
Parallelizing legacy applications using message passing

programming model and the example of MOPAC

by

Tseng-Hui Lin

Abstract of Dissertation

April, 2000

The main purpose of parallel processing technology is to reduce the long execution

time problem of big jobs. Many \legacy" programs used today were developed for

running on traditional single processor machines only. In addition to parallel pro-

gramming skill, parallelizing a legacy application requires knowledge in the �led of

the application, which is usually diÆcult to get for computer scientists. The complex-

ity and size make the totally rewriting of these legacy programs a very painful job.

Moreover, large amount of code change in a legacy application may in-validate the

legacy application. The parallelization should focus on improving the performance

while keeping the amount of code change minimized.

We will propose a process to parallelize a legacy application from computer scien-

tist's perspective. This process includes a series of analyses on the legacy application

to estimate the performance improvement for di�erent types and sizes of inputs and

optimize the parallelized code for maximum performance. The process improve the

performance of a legacy application with minimum domain expertise and keep the

legacy application certi�ed.

MOPAC is a general purpose semi-empirical molecular orbital package for the

study of chemical structures and reactions developed more than thirty years ago. It

runs days for molecules consist merely several tens of atoms. We will use MOPAC

as the example to express how the process we propose improves the performance of

a real legacy application while keeping it validated.

Parallelizing legacy applications using message

passing programming model and the example of

MOPAC

by

Tseng-Hui Lin

Bachelor of Engineering, National Chiao-Tung University, Taiwan, May 1986

Master of Engineering, National Central University, Taiwan, May 1988

Master of Science, Syracuse University, Syracuse, NY, May 1999

Dissertation

Submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy in Computer and Information Science

in the Graduate School of Syracuse University

April, 2000

Approved

Date

c
 Copyright 2000

Tseng-Hui Lin

Contents

List of Tables viii

List of Figures ix

Acknowledgments xi

1 Introduction 1

1.1 Parallel Computers . 3

1.1.1 Distributed Memory Parallel Computers 4

1.1.2 Shared Memory Parallel Computers 6

1.1.3 Combined Parallel Architecture 10

1.2 Parallel Computing . 11

1.3 Legacy Applications . 16

1.3.1 MOPAC . 19

1.3.2 Data Visualization . 21

1.4 Outline of this Dissertation . 23

2 Parallel Environments 25

2.1 Data Dependency . 27

2.2 Scalability . 31

2.2.1 Non-Parallelizable Part of an Algorithm 33

2.2.2 Communication Overhead . 35

2.2.3 Load Balance . 39

2.3 Communication Sub-system Performance 40

v

2.4 Coarse and Fine Grain Parallelization 44

2.5 Parallel Communication Libraries . 46

3 Quantum Chemistry and MOPAC Background 53

3.1 Molecular Orbital Methods . 55

3.1.1 Hartree-Fock Self-Consistent Field Theory 55

3.1.2 Semi-empirical SCF . 57

3.2 MOPAC . 58

3.2.1 MOPAC releases . 59

3.2.2 MOPAC Input File and Keywords 62

3.3 Related Work . 63

3.3.1 IBM . 63

3.3.2 SDSC . 65

3.3.3 Fujitsu . 67

4 Parallelizing a Legacy Application 71

4.1 Sequential Analysis . 73

4.1.1 Program Flow Analysis . 73

4.1.2 Time Pro�ling Analysis . 75

4.1.3 Complexity Analysis . 78

4.2 Data Dependence Analysis . 79

4.2.1 Determination of Loop Data Dependence 80

4.2.2 Loop Index and Variable Subscript Transformations 81

4.3 Loop Parallelization . 86

4.4 Integration . 89

5 Parallelizing MOPAC 93

5.1 Sequential Analysis . 94

5.1.1 Program Flow Analysis . 94

5.1.2 Time Pro�ling Analysis . 97

5.1.3 Complexity Analysis . 100

5.2 Work Load Distribution . 109

vi

5.3 Parallelizing Subroutine DENSIT . 113

5.4 Parallelizing Subroutine DIAG . 117

5.4.1 Parallelizing Subroutine DIAG1 117

5.4.2 Parallelizing Subroutine DIAG2 120

5.5 Parallelizing Subroutine HQRII . 122

5.6 Integration and Visualization . 132

6 Results and Discussion 139

6.1 Running Parallel MOPAC . 140

6.2 Performance with Small Data Sets . 144

6.3 Performance with Big Data Sets . 151

7 Summary 159

A Installing Parallel MOPAC 165

B Data Visualization and AVS Parallel Modules 171

C Computational Complexity of Subroutine DHC 179

D Results of Parallel MOPAC 185

Bibliography 195

vii

List of Tables

5.1 MOPAC execution time pro�ling . 99

D.1 Data �les used for benchmark . 186

D.2 Subroutine DENSIT run time and speed-ups with small data sets . . 187

D.3 Subroutine DIAG run time and speed-ups with small data sets 188

D.4 Subroutine HQRII run time and speed-ups with small data sets . . . 189

D.5 Total run time and speed-ups with small data sets 190

D.6 Subroutine DENSIT run time and speed-ups for big data sets 191

D.7 Subroutine DIAG run time and speed-ups for big data sets 192

D.8 Subroutine HQRII run time and speed-ups for big data sets 193

D.9 Projected overall speed-ups for big data based on Table 5.1 194

viii

List of Figures

1.1 Parallel computer architectures . 4

1.2 Shared memory with local memory 8

1.3 Distributed shared memory . 9

1.4 Parallel code structure . 13

2.1 Example of parallelizable code . 27

2.2 A data dependence example and its dependence graph 28

2.3 Data dependence resolved example and its dependence graph 29

2.4 A loop data dependence example and its dependence graph 30

2.5 Theoretical maximum speed-ups . 34

2.6 Estimatedmaximumspeed-up with interfered communications. Curves

correspond to fractions of time spent in communications, from 10% to

0.001%. 38

3.1 SCF procedure . 57

3.2 A MOPAC sample input data �le . 63

3.3 IBM MOPAC-7 parallelism . 65

3.4 WinMOPAC V2.0 graphic user interface 70

4.1 Parallelizing a legacy application . 72

4.2 Single and dual process time pro�ling 77

4.3 DO loop normalization . 83

4.4 Induction variable substitution . 85

4.5 Loop interchange . 87

4.6 Scalar variable expansion . 88

4.7 Variable copying . 90

ix

4.8 Integration . 91

5.1 MOPAC
ow diagrams . 96

5.2 MOPAC time pro�ling tool . 98

5.3 simpli�ed DCART algorithm for complexity analysis 101

5.4 simpli�ed DENSIT algorithm for complexity analysis 103

5.5 simpli�ed DIAG part 1 algorithm for complexity analysis 106

5.6 simpli�ed DIAG part 2 algorithm for complexity analysis 107

5.7 Simple block distributions . 111

5.8 Parallel algorithm that �nds a global maximum 112

5.9 Parallelizing DENSIT loop structure 115

5.10 Parallelizing DIAG part 1 loop structure 119

5.11 Parallelizing DIAG part 2 loop structure 121

5.12 Modi�ed DIAG part 2 loop structure 123

5.13 The PeIGS subroutine pdspevx user interface 131

5.14 Parallel MOPAC system con�guration 134

5.15 Parallel MOPAC communications between coarse grained modules . . 136

6.1 Parallel MOPAC AVS network and control panel 141

6.2 Parallel MOPAC geometry control . 142

6.3 Parallel MOPAC AVS user interface 143

6.4 Speed-ups of subroutine DENSIT with small data sets 146

6.5 Speed-ups of subroutine DIAG with small data sets 147

6.6 Speed-ups of subroutine HQRII with small data sets 148

6.7 Speed-ups of parallel MOPAC with small data sets 149

6.8 Speed-ups of subroutine DENSIT with big data sets 152

6.9 Speed-ups of subroutine DIAG with big data sets 153

6.10 Speed-ups of subroutine HQRII with big data sets 154

6.11 Speed-ups of subroutines/machines 155

6.12 Projected Speed-ups of parallel MOPAC 156

A.1 MOPAC directory structure . 167

B.1 AVS Directly Module Communication 176

C.1 Subroutine DHC calling tree . 180

x

Acknowledgments

I would like to thank my advisor Professor Geo�ery C. Fox for the research directions

and the excellent computing environments he gave me. His uninterrupted support

helped me stay in research for seven years. I may have given up without his help. He

played a parental role in my research.

