use rs to denote a single student.

For X and T neurons, let x(j) and t(j) where j = 1, 2, . . . , n stand for places and

time slots (or events), respectively. Using such notation, an example of the Potts

normalization will be: S
(X)
p(i)q(i);x(j) and S

(T ime)
p(i)q(i);t(j) respectively, where i = 1, 2, . . . , n is

a section index.

Definition 7.3.19 The athletes case: Let �r ⊆ R denotes the group of athletes that

are dealt with in this study. Let (r∗,b) be playing/training events scheduled during

the weekdays at (or during) times when academic (attending lectures) events (r+,a)

are also scheduled, or may possibly occur. Let (d(x), d(t)) a place/time during the

week at which any of these events can occur.

In addition to the above stated Potts neurons, we also will be using :

1. S
(1r,X)
r∗b;d(x) , S

(1r,T ime)
r∗b;d(t) : It takes a value of 1 if event (r∗, b) takes place in the place

and time slot, respectively, of a weekday d, and 0 otherwise.

2. S
(1r,X)
r+a;d(x) , S

(1r,T ime)
r+a;d(t) : It takes a value of 1 if event (r+, a) takes place in the place

and time slot, respectively, of a weekday d, and 0 otherwise.

3. S
(1r,X)
jk;d(x) : It takes a value of 1 if event (k) of cluster (j) that is associated with

the x-neuron of �r occurs in place d(x), and 0 otherwise.

4. S
(1r,X)

ĵk̂;d(x)
: It takes a value of 1 if event (k̂) of cluster (ĵ) that is associated with

the x-neuron of �r occurs in place d(x), and 0 otherwise.

5. S̃
(1r,T ime)
j;d(t) : It takes a value of 1 if cluster (j) that is associated with the t-neuron

of �r occurs in time d(t), and 0 otherwise.

CHAPTER 7. OPTIMIZATION NETWORKS 124

6. S̃
(1r,T ime)

ĵ;d(t)
: It takes a value of 1 if cluster (ĵ) that is associated with the t-neuron

of �r occurs in time d(t), and 0 otherwise.

In the above list, the last two neurons act as what Peterson et al. calls effective

time-neurons. Not only will they handle periods of single hours but also variants of

longer and shorter intervals. ✷

Definition 7.3.20 Set (ε) and (c) to some desired values depending on the time

period of the set of classes, now, the above effective t-neurons can be defined as

follows:

S̃
(1r,T)
j;d(t) =

gj−c∑
k=0

S
(1r,T)
j;d(t−k+ε) (7.59)

S̃
(1r,T ime)

ĵ;d(t)
can be defined in a similar manner. If (c = 1) and (gi = 2), then we are

dealing with double-hour intervals so we set (ε = 0). If (c = 1) and (gi = 1) then

(ε = 0) and

S̃
(1r,T ime)
j;d(t) = S

(1r,T ime)
j;d(t) . (7.60)

✷

Definition 7.3.21 Let S
(R)
q(i)r(i);b(x,t) for balancing the enrollment in a multi-section

courses. Section q(i) of students r(i) are balanced over space-time b(x, t).

To enroll student r(i) in a particular section q(i) given the tag EC to indicate

the status of the student, we have S
(X[T ime])
q(i)r(i);(d(x)[d(t)])|EC ∈ {0, 1} is set to0 if EC is 0,

otherwise, it is set to 1 and the action q(i)r(i) occurs during place d(x) and/or time

d(t).

Let lin(ci, cj) representing the concept that course ci is linked to some other course

cj ; in this case, ci is a pre-requisite to cj. The degree of “linkage” varies between 0

and 1. It takes a value of 1 if under all circumstances, course ci must be taken before

cj .

CHAPTER 7. OPTIMIZATION NETWORKS 125

To deal with this linkage concept, we assumed in definition (7.3.18) that we have

an attribute s(j, k) to represent a subject. For a strong linkage, we will assume that

we’re dealing with subjects that belong to the same cluster (j) (e.g. physics courses),

so the link between various events of (j) is: lin(s(j, k), s(j, k̂)).

Other degrees of linkage can involve subjects or courses from different groups or

clusters (e.g. physics and math courses, or engineering and math courses), and this

connection is in the form: lin(s(j, k), s(ĵ, k̂)).

Let x̂(i) be a single location (or a seat) in class x(i) such that i = 1, 2, . . . , num ;

where (num) is the number of class-rooms. ✷

Day-Class Balancing

Each student of any particular section (i.e. r(k)) should have a balanced schedule

between (MWF) and (TuTh). The balancing operation is accomplished by spreading

as much as possible the courses of the student over each of (MWF) and (TuTh).

Let D be the set {{MWF}, {TuTh}} = {D1, D2}. Assume the existence of the

subject attribute s(j, k). We introduce the energy function EQSD that spreads the

classes (Q) in a particular field or subject (S) over the set {D1, D2}.

Definition 7.3.22 The Potts condition of balancing S
(R)
q(m)r(m);b(x,t) (take a value of 1

for balanced and 0, otherwise) is accomplished through one (or all) of these energies:

Er
QSD =

1

2

∑
j
=ĵ

∑
kk̂

δq(j,k),q(ĵ,k̂)δs(j,k),s(ĵ,k̂)
∑
d1,d2

S
(D)
j,d1
S

(D)

ĵ,d2
(7.61)

Er
QSD1

=
1

2

∑
j1
=ĵ1

∑
k1k̂1

δq(j1,k1),q(ĵ1,k̂1)
δs(j1,k1),s(ĵ1,k̂1)

∑
d1

∑
i
=î
S

(D)
i,d1
S

(D)

î,d1
(7.62)

Er
QSD2

=
1

2

∑
j2
=ĵ2

∑
k2k̂2

δq(j2,k2),q(ĵ2,k̂2)
δs(j2,k2),s(ĵ2,k̂2)

∑
d2

∑
i
=î
S

(D)
i,d2
S

(D)

î,d2
(7.63)

✷

CHAPTER 7. OPTIMIZATION NETWORKS 126

The Case of Student Athletes

The main constraint of this case very much analogous to the hard constraint stated

somewhere above : different events should not occupy the same space-time slot.

Definition 7.3.23

E1r
d(XT) =

1

2

∑
d

∑
xt

∑
ṙb

∑
r̈a

S
(1r,X[T ime])
ṙb;d(x)[d(t)] S

(1r,X[T ime])
r̈a;d(x)[d(t)] (7.64)

Where (ṙb) and (r̈a) are some two different events. After some further refinement,

we obtain:

E1r
d(XT) =

1

2

∑
j
=ĵ

∑
kk̂

∑
d(x)

S
(1r,X)
jk;d(x)S

(1r,X)

ĵk̂;d(x)

∑
d(t)

S̃
(1r,T ime)
j;d(t) S̃

(1r,T ime)

ĵ;d(t)
+

1

2

∑
j

gj
∑
k
=k̂

∑
d(t)

S
(1r,X)
jk;x S

(1r,X)

jk̂;x

(7.65)

Since it is always the case that athletic training facilities are kept separate from

the academic class-rooms and lecture halls, a more refined energy function is obtained:

E1r
d(T ime) =

1

2

∑
j
=ĵ

∑
d(t)

S̃
(1r,T ime)
j;d(t) S̃

(1r,T ime)

ĵ;d(t)
(7.66)

✷

Eligibility for Enrollment

Definition 7.3.24 Before going through the process of balancing, each student (r(i) =

rs) eligibility for enrolling in a given class need to be determined. Let the student’s

eligibility criteria be denoted by (EC), using the notation stated above, we could

derive the following energy function —note: if EC is set to “No” then it takes a 0

value in the energy function, otherwise, it is a 1 :

EQR =
1

2

∑
qr

∑
jk

∑
i

δq,q(j,k)δr,r(i)S
X
ij;x(i)|(EC ∈ {0 , 1}) (7.67)

CHAPTER 7. OPTIMIZATION NETWORKS 127

∑
i

Oq(i) = 1⇒ Test: {EC(R) + satisfy-constraints (Hard, Soft)} (7.68)

✷

Course Pre-requisite and Subsequent Assignment

Utilizing the link concept lin(s, s′) between two different subjects (see definition

7.3.21), a general energy assignment can be put together as follow:

Definition 7.3.25 Let (i) stands for the situation at hand (also can be viewed as

a space-time event).

Elink(1) = −γ
∑
is

∑
jk

δs,s(j,k)S̃
(X[T ime])
ln(s,s′);i

2

(7.69)

Elink(2) = −γ
∑
s

∑
j
=j′

∑
k
=k′

δs(j,k),s(j′,k′)
∑
i

S̃
(X[T ime])
ln(s(j,k),s(j′,k′));iS̃

(X[T ime])
ln(s(j,k),s(j,k′));i (7.70)

Elink(3) = −γ
∑
j
=j′

∑
k
=k′

δs(j,k),s(j′,k′)S̃
(X[T ime])
ln(s(j,k),s(j′,k′));iS̃

(X[T ime])
ln(s(j,k),s(j,k′));i (7.71)

If (γ > 0) then function minimization is the target here, otherwise maximization

will take place.

✷

Enroll in all parts of a course

There are a number courses of different types that not only have lecture periods but

also associated sections that consist of either labs or recitations or both. Signing up

for such a course entails enrolling in all associated sections of it.

Let us assume the existence of some subject attribute s(j, k) consisting of two

components: ṡ denoting lectures, and s̈ stands for labs. Now the energy equation

depicting this assignment can be outlined as follow:

CHAPTER 7. OPTIMIZATION NETWORKS 128

Eenroll(1) =
1

2

∑
s

∑
jk

∑
i

δs,s(j,k)δr,r(i)
∑
t

S
(T ime)
jk;t (7.72)

Eenroll(2) =
1

2

∑
si

∑
t
=t′

∑
jk

δs,ṡ(j,k)δr,r(i)S
(T ime)
jk;t

∑
jk′
δs,s̈(j,k′)δr,r(i)S

(T ime)
jk′;t′

 (7.73)

Eenroll(3) =
1

2

∑
k
=k′

δs,ṡ(j,k)δs,s̈(j,k′)
∑
t
=t′
S

(T ime)
jk;t S

(T)
jk′;t′ (7.74)

Lecture hall capacity

In order to satisfy this constraint, the following inequality need to hold.

