WebFlow System

NPAC, Syracuse University

Geoffrey Fox Tom Haupt

Gcf@npac.syr.edu haupt@npac.syr.edu
1. Overview of software.

The WebFlow system is designed to provide a desktop access to variety of remote resources, including high performance computational engines, distributed databases, and mass storage. It is used to build problem-oriented interfaces (Web Portals) that allow efficiently use the resources directly from the desktop through a Web browser. This "point & click" view offered by the portal hides the underlying complexity of HPC systems, and creates a seamless interface between the user's problem description on his/her desktop and heterogeneous, distributed resources.

The WebFlow system address many issues of providing access to a virtual Web accessible metacomputer. The most important are:

· support for a seamless access to resources, that is security

· support for heterogeneous, distributed back-end resources maintained independently of WebFlow

· variable pool of resources: support for discovery and dynamical incorporation to the system

· scalable, extensible, low-maintenance middle-tier

· web-based, extensible, customizable, self-adjusting to varying capacities and capabilities of clients (humans, software, hardware) front-end

The WebFlow-based Web Portals implements a modern, three-tier architecture, and the WebFlow system provides the middle tier solution. It implements a distributed component model conceptually compatible with Enterprise Java Beans and CORBA 3 component models. The WebFlow components (contexts and modules) extend JavaBeanContextChild interface of Java 2. The inter-JVM communication is implemented using CORBA. In addition, WebFlow system offers an event notification mechanism. We use CORBA specific features (Dynamic Interface Invocation, Dynamic Stub Invocation) to implement an event adapter within a WebFlow context object. A WebFlow context is controlling its child modules and subcontexts life cycle, and it maintains a persistent state. Modules are stateless (they can maintain conversational state), and have access to all data stored by their parent contexts.

The WebFlow component model allows constructing a hierarchical structure of contexts and modules. For example, each user may create his/her own context with a profile. Within the context, the user may create subcontexts representing projects, each of them containing application containers, which in turn are build of modules. A WebFlow module is a CORBA object usually implemented in Java. An example of a WebFlow module is a job module. It serves as a proxy of the actual code implemented on a remote HPC system. In a simplest case it has just on method "run", and fires an event when the actual job is completed. The run method implements the Grid Interface (currently Globus): it generates a Globus RSL string and submits the job through GRAM. No modifications of the original code are necessary. Using our events, we can construct large tasks, comprising many modules (jobs) running either concurrently or following a data flow model. For database access, the Grid Interface is replaced by JDBC. In general, WebFlow implements access to the back end resources through a collection of standard "resource access" interfaces.

The middle tier accepts requests in form of the Abstract Task Descriptor (ATD) expressed in XML. Essentially, ATD consists of two lists: a list of modules, and a list of connections that define interactions between modules: event e fired by module A should result in invoking method m of module B. The modules are themselves described in XML. For example, a job module is given by an Application Descriptor (AD). This XML document describes where the application is installed, how to run it, what arguments are to be used, and location of input files (can be at a system different than that on which the application is to be run), and other information that is needed to generate the RSL string and made requested file transfer(s).

The front-end for WebFlow is thus an ATD generator. In the simplest case it may be just an XML editor. For real life applications, we developed a number of different front ends that are much more user friendly than that. We built custom GUIs tailored specifically for Landscape Management System DoD Modernization Project, PET), PARSSIM and IPARSE (CRPC/UT Austin), and General Earthquake Models. We built a visual authoring tool for interactive composition of data flow applications for NCSA. For the Gateway Project (DoD Modernization Project, PET), a full-blown Project Solving Environment (PSE) is being constructed by the Ohio Supercomputing Center.

For DoD applications, we are using Kerberos and CORBA security services to control access to resources.

>

>2. Components, current version, availability and distribution, software

>and hardware requirements and compatibility, other support material (i.e.

>URL) **

WebFlow is build of commodity components. Currently we are using: Java 2, ORBacus of OOC Inc, (optionally augmented with secure ORB: ORBAsec of Adiron, Inc), XML parser xml4j of IBM, a Web server that supports servlets (we are using Apache and Jigsaw), optionally supporting SSL.

WebFlow middle tier runs on all platforms that support Java 2. For development we are using Solaris and WindowsNT.

Currently, we are distributing version 2.2.2 available from http://www.npac.syr.edu/users/haupt/WebFlow/
>

>3. Integration: any efforts to work with other Alliance tools and for what

>purpose

>

This activity is part of Alliance Portal Activity. We will also integrate WebFlow with Tango Interactive collaboration technology available for download from http://www.npac.syr.edu/tango/. This will be

Prototype of our proposed Shared Portal on the Web for Computational Science.

>4. List of up to 3 important users with application info -focus on

>enabling Science.

>

DoD High Performance Computing Modernization Program: Computational Chemistry and Environmental Science

General Earthquake Models: Real Time Scientific Response to Earthquakes integrating simulations with data analysis

NCSA Alliance: Nanomaterials and soon Chemical Engineering AT teams

>5. Spec sheets, brochure/handouts, current press releases (This can be

>snail-mailed to me)

>

>** Note: To be included in the [brochure], a URL from which the

>distribution can be downloaded is *required*.

>

http://www.npac.syr.edu/DC/ has many useful links (talks and papers)

The “Download” links also have many papers