I would like to thank Dr. Tomasz Haupt. He took care of every detail of my

research. He even shared the advisor's role in some projects I was working on in

NPAC. Dr. David E. Bernholdt, the most friendly researcher I have ever met, taught

me the chemistry knowledge to work on computational chemistry problems. He also

helped me debug my huge code.

Professor Danny C. Sorensen kindly taught me some concepts on eigensystem

problems. George Fann, the author of PeIGS, showed me much of the internal detail

of the optimized parallel eigensolver. They are the best eigensystem experts I could

reach on internet.

I also thank my friends Dr. Jhy-Chung Wang, Shennon Shen, Chao-Wei Ou, Steve

Cooper, and August Calhoun. They gave me so many valuable suggestions on my

research and the writing of this dissertation.

Finally, I thank my family, who were always there whenever I got into trouble,

became upset, or lost my con�dence. Without their love and encouragement, I would

have given up a long time ago.

xi

Chapter 1. Introduction 1

Chapter 1

Introduction

The requirements for computing power are never satis�ed. Although the new semicon-

ductor technology makes computer hardware several times faster every year, software

developers and computer users can always �nd more complex problems to consume

the computing power. With higher computing power, scientists can run larger calcu-

lations, add more parameters to their models, get more precise results, and improve

the quality of their experiments.

Parallel computing has become an important way of achieving higher computing

power since the Illiac IV parallel computer became operational in 1975. Parallel

processing speeds up the program execution by distributing the computation work

load to a set of computation nodes. Each computation node shares a part of the work

load. In principle, the more computation nodes are used, the smaller piece of work

load is distributed to each computation node; and the shorter the execution time is

needed. The most attractive feature of parallel computing technology is that it can be

applied to any processor, no matter how fast it is, and boosts the computing power

even higher. A hundred-fold or thousand-fold performance boost on large parallel

computers is possible for some applications.

The most desirous users of this computing power are computational scientists. It

Chapter 1. Introduction 2

is not unusual for computational scientists to require hundreds of megabytes of mem-

ory and weeks of execution time, thus computational scientists have attempted to

use parallel computers to solve their problems for years. Moreover, new applications

are designed directly for parallel computers to take full advantage of parallel comput-

ing technology. Many legacy programs have also been ported to parallel computers.

While the performance of some legacy applications does improve dramatically, others

may gain very limited or even no performance improvement due to inappropriate ap-

proaches, poor tunings, heavy communication or sequential natural of the algorithms.

Legacy applications are programs that were designed decades before parallel com-

puting concepts were introduced. Often over time, new functions may have been

added while many changes may not have been precisely well documented. Develop-

ers preserve everything they do not fully understand when making changes to legacy

applications to prevent breaking the entire program. Programming errors, compli-

cated program codes, obsolete documents, and the growing program size make legacy

programs very diÆcult to deal with.

Some important legacy applications attract many users during their lifetimes.

Developers are forced to maintain and improve these applications to satisfy a large

population of users. The most common request for improvements are for better

user interfaces, new function, fewer limitations, and better performance. All these

requirements, of course, require more computing power. Greater performance is what

parallel computing technologies were invented for and, thus, parallel computing may

be the best solution of improving these legacy applications.

Legacy applications were designed for traditional single processor system environ-

ments. Some algorithms optimized for single processor systems may be diÆcult to

parallelize. In contrast, some plain algorithms that perform poorly on single proces-

sor systems may scale very well on parallel systems. This means that parallelizing

legacy programs involve new concepts which are di�erent from the traditional ones.

In short, sometimes we need to parallelize an application with a non-optimized se-

quential algorithm instead of an optimized one.

One such legacy code is MOPAC, a semi-empirical molecular orbital chemistry

Chapter 1. Introduction 3

package developed thirty years ago [14, 88]; and it surely has evolved over time.

Chemists, it is true, have added many new features to make it distinctly more pow-

erful. It has also been ported to many platforms. Many studies were performed

utilizing MOPAC. Unfortunately, by the nature of matrix diagonalizations used in

semi-empirical quantum chemistry, the execution time required by MOPAC grows

roughly cubic of the input molecular sizes. The memory and CPU requirements of

MOPAC are beyond the capabilities of most modern workstations for a molecule con-

sisting of only one hundred atoms. In sum, MOPAC is therefore altogether a challenge

for parallel processing and constitutes the subject of this dissertation.

1.1 Parallel Computers

The basic idea of parallel computing is to make a set of processors working on a single

problem cooperatively to improve the performance of running a single program or the

throughput of multiple programs. In order to work on a single problem cooperatively,

the processors must exchange information during program execution. As a result, the

processors of a parallel computer must be connected by some kind of communication

network.

Based on di�erent types of connections between processors, modern parallel com-

puters can essentially be classi�ed into two basic categories: distributed memory

and shared memory parallel computers. Processors in distributed memory parallel

computers are connected via an I/O channel while those in shared memory parallel

computers are connected via a memory bus [69]. Distributed memory parallel com-

puters use explicit I/O instructions to pass information entirely between processors

while shared memory parallel computers directly access all data through a shared

memory bus.

Chapter 1. Introduction 4

Local
Memory

Processor

Local
Memory

Processor

Local
Memory

0 1 p-1
Processor

Interconnection Networks

I/O I/O I/O

(a) distributed memory

0 1 p-1
Processor Processor Processor

Shared Memory Bus

Shared Memory

(b) shared memory

Figure 1.1: Parallel computer architectures

1.1.1 Distributed Memory Parallel Computers

Distributed memory parallel computers, as shown in Figure 1.1(a), are a set of pro-

cessors connected to each other via interconnection networks. Not surprisingly, each

processor has its own memory. Data sets are distributed and stored in each proces-

sor's local memory. There is no direct way to share information stored in the local

memory. All information that resides in another processor's local memory must be

sent explicitly through the interconnection networks.

Chapter 1. Introduction 5

Indispensable to a fuller view, the concept of a distributed memory parallel com-

puter is a simple and natural one: adding a communication channel such that a set of

independently working computers can cooperate working on a single task to reduce

the total execution time. It requires a very small change to the existing computer

architecture. In such a case, any kind of interconnection network can be used as long

as it can pass information. A specially designed high-speed network is evidently more

eÆcient, but a general purpose local area network (LAN) is e�ective also. By the type

of interconnection network, we can classify distributed memory parallel machines into

workstation clusters and massive parallel processors (MPP).

Workstation Cluster A workstation cluster is a set of stand-alone workstations

connected by a local area network. To this end, one can simply connect several work-

stations by a local area network interface which is a built-in device for most modern

workstations in order to construct a low-cost distributed memory parallel computer.

For example, the Intel 82586 ethernet controller was used as the communication chip

of iPSC-1, an early distributed memory parallel computer developed by Intel [69].

By the same token, the local area networks have made signi�cant speed improve-

ments. Fast ethernet is ten times faster than the original 10Mb/sec ethernet at almost

the same cost. Gigabit ethernet can do even better [41]. With the dramatic improve-

ment of high-performance network hardware, a low-cost workstation cluster is not

necessarily a low-performance cluster [11]. The Beowulf project [81] |run by NASA

Center of Excellence in Space Data and Information Sciences (CESDIS)| developed a

low-cost parallel workstation cluster for scienti�c computations. The Beowulf work-

station cluster successfully demonstrated high-end parallel computer power from a

low-cost workstation cluster in the conference of Super Computing 97. In a word,

Beowulf extends the horizon of low-cost workstation clusters. Given these preoccupa-

tions, CESDIS has set up a web page [22] to provide software and overall instructions

for people to build Beowulf clusters.