∀x∑
i

||x(i)| −∑
j

∑
k

S
(X)
jk;x(i)| ≥ 0 . (7.75)

Student status and priority mapping

Eassign =
1

2

∑
m,x̂,x

∑
i
=i′
S

(X)
x̂;x

(
S

(R)
r(i);(x̂(m)∈x(m))|(M = Req) + S

(R)

r(i′);(x̂(m)∈x(m))
|(M = χ)

)

(7.76)

On the Energy Equation of the Potts Model

The energy function of the Potts spin model is of the form:

E = Epart(1) + Epart(2) + Epart(3) + . . .+ Epart(n) (7.77)

where each component of this function stands for each of the energy functions

defined previously.

In [PS89], in which the TSP is used as study case, parameters α and β are used

to control the strength of E’s restraints. The same parameters can also be used

when dealing with non-Euclidean type combinatorial optimization problems such as

scheduling.

CHAPTER 7. OPTIMIZATION NETWORKS 129

Observation 7.3.26 For timetabling, β is split into two parts (β(T ime) and β(X)),

one with respect to the time-based neurons and the other with respect to the space-

based neurons. Eβ becomes as follows:

−β
(T ime)

2

∑
j

∑
t

[S
(T)
j;t]

2 − β
(X)

2

∑
jk

∑
x

[S
(X)
jk;x]

2
(7.78)

Here, the appearance of β(T ime) and β(X) is only in the diagonal terms. They play

a crucial role in monitoring the dynamics (phase transitions, etc.). These diagonal

terms correspond to self coupling interactions for the neurons of the network. In our

simulations, each is set to −0.1. ✷

7.3.9 General Comments on the Algorithm

Let (N) denotes the total number of the utilized neurons. At high T , the mean field

solutions will tend to be states near to the (symmetrical) maximum entropy state:

∀(i, a)via = 1/N . Conversely at low T , finding a mean field solution will be equivalent

to using a local optimization method on the internal energy — a procedure highly

sensitive to the initial conditions and known to be ineffective (see p. 149 of [HT85]).

7.3.10 Some Implementation Details

The general idea is to initialize the system close to the symmetric state at a temper-

ature near Tc, then, allowing the system to converge to a fixed point at each temper-

ature, anneal (i.e. reduce T) until either the system reaches a stable high saturation

state or some other termination criterion is satisfied. Specifically, the implementation

used here has the following ingredients§¶:
§These follow the method used in [PS89] but with some additions/improvements done by the

authors -see algorithm above.
¶Martin Simmen –in a private communication– investigated in depth these and most of the other

issues pertaining to the Potts model, using the TSP as a test case.

CHAPTER 7. OPTIMIZATION NETWORKS 130

• Initial State Another possible initial value of V n=0
ia is (1 + ξia)/N , with the

ξia being random variables drawn uniformly from [−ξ, ξ]. Clearly ξ should be

� 1.

• Convergence At each T the Via variables are updated as above or by the

following rule‖:

V
(n+1)
ia = V

(n)
ia + γ(fia − V (n)

ia), 0 < γ ≤ 1 . (7.79)

Setting γ = 1 recovers the dynamics of [PS89], and the γ → 0 limit gives the

first order Euler integration method for the differential equation:

dVia/dt = fia − Via . (7.80)

The fixed points (also referred to as the free energy minima) of this equation con-

stitute the mean field solutions. The degree of convergence is monitored through

a “tolerance” quantity ∆expected of the form
∑

ia (Via − fia)2. If ∆expected < ∆
′
,

where ∆′ ≡ ∆(0.05/N), the system is deemed to have reached a fixed point and

the temperature is reduced. ∆ will henceforth be called the tolerance parameter.

• Annealing Schedule A simple exponential scheme is used, i.e. after reaching

a fixed point at T , T �→ T · Tr, where Tr ∈ (0, 1) controls the cooling rate.

Roughly speaking, Tr should be set to 0.9.

• Termination One criterion is as outlined above in the algorithm. The other

two involve terminating runs which either fail to reach a fixed point within a

certain number of sweeps at some temperature, or which allow T to fall below

some Tmin, (Tmin � Tc), without ever satisfying the Σ > Σthresh criterion. Tmin

was set to 10−3.

7.3.11 Performance Issues of MFA on Timetabling

Given Mx = average number of rooms for each category of classes, Nx = the overall

total number of rooms, and Nt = total number of slots , putting the figures of the
‖Thanks to M. Simmen for pointing this out. Also see [PS89]

CHAPTER 7. OPTIMIZATION NETWORKS 131

students aside, with a computational complexity of O(MxNxNt) per sweep, software

implementation of the MFA are unlikely to be competitive with conventional serial

algorithms such as 3-opt and Lin-Kernighan’s (for TSP like problems), which empir-

ically have an overall O(N2) running time [JM97]. Ideally, one would like to study

the likely performance of the method through numerical simulations using a small

step-size γ to approximate continuous time dynamics. However, this is computa-

tionally very expensive: not only do the simulation times grow as 1
γ
, but also small

values of (γ) accentuate the difference between the expected value T exp
c of the critical

temperature Tc and the theoretically computed value T theo
c . That is, low γ runs tend

to depress T exp
c artificially and thereby degrade solution quality, and as we observed,

result in a number of constraint violations for mainly soft constraints and a number

of hard ones as well. This latter point can be compensated for by more stringent

annealing parameters, but at the cost of longer simulation times. No attempts have

been made to carry this out. Also, we observe that the overall quality of the solution

degrades as the problem size increases. This degradation moves from soft constraint

violation to major violations of hard constraints, and hence, illegal timetables.

7.3.12 Mapping Timetabling onto the Potts Neural Nets

The Relationship Between the Key Timetabling Entities

Our problem consist of the following sets: teachers (P), classes (C), students (S),

rooms (R), and time periods (I).

Neural Mapping

Involve mapping the course scheduling problem onto the Potts model.

• These multi-state neurons, forming the network, represent different activities of

the timetabling problem.

• Construct the constraints of the problem using these neurons.

CHAPTER 7. OPTIMIZATION NETWORKS 132

P

I

S

C

R

Figure 7.5: A one-way arrow indicates that the “end-of-arrow” entity depends on
the “begin-of-arrow” entity; while a two-way arrow indicates a mutual dependency
between the two entities.

• Derive those MF equations controlling the dynamics of the net:

– Introduce the MF variables , for example,

Vpq;xt =< Spq;xt >T . (7.81)

– Start off with the partition function:

Z =
∑
[1s]

e−E[1s]/T . (7.82)

– Re-write Z in terms of a multidimensional integral over continuous vectors

(�ui, �vi).

– The MFT approximation to < �si > is given by the value �ui at the saddle

point equations:

CHAPTER 7. OPTIMIZATION NETWORKS 133

∂E

∂via
= 0 (7.83)

and
∂E

∂uia
= 0 , (7.84)

generating a set of self-consistency equations in the MF variables:

uia = − 1

T

∂E[�v]

∂via
, (7.85)

and

via =
euia∑
b

euib
. (7.86)

Where a denotes the vector components.

For events (pq, xt), we get the following MF variables:

upq,xt = − 1

T

∂E

∂vpq,xt
, (7.87)

and

vpq,xt =
eupq,xt∑

x′t′
eupq,x′t′

. (7.88)

From the latter follows, that
∑
a

via = 1 . One can think of the mean field

via as the probability for the Potts neuron i to be in state a.

• Iterate vpq,xt equation with annealing, i.e. starting at a high temperature, and

successively lowering it in the course of the process. A phase transition is passed

at T = Tc.

• Estimate the critical temperature Tc, which sets the scale of T , by expanding

the above vpq,xt equation around the trivial fix-point, at T = 0 :

v
(0)
pq,xt =

1

NxNt
. (7.89)

CHAPTER 7. OPTIMIZATION NETWORKS 134

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e (

ov
er

 10
 ru

ns
) o

f u
ns

ch
ed

ule
d c

las
se

s (
0.0

: a
ll s

ch
ed

ule
d,

1.0
: n

on
e s

ch
ed

ule
d)

Percentage (%) of spare classroom/timeslots (0 to 100)

large set (m,n,k,l) problems
medium set (m,n,k,l) problems

small set (m,n,k,l) problems

Figure 7.6: Percentage of scheduled classes versus number of spare room/time slots

7.4 Experimental Results

Figure 7.6 shows three sets of problems, each has m number of pofessors, n number

of classes, k number of classrooms (including auditoriums, seminar rooms, etc.), and

l number of time slots. The values of k and l are the same (fixed) for the three

problems but each has different values of m and n. The largest has an m = 1190

lecturers (including visiting professors and teaching assistants), and n = 3839 classes

of the first semester as shown in Table 6.1. The medium size problem has an m = 400

and n = 1600, while the smallest has and m = 150 professors and n = 450 classes.

At the start of scheduling when all space-time slots are open, the three sets, as shown

in the Figure 7.6, would be solvable. But as the available number of room/time slots

reduces, the three sets would become harder and harder to fully schedule. On other

words as more space and time resources get used the problem sets become harder

to schedule to satisfy the given constraints. Also, from our experiments we observed

CHAPTER 7. OPTIMIZATION NETWORKS 135

that the less sparse the set is, the more difficult it is to obtain a full schedule as space

and time slots get reduced.

7.5 Combinatorial applications of optimization net-

works

In addition to the classic benchmarks like the TSP, optimization networks have also

been proposed for the solution of many more practical problems. Although some

of the papers cited below do not describe proper mappings or effective annealing

procedures, they nonetheless provide a useful index of possible combinatorial applica-

tions of optimization networks. These include decoding error correcting codes [BB89],

image segmentation [GPP91], stereo correspondence [Tre91], load balancing [FF88],

classroom scheduling [GSP89], high school course scheduling [GSP92], multiproces-

sor scheduling [HK92], synthesis of digital circuits [UDP93], invariant pattern recog-

nition [BD89], analogue-to-digital conversion [TH86], data rearrangement [IN90],

assignment [EDK+91, TCP88], communication link scheduling [OB90], trackfind-

ing [Fox89], navigation problems [GF90], clustering [RGF90a, RGF90b, RGF90c,

Fox91], vector quantization [RGF90d], and implementing the viterbi algorithm for

Hidden Markov Models [AF91].

Chapter 8

Scheduling as a Graph Coloring

Problem

8.1 Introduction

Many scheduling problems involve allowing for a number of pairwise restrictions on

which jobs can be done simultaneously. For instance, in attempting to schedule classes

at a university, two courses taught by the same faculty member cannot be scheduled

for the same time slot. Similarly, two courses that are required by the same group of

students also should not conflict. The problem of determining the minimum number

of time slots needed subject to these restrictions is a graph coloring problem (GC).

