
1

Overall Framework
We are building a new generation of distance education technology where we intend to re-use

technologies aimed at areas like e-commerce and commodity Web resources. We will build on the
emerging integration of distributed, component, and Web technology with our approach being
compatible with the many competing candidates for the base infrastructure. We are working with the
NCSA Alliance within an architecture that can be applied to both computing and education portals.
We are considering Ninja from UC Berkeley and E-Speak from Hewlett Packard as interesting new
approaches, and we will evaluate these over the summer as a possible infrastructure for this project.
We also see some analogies between the requirements for a learning environment and the successful
but controversial Gnutella or Napster type distributed archive technology for multimedia material.

We will apply the new system both to an existing network of historically black colleges and
universities to Florida State’s major institutional effort in distance and distributed learning. Fox brings
his research effort from Syracuse University in this area and he will be chief technologist of FSU’s
ODDL (Office of Distributed and Distance Learning). Together these will cover undergraduate,
graduate and lifelong learners. Further information can be found at:

http://www.new-npac.org/users/fox/hp/draftapril8.html and
http://www.new-npac.org/users/fox/documents/pajavaapril00/
To ensure that we can protect our investment we will adopt well-defined interfaces

implemented in terms of XML and if necessary change our implementation as technology evolves. We
use a 3-tier architecture with client, server and backend resource and the two interfaces, as shown in
Fig. 1. This approach has been adapted successfully in the Gateway Web based computing project [
http://www.osc.edu/~kenf/theGateway/ and http://www.npac.syr.edu/users/haupt/WebFlow/] with the
use of two interfaces separating the user and system object view and insulating both the user interface
and repository resources from the changing server infrastructure. As a simple example from the
relational database field, resourceML would define the table structure used to classify the data while

portalML would support user queries in SQL.
Our application of this to distance education is
detailed later in fig. 2 and the backend includes
the courseware as well as the events
(information nuggets) describing the users and
their interactive sessions. Our proposed system
will support the courseware developer who is
adding or editing modules as well as the
learners and teachers accessing the courseware
repository. In addition it will provide tools to
support person to person and person to database
interactions. Existing standards efforts (IMS,
ADL, IEEE LTSC) have provided a good start

to these interfaces although they base on a less sophisticated client server model and essentially merge
these two interfaces. In the following section, we elaborate our technical approach built around the
concept of a collaborative portal.

Collaborative Portals
It is unrealistic today for any one to build a complete online education environment from

scratch: rather one must integrate a system from a variety of different sources. This motivates the
standards for re-usable objects described in the previous section.

Fig. 1: Learning System Architecture with
two Interfaces. User View (portalML) and
System View (resourceML)

2

In this project we take an approach that in
modern parlance is called an educational
portal. A portal employs a modern distributed
object framework and uses it to support
distributed learning objects and services with
the two interfaces defined above. We adopt a
layered approach with one set of capabilities
common to all portals and then specialize to
different applications. Here we view a portal as
“just” a web interface to a particular
application area.
The general properties of any portal include
storing, accessing and searching for distributed
objects (which of course include web pages) in
a repository. Further we have general services
such as security and collaboration where the
latter is particularly important for education as
it enables the synchronous or asynchronous
interactions between students and teachers.
Further general portal capabilities include

layout (of the rendered objects on a page), provision of metadata, universal access, user customization
and performance (through use of mirror or proxy servers). We will research the use of the client-server
interface (see Fig. 1) to define the object properties of relevance to these functions and as usual
express them in terms of XML as “portalML”. As shown in the SCORM standard for education
objects from ADL (http://www.adlnet.org/ADL-TWG/documents.htm), one must support both base
educational objects (modules) and their integration into lectures, courses, curriculum etc. We did this
with our early WebWisdom system and an attractive interface for this can be seen in commercial
software such as RealJukebox, which is designed to collect multimedia objects, which are simpler but
have interesting points in common with learning objects. This software also supports neat layout
customization through different “skins”.

Returning to education, one must support special services such as assessment, performance
(grading) support, and annotation. There are also distinctive “educational objects” – quizzes,
homework, glossaries as well as the curriculum pages with appropriate hierarchical structure. Here we
will extend SCORM and IMS but separate the “user view” from the basic resource specification. The
latter (“system view”) describes the learning modules stored in a shareable courseware repository (see
back end in Fig. 2) We will of course pay attention to support for key capabilities such as displaying
mathematics and other symbolic notations on the Web as well as standards for graphics (Java3D,
VML, X3D etc.). This distributed object based system will have to support curriculum material built in
any web authoring system and specified either statically or dynamically (from a database). This simple
request turns into a serious challenge, as it requires the unification of services such as those for
customization, collaboration, and events. This is a key research area as such unified services are
essential for the basic strategy of allowing components from multiple academic and commercial
sources. A simpler version of this challenge is well-defined XML interfaces to allow interoperability
of data streams.