Chapter 1. Introduction 6

Massive Parallel Processors Since all processors may exchange information through

the interconnection network, this particular network may become a bottleneck of com-

putation. By and large, specially designed high-speed networks are used for high-end

distributed memory parallel computers. These high-end networks not only fundamen-

tally improve the bandwidths but also the latency. Special hardware designs such as

worm-hole routing [67] are used to reduce the network routing problem. The Think-

ing Machine CM5 [90], nCUBE nCube-2 [66], Intel iPSC/860 [55], Intel Touchstone

Delta [53], IBM SP2 [58] were all equipped with intensely high-speed interconnection

networks.

The interconnection network of Thinking Machine CM5 [90] can invariably per-

form arithmetic operations while data passes through the network. On the whole, this

further improves the global communication operation understandably. The custom-

designed routing chips give the mesh topology interconnection network of the Intel

Touchstone Delta the ability to deliver several messages on the same link at the same

time.

Unlike shared memory parallel computers, distributed memory parallel computers

can scale up easily. The interconnection networks can usually connect more compu-

tation nodes than shared memory buses do. At a given cost, modulized connection

schemes allow the combining of smaller machines into a larger con�guration. Thus,

large systems can be built by connecting several smaller systems [10, 26, 70]. Dis-

tributed memory parallel computers with more than one thousand processing nodes

have been seen in the Connection Machine CM-5 [90] and the Intel Paragon [53].

IBM has also built a large SP2 which contains more than 1400 nodes.

1.1.2 Shared Memory Parallel Computers

Shared memory parallel computers, as shown in Figure 1.1(b), have a set of proces-

sors connected to a shared memory via a memory bus. Every processor has direct

access to the shared memory. Information stored in shared memory is available to

all processors from the moment they are loaded into the shared memory. Linked in

Chapter 1. Introduction 7

terms, processors read and write data directly from/to shared memory. No explicit

information between processors exchange is needed. As a matter of course, shared

memory parallel computers save data distribution and result collection time. As a

rule, the direct access of the shared memory creates heavy bus traÆc for the shared

memory. The shared memory serves all the processors, and it must be extremely

fast to keep up with the processors. When the shared memory is not fast enough to

bear the heavy traÆc, memory access contention occurs and therefore makes memory

access the bottleneck of the shared memory parallel computers.

A super-high-speed shared memory which can keep up with the speed of all p

processors is the dream of shared memory parallel computer designers. Undeniably,

modern processors are so fast that building a shared memory that runs several times

faster than processors is almost impossible. Indeed, this limits the maximum number

of processors a shared memory parallel computer can have. Although methods of

reducing traÆc of shared memory accesses have been proposed [60], shared memory

traÆc is still the most widely acknowledged headache of shared memory parallel

computers.

Shared memory with local memory An accurate observation is that the heavy

traÆc problem of shared memory parallel computers can be reduced by introducing

local memory as shown in Figure 1.2. In addition to the shared memory, each proces-

sor has a local memory. Only shared data is speci�cally kept in the shared memory.

Non-shared data can supposedly be put in the local memory to reduce the traÆc to

the shared memory.

Equally important, cache memory is the most commonly used technology to solve

the memory-processor speed gap problem on single processor machines [43, 79]. Fre-

quently used information is copied to cache memory. Vitally necessary, cache memory

is local to its processor. All data accesses to information that is kept in cache mem-

ory requires accesses to cache memory only. No main memory access occurs until a

cache miss occurs. This reduces the traÆc to main memory dramatically. Cache-hit

ratio, which is de�ned as the ratio of the frequency of cache accesses to total memory

Chapter 1. Introduction 8

0 1 p-1

Shared Memory Bus

Processor

Local
Memory

Processor

Local
Memory

Processor

Local
Memory

Shared Memory

Figure 1.2: Shared memory with local memory

accesses, depends primarily on many factors such as the sizes of cache memories, the

cache replacement algorithms, and the data access patterns. A cache hit ratio of 95%

reduces the memory access to merely 5%. Multiple levels of cache are also possible

for high-speed processors. With its 64KB L1, 2MB L2 cache and enhanced memory

bus, the shared memory of SGI Power Challenge can serve up to 36 MIPS R10000

processors without a problem. Although cache memory reduces the memory access

traÆc problem, it introduces a new problem. In shared memory parallel computers, it

is possible that a piece of data is cached in the cache memory of two or more di�erent

processors. Cache coherence is required to ensure data consistence between di�erent

local copies of data in cache memory of di�erent processors [27].

Some machines put a local memory between cache and shared memory. Read-

only information such as code or constants can be duplicated to local memory. Local

information, such as working variables, can be kept in local memory, too. The shared

memory keeps only information which must be shared and may be altered. This

reduces shared memory access even further. Understandably, the local memory serves

as an extra level of cache memory for shared memory.

Chapter 1. Introduction 9

0 1 p-1
Processor Processor Processor

Distributed Shared Memory Connections

Distributed

Memory
Shared

Memory Memory

Distributed Distributed
Shared Shared

Figure 1.3: Distributed shared memory

Distributed shared memory Although the local memory does reduce the traÆc

of shared memory dramatically, shared memory still serves only one processor at

a time. Vitally necessary, this makes the shared memory the greatest sequential

part of shared memory parallel computers. The extensive shared memory access still

makes the maximumnumber of processors of shared memory parallel computers much

smaller than that of distributed memory parallel computers.

Since a processor usually accesses a small area of shared memory at a time, it

is unreasonable to lock out other processors from accessing other areas of shared

memory. Breaking the shared memory into several pieces allows simultaneous accesses

to di�erent pieces of shared memories and can improve the performance of the shared

memory system. As shown in Figure 1.3, the distributed shared memory is, essentially,

the local memory of its processor. In many ways, the distributed shared memories are

connected by a special memory interconnection that consists of many memory buses

instead of a single bus. The distributed shared memory allows simultaneous accesses

of shared memory as long as they are not on the same piece of shared memory. The

multiplememory buses design allows all processors not to be attached to the same bus.

What emerges is that this distributed shared memory technology not only improves

the performance of shared memory but also allows for larger con�gurations.

SGI Origin 2000 S2MP (Scalable Shared Memory Multi Processor) [78] is a dis-

tributed shared memory parallel computer. Instead of a single big shared memory

Chapter 1. Introduction 10

connected on a single memory bus, every prevailing processing node hosts a piece of

distributed shared memory connected by a multi-dimensional hypercube shared mem-

ory connection. Thanks to the SGI ccNUMA (cache coherent Non-Uniform Memory

Access) architecture, the SGI Origin 2000 can connect to as many as 128 proces-

sors on a single machine. The Scalable Computing Architecture (SCA) used on the

HP 9000 V2600 Enterprise Server [50] is a crossbar topology ccNUMA architecture.

The HP 9000 V2600 Enterprise Server at once supports up to 128 PA-8600 processors.

1.1.3 Combined Parallel Architecture

As discussed in previous sub-sections, the interconnection networks used in dis-

tributed memory parallel computers give the distributed memory parallel computer

better scalability but higher latency, the network initialization time, or set-up time.

The shared memory has lower latency but worse scalability. The new design of dis-

tributed memory parallel computer moves toward merging the two architectures to

minimize the communication latency of distributed memory parallel computers and

to improve the scalability of shared memory parallel computers.

Aside from the performance issue, programming models are di�erent between

distributed and shared memory parallel computers. By comparing Figure 1.1(a) and

Figure 1.3, the architectures of distributed shared memory parallel computers and

the distributed memory parallel computers are very similar. The di�erence between

these two architectures is the distributed shared memory connection that enables

direct access of o�-processor data for distributed shared memory parallel computers

while explicit data exchange is required for distributed memory parallel computers.

Approaching both theoretically and practically, SGI Origin 2000 S2MP physically

distributes its memory into multiple nodes to improve the scalability while still keep-

ing its appearance of shared memory by using a ccNUMA architecture. In the �nal

analysis, the ccNUMA architecture of SGI Origin 2000 S2MP uses distributed mem-

ory technology to improve the scalability while still retaining the advantage of low

latency directly shared memory accesses.