GC has considerable application to a large variety of complex problems involv-

ing optimization. Among those problems is the one we have dealt with, which is a

large scale academic course scheduling. Constraints for these kind of problems are

usually expressible in the form of pairs of incompatible objects (e.g., pairs of classes

that cannot be assigned to the same room at the same time period). Such incom-

patibilities are usually embodied through the structure of a graph. Each object (e.g.

class) is represented by a node and each incompatibility is represented by an edge

joining the two nodes. A coloring of this graph is then simply a partitioning of the

objects into blocks (or colors) such that no two incompatible objects end up in the

136

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 137

same block. Thus, optimal solutions to such problems may be found by determining

minimal coloring for the corresponding graphs. Unfortunately, this may not always

be accomplished in a reasonable amount of time.

8.2 Mapping Scheduling onto Graph Coloring

Again, the mapping between a simple case of class scheduling and a graph-based

representation goes as follows: The events are represented by the vertices of the graph,

and a pair of vertices are joined by an indirected edge if and only if the corresponding

events cannot take place at the same time. Scheduling the events subject to the

given constraints is therefor equivalent to coloring the corresponding graph such that

no two adjacent vertices are of the same color. The determination of the minimum

number of intervals of time needed for the schedule is therefore the same as finding

the minimum number of colors required for the graph. This is known as the chromatic

number of the graph, and its determination for an arbitrary graph is yet unsolved

problem.

Let us look at a simple example to illustrate the mapping pictorially. Suppose we

have a graph with vertex set V and edge set E, where the ordered pair (R,S) is in E

if and only if an edge exists between the vertices R and S. Two vertices in a graph

are said to be adjacent if an edge exists between them. Given these sets, the overall

GC problem is to partition the vertices into a minimum number of sets in such a way

that no two adjacent vertices are placed in the same set. Then, a different color is

assigned to each set of vertices, as shown in Figure 8.1. This is known as a proper

graph coloring.

In regard to the scheduling problem, our objective is an attempt in finding a sched-

ule satisfying all of the hard constraints and if possible, most of the soft constraints.

One essential subset of the hard constraints set is the time-based constraints, and the

way to map them onto Figure 8.1 is as follows:

Let each course be represented by a vertex. Two vertices are connected by an edge

if and only if there is a reason that the courses they represent may not be offered at

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 138

green

red

blue

red

blue

green

blue

A

B

G

D

F

E

C

V = {A,B,C,D,E,F,G}

E = {(A,B),(A,C),(A,E),

 (B,C),(C,E),(D,E),

 (D,F),(D,G),(F,G)}

COLORS = {red, blue, green}

Figure 8.1: A proper graph coloring using three colors.

the same time. Initially, there are two such reasons for vertices to be linked: either

the courses they represent are taught by the same instructor, or required by the same

set of students. Upon adding in the links between vertices, we assign colors to the

graph. Each color represents a different time slot, so every vertex with the same color

will be offered at the same time.

Now assume we have, for example, four physics courses: PHY 101, PHY 234,

PHY 300, and PHY 300 LAB. The first three which are lectures are taught by the

same professor, and the fourth which is a laboratory is taught by another professor.

In addition, students enrolled in the lecture section of PHY 300 need also to be

enrolled in the lab section of the same course, and vice versa. These time-based hard

constraints are represented in the mapping as shown in Figure 8.2. An edge exists

between each of the pairs of courses taught by the same professor, since these courses

cannot be offered at the same time. Also, an edge exists between the nodes of PHY

300 and PHY 300 LAB, because the same set of students must enroll in both courses.

Figure 8.2 also shows a proper coloring with each node of the graph representing a

different time slot, so only three different time slots are needed to properly schedule

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 139

these four courses. PHY 101 and PHY 300 LAB will be offered during the same time

slot, PHY 234 will be in a second time slot, and PHY 300 in a third time slot. Note

that this system only partitions the courses into groups which will be offered at the

same time; it does not assign the actual time of day. This assignment of groups to

actual hours of the day can be done in another phase of the scheduling process in

which soft constraints are handled.

PHY
300

LAB

101
PHY

PHY
234

PHY
300

V = {PHY 101, PHY 234,
 PHY 300, PHY 300 LAB}

E = {(PHY 101, PHY 234),
 (PHY 101, PHY 300),
 (PHY 234, PHY 300),
 (PHY 300, PHY 300 LAB)}

COLORS = {red, blue, green}

red

blue

green red

Figure 8.2: A graph representing temporal hard constraints.

8.3 Graph Coloring Algorithm

When dealing with this kind of mapping between course scheduling and graph col-

oring, the first algorithm that a researcher would investigate would be the simple

saturation algorithm (DSatur, for short) of Brelaz [Bre79]. As we mentioned in the

previous section that the course scheduling problem needs to be simple in order for

methods such as DSatur to be effective. Before outlining this algorithm, we would like

to briefly state one of the characteristics of the problem we have dealt with to show

our justification or reasoning for using this algorithm. In addition, we also believe

that our observations apply to other similar instance of the problems.

It is often the case that after carrying out the mapping, the representative graphs

tend to be loosely connected. One particular reason for this is that any college

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 140

professor cannot be assigned to teach more than few courses per semester, perhaps

maximum of four or five. Therefore, graphs sometimes would show fully-connected

clumps of vertices representing those courses. That is partly the reason of having

fully (or almost fully) connected components within the overall graph. Also, these

components are usually loosely connected among themselves, resulting in a somewhat

sparse graphs (with relatively high degree of sparseness – see course scheduling chapter

for more details).

Graph coloring algorithms such as DSatur have been shown to work particularly

well on sparse graphs. Figure 8.3 and Figure 8.4 show two different versions of the

same algorithm.

Let V denote the vertex set, and E denotes the set of edges of the graph.

• Repeat until all vertices are colored

1. Choose the next vertex v from V to be colored by selecting the one whose
neighbors have already used the most colors. Break ties by choosing the
one with the most uncolored neighbors.

2. Color vertex v with the first color in the set of all colors that have not
been already used by one of the neighbors, x of V, such that v and x are
not equal.

• End Repeat.

Figure 8.3: DSatur Graph Coloring Algorithm – version (I)

It is interesting to notice that the DSatur method is an example of a heuristic

procedure for general graphs which is derived from an exact method designed for

coloring bipartite graphs (for these we have |F (x)| ≤ 1 at each step). There are other

coloring methods that slightly differ from DSatur in their choice of the next node to

be colored as well as the color which it will receive.

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 141

Let V denote the vertex set, and E denotes the set of edges of the graph.

1. Initially take any node with the largest possible number of neighbors and color
it with the smallest color.

2. In general, for each v of V, there is a set F(v) of forbidden colors (these may
be colors which have already been assigned to neighbors of v).

3. At each step, we choose a node x of V for which the cardinality, —F(x)—, of
F(x) is maximum (highest connectivity with the neighbors), and we color it
with the smallest possible color.

Figure 8.4: DSatur Graph Coloring Algorithm – version (II)

At the time when we used this algorithm we tweaked with it and made two modifi-

cations, both dealing with the available time slots for courses in order to accommodate

our problem setup.

1. One of the main constraints of course scheduling is the fixed number of available

time slots per week, and the preference to distribute the courses among each

of these time slots so that students have many options when selecting courses.

Therefore, we modified DSatur to select colors for vertices so that, among the

previously used legal colors for a vertex in V, the one used the fewest number of

times previously was selected. This small modification to the algorithm served

to distribute the courses more evenly over the time slots. In a typical graph

coloring setup, a user usually tries to minimize the number of colors used.

2. The second modification to DSatur was necessary due to the fact that time

slots for university courses can take different forms. Specifically, the types of

time slots dealt with were of two types, although the modification to the graph

coloring algorithm can be generalized to more than two types. The first type

of time slots, called lecture time slots, were three-credit hour courses that met

either three times per week for an hour at a time, two times per week for an

hour and a half at a time. The second type of time slots, called laboratory

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 142

time slots, meet for one three-hour period each week. In order to accurately

represent these time slots with colors, two related sets of colors were developed,

as illustrated in Figure 8.5.

For example, consider three lecture courses exist which have been colored red,

blue, and green. Suppose these colors represent the slots which meet for one

hour each on Monday, Wednesday, and Friday at 9:00, 10:00, and 11:00, re-

spectively. Then consider a laboratory course which is taught by the same

professor as one of the lecture courses already colored red, blue or green. This

lab course may not be assigned the time slot that corresponds to Monday 9-

12:00, Wednesday 9-12:00, or Friday 9-12:00, since it would overlap the lecture

course. So those three laboratory time slots must be represented by colors which

clearly identify the fact that no vertex adjacent to a red, blue, or green lecture

course vertex may be given these colors. Therefore, these time slots were labeled

with all three conflicting lecture vertex colors, as red-blue-green. However, two

different laboratory courses taught by the same instructor could both be sched-

uled for the red-green-blue time slots, as long as they were on different days.

So the red-green-blue laboratory time slots that met on Monday, Wednesday,

and Friday were called red-blue-green-Monday, red-blue-green-Wednesday, and

red-blue-green-Friday, respectively, to distinguish them from one another.

Consequently, due to our use of two sets of timeslots (lecture and laboratory

timeslots) and also due to our criterion of scheduling one set prior to the other,

we had to modify the method to color the lecture-of-course set of vertices first,

followed by the lab-of-course set of vertices. Without this modification there

is no distinction between various sets of vertices. Also, during the scheduling

process we needed to do “re-coloring” of the graph that was constructed to get

a legal schedule.

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 143

11:00 am

10:00 am

9:00 am

TM W Th F

LECTURE COURSES

11:00 am

10:00 am

9:00 am

TM W Th F

LABORATORY COURSES

Figure 8.5: Time slots belonging to two overlapping sets.

8.3.1 Spatial Hard Constraints

Once the modified graph coloring algorithm has partitioned the vertices into time

slots, a room must be assigned for each course in each time slot. One constraint

that must be fulfilled is that no course may be assigned to a room which has a

smaller capacity than the maximum enrollment of the course. Additionally, each

room available on campus is of a particular type, such as lecture, seminar, laboratory,

etc. Each course requires one of these types of rooms. Furthermore, some rooms

are reserved by particular departments for their courses only, such as a chemistry

laboratory room, while other rooms are general usage rooms, for any department to

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 144

use. An algorithm was developed to assign all of the courses which have been assigned

to the same time slot to appropriate rooms, assigning courses to the rooms reserved

by department first, then the general purpose rooms, always considering the largest

capacity rooms and largest courses first.