This appears a complex daunting agenda but fortunately many of the capabilities are provided
by the new generation of Internet infrastructure such as E-speak. Therefore for this project we can
focus on a few key issues. We will assume that new browsers (Internet Explorer 5 and Netscape 6)
will have satisfactory support for the W3C document object model and XML. This already provides a
nice way of specifying collections that is consistent with ADL’s SCORM. We will build some simple
layout tools supporting a portalML allowing natural grid and flow layouts (using a Java AWT
notation). We assert that that key new capability shown in fig. 2 is an event service that allows one to

Fig. 2: Collaborative Portal showing support for
multiple user interfaces and the event queue shared
synchronously as well as being stored for
asynchronous access

3

receive and send time-stamped tagged messages. These events define the state of each portal page and
can be used to support user customization by saving the event queue. The event queue is designed as a
distributed (XML) database to support guarantees of robust delivery and performance through
replication of shared events. The event log can also be used in assessment of both the student and the
learning material as it records the user’s interactions with the environment. As discussed in the
Syracuse theses of Lee and Sen (students of Fox), this can be done server side when it reduces to the
classic analysis of Web Server accesses logs. More interesting is the tracking of client side events
where the challenge is basically datamining user relevant information. We will on one hand build in
support for this as part of our event service and research extensions of the simple analyses in the two
theses to automatically derive user profile and learning assessment information. This client side event
information can be used to support universal access as described by Fox and Gilman from the
Wisconsin Trace center (http://www.npac.syr.edu/users/gcf/montrealxmlaug99).

Our web-based virtual university approach implies that collaboration is a service that provides
the sharing of web-based distributed objects. Previous systems have tended to support either
synchronous or asynchronous collaboration modes, but based on our current experience we will unify
them for this proposal. Initial synchronous deliveries have had some success using systems like
Microsoft NetMeeting, NCSA’s Habanero, and Syracuse’s TangoInteractive. However the new
requirements imply we will build collaboration in terms of the event service of our E-Speak
framework. We will allow this to support either synchronous delivery or event archiving and later
delivery of a session. Session control will be implemented in XML using the generalized portalML
described above. We have found that developing shared animations (for education) is too difficult in
current systems like TangoInteractive, which only support complex collaboration-aware applications
without difficulties. We will use VNC or an equivalent technology to allow both shared display and
collaboration-unaware applications, which are less flexible but much easier to author. One important
issue of our research will be the techniques needed to provide this unified approach to collaboration.
We are already building examples of this architecture shown in fig. 2, with an event service, which is
designed to support the performance of immediate forwarding of object state changes that is needed by
synchronous collaboration. This is combined with the archiving of events to support later
asynchronous browsing of the course by users accessing the persistent database. We ran in difficulties
with TangoInteractive due to its extensive use of browser-based software. In this approach we will
avoid putting significant client side logic into a browser but rather use a “personal server”. Here we
view the browser (on a PC or hand-held device) as one particular rendering device – it contains the
code to support rendering but the session logic and important data is controlled client side by a server.
This approach allows a single user session logic to support multiple display devices including cross
disability access such as a pure audio rendering for the visually impaired.

One continual area of challenge is the variable quality in digital audio and video conferencing.
Higher speed in networking and improving quality of service will address some of the difficulties. We
will track the ANL/NCSA Access Grid project at the high end, but for many educational uses
commercial systems like RealAudio/Video can be used. In our multi-paradigm framework, we will
allow the user to switch dynamically between interactive audio-video technology and the more reliable
non real time systems (like RealAudio) whose larger buffer sizes are less sensitive to the lack of
quality of service on today’s internet. We have noted in our classes between JSU and Syracuse that we
could use the more robust approach when the teacher is lecturing and interacting with the class
through the chat rooms rather than the audio channel. This accounts for well over 95% of the time of a
typical lecture.

We intend that a prototype system be available in spring 2001 and we will start with CORBA
technology of Gateway adding the new event service as the first key enhancement. Then during fall of
2000 we will begin use of E-speak and Ninja for the new system after evaluating them over the
summer.