Chapter 1. Introduction 11

On the other hand, the active message [93] implemented on nCUBE nCube-2,

Thinking Machine CM5 [91], and IBM SP2 [58] created a low latency method of

communication on distributed memory parallel computers. In conjunction with faster

communication, active message also provides a way to access o�-processor memory

directly. With active message, distributed memory parallel computers are able to

access o�-processor memory more eÆciently and run applications written in shared

memory model.

In general, since shared memory works more e�ectively on smaller systems and

distributed memory performs better on large con�gurations, using smaller shared

memory parallel computers as the computation nodes to construct a large distributed

memory parallel computer is a natural way to take advantage of both technologies.

A new IBM SP2 that connected 500 4-way SMP nodes by its high-performance SP

switch [84] shrinks the footprint of SP2 while enlarging its computing power.

1.2 Parallel Computing

Parallel computing is used to improve the performance of running a single program or

the throughput of multiple programs. The IBM's work introduced in Section 3.3.1 fo-

cuses on the throughput of running multiple copies of MOPAC while the SDSC's work

introduced in Section 3.3.2 focuses on the performance of running a single MOPAC

program. Since this dissertation focuses on the premise of performance improvement

of running a single legacy program, our discussion of parallel computing will be lim-

ited to the performance improvement of running a single program unless otherwise

speci�ed.

A computationally intensive sequential program typically contains one or more

iterative loops that consume a large amount of CPU time. To a great extent, the

main task in parallel computing is to �nd and break these loops into smaller pieces

and share the work load among all processors in order to shorten the computing time.

As has been frequently pointed out, a program consists of many statement blocks.

Chapter 1. Introduction 12

The statement blocks of a sequential program are executed in a �xed execution
ow.

The execution
ow decides the order in which the statement blocks are executed.

Sequential programmers can arrange the order of statements or use execution
ow

control statements to control the execution order of statements. The fact of the

matter is that by arranging the execution order, it is relatively easy to make the

data required by a statement block available before the statement block is executed.

In fact, data dependency problem can easily be resolved because the execution
ow

guarantees the sequence of statement execution.

Parallel computing, virtually, needs to break the sequence in order to make state-

ment blocks execute in parallel. Data dependence essentially may prevent a statement

block from being executed before another statement block is �nished. This forces

statement blocks to be executed in some order and prohibits parallelization. We will

discuss more about data dependence in Section 2.1.

It may not be possible to totally eliminate all data dependence in a program.

Sequence mechanisms must be used to enforce the execution sequences and follow

the data dependencies. Message passing is the most natural way to handle the data

dependence problem. The data generating statement block that is executed by one

processor sends the data to the receiving processors after the data is generated. This

means that the processor that needs the data is blocked until the data is received.

Unquestionably, sending and receiving data is the obvious way of communicating

on distributed memory parallel computers. Although the physical size limitation

may still limit the overall maximum possible speed-up, locking can be used on shared

memory machines to simulate this function. A memorable feature, for the advantage

of use in large distributed memory systems and smaller shared memory systems, the

message passing programming model is used in this dissertation.

A sequential code to be parallelized can be broken down into the program structure

shown in Figure 1.4. A parallel code �rst determines the data and computational

space for each processor. Then the computational space is divided into smaller stages

which contain no data dependence in the same stage. The input data is consequently

distributed based on the data space of each processor. The processors start computing

Chapter 1. Introduction 13

S1 : Determine data and computational spaces for each processor

S2 : Initial data distribution

S3 : For all data dependent stages do

S4 : For each processor: Loop over its computation space in current stage

S5 : Synchronize execution and exchange intermediate results

S6 : End for

S7 : Collect �nal results

Figure 1.4: Parallel code structure

concurrently and exchanging intermediate information between nodes. Finally and

relatedly, after computing is completed, the �nal results are sent to their destinations.

For a more strategic coherence, compared with its sequential counterpart, the

parallel code shortens the execution time distributing computation to p processors in

step S4. Important as it is, the parallel code needs to pay an overhead for step S1,

S2, S5, and S7. Parallelization is wasted if the overhead is bigger than the bene�t.

The key is, namely, to maximize the bene�t and minimize the extra cost of parallel

algorithms.

The shortest possible execution time by using p identical processors is 1=p of

single processor execution time. In general, since the �nal results cannot be ready

until all processors �nish execution, the total execution time is the execution time of

the processor which takes the longest time. Ideally, the work load should be evenly

distributed such that all of the processors can �nish execution at the same time. In

a heterogeneous system, the computing power of each processor must also be taken

into account in a heterogeneous systems to achieve load balance.

Step S1 requires a fast work load distributing algorithm. A good load distributing

algorithm can distribute workload based on the computing power of each processor

and make the execution time about the same for all processors. The complexity of

Chapter 1. Introduction 14

the load distributing algorithm is di�erent from program to program. What emerges

is that the di�erence is not a problem for large problems but may be signi�cant in

smaller problems. Although the load distributing algorithm is just a few statements

in some simple cases, yet it is typically rather complex. A fast, but not perfect, load

distributing algorithm may be better than a perfect, but slow, one. The load balance

problem will be appropriately discussed further in Section 2.2.3.

Steps S2, S5, and S7 require communication. In particular, step S2 distributes the

input data and arguments to all processors. In many cases, broadcasting and point-to-

point communications are the most popular ways to distribute data. Step S7 collects

the �nal results from processors. Collective communications like concatenating or

global sum are often used to do this job.

The communication needed for exchanging intermediate data is the most mean-

ingful one since it is performed many times while initial data distribution and �nal

results collection are used for only once. Communication in step S5 is usually point-

to-point.

An unscheduled communication phase may result in resource contention and cause

unnecessary waiting. A prime example, node 0 and node 1 may want to send data

to node 2 and node 3. Node 1 may be blocked because node 2 is receiving data sent

from node 0. Node 1 cannot send data to node 2 until node 0 �nishes sending and

releases node 2. In the meantime, a scheduled communication method will �nd that

node 3 is available and, therefore, has node 1 send data to node 3 while node 2 is not

available.

Admittedly, a well scheduled send/receive scheme can fully utilize the communica-

tion hardware and cut the communication time by half [61]. A study of scheduling of

all-to-all communications to avoid node contentions [74] showed the idea of commu-

nication scheduling reduced the communication time on distributed memory parallel

machines. A series of studies on communication scheduling for all-to-all and all-to-

many communications [72, 71, 73] provide more comprehensive information of com-

munication scheduling. In the �nal retrospect, a distributed scheduling algorithm [95]

eliminated the requirement of exchanging communication pattern information before

Chapter 1. Introduction 15

communication scheduling and reduced the cost of communication scheduling.

As a rule, communication is relatively slow compared to the computation. Proces-

sor speed is by far faster than memory and I/O channels. As described in a previous

section, cache memory is needed to �ll the speed gap between processors and memo-

ries. Two levels of cache memory have been used for most modern processors. As the

processor clock rates approach the gigahertz range, three levels of cache memory have

appeared on some DEC Alpha machines. I/O operations, it appears, that send data

to communication hardware are even slower than memory access. The computation

and communication performance gap has, one must concede, made communication

very expensive.

Since communications can be one or two orders of magnitude slower than com-

putation, communication has a higher priority over computation when choosing al-

gorithms. To be sure, an algorithm that reduces computation but requires more

communication may not be as good as an algorithm requires more computation but

reduces communication.

Many studies have been done to improve the communication performance on par-

allel computers. Topology speci�c studies on a hypercube [17, 61] were made on

iPSC/2 and iPSC/860. Algorithms for di�erent applications [33, 51] were designed

to take advantage of hypercube network topology.

The communication cost is so signi�cant that it may signi�cantly a�ect the per-

formance of a parallel program. The communication costs in some parallel algorithms

grow as the number of processors increases. This may prevent the algorithms from

scaling well. Algorithms with high communication costs may gain very little or even

slow down instead of speed-up when too many processors are used. What this suggests

is that we will need to determine the best number of processors to use.