However, this simple algorithm alone is not sufficient. Consider the case where 25

courses of maximum enrollment 100 are assigned to the same time slot. Suppose that

only 20 rooms of capacity 100 or greater exist on campus. There is no way to create a

legal schedule of courses with all 25 courses in the same time slot. The solution to this

problem was to re-color the graph, having added edges between each of the vertices

representing “leftover” courses, that is, those who did not get assigned a room, and

then re-assign rooms. Adding the edges between these vertices ensures that they will

not end up assigned to the same time slot, and therefore will not vie for the same

rooms at the same time.

8.3.2 Structure of Code

The structure of the code, when the algorithms for both temporal and spatial con-

straints are included, is shown in Figure 8.6. This code produces a full legal solution

to the course scheduling problem, that is, one that satisfies all of the hard constraints.

Ideally, this solution would then be slightly altered or fed into the next phase of sim-

ulation to satisfy the maximum number of the soft constraints.

The data used in testing the system was supplied by Syracuse University. Two

sets of science and engineering courses for the first and second semesters were used,

and each set is around 450 classes. Each set was scheduled into fewer than 185 rooms.

8.4 Group Assignment Problem

This is a subproblem of the overall course scheduling problem, and the goal is to give

an initial assignment of students to section of courses, hopefully in a way that leads

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 145

• Input course data; inserting links between co-requisite courses

• Input instructor data; inserting links between courses taught by the same pro-
fessor

• Input room data; separating reserved usage rooms from general usage rooms

• Repeat Until number of conflicts = 0

1. Color lecture-course vertices

2. Color laboratory-course vertices

3. Assign rooms; adding links to the graph where conflicts exist

• End Repeat.

Figure 8.6: The overall structure of the course scheduling algorithm.

to a good timetable with minimum conflicts for students. More precisely, given N

student schedules listing selected courses, map each schedule into a schedule listing

sections of the selected courses in such a way that no section of a course is assigned

more than B students and the conflicts in students will be minimized when the sections

are scheduled into no more than, say , M time slots.

It is not clear a priori how to achieve this goal, given that minimizing the number

of conflicts in the timetable is NP-complete. One approach, for example, is simply to

use a naive assignment with no specific goal other than making sure no more than,

say B (maximum number allowed to sign in) students are in each section. There are

other approaches or heuristics as those mentioned below.

8.4.1 Revising Section Assignment

After a timetable has been constructed, it is desirable to revise the assignment of

students to sections of the course in order to reduce the number of conflicts. One

can view this problem in the following way: Given a timetable for sections of the

courses, assign students to a section in such a way that no section has more than

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 146

B students and the number of conflicts, as measured by some metric, is minimized.

(This problem is quite interesting even separate from the course scheduling problem,

as this is often the situation faced by students at Syracuse University and at many

other colleges and universities throughout United States).

We have tried two heuristics for revising a section assignment give a timetable,

and neither can guarantee an optimal revision. We call the first simple heuristic and

the second matching heuristic.

Simple Heuristic

This works on the observation that if there are conflicts between times of some of the

sections selected by a student, then there will be time slots unused by that student.

If the student can move from a section in conflict to a section at an unused time,

the conflicts are reduced. The method proceeds by processing the students in some

order (currently this is the initial order of the data). For each student with conflicts,

the section assignments are examined in order of the number of conflicts they have

with other section assignments. For each section in conflict, a list of possible new

sections is generated. From this list (if non-empty), some section is used to replace

the current assignment. Currently the new section used is the least popular section.

Sections become unavailable when they have B students in them.

Matching Heuristic

If we remove the restriction on the number of students assigned to a course at a given

time, then there is no limit on the number of students in a section and the problem

for a given student reduces to bipartite matching: the courses a student wishes to

take make up one component of the graph, the possible time slots of all courses make

up the other components. Edges are placed between a course and each time slot in

which it could be scheduled. The best matching will yield the best possible schedule

for the student.

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 147

Unfortunately, when the number of students allowed into a section is bounded,

this problem is NP-complete and the only effective approaches in tackling it is through

heuristic strategies.

8.5 Group Assignment Heuristics

On the grouping problem of students assignment to sections of given courses, we have

tried two heuristic approaches. The first is simply a naive assignment as stated above.

The second is an attempt to minimize the density of the section conflict graph by

clustering students with similar schedules. The clustering heuristic attempts to reduce

the density of the section conflict graph by preventing edges between several sections

of popular courses; e.g. if course A has two sections, a and a
′
, course B sections b

and b
′
. The aim of this heuristic is to avoid having edges (a, b), (a, b

′
), (a

′
, b), (a

′
, b

′
)

by grouping the students taking these courses into sections so that instead there will

be only edges (a, b) and (a
′
, b

′
).

The heuristic is as follows (see Figure 8.7). Let the popularity of course i be the

number of students who have chosen this course and have not yet been assigned to

a section. Pick the most popular course and group students this course and several

other courses have in common. Pick N of these students and assign them to the same

section of each of these courses. Repeat until there are no more empty sections in

which to assign students, then finish up by sectioning the remaining courses using

a naive assignment. This assignment is to arbitrarily order the students and then

assign them to the first available section.

8.6 Hybrid Heuristics for GC

Coloring algorithms fall into essentially two categories: First, successive augmentation

methods, augmenting partial colorings, carefully choosing the order to color vertices,

and then assigning colors, but never backtracking. The second type is the iterative

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 148

• Let courses = {v}
• Let C = set of courses taken by all students who also took v

• For each course u ∈ C
– Let weight(v,u) = number of students requesting both courses, u and v.

– Let weight(u) = popularity(u) * weight(v,u)

• Let L[1 . . . |C|] = C ordered by decreasing weight(u)

• Let max = largest index such that the number of students requesting
L[1 . . .max] is at least = N x Threshold, (where Threshold is percentage set
by user)

• Let S
′
= upto N students requesting courses L[1 . . .max]

• For i = 1 to max do

– If an empty section of L[i] is available, assign all students in S to this
section

• end heuristics

Figure 8.7: Clustering students that choose course v

improvements, by starting with an initial solution that may be an invalid or partial

coloring, then color or recolor vertices repeatedly trying to improve the coloring.

The simplest coloring algorithm is the DSatur, as previously outlined, used in our

coloring approach. Other algorithms are:

8.6.1 RLF

The Recursive Largest First (RLF) algorithm is a successive augmentation algorithm

proposed by Leighton [Lei79] when studying the exam scheduling problem at Prince-

ton University. This algorithm colors the vertices one color class at a time. Each color

class is created with the goal of minimizing the number of edges left in the resulting

CHAPTER 8. SCHEDULING AS A GRAPH COLORING PROBLEM 149

uncolored subgraph. The color class is constructed by first choosing the vertex of

the largest degree, and thereafter by choosing the vertex that is independent of al-

ready chosen vertices and having the largest number of edges into uncolored vertices

ineligible for this color class.

8.6.2 XRLF

While RLF and DSatur have very efficient implementations, they often do not produce

very good colorings on standard test data. Johnson et al. [JAMS91] pushed the

successive augmentation approach much further with the XRLF algorithm, which is

essentially a semi-exhaustive version of Leighton’s RLF algorithm. Instead of building

a single independent set for a color class, XRLF builds many candidate sets, and

chooses the candidate that minimizes the edge density of the remaining subgraph.

The algorithm also switches to exhaustive search when the number of vertices left

to color gets small. The XRLF algorithm finds better colorings than the simpler

successive augmentation algorithms on random (Gn,p graphs with n vertices and edges

between any pair of vertices with probability p) graphs, but takes significantly more

time and is beaten by the simpler DSatur on other classes of randomly generated

graphs.

There are other coloring heuristics such as S-Impasse proposed by Morgenstern

[Mor91]. In this method a color class is a set consisting of all of the vertices colored

with a particular color. On DSatur heuristics for general graphs, see de Werra [dW90].

Chapter 9

Airline Crew Scheduling versus

Course Scheduling

9.1 Airline Crew Scheduling

The resource planning of an airline company is a very complex problem, usually it is

divided into four main blocks which then are solved more or less sequentially.

• Timetable construction: Construct a timetable, optimized with respect to

market, available time slots at airports, etc.

• Fleet assignment: Assign a given aircraft fleet to the timetable such that a

revenue, depending on size of the aircraft, fuel consumption, staff requirement,

etc. is maximized. An example of a constraint is that all types of aircraft are

not allowed to land on all airports.

• Crew scheduling: A crew should be assigned to each flight obeying a large

number of governmental regulations, union demands and collective agreements.

This should be done so that the total expense for the crews is minimized (uti-

lizing the crew effectively).

150

CHAPTER 9. AIRLINE CREW SCHEDULING VERSUS COURSE SCHEDULING151

• Crew Assignment: Assigning persons to the different crews taking things as

vacations and training into account.

Next to fuel cost the crew is the largest scheduling problem.

In summary, the overall problem of airline crew scheduling is classified as a resource

allocation problem, where a given flight schedule is to be covered by a set of crew

rotations. Each of these rotations consists of a connected sequence of flights or legs,

each starting and ending at a given home base or hub. The objective is to minimize

the total waiting time of the crew subject to a number of constraints on the rotations.

The problem’s topological structure and the restrictions imposed on it is quite similar

to a multi-task phone routing structure.

Perhaps, one particular approach that has been used in tackling this problem is

first to convert it into a set covering problem, by

1. generating a large number of legal rotation templates, and

2. seeking a subset of these templates that precisely covers the entire flight sched-

ule.

Then, solutions to the set covering problem are often found with conventional

methods such as linear programming [Shr86]. This will have a big disadvantage and

that is, on one hand, from a computational point of view, an exhaustive generation

of rotations is not feasible for large real world problems; on the other hand, a non-

exhaustive generation will only cover a fraction of the solution space.

One other approach is to proceed in two phases (see [LPS00]):

1. the full solution space is narrowed down by using a reduction method that

removes a large part of the sub-optimal solutions; then

2. fine-tune those sub-parts in an iterative manner to handle the topology, leg-

counting, etc.

It has been determined that the computational requirement for random artificial

problems with resemblance to real-world situations grows in the order of N3
f where

CHAPTER 9. AIRLINE CREW SCHEDULING VERSUS COURSE SCHEDULING152

Nf is the number of flights. So, given a schedule in terms of a set of Nf flights (let

say per week), with specified times and airport departure and arrival, a crew is to be

assigned to each flight such that the total crew waiting time is minimized subject to

the following restrictions:

• Each flight crew must follow a connected path, or rotation, starting and ending

at the hub.

• The number of flight legs in a rotation must not exceed a given upper bound,

i.e. Lmax.

• The total duration (flight + waiting time) of a rotation is similarly bounded by

a maximum time, i.e. Tmax.

In a real-world case there are many constraints to be satisfied, but in general

the above three are the most crucial and difficult ones. Furthermore, without them

the problem would reduce to that of minimizing waiting times independently at each

airport – the local problems; which can be solved exactly in polynomial time; e.g.

by pairwise connecting arrival flights with subsequent departure flights. Therefore,

without the global structural requirements, the crew scheduling problem is not much

of a challenge.

9.1.1 Crew Scheduling vs. Course Scheduling

The most noticeable difference between academic course scheduling and crew schedul-

ing is in the topological structures. Course scheduling problem has a non-Euclidean

global structure while the structure (or the graphical representation) of crew schedul-

ing is quite similar to a multi-task phone routing structure.

The other distinction is in the duration. Typically, a real-world flight schedule has

a basic period of about one week; while the duration of a weekly university course

schedule is an academic semester or a quarter. Also, in crew scheduling, airlines

restrict crew members in spending double overnights in any of the non-hub points of

CHAPTER 9. AIRLINE CREW SCHEDULING VERSUS COURSE SCHEDULING153

the flight; and to take a rest for a certain number of hours after each duty period.

These restrictions are considered from a constraint point of view to be hard so it would

need to be satisfied for the final schedule. On the other hand, the analogous set of

constraints dealing with students and professors in course scheduling are generally

treated as soft or medium constraints. In general, for course scheduling we do not

have a well defined objective function to optimize; there are many requirements which

occur as constraints in the problem and a collection of preferences for students and

professors, that are partially formulated as low priority constraints.

9.2 Multi-Phase approach to Airline Scheduling

. . .

Chapter 10

Complexity of Course Scheduling

10.1 Notes on Complexity of the Problem

Course scheduling belongs to the class of non-Euclidean constraint satisfaction prob-

lems and it is essentially an example of a resource-constrained scheduling problem,

which is an NP-hard [CT92, GJ79]. Here, resources are physical entities, such as

students, rooms, overhead projectors, etc. Also time periods can be thought of as

resources.

In general, timetabling type problems are always NP-complete [EIS76], which

means there exists no known polynomially bound algorithm for solving them opti-

mally. As a result, these problems are often solved by means of heuristics – solution

procedures that focus on finding a feasible schedule of “good” (as opposed to opti-

mal) quality within an acceptable amount of time. In addition to being NP-complete,

timetabling problems are also characterized by their sparseness (see definition 10.1.1

and observation 10.1.2).

Definition 10.1.1 After the required number of classes Nl have been scheduled,

there will be Nsp = (NxNt−Nl) spare space-time slots, hence, the sparseness ratio of

the problem is defined as the ratio Nsp/(NxNt). ✷

154

CHAPTER 10. COMPLEXITY OF COURSE SCHEDULING 155

Observation 10.1.2 The denser the timetabling problem, the lower the sparseness

ratio, and the harder the problem is to solve. Also, for dense problems, there is an

additional correlation involving the problem size. ✷

Traditionally, timetabling has been approached by means of linear programming

(LP) [Shr86] with binary variables plus some heuristics. For example, if i identifies a

teacher, j identifies a time interval and k identifies a class then the binary variable

Xijk = 1 if teacher i has class k at time-interval j; Xijk = 0 , otherwise. Suppose we

have a set of data as small as 20 teachers, 30 time intervals, and 10 classes. If we

use the LP approach to obtain a feasible schedule out of this data, then we need to

deal with over 6000 variables to represent the problem, and 26000 possible states. The

problem quickly becomes intractable as the number of variables increases. The overall

complexity of timetabling is in the order of 2(NcNxNt)
a

, for a ≥ 1. For problems with

a linear objective, the LP-relaxation solution is potentially of some use. However, for

pure-constraint satisfaction problems, with arbitrary and large number of objectives,

the LP approach is not very promising.

For the much simpler problem of class allocation, for which there is no timetabling

involved (i.e. no allocation of classes to time periods), the computational load (nc)

from tackling this problem using the LP method scales as follows [GSP92, GT86]:

nc ∝ N3
cN

2
xN

3
t , (10.1)

where Nc is the number of room categories available (i.e. classroom, auditorium,

etc.).

In regard to the graph coloring approach, Morgenstern [Mor91] has given a Θ(m)

implementation of DSatur, where m is the number of the edges in the graph. Also,

the most efficient implementation of the RLF algorithm runs at O(km), where k is

the number of colors needed by the algorithm to properly color the graph and m is

the number of edges in the graph.

CHAPTER 10. COMPLEXITY OF COURSE SCHEDULING 156

10.2 Constraint Satisfaction

A constraint satisfaction problem (CSP) is a way of expressing simultaneous require-

ments for values of variables. In other words, CSP consists of a set of n variables, a

domain of values for each variable, and a set of constraints each of which restricts the

allowable assignments of values to some of the variables.

The study of constraint satisfaction problems was initiated by Montanari in 1974

[Mon74], when he used them as a way of describing certain combinatorial problems

arising in image-processing. It was quickly realized that the same general frame-

work was applicable to a much wider class of problems, and the general problem has

since been intensively studied, both theoretically and experimentally (for example,

see [Mon74, LM94, Mac77]). One of the most practical examples is the problem of

academic course scheduling, studied in this thesis, which is scheduling a collection of

tasks or activities with respect to a specified set of constraints. (A good introduction

to the general problem of scheduling as a constraint satisfaction problem can be found

in [vB92].)

10.2.1 Basic definitions

First, we will only be considering constraint satisfaction problems in which there are

a finite number of variables, and each variable has a finite number of possible values.

Definition 10.2.1 A constraint satisfaction problem, P , is specified by a tuple,

P = (V,D,R1(S1), . . . , Rn(Sn)), where

• V is a finite set of variables;

• D is a finite set of values (this set is called the domain of P);

• Each pair Ri(Si) is a constraint. In each constraint Ri(Si)

– Si is an ordered list of ki variables, called the scope of the constraint;

CHAPTER 10. COMPLEXITY OF COURSE SCHEDULING 157

– Ri is a relation∗ over D of arity ki, called the relation of the constraint.

✷

Definition 10.2.2 A solution to P = (V,D,R1(S1), . . . , Rn(Sn)) is an assignment

of values from D to each of the variables in V , which satisfies all of the constraints

simultaneously.

Formally, a solution is a map h : V → D such that h(Si) ∈ Ri, for all i, where the

expression h(Si) denotes the result of applying h to the tuple Si, coordinate-wise (in

other words, if Si =< v1, v2, . . . , vk >, then h(Si) =< h(v1), h(v2), . . . , h(vk) >). ✷

We will occasionally make use of the notion of a partial solution in this thesis.

This may be defined in a number of different ways, depending on the stringency

of the requirements we wish to impose. To be consistent with the majority of the

literature, we use the following definition.

Definition 10.2.3 A partial solution to a constraint satisfaction problem P =

(V,D,R1(S1), . . . , Rn(Sn)) is a mapping h from some subset, say W , of V to D, such

that for each Si contained in W , h(Si) ∈ Ri. ✷

Remark 10.2.4

• In the context of course scheduling, a tuple is a combination of a class, teacher,

and a classroom. The time periods are assumed to be given.

• Unary constraints specify the allowed values for a single variable, and binary

constraints specify the allowed combinations of values for a pair of variables.

• Deciding whether or not a given instance of constraint satisfaction problem has

a solution is NP-complete in general [Mac77], even when the constraints are

restricted to binary constraints.

✷

∗A relation is simply a set of tuples of some fixed length. The length of the tuples is called the
arity of the relation.

CHAPTER 10. COMPLEXITY OF COURSE SCHEDULING 158

10.3 Complexity of Section Assignment Problem

This is a decision problem and can be stated as follows: Given N student schedules,

section bound B, can the students be assigned to sections of their desired courses

so that no section has more than B students and, from a graph point of view, the

number of edges in the section conflict graph is no more than J > 0 ?

This problem is commonly referred to as the minimal density section assignment

problem. It is an NP-complete by reduction from the Graph Bisection problem on

fixed degree d-regular graphs (GB). This latter problem was shown to be NP-complete

by Bui et al. [BCLS84].

The overall decision problem of course scheduling with section assignment is also

NP-complete for metrics of edge conflicts, student conflicts, and course conflicts. It is

stated as follows: Given N student schedules, a timetable for sections of the courses,

a bound B on the number of students per section, and a goal J > 0, can the students

be assigned to sections of their desired courses in such a way that the number of

conflicts, as measured by some metric, is no more than J ?

Again, this problem is clearly in NP since given an assignment, we can count

the number of conflicts and compare against J . The proof is by reduction from the

3-dimensional matching (3DM) problem. (See Garey and Johnson [GJ79] for a proof

that 3DM is NP-complete.)

Appendix A

Glossary and Definitions

Definitions of the key terms appearing in the thesis.

• Decision Problem is a search problem in which we wish to know the answer

to a simple yes/no question. The question is usually of the form “Does there

exists a configuration σ ∈ Σ such that property P holds for system X?”. For

example, for a given traveling salesman problem, “Does there exist a solution

with total length less than 1200 miles?” – see also optimization problem.

• Entropy is a mathematical measure of the amount of disorder in a system.

• Equilibrium is used differently by experts in different fields. For example,

physicists tend to use equilibrium to mean a fixed-point of the system’s dynam-

ics (perhaps in a statistical sense) whether a stable or unstable. In this thesis,

we use “steady-state equilibrium” or “static equilibrium” to mean a fixed-point.

Then a “dynamic equilibrium” subsumes that definition into a larger class which

includes cyclic states. Note that by examining, for example, higher iterates of

a map, or an average over time, many dynamical equilibria can be considered

static equilibria of a derived system. However, that derived system does not

necessarily retain all the interesting characteristics of the original. In the pro-

cess of annealing, how do we test for equilibrium? that is, at which temperature

159

APPENDIX A. GLOSSARY AND DEFINITIONS 160

should we test for equilibrium? So, for example, if we start with “sufficiently

high” starting temperatures, can we infer that these also are the lowest initial

temperatures for which equilibrium can be reached? One difficulty in determin-

ing this is that equilibrium might not be reached at the starting temperature

itself. But if the following temperatures are very close to it, annealing might

make several times as many moves at what is in effect the same temperature,

and might then reach equilibrium! In general, we don’t have a satisfactory

answer to this issue.