We will expand upon communication in Section 2.2.2.

Chapter 1. Introduction 16

1.3 Legacy Applications

As computers become more a�ordable, many people join the computer industry to

develop software for the vast number of computer users. New software rolls out

to replace old products rapidly. Software may be replaced by new ones or become

obsolete in a few years. Nonetheless, there are many legacy applications still in use

despite their ages. These legacy applications neither get replaced nor abandoned.

Legacy applications are exceptions to the rapidly changing software industry.

There must be reasons that potentially make these legacy applications survive.

In other words, these legacy applications must have hight value to keep themselves

alive. Some possible reasons are:

Functions are validated/certi�ed : Over the long period of lifetime, the bugs and

problems of the legacy applications have been found and �xed. The functions of

the legacy applications have been proved to be correct and users are con�dent

to use them.

Well known standard : The legacy applications have been widely used and well

known. People knows what other people talk about as soon as the names of the

applications are mentioned.

Data compatibility : Some legacy applications are used as a part of a sequence of

processing. The input and output data formats cannot be changed.

Users get used to it : Users get used to the out look, data format and the way

the legacy application handles data. Any change to the legacy application

may cause inconvenience to the users. The users prefer keeping the way the

legacy application is than making changes to it, even if the changes improve the

functionality of the legacy application.

Investment : Users have made big investment in customizing the code, installing

peripheral and training their sta� to use the legacy application. They want to

stick with the legacy application to preserve their investment.

Chapter 1. Introduction 17

Since these legacy applications are still used, they must be attended to even though

their design concepts are old and require an update. The legacy applications to be

considered presently have the following characteristics:

Computationally intensive : People would not mind if a program runs for only a

few seconds. These small programs do not need to be improved even if they are

old. The legacy applications we need to deal with are large legacy applications

which require huge amount of CPU time. These programs can take advantage

of parallel computing.

Big in size : Small programs can be easily re-written. A small program that con-

tains only a few thousand lines may have been rewritten before they become

obsolete.

Sequential design concept : "Legacy applications" in the present context means

applications designed before the age of parallel processing. They are designed for

uni-processor architecture computers without any parallel computing concepts.

Complicated : The program has been modi�ed/improved by many di�erent people.

Program structures, variable names, coding styles are di�erent from one part to

the other. Documentation may be missing or not up-to-date. Some optimization

may be too tricky to understand. It may take a long time to discover how the

code works. This may be the most important reason that people do not want

to make changes on these applications.

Improve, not rewrite : People invested a lot of money on the program. It may

require even more money to rewrite it. Since there are people still using it and

want to improve it, parallelizing it may be a good way to increase the eÆciency.

These legacy applications perform functions people need with some limitations

due to insuÆcient computing power. Users may be limited to small size of data, low

resolution experiments, or need to wait for a very long response time. Besides waiting

for faster hardware, people will apply parallel technology to cure the computing power

problem.

Chapter 1. Introduction 18

Since the legacy applications are designed before parallel processing was born,

the algorithms and data structures used in those legacy applications are optimized

for uni-processor architecture. One is conscious that some optimizations cause data

dependence and make parallelization very diÆcult.

During the long life of a legacy program, many people enhance the program by

adding a new code or changing the existing code. Some of the changes are doc-

umented while some of them are not. To avoid breaking something, some unused

pieces of codes are kept in the program. These new functions, problem �x patches,

undocumented changes and dead code increase the diÆculty of tracing and re-writing

legacy programs.

The CPU time a program spends is not uniformly distributed in every part of the

program. Some parts are executed repeatedly and take most of the CPU time. Other

parts are executed only once or even not used in normal cases and take very little

CPU time. For instance, most software uses large portions of code to check abnormal

situations and error conditions such that the application can produce correct results

for the users. This checking usually takes many more program statements since

abnormal cases are likely to happen. However, most of the code is made up of \if-

then-else" structures instead of loop structures. The codes are skipped if no error is

found. Even when an error is found and the error handling codes are emphatically

invoked to resolve the problem, the codes are run only once and take very little CPU

time.

Since we are interested solely in performance improvement, we do not want to

touch these seldom used codes. We are more interested in the frequently used data

processing parts. These parts may not take as many program statements as the error

handling parts do, but they use much CPU time.

It is good practice to divide the whole legacy application into computationally in-

tensive and non-computationally intensive parts. We can leave the non-computationally

intensive parts alone and save a lot of work since we are not interested in that seg-

ment. The computationally intensive parts, which we are interested in, are now much

Chapter 1. Introduction 19

smaller and easier to deal with. We are �rst going to extract only the computation-

ally intensive parts from a legacy application, and then parallelize them to boost the

performance.

1.3.1 MOPAC

There are essentially two commonly employed theoretical methods for the study of

molecules: quantum chemical and classical models of molecular structure. Quan-

tum chemical models can be further divided into two categories: ab initio and semi-

empirical. Large basis set ab initio methods that include correlation o�er much better

accuracy. It can provide a successful and thoroughly tested framework for molecular

calculations. There is, not withstanding, an important drawback of ab initio cal-

culations. They require a huge amount of computer resources. In the extreme, a

system with just 10 atoms can take hundreds of megabytes of memory and hundreds

of hours of CPU time on a workstation. This limits its application, in a sense, to small

sized molecular systems. On the other hand, the molecular mechanics method, based

on classical mechanical concepts, is extremely fast and requires much less memory

than ab initio methods. This gives it the ability to handle very large systems. Some

molecular mechanics methods can be as accurate as some ab initio methods, particu-

larly for hydrocarbons. Still, most classical methods are generally parameterized only

for ground state systems and only for common bonding situations. Inevitably they

are unable to anticipate unusual bonding situations and the making and breaking of

bond, which require a more sophisticated treatment.

Between ab initio and molecular mechanics methods are the semi-empirical quan-

tum chemical methods. Like ab initio methods, they are quantum-mechanical in na-

ture. However, they greatly simplify the problem in part by substituting empirically

obtained parameters for more rigorous and time-consuming computations. Increasing

the computing power of a computer by a factor of 100 allows molecular mechanics

methods to treat 10 times larger molecular systems, but only 3 times larger for ab

initio methods. Utilizing today's high-performance scienti�c workstations, molecular

mechanics methods can be applied to thousands of atoms, semi-empirical quantum

Chapter 1. Introduction 20

chemistry to hundreds, and ab initio quantum chemistry to tens of atoms [96].

MOPAC is a general-purpose semi-empirical molecular orbital package for the

study of chemical structures and reactions [14, 88]. The semi-empirical Hamiltonians

MNDO [30], MINDO/3 [15, 28], AM1 [29], and PM3 [83] are used in the electronic

part of the calculation to obtain molecular orbitals, the heat of formation, and the

derivatives with respect to molecular geometry. Using these results MOPAC can com-

pute the vibrational spectra, thermodynamic quantities, isotopic substitution e�ects

and force constants for molecules, radicals, ions, and polymers. For studying chemi-

cal reactions, a transition-state location routine and two transition state optimizing

routines are available. A summary indication, for users to get the most out of the

program, they must understand how the program works, how to enter data, how to

interpret the results, and what to do when things go wrong.

Here is the summary of MOPAC capabilities:

1. MNDO, MINDO/3, AM1, and PM3 Hamiltonians.

2. Restricted Hartree-Fock (RHF) and Unrestricted Hartree-Fock (UHF) methods.

3. Extensive Con�guration Interaction

(a) 100 con�gurations

(b) Singlet, Doublets, Triplets, Quartets, Quintets, and Sextets

(c) Excited states

(d) Geometry optimizations, etc., on speci�ed states

4. Single SCF calculation

5. Geometry optimization and gradient minimization

6. Transition state location

7. Reaction path calculation including dynamic and intrinsic reaction Coordinate

calculations

Chapter 1. Introduction 21

8. Force constant calculation and normal coordinate analysis

9. Transition dipole calculation

10. Thermodynamic properties calculation

11. Localized orbitals

12. Covalent bond orders

13. Bond analysis into sigma and pi contributions

14. One dimensional polymer calculation

While MOPAC calls upon many concepts in quantum theory and thermodynamics

and uses some fairly advanced mathematics, the user primarily needs not be familiar

with these specialized topics. MOPAC is written with the non-specialist in mind.