What should really be tested is whether equilibrium is reached at any of the

temperatures near the starting temperature, but this means making many tests

for equilibrium instead of one. Another related but more general issue to check

for is whether a cooling schedule may reach equilibrium even if a single gener-

ation of it does not.

• Evolutionary Algorithms (EAs) are based upon the theory of evolution by

natural selection – a population of candidate solutions maintained, and allowed

to “evolve”. The three main styles of EA exist: Genetic Algorithms, Evolution-

ary Programming, and Evolution Strategies – but the basic idea behind them

is the same and the difference can be considered historical.

• Fitness Function is a mathematical equation that describes the relative value

of each member of a family of objects with respect to some criterion. The fitness

function is maximized or minimized (depending upon the criterion) to find the

best object in the family.

• Fitness Landscape were first introduced in the 30’s in the context of evo-

lutionary theory, and have proven to be a powerful tool for the investigation

of optimization dynamics in many fields. A fitness landscape is a particular

kind of representation of a large space of “configurations”. For example, this

space could be “The space of all possible routes through 100 given cities” or

“The space of all possible genotypes of a given length”. A fitness landscape

APPENDIX A. GLOSSARY AND DEFINITIONS 161

requires both a fitness function assigning a value (usually in real numbers) to

each configuration, and a neighborhood relation amongst the configurations.

• Fixed-point of a map f : X → X is a point x ∈ X such that f(x) = x.

Fixed-points can then be further categorized as stable, unstable, meta-stable,

etc.

• Hypercube is an n-dimensional cube whose vertices have coordinates (d1, . . . , dn)

with dj = 0 or 1. Moreover, two vertices of this cube are called adjacent if

they differ in exactly one coordinate. So we can have a set of 2n numbers

x0 ≤ x1 ≤ . . . ≤ x2n−1 to be assigned to the 2n vertices in such a way that

Σi,j|xi− xj | is minimized, where the sum is over all i and j such that xi and xj

have been assigned to adjacent vertices.

• K-satisfiability (k-SAT) one of the earliest standard NP-hard problems in

computer science. Consider N boolean variables x1, x2, . . . , xN . A clause is

formed by picking k variables at random (with replacement) and considering

the logical disjunction (‘or’ operation) of either the variable xi or its negation

xi (selected randomly with 50% probabilities for each variable in the clause) of

M such clauses (selected independently). The search problem is to find a set

of true/false assignments to the xi such that the entire problem instance is true

(which requires that each of the M clauses is true).

• Landscape Analysis is a mathematical process used to search for the best

solution to a multi-variable optimization problem. It utilizes a fitness function.

Within the search space (i.e., a plot of all the possible solutions), the fitness

of a particular solution can be shown graphically as its height. The resulting

“landscape” will have peaks in the regions of the search space that contain

better solutions; further analysis of the peak regions can be used to refine the

results and achieve even more precise solutions.

APPENDIX A. GLOSSARY AND DEFINITIONS 162

• Mapping∗† in its abstract form, is a functional representation from a Euclidean

or a non-Euclidean space onto another space of either type. Our reference to

‘mapping’ throughout the thesis would be in the context of functional mapping

of the representation of an optimization problem onto a Euclidean space or

a graphical structure, also behaving as a search space for a solution to the

problem, or acting itself as a method for tackling the problem.

• Mean-field theory (MFT) is an approach for analyzing a system which may

be non-ergodic (i.e. have a broken symmetry). The approach consists of three

basic steps: (1) identify a parameter (the ‘order parameter’) to characterize

the broken symmetry; (2) assume most of the system’s behavior can be calcu-

lated from a given value of the order parameter, and calculate how one small

part would behave given that choice for the rest of the system; (3) ensure self-

consistency: adjust the order-parameter until its value for the small part is

consistent with the assumed value for the system as a whole. This procedure

is understood to give a reasonably accurate qualitative picture of the system,

but with not-so-accurate quantitative predictions of various exponents which

characterize the system (for that we turn to renormalization group techniques,

or replica trick). Why? This is mainly because a mean-field theory is usually a

phenomenological approximation rather than a real mathematical approxima-

tion of a given distribution. However, it can usually be shown to be valid and

accurate in some limit of high-dimension or many degrees of freedom, etc.

• Mean-field annealing (MFA) is an approximation method with principles

from the well-known approximation method in the field of statistical physics,

and that is the mean field approximation. The theory is concerned with systems

of spin elements that interact with each other in a magnetic field. Conceptually,

∗In his thesis [Hei98], Heirich talks about mapping in terms of the mapping problem and equates
it with the load balancing problem. Also he points out how similar both problems are to a number
of other problems, such as the problems of partitioning circuits for VLSI placement and simulation.

†In its simplistic form, the mapping problem can be stated as follows: given a network graph
Gn =< Vn, En > and a problem graph Gp =< Vp, Ep >, find a mapping m : Vp → Vn that
maximizes or minimizes some metric E.

APPENDIX A. GLOSSARY AND DEFINITIONS 163

the mean field approximation replaces a spin variable that occurs in an energy

field by its expectation or mean value when evaluating the probability distribu-

tion of any other variable. This approximation allows the statistical mechanics

of complicated magnetic systems to be described by a closed set of equations

relating to the expected values of the variables. MFA replaces the stochastic

nature of simulated annealing with a set of deterministic update rules that need

to be solved iteratively. This deterministic relaxation procedure exhibits fast

convergence toward the “solution” for complex optimization problems. MFA

has received great deal of attention in the field of artificial neural networks

(ANNs). In fact, some of the most important neural network models, such as

those of Hopfield and Tank, are closely related to the principles of MFA.

• Model, System to avoid any confusion, in this thesis we always use the term

system to describe the ‘big’ picture. That is we study physical systems, opti-

mizing systems,Inside these systems, agents (or problem solvers) will have

models which they use to dictate their own behavior. Those agents may use a

discrete-choice model, a predictive model, a least-squares learning model,

In this sense a model can be considered an algorithm (which is the word we use

when describing explicitly those systems). For example, an agent on a land-

scape optimizing via hill-climbing can be set to use a ‘hill-climbing model’ to

dictate its behavior, etc.

• Multi-Objective Optimization is the task of maximizing or minimizing a

number of criteria simultaneously. Multi-objective optimization is more difficult

than most kinds of optimization problems because the trade-offs between the

multiple objectives may be unknown.

• Optimization problem is a search problem in which we wish to know, in some

given domain, the minimal (or maximal) value of a given function. E.g. find

minσ∈Σf(σ), where f : Σ→R.

APPENDIX A. GLOSSARY AND DEFINITIONS 164

• Phase transition is, loosely, a qualitative change in behavior resulting from

the smooth variation of a parameter. For example as we reduce the temperature,

water undergoes a phase transition when it freezes: change from water into ice.

• Renormalization group (RG) is a mathematical approach for analyzing sys-

tems, especially near critical points, which are approximately self-similar. It

proceeds by integrating out all the details smaller than a given size, and then

changing the system’s scale until the transformed system is close to the original.

By relating the characteristics of the system under such a transformation, or

considering the limit of an infinite number of iterations of the above process,

RG techniques have been able to predict critical exponents of many systems to

great accuracy, and calculate how they must be adjusted for systems of finite

size. The theory also explains why many such exponents are universal; that is

only depending on a few global properties of the system (for instance, dimension

of the order parameter), and not the local details. Note that strictly speaking

RG forms a semi-group, not a full group.

• Replica trick (RT) is the use of the identity logZ = limn→n
Zn−1
n

under non-

rigorous (or at least questionable) circumstances to calculate the logZ average

by analytic continuation of an expression for Zn for integral n.

• Ruggedness is a heuristic measure of the character of a fitness landscape. If

used rigorously then it is inversely related to the average correlation length of

a sequence of steps on the landscape. It is very hard to search effectively on

a rugged landscape, as compared with smooth one. This is simply because on

a rugged/uncorrelated landscape local information is of little use in predicting

global trends (and hence locating optima in the landscape).

• Simulated Annealing (SA) is a mathematical technique for general optimiza-

tion problems. The same comes from the physical process of annealing, during

which a material is first heated and then slowly cooled. During annealing, the

component atoms of a material are allowed to settle into a lower energy state so

APPENDIX A. GLOSSARY AND DEFINITIONS 165

that a more stable arrangement of atoms is maintained throughout the cooling

process. SA has been applied with success to a wide variety of optimization

tasks.

• Spin Glass is a simplified model from physics describing dilute magnetic al-

loys. It defines an energy function (or equivalently a fitness function) over tiny

magnetic dipoles called spins. Spins may point either up (+1) or down (-1). For

every configuration of spins (e.g., +1-1+1+1-1 for a configuration of 5 spins),

the energy function assigns that configuration’s energy by summing up the in-

teractions between spins. Many aspects of spin glasses are utilized by physicists

and they comprise a well-understood family of fitness landscapes.

Bibliography

[Abr91] D. Abramson. Constructing school timetables using simulated annealing:

sequential and parallel algorithms. Managment Science, 37:98–113, 1991.

[ADK99] D. Abramson, H. Dang, and M. Krishnamoorthy. An empirical analysis of

simulated annealing cooling schedules for solving the timetabling problem.

Asia-Pacific Journal of Operation Research, 16:1–122, 1999.

[AF89] J. Aubin and J. A. Ferland. A large scale timetabling problem. Computers

and Operations Research, 16:67–77, 1989.

[AF91] A. V. B. Aiyer and F. Fallside. A hopfield network implementation of

the viterbi algorithm for hidden markov models. In Proceedings of the

International Joint Conference on Neural Networks, pages 827–832, 1991.

[AK89] Emile H.L. Aarts and Jan Korst. Simulated Annealing and Boltzmann Ma-

chines: A Stochastic Approach to Combinatorial Optimization and Neural

Computing. Wiley, Chichester, 1989.

[AKvL97] E. H. Aarts, J. Korst, and P. J. van Laarhoven. Simulated annealing.

In Emile Aarts and Jan Karel Lenstra, editors, Local Search in Combi-

natorial Optimization, Wiley-Interscience Series in Discrete Mathematics.

John Wiley and Sons, Chichester, UK, 1997.

[AL97] Emile Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial

Optimization. Wiley, Chichester, England, 1997.