The input data is kept as simple as possible so users can give their attention to the

chemistry involved and not concern themselves at times with the program itself.

The simplest description of how MOPAC works is that the user creates a data �le

which describes a molecular system and speci�es what kind of calculations and output

are desired. A justi�able preference, the user then commands MOPAC to carry out

a calculation using that data-�le. Finally the user extracts the desired output from

the output �les created by MOPAC. A sample input �le will be shown in Section 3.2.

1.3.2 Data Visualization

Logical arguments can be o�ered that a computer is a tool which is used to solve real

world problems. The results of a computation are numbers that represents real world

objects [42]. However various, the real world objects may be locations of planets,

velocity of air streams, or the shape of a molecule. Directly printing out these numbers

often does not directly give much meaning to a user. Showing a map and the location

of hurricanes is much easier for people to understand how hurricanes move rather

than just reporting the coordinates of hurricanes. You can more remarkably see how

Chapter 1. Introduction 22

much a stock price rises from a graph instead of a table. It would be very diÆcult

to control air traÆc by a set of airplane coordinates. At this juncture, the visual

representations allow a quick understanding of the results of computation.

Data visualization has constituted a worthwhile technology for almost all kinds of

applications. People used alphabets and punctuation marks to plot tables and draw

some low resolution graphs on text terminals before graphic terminals and work-

stations were invented. Today, with high resolution workstations, people can easily

display graphs, charts, and even animations. Pointing devices such as mice, track

balls, and touch pads have become important input devices in graphic environments.

By moving and clicking on point devices, typing computer commands from keyboards

is no longer necessary.

MOPAC focuses on the chemical calculations. All results are represented by num-

bers and tables. Even the optimized atom geometries are represented by Cartesian

coordinates or internal coordinates. A graphic representation of atom geometries

thereby helps the study of the geometry optimization process. At this stage, a graphic

control panel helps the user input the parameters of calculations by simply clicking

on the buttons on the control panel. Data visualization eases the input of parameters

and the understanding of the results.

We would like to provide a GUI (graphic user interface) in addition to the tra-

ditional text �le based MOPAC user interface. To a great extent, the graphic user

interface not only provides visualization of molecule structures but also ease the use

of parallel MOPAC under parallel environments.

X-windows is considerably the most popular graphic system on workstation envi-

ronments. Programming by using X-windows directly is a complex job. Higher level

GUIs like MOTIF are developed to make graphic programming easier. This means

that even with MOTIF, it still needs to add a lot of codes on graphic programming.

We would like to use AVS (Application Visualization System) to save e�orts required

by the graphic programming and focus on parallelizing MOPAC.

For a more strategic coherence, AVS is a visualization system which was designed

Chapter 1. Introduction 23

especially for scienti�c and engineering communities to analyze and view their data

in a real-time interactive fashion. AVS has Image, Geometry, and Graph Viewer

subsystems to render impressive visual data on screen. AVS CLI control language

can control the viewpoints, angles, and lights projection of objects. By the same

token, as many as 16 cameras can be used to view an object. Reduced color is

automatic adjusted if the hardware does not have true color. Besides static graphs,

animation is also supported by the coroutine module [2]. Using AVS makes the data

visualization of parallel MOPAC much easier.

1.4 Outline of this Dissertation

Correctly understood, in Chapter 2, we will describe important parallel processing

concepts. What should be sequential and what can be parallelized? Moreover, the

advantages and limitations of parallel processing are covered. The factors which limit

the performance of parallel processing, mostly related to communications, will be

discussed. The data dependence relationships for scalars and arrays in loops are also

indicated in this chapter.

More quantum chemistry and MOPAC background will be described in Chapter 3.

Prior to making valid conclusions, related MOPAC research will be mentioned in this

chapter also.

The procedure to parallelize a legacy application will be proposed in Chapter 4.

Closely allied the general procedures of analyzing and parallelizing a legacy applica-

tion to clearly improve the performance while keeping the legacy application validated

are described. The methods that urgently estimate the degree of performance im-

provement for a certain type of data are described. The methods to tune a parallel

program to fully utilize a parallel computer and approach the theoretic upper speed

limit are also proposed in this chapter.

In Chapter 5, with unfaltering conviction, we will focus on the implementation

and integration of MOPAC. It is used as an example to describe how the procedures

Chapter 1. Introduction 24

described in Chapter 4 are applied to paralleling an actual legacy application.

Of paramount importance, the out look of parallel MOPAC and some benchmark

results are shown in Chapter 6. Some discussions are undertaken to explain the result

curves and the behavior of parallel MOPAC.

Keeping in mind this spectrum of orientations, the discussion of further improve-

ments and their distinguishing characteristics along with future work as well as some

major limitations of today's parallel machines architectures will be demonstrated,

�nally, in Chapter 7.

Chapter 2. Parallel Environments 25

Chapter 2

Parallel Environments

In this chapter, the intent is to introduce some background knowledge about message

passing parallel computing.

The main goal of parallel processing is to shorten the total execution time. The

performance boost of parallelization comes from the fact that many processors share

the work load and thus reducing the total execution time. The more processors

are used, the smaller piece of work load each processor receives, and the shorter

the execution time that is needed. Ideally, we can always use more processors to

achieve higher performance. Unfortunately, this is somehow not always possible. In

practice, the data dependence forces the execution sequence of related code and,

thereby prohibits parallelization. To be properly understood, three kinds of data

dependence and how to resolve the dependent relationship between statement blocks

will be discussed in Section 2.1.

Parallelization introduces some extra costs, mainly communication overheads. It

is eÆcient to use more processors when the computation time is often much longer

than communication time because reducing computation time signi�cantly reduces

total execution time. When the number of processors sharing a �xed total work load

is large, the computation time, as a rule, may be comparable to the communication

time even if the required communication time does not grow as more processors are

Chapter 2. Parallel Environments 26

used. Reducing computation time reduces only part of the total execution time. The

performance gain of using more processors becomes negligible after a certain point.

In general, the communication costs grow as more processors are used. This limits

the maximum possible speed-up of a parallel application. Scalability, the measure of

performance gain when more processors are used, is the most important measure of

the performance of parallel algorithms.

By largely understanding the factors that reduce the scalability of parallel applica-

tions, we can perhaps make some adjustments to avoid the performance degradation

and keep better scalability. Even so, the study of scalability can give us the informa-

tion of maximum possible speed-ups and the most cost eÆcient number of processors

to use.

Communication cost is the most signi�cant factor of the scalability of parallel

programs. A coarse grain approach generally requires less communication and fewer

synchronizations and leads to better scalability. Conversely, some tightly coupled

applications require frequent data exchange and execution synchronization and can

use only �ne grain parallelization. Certainly, due to the di�erent characteristics and

requirements of coarse grain and �ne grain parallelism, di�erent considerations for the

use of the communication sub-systems of coarse grain and �ne grain parallel programs

need to be carefully examined. Section 2.4 will give more discussion about coarse and

�ne grain parallelism.

Parallel computer vendors usually design special communication libraries to fully

utilize the communication hardware. After all, using these native communication

libraries can achieve the maximum communication performance. Unfortunately, the

native communication libraries have di�erent user interfaces. A program written

for one parallel computer can not run on another one. This makes migration and

porting of parallel applications diÆcult. Some \standard" communication library

user interfaces have been proposed to solve this problem. Using these interfaces may

be slightly slower than using the native communication libraries, however, it gives

parallel applications portability.

Chapter 2. Parallel Environments 27

INTEGER I

INTEGER A(1000)

DO I = 1,1000

A(I) = 0

END DO

Figure 2.1: Example of parallelizable code

2.1 Data Dependency

The semantics of sequential languages speci�es a linear order on statement execu-

tion. Program statements are executed one after another in a prede�ned �xed order.

Sometimes, changing the execution order of some statements may be semantically

irrelevant. We can distribute the computation to several computation nodes and

combine the results after computing without changing the semantics of the program.