166

BIBLIOGRAPHY 167

[ANF90] S. V. B. Aiyer, M. Niranjan, and F. Fallside. A theoretical investigation

into the performance of the hopfield model. IEEE Transcations on Neural

Networks, 1(2):204–215, June 1990.

[BB89] J. Bruck and M. Blaum. Neural networks, error-correcting codes and

polynomials over the binary n-cube. IEEE Transactions on Information

Theory, 35(5), September 1989.

[BCLS84] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser. Graph bisection algo-

rithms with good average case behavior. In Proceedings of the 25th IEEE

Symposium on Foundations of Computer Science (FOCS), pages 181–191.

IEEE, 1984.

[BD89] E. Bienenstock and R. Doursat. Elastic matching and pattern recogni-

tion in neural networks. In L. Personnaz and G. Dreyfus, editors, Neural

Networks: From Models to Applications. IDSET, Paris, France, 1989.

[Bre79] D. Brelaz. New methods to color vertices of a graph. Communications of

the ACM, 22:251–256, 1979.

[Bru90] J. Bruck. On the convergence properties of the hopfield model. In Pro-

ceedings of the IEEE, volume 78, October 1990.

[BV55] G. E. P. Box and P. V. Voule. The exploration and explotation of response

surfaces: An example of the link between the fitted surface and the basic

mechanism of the system. Biometric, 11:287–323, 1955.

[CDM92] A. Colorni, M. Dorigo, and V. Maniezzo. A genetic algorithm to solve the

timetabling problem. In Politecnico di Milano technical reports, volume

TR-90-060 revised. Politecnico di Milano, Italy, Milan, Italy, 1992.

[CG83] M. A. Cohen and S. Grossberg. Absolute stability of global pattern forma-

tion and parallel memory storage by competitive neural networks. IEEE

BIBLIOGRAPHY 168

Transcations on Systems, Man and Cybernetics, 13(5):813–825, Septem-

ber/October 1983.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-

duction to Algorithms. MIT Press, Cambridge, MA, 1990.

[Coo71] Stephen Cook. The complexity of theorem proving procedures. In Pro-

ceedings of the Third Annual ACM Symposium on Theory of Computing,

pages 151–158, 1971.

[Cos94] D. Costa. A tabu search algorithm for computing an operational timetable.

European Journal of Operational Research, 76:98–110, 1994.

[CT92] M. W. Carter and C. A. Tovey. When is the classroom assignment problem

hard? Operations Research, 40:28–39, 1992.

[DL77] Stuart E. Dreyfus and Averill M. Law. The Art and Theory of Dynamic

Programming. Academic Press, New York, 1977.

[DLS93] R. Diekmann, R. Luling, and J. Simon. Problem independent distributed

simulated annealing and its applications. In R. V. V. Vidal, editor, Lec-

ture Notes in Economics and Mathematical Systems – Applied Simulated

Annealing, volume 396. Springer, Berlin, Germany, 1993.

[dW90] D. de Werra. Heuristics for graph coloring. In G. Tinhofer, E. Mayr,

H. Noltemeier, and M. Syslo, editors, Computational Graph Theory, pages

191–208. Springer-Verlag, New York, 1990.

[ECF98] M. A. S. Elmohamed, Paul Coddington, and Geoffrey Fox. A comparison

of annealing techniques for academic course scheduling. In Edmund Burke

and Michael Carter, editors, Lecture Notes in Computer Science – Practice

and Theory of Automated Timetabling II, volume 1408. Springer, Berlin,

Germany, 1998.

BIBLIOGRAPHY 169

[EDK+91] S. P. Eberhart, D. Daud, D. A. Kerns, T. X. Brown, and A. P. Thakoor.

Competitive neural architecture for hardware solution to the assignment

problem. Neural Networks, 91:431–442, 1991.

[EFC96] M. A. S. Elmohamed, G. Fox, and P. Coddington. Course scheduling using

mean-field annealing, part i: algorithm and part ii: implementation. In

NPAC Technical Reports, volume SCCS-782. NPAC, Syracuse University,

Syracuse, NY, 1996.

[EFC97] M. A. S. Elmohamed, G. Fox, and P. Coddington. Academic scheduling

using simulated annealing with a rule-based preprocessor. In NPAC Tech-

nical Report, volume SCCS-781. NPAC, Syracuse University, Syracuse,

NY, 1997.

[EIS76] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and

multicommodity flow problems. SIAM Journal on Computing, 5:691–703,

1976.

[EL87] H. A. Eiselt and G. Laporte. Combinatorial optimization problems with

soft and hard requirements. Journal of Operational Research Society,

38(9):785–795, 1987.

[FD92] R. Fahrion and G. Dollansky. Construction of university faculty timeta-

bles using logic programming techniques. Discrete Applied Mathematics,

35:221–236, 1992.

[FF88] G. C. Fox and W. Furmanski. Load balancing loosely synchronous prob-

lems with a neural network. In Proceedings of the 3rd Conference on

Hypercube Concurrent Computers and Applications, Pasadena, CA, 1988.

[FHL96] J. A. Ferland, A. Hertz, and A. Lavoie. An object-oriented methodol-

ogy for solving assignment-type problems with neighborhood search tech-

niques. Operations Research, 44:347–359, 1996.

BIBLIOGRAPHY 170

[FL92] J. A. Ferland and A. Lavoie. Exchange procedures for timetabling prob-

lems. Discrete Applied Mathematics, 35:237–253, 1992.

[Fox89] Geoffrey C. Fox. A note on neural networks for trackfinding. In Cal-

tech Concurrent Computation Program - Tech Reports, volume C3P-748.

Concurrent Computation Program, Caltech, Pasadena, CA, April 1989.

[Fox91] Geoffrey C. Fox. Approaches to physical optimization. In Syracuse Center

for Computational Science, volume SCCS-92. NPAC, Syracuse University,

Syracuse, NY, April 1991.

[GF90] Amar Gandhi and Geoffrey Fox. Solving problems in navigation. In Syra-

cuse Center for Computational Science - Tech Reports, volume SCCS-9.

NPAC, Syracuse University, Syracuse, NY, September 1990.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractibility: A

Guide to the Theory of NP-Completeness. W. H. Freeman and Company,

New York, 1979.

[GL98] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Pub-

lishers, 1998.

[Glo89] Fred Glover. Tabu search– part I. ORSA Journal on Computing, 1(3):190–

206, 1989.

[Glo90a] Fred Glover. Tabu search– part II. ORSA Journal on Computing, 2(1):4–

32, 1990.

[Glo90b] Fred Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

[GN72] R. S. Garfinkel and G. L. Nemhauser. Integer Programming. John Wiley

and Sons, New York, 1972.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison–Wesley, Reading, MA, 1989.

BIBLIOGRAPHY 171

[Gom58] R. E. Gomory. Outline of an algorithm for integer solutions to linear

programs. Bulletin of the American Mathematical Society, 64:275–278,

1958.

[GP92] A. H. Gee and R. W. Prager. Polyhedral combinatorics and neural net-

works. Neural Computation, May 1992.

[GPP91] A. Ghosh, N. R. Pal, and S. K. Pal. Image segmentation using a neural

network. Biological Cybernetics, 66:151–158, 1991.

[Gro88] S. Grossberg. Nonlinear neural networks: Principles, mechanisms and

architecture. Neural Networks, 1(1):17–61, 1988.

[GSP89] L. Gislen, B. Soderberg, and C. Peterson. Teachers and classes with neural

nets. International Journal of Neural Systems, 1:167–176, 1989.

[GSP92] L. Gislen, B. Soderberg, and C. Peterson. Complex scheduling with potts

neural networks. Neural Computation, 4:805–831, 1992.

[GT86] K. Gosselin and M. Truchon. Allocation of classrooms by linear program-

ming. Journal of Operational Research Society, 37:561, 1986.

[GW93] I. P. Gent and T. Walsh. Towards an understanding of hill-climbing proce-

dures for sat. In Proceedings of the 11th National Conference on Artificial

Intelligence, pages xxii+869, 28–33, 1993.

[GW94] I. P. Gent and T. Walsh. The sat phase transition. In ECAI94, Proceedings

of the 11th European Conference on Artificial Intellidence, pages xvi+832,

105–109, 1994.

[Hei98] Alan Heirich. Analysis of Scalable Algorithms for Dynamic Load Balancing

and Mapping with Applications to Photo-realistic Rendering. California

Institute of Technology, Pasadena, Ca, 1998.

BIBLIOGRAPHY 172

[Her91] Alain Hertz. Tabu search for large scale timetabling problems. European

Journal of Operational Research, 54:39–47, 1991.

[Her92] Alain Hertz. Finding a feasible course schedule using tabu search. Discrete

Applied Mathematics, 35:255–270, 1992.

[HHW96] T. Hogg, B. Huberman, and C. Williams. Phase transitions and the search

space. Artificial Intelligence, page 81, 1996.

[HK92] B. J. Hellstrom and L. V. Kanal. Asymmetric mean-field neural networks

for multiprocessor scheduling. Neural Networks, 5(4):671–686, 1992.

[HKP91] J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural

Computation. Addison-Wesley, Redwood City, CA, USA, 1991.

[Hol75] J. H. Holland. Adaptation in Natural and Artificial Systems. University

of Michigan Press, Ann Arbor, MI, 1975.

[Hop82] J. J. Hopfield. Neural networks and physical syetms with emergent col-

lective computational abilities. In Proceedings of the National Academy of

Sciences USA, volume 79, pages 2554–2558, April 1982.

[Hop84] J. J. Hopfield. Neurons with graded response have collective computational

properties like those of two-state neurons. In Proceedings of the National

Academy of Sciences USA, volume 81, pages 3088–3092, May 1984.

[HRSV86] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli. An efficient general

cooling schedule for simulated annealing. In Proc. of the IEEE Interna-

tional Conference on Computer Aided Design (ICCAD), pages 381–384,

1986.

[HT85] J. J. Hopfield and D. W. Tank. Neural computation of decisions in opti-

mization problems. Biological Cybernetics, 52:141–152, 1985.

BIBLIOGRAPHY 173

[HT86] J. J. Hopfield and D. W. Tank. Computing with neural circuits: a model.

Science, 233:625–633, 1986.

[Hu69] T. C. Hu. Integer Programming and Network Flows. Addison-Wesley,

Reading, MA, 1969.

[IN90] A. Imiya and M. Nozaka. Data rearrangement by neural network. In

Proceedings of the INNC, Paris, France, 1990. INNC.

[JAMS89] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by

simulated annealing: an experimental evaluation, part i (graph partition-

ing). Operations Research, 37:865–892, 1989.