For example, we have the FORTRAN code shown in Figure 2.1. Although the exe-

cution sequence assigns 0 to A(1) �rst then A(2), A(3), : : : ; A(1000), the semantics

will not be changed if we do the assignment in reverse or any di�erent order. In other

words, all 1000 iterations can be executed concurrently. In this case, we can easily

distribute the 1000 iterations to the computation nodes without any problem.

To be sure, not all loops can be parallelized as easy as the above example. If a

loop contains some statements have data dependence relation the iterations of the

loop may not be able to execute concurrently. The data dependence relation can be

classi�ed as:

� True dependence

� Anti dependence

� Output dependence

Chapter 2. Parallel Environments 28

S1 : A = PI

S2 : B = 2 �A � C

S3 : A = 5 � C +D

(a) example code

S2

S3

δ

δ

S1

t

a

o
δ

(b) dependence graph

Figure 2.2: A data dependence example and its dependence graph

Consider statements S1 and S2 in the example shown in Figure 2.2. The value

A used in S2 is given value in S1. Evaluation of the right hand side of S2 is truly

dependent on the result of S1. S2 cannot be executed until S1 is executed. Execution

of S2 before that of S1 will change the semantics of the program. We call this a true

dependence from S1 to S2 or S2 is true dependent on S1. Consider statements S2 and

S3. The variable A used in S2 is reassigned in S3. Executing S3 before that of S2 will

cause the evaluation of the right hand side of S2 to be incorrect. We call this an anti

dependence from S2 to S3. The relationship between S1 and S3 is called an output

dependence from S1 to S3 since the two statements both assign value to variable A.

The �nal value of variable A should be the one assigned by S3. An interchange of S1

and S3 will result in the wrong �nal value for variable A.

The data dependence relationship is directional. A directed graph called depen-

dence graph can be used to represent data dependence. The nodes represent the

statements of a set of code and the direct arcs represent the dependence relationship.

The symbols Æt, Æa, and Æo denote the true, anti, and output dependence of the arcs.

Figure 2.2(b) shows the dependence graph of Figure 2.2(a).

A value must be assigned to a variable before the variable can be used. The

variable cannot be reassigned a new value before the previous assigned value has been

used. The use and assignment of the same variable in one sense forces a designate

Chapter 2. Parallel Environments 29

S1 : A
0 = PI

S2 : B = 2 �A0 � C

S3 : A = 5 � C +D

(a) example code

S2

δ

S1

t S3

(b) dependence graph

Figure 2.3: Data dependence resolved example and its dependence graph

execution sequence between the statement that assigns a value and the statement

that uses the value. There are three dependence relationships: true, anti and output

dependencies. True dependence expresses a sequential relationship that must be

ultimately followed. Anti and output dependencies are caused by the use and re-use

of variables. These dependencies can be increasingly eliminated by introducing new

variables.

Consider the anti dependence S2
Æa

�! S3. The problem that prevents statement S3

from being executed before statement S2 is that S2 will receive an incorrect value of

variable A. Since the value of variable A will be decidedly overwritten in statement

S3, the problem can be overcome by using a temporary variable A0 to replace all

instances of variable A before statement S3. The anti dependence between statement

S2 and S3, hence, can be resolved.

Consider the output dependence S1
Æa

�! S3. The problem that prevents statement

S3 from been executed before statement S1 is that the �nal value of variable A will

be reassigned by S1. Since the value produced by statement S1 will only be used by

statement S2, again, we can eliminate the output dependence by using a temporary

variable A0 to replace all instances of variable A between statement S1, the statement

that produces the value of variable A, and statement S2, the statement that uses the

value of variableA. The new code and its dependence graph is shown in Figures 2.3(a)

and (b).

Chapter 2. Parallel Environments 30

S1 : DO I = 2; 100

S2 : A(I) = B(I) + C(I)

S3 : D(I) = A(I � 1) � E(I)

S4 : END DO

(a) example code

S3

S2

δt

δa

(b) dependence graph

Figure 2.4: A loop data dependence example and its dependence graph

The above example illustrates the method of determining and removing the data

dependence in a sequence of statements. Since all statements in a loop are repeat-

edly executed many times, we are more obviously interested in determining if the

iterations of a loop can be executed concurrently. Since loops are usually used in

conjunction with arrays, we need to analyze thereby the subscripted variables if we

want to determine the data dependence between iterations of a loop.

Consider the example in Figure 2.4(a). The loop is executed in the order controlled

by the loop index I. The iteration where I = 2 is executed �rst, then the iteration

where I = 3, . . . , and �nally the iteration where I = 100. Let X(I=i) denotes the

object X at the instance of the iteration that I = i. Statement S3(I=3) requires the

valueA[I�1](I=3) which is produced in statement S2(I=2) sinceA[I](I=2)= A[I�1](I=3)

= A[2]. A true dependence S3(I=i)
Æt

�! S2(I=i�1) for i = 3; 100 is therefore found. The

iterations of the loop, I, hence cannot be executed concurrently. The dependence

graph of Figure 2.4(a) is shown in Figure 2.4(b).

Chapter 2. Parallel Environments 31

2.2 Scalability

Before talking about the scalability of a parallel application, we need to de�ne the

term \speed-up" of a parallel algorithm. \Speed-up" is de�ned in [3] as :

Sp =
Ts

Tp
(2.2.1)

where Sp is the speed-up of an algorithm using p processing nodes, Ts is the time

required for the fastest sequential algorithm of the problem, and Tp is the time required

for the parallel algorithm using p processing nodes.

In practice, we de�ne the term speed-up of a parallel application running on a

certain parallel machine using p processors as above equation by replacing the meaning

of Tp by the measured run time of the application and Ts by T1.

As noted in Section 1.2, the basic idea of parallel processing is distributing work

load to processors to speed up the execution of programs. Each processor takes only

1=p work load when the work load is evenly distributed to p processors. Ideally,

without any extra cost, we expect to get Sp = p on a p-processor computer. We call

this \linear speed-up" since the speed-up is direct ratio of the number of processors.

Linear speed-up is the best scalability. Speed-up grows as the number of processors

increases without limitation. A linear speed-up program not only fully utilizes the

processing power of all processors but also readily allows unlimited speed-up if you

have unlimited number of processors. Linear speed-up is the theoretical maximum

that a parallel program can achieve.

As more processors are used, by this means each processor gets a smaller piece of

workload. A higher speed-up can be expected if no overhead is introduced. As far

as possible, to overcome the data dependence problem and exchange information be-

tween processors, some overhead is simply introduced in the process of parallelization.

The overhead comes from the following parts:

� Computation for distributing work load.

� Communication for distributing input data sets.

Chapter 2. Parallel Environments 32

� Communication for information exchange during computations.

� Synchronization of computations.

� Communication for collecting results.

If the overhead is insigni�cant compared to the total computation, we can get an

almost p-fold of speed-up on a p-node parallel machine. Frequently, however, the extra

cost grows with p and causes the speed-up to get worse. Even if the overhead does

not grow, it becomes more signi�cant and the scalability gets worse when the system

size gets large due to the fact that each processor gets smaller piece of workload in

larger systems.

Some people do observe \super linear scalability", Sp > p, in certain cases. It

has originally been traced to cache memory. Cache memory is a fast memory sitting

between the CPU and main memory to reduce the speed gap between CPU and

memory. Main memory is accessed only when the required data is not already in

cache. A \cache-miss" occurs. In any given instance, the memory controller will

fetch one cache line from main memory when a cache-miss occurs. If the cache is full,

a cache line will be selected and the contents will be
ushed to main memory before

the cache-missed data can be fetched. CPU needs to wait for a few clocks until the

memory controller �nishes the cache-miss handling.

In a parallel environment, the data is distributed to p processors when p processors

are used. Every processor holds only 1
p
data. A higher percentage of the distributed

data segments can be �t into cache memory and improve the cache-hit rate. The

higher cache-hit rate results in a faster average memory access time and shorter

execution time. By then, the execution time Tp is shorter than
T1
p
and super linear

scalability Sp > p can be observed.