[JAMS91] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by

simulated annealing: an experimental evaluation, part ii (graph coloring

and number partitioning). Operations Research, 39:378–406, 1991.

[JM97] D. Johnson and L. McGeoch. The traveling salesman problem: A case

study in local optimization. In Local Search in Combinatorial Optimiza-

tion, Wiley-Interscience Series in Discrete Mathematics and Optimization.

John Wiley and Sons, Chichester, UK, 1997.

[Kar72] R. Karp. Reducibility among combinatorial problems. In Complexity of

Computer Computations, pages 85–103. Plenum Press, New York, 1972.

[KGV83] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated

annealing. Science, 220:671–680, May 1983.

[Kir84] S. Kirkpatrick. Optimization by simulated annealing: Quantitive studies.

Journal of Statistical Physics, 34:976–986, 1984.

[KL70] B. W. Kernighan and S. Lin. An efficient heuristic procedure for parti-

tioning graphs. Bell Systems Technical Journal, 49:291–307, 1970.

BIBLIOGRAPHY 174

[KS87] I. Kanter and H. Somplinsky. Graph optimization problems and the potts

glass. Journal of Physics A, 20:L673–L679, 1987.

[Lei79] F. T. Leighton. A graph coloring algorithm for large scheduling prob-

lems. Journal of Research of the National Bureau of Standards, 84:489–

506, 1979.

[LG92] J. E. Lewis and L. Glass. Nonlinear dynamics and symbolic dynamics of

neural networks. Neural Computation, 4(5):621–642, 1992.

[Lis93] R. Lister. Annealing networks and fractal landscapes. In Proceedings

of IEEE International Conference on Neural Networks, volume I, pages

257–262, March 1993.

[LK73] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the

traveling salesman problem. Operations Research, 21(2):498–516, 1973.

[LLKS85] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys,

editors. The Traveling Salesman Problem. Wiley, Chichester, UK, 1985.

[LM94] P. B. Ladkin and R. D. Maddux. On binary constraint problems. Journal

of the ACM, 41:435–469, 1994.

[LPS00] M. Lagerholm, C. Peterson, and B. Soderberg. Airline crew scheduling

using potts means field techniques. European Journal of Operations Re-

search, 120:81–96, 2000.

[LW66] E. L. Lawler and D. E. Wood. Branch-and-bound methods: a survey.

Operations Research, 14:699–719, 1966.

[Mac77] A. K. Mackworth. Consistency in networks of relations. Artificial Intelli-

gence, 8:99–118, 1977.

[MEY95] S. Miner, M. A. S. Elmohamed, and H. W. Yau. Optimizing timetabling

solutions using graph coloring. In NSF REU Program – 1995 Reports.

NPAC, Syracuse University, Syracuse, NY, 1995.

BIBLIOGRAPHY 175

[Mon74] U. Montanari. Networks of constraints: fundamental properties and ap-

plications to picture processing. Information Sciences, 7:95–132, 1974.

[Mor91] Craig Morgenstern. Improved implementations of dynamic sequential col-

oring algorithms. In CS TCU Technical Reports, volume CoSc-91-1. Dept.

of Computer Science, Texas Christian University, Fort Worth, Texas, 1991.

[Mou84] O. G. Mouritsen. Computer Studies of Phase Transitions and Critical

Phenomena. Springer-Verlag, Berlin, Germany, 1984.

[NW88] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial

Optimization. John Wiley and Sons, New York, 1988.

[OB90] R. G. Ogier and D. A. Beyer. Neural network solution to the link schedul-

ing problem using convex relaxation. In Proceedings of the IEEE Global

Telecommunications Conference, pages 1371–1376, 1990.

[OdW83] R. Ostermann and D. de Werra. Some experiments with a timetabling

system. OR Spektrum, 3:199–204, 1983.

[OvG89] R.H. J. M. Otten and L. P. P. P. van Ginneken. The Annealing Algorithm.

Kluwer, Norwell, MA, 1989.

[Pap94] Christos H. Papadimtriou. Computational Complexity. Addison-Wesley,

Reading, MA, 1994.

[PCSD89] C. Petrie, R. Causey, D. Steiner, and V. Dhar. A planning problem:

Revisable academic course scheduling. In MCC Technical Report, volume

ACT-AI-020. MCC consortium, Austin, TX, June 1989.

[PR88] R. G. Parker and R. L. Rardin. Discrete Optimization. Academic Press,

Inc., 1988.

[PS82] Christos H. Papadimtriou and Kenneth Steiglitz. Combinatorial Opti-

mization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs,

NJ, 1982.

BIBLIOGRAPHY 176

[PS89] C. Peterson and Bo Soderberg. A new method for mapping optimization

problems onto neural nets. International Journal of Neural Systems, 1:3–

22, 1989.

[RGF90a] K. Rose, E. Gurewitz, and G. C. Fox. Constrained clustering as an opti-

mization method. In Syracuse Center for Computational Science - Tech

Reports, volume SCCS-21. NPAC, Syracuse University, Syracuse, NY,

1990.

[RGF90b] K. Rose, E. Gurewitz, and G. C. Fox. A deterministic annealing approach

to clustering. Pattern Recognition Letters, 11:589–594, 1990.

[RGF90c] K. Rose, E. Gurewitz, and G. C. Fox. Statistical mechanics and phase

transitions in clustering. Physical Review Letters, 65:945–948, 1990.

[RGF90d] K. Rose, E. Gurewitz, and G. C. Fox. Vector quantization by deterministic

annealing. In Technical Report, volume C3P-895. California Institute of

Technology, Pasadena, CA, 1990.

[RND77] E. M. Reingold, J. Nevergelt, and N. Deo. Combinatorial Algorithms –

Theory and Practice. Prentice-Hall, New Jersey, USA, 1977.

[RSV91] F. Romeo and A. L. Sangiovanni-Vincentelli. A theoretical frameowork

for simulated annealing. Algorithmica, 6:302–345, 1991.

[Sch95] Andrea Schaerf. A survey of automated timetabling. In CWI CS reports,

volume Report CS-R9567. CWI, Amsterdam, The Netherlands, 1995.

[Shr86] A. Shrijver. Theory of Linear and Integer Programming. John Wiley and

Sons, Chichester, UK, 1986.

[Sim92] M. W. Simmen. Neural Network Optimization. Univ. of Edinburgh, Scot-

land, UK, 1992.

BIBLIOGRAPHY 177

[SK91] P. N. Strenski and S. Kirkpatrick. Analysis of finite length annealing

schedules. Algorithmica, 6:346–366, 1991.

[SK93] B. Selman and H. A. Kautz. Domain-independent extensions to gsat: Solv-

ing large structured satisfiability problems. In Proceedings of the Inter-

national Joint Conference on Artificial Intelligence (IJCAI), Chambery,

France, 1993. IJCAI.

[SKC96] B. Selman, H. A. Kautz, and B. Cohen. Local search strategies for sat-

isfiability testing. In Proceedings of the 2nd DIMACS Implementation

Challenge: Cliques and Coloring and Satisfiability. American Mathemati-

cal Society, 1996.

[SLM92] B. Selman, H. J. Levesque, and D. G. Mitchell. A new method for solving

hard satisfiability problems. In Proceedings of the American Association of

Artificial Intelligence (AAAI), pages 440–446, San Jose, CA, 1992. AAAI.

[SM89] Harvey M. Salkin and Kamlesh Mathur. Foundations of Integer Program-

ming. North-Holland, New York, 1989.

[Sor91] Gregory B. Sorkin. Theory and Practice of Simulated Annealing on Special

Energy Landscapes. Department of Electrical Engineering and Computer

Science, University of California, Berkeley, CA, 1991.

[SY91] A. A. Schaffer and M. Yannakakis. Simple local search problems that are

hard to solve. SIAM Journal on Computing, 20:56–87, 1991.

[TCP88] G. A. Tagliarini, J. F. Christ, and E. W. Page. A neural-network solution

to the concentrator assignment problem. In D. Z. Anderson, editor, Neu-

ral Information Processing Systems, pages 775–782. American Institute of

Physics, New York, 1988.

BIBLIOGRAPHY 178

[TD95] J. Thompson and K. Dowsland. General cooling schedules for simulated

annealing based timetabling systems. In Proceedings of the 1st Interna-

tional Conference on the Practice and Theory of Automated Timetabling,

Edinburgh, Scotland, 1995.

[TH86] D. W. Tank and J. J. Hopfield. Simple ‘neural’ optimization networks: An

a/d converter, signal decision circuit, and a linear programming circuit.

IEEE Transactions on Circuits and Systems, 35(5):533–541, May 1986.

[Tre91] V. Tresp. A neural network approach for three-dimensional object recog-

nition. In P. Lippman et al., editor, Advances in Neural Information

Processing Systems, volume 3, pages 306–312. Morgan Kaufman, 1991.

[Tri92] A. Tripathy. Computerized decision aid for timetabling – a case analysis.

Discrete Applied Mathematics, 35(3):313–323, 1992.

[TTR91] L. Tarassenko, J. N. Tombs, and J. H. Reynolds. Neural network archi-

tectures for content-addressable memory. In IEE Proceedings, Series F,

volume 138, pages 33–39, February 1991.

[UDP93] M. K. Unaltuna, M. E. Dalkilic, and V. Pitchumani. Solving the schedul-

ing problem in high level synthesis using a normalized mean field neural

network. In Proceedings of the IEEE International Conference on Neural

Networks, pages 275–280, San Francisco, CA, 1993.

[vB92] P. van Beek. Reasoning about qualitative temporal information. Artificial

Intelligence, 58:297–326, 1992.

[Vid93] R. V. V. Vidal, editor. Applied Simulated Annealing. Lecture Notes in

Economics and Mathematical Systems. Springer, Berlin, Germany, 1993.

[vLA87] Peter J. M. van Laarhoven and Emile H. L. Aarts. Simulated Annealing:

Theory and Applications. Reidel, Dordrecht, NL, 1987.

BIBLIOGRAPHY 179

[Whi84] S. R. White. Concepts of scale in simulated annealing. In Proceedings

of the IEEE International Conference on Circuit Design, pages 646–651,

1984.

[WP88] V. Wilson and G. S. Pawley. On the stability of the tsp problem algorithm

of hopfield and tank. Biological Cybernetics, 58:63–70, 1988.

[Wu82] F. Y. Wu. The potts model. Reviews of Modern Physics, 54:235–268,

1982.