Modern computers have several levels of memory hierarchies. Within these con-

�nes, the super linear phenomenon happens to memory accesses of all memory hierar-

chy. The higher level memory is usually faster but smaller. Large program cannot �t

into the faster higher level memory and require lower level slower memory accesses.

Chapter 2. Parallel Environments 33

The lower level slower memory accesses become unnecessary and save a little exe-

cution time when the data size becomes small enough to �t into faster higher level

memory. Virtual memory is another possible reason to that may promptly cause

super linear phenomenon in parallel computing.

Unfortunately, most parallel applications su�er perceptibly from the extra costs

of parallelization and have Sp < p. We will describe how these extra costs a�ect the

performance of parallel applications in the following subsections.

2.2.1 Non-Parallelizable Part of an Algorithm

Due to the data dependency described in previous section, there are usually some

parts of an application that must be executed in some particular order. Data input

modules run before processing modules, and most variables must be initialized before

they can be used. All data accesses with true dependent relationships must preferably

be executed sequentially.

The theoretic maximum speed-up for parallel programs with P parallelizable and

(1� P) non-parallelizable parts using p processors is:

Sp =
1

(1 � P) + P

p

(2.2.2)

Equation 2.2.2 shows an important concept of non-parallelizable parts of appli-

cations: Suppose we have unlimited number of processors (p ! 1), the maximum

possible speed-up will be bounded to 1
1�P . For example, if P = 90%, then the maxi-

mum possible speed-up is only 10. A program with a small P value will not be able

to take advantage of parallel technology.

Figure 2.5 shows the maximum possible speed-up a parallel application can reach

without considering other costs which may be introduced by the parallelization. The

slopes of the curves stand for utilization of processors. All curves in Figure 2.5 start

with sharp slopes when the number of processors is small. As the number of processors

gets larger, the slopes get
atter and maximum possible speed-up does not increase

Chapter 2. Parallel Environments 34

Number of nodes

Sp
ee

d-
up

2 4 8 16 32 64 128 256 512 1024 2048

2

4

8

16

32

64

128

256

512

1024 linear
99.9%
99.5%
99.0%
95.0%
90.0%
80.0%

Figure 2.5: Theoretical maximum speed-ups

for more processors. The smaller the parallelizable parts are, the sooner the maximum

possible speed-up reaches its saturation point, the point that no signi�cant speed-up

can be obtained by adding more processors.

Running a 99.9% parallelizable application on a 2048 processor parallel computer

gets 32.8% higher performance than on a 1024 processor one. Putting another 1024

processors on a 1024 processor parallel machine to run a 99% parallelizable application

does not get much more of performance gain. Using more than 32 processors to run

an 80% parallelizable application is wasting computing resources since the slope of

the curve is almost
at after 32 processors. Above all, the more non-parallelizable

parts limits the lower maximum possible speed-up and results in a worse scalability.

We can estimate how many times of speed-up a program can get from paralleliza-

tion by analyzing the parallelizable and non-parallelizable parts of the program. We

can also determine the most cost-e�ective size of the machine to run the application

by using the saturation points. The saturation points hence serve as cut points for

Chapter 2. Parallel Environments 35

people who want to �nd out if it is worth investing more money to add more proces-

sors. A time pro�ling for parallelizable and non-parallelizable parts on a sequential

program in conjunction with Figure 2.5 can provide the above useful information

before actually parallelizing the program.

2.2.2 Communication Overhead

Communication overhead is an important factor that, in fact, impacts the scalability

of a parallel application. Communication overhead depends on the frequency and

amount of inter-processor communication. The communication costs vary between

programs. The initial data distribution and result collection are the basic communi-

cations that are required by all parallel applications. Most parallel programs similarly

need to exchange information in the middle of computation. As shown in Figure 1.4,

there is a computation phase followed by a communication phase in the loop. The

amount of inter-processor communication may be independent of the number of pro-

cessors. For example, the life problem [6], each processor accesses a clear-cut �xed

amount of o�-processor data no matter how many processors are used. In other pro-

grams, on the other hand, the amount of inter-processor communication increases

when more processors are used.

The total communication cost may vary for di�erent systems. In a parallel com-

puter with fully connected interconnection networks, where every processor can send

data to any processor without any interference, the total communication cost is iden-

tical to that of one processor. Unfortunately, there are few fully connected inter-

connection networks. Most interconnection networks have some shared links. An

o�-processor data access from processor A may degenerate the performance or even

totally block processor B from accessing o�-processor data. O�ering further insight,

the total communication cost increases by a factor f as the number of processors

increases. The total communication cost of an application running on a p-processor

system is:

cp = (1 + f (p� 1)) c2 (2.2.3)

Chapter 2. Parallel Environments 36

where c2 is the fraction of time used for the communication of accessing the o�-

processor data in a 2-processor system.

The interference factor f can be:

� f = 0: for fully connected interconnection networks; absolutely no interference.

This kind of interconnection networks can only be seen in small con�gurations

due to the number of links grows rapidly as the number of processors increases.

The IBM SP2 high-speed switch can support up to 16 processors fully connected.

� 0 < f < 1: for interconnection networks with some shared links. Some degree of

interference happens when more than one processor injects data into the inter-

connection network. Extra time is needed to allow the interconnection network

to deliver all the messages. Most parallel computers, including both shared

and distributed memory parallel machines, fall into this category. Interference

occurs when more than one processor is accessing o�-processor data and causes

an extra f communication cost for each processor.

� f = 1: for mutually exclusive used interconnection networks which allow only

one processor to send data at a time. The limitation usually comes from the

use of one single shared media. Single bus shared memory machines and Token

Ring local area network workstation clusters fall into this category.

� f > 1: for interconnection networks which have high interference when more

than one processor sends data. The interference is so high that p processors

sending 1 unit of data each at the same time will take longer than 1 processor

sending p units of data. Collision based interconnection networks such as Eth-

ernet require a roll back and re-send when a collision happens. This makes the

performance poor for parallel programs that require a lot of communication.

The maximum possible speed-up for a parallel application with a �xed amount of

o�-processor data on a p-processor system is:

Sp =
1

1
p
+ (1 + f (p � 1)) c2

(2.2.4)

Chapter 2. Parallel Environments 37

The amount of o�-processor data may vary for a di�erent number of processors.

In a p-processor system, each processor generally holds only 1
p
of whole data set.

Suppose that each processor in a 2-processor system must access 1
2
� n o�-processor

data, then there will be p�1
p
� n o�-processor data accesses for each processor in a

p-processor system. The equation 2.2.4 becomes:

Sp =
1

1
p
+ (1 + f (p � 1)) 2 (p�1)

p
c2

(2.2.5)

Figure 2.6 shows the speed-up curves derived from equation 2.2.5 with commu-

nication cost c2 equal to 0.001%, 0.01%, 0.1%, 1%, and 10% of total computation

time and the communication interference factor equal to 0.001, 0.01, 0.1, and 1 of

communication cost c2. The maximumpossible speed-up drops sharply as the commu-

nication cost rises. The communication interference factor also plays a very important

roll in maximum possible speed-up. Even so, unless the communication time is very

small, the interference factor will magnify the communication cost and drag down the

speed-up when more processors are used.

Note that the interference factor f may vary between di�erent machine sizes.

The interference factor f of IBM SP2 is 0 when the machine size is smaller than 16

processors. When the machine size increases to more than 16 processors, a second

level of switch is used to connect �rst level switches. The second level switch is shared

between processors and the inter-connection network is no longer fully connected. In

this instance, the interference factor f changes to 0 < f < 1.

Like non-parallelizable parts, communication overhead decreases the scalability of

parallel applications. Moreover, the amount and frequency of o�-processor access in

some parallel applications increase when more processors are used. The interference

factor f further magni�es the communication overhead. In the long run, it is advisable

not to run parallel applications with heavy communication on parallel machines with

large interference factor f .

Chapter 2. Parallel Environments 38

Number of nodes

Sp
ee

d-
up

2 4 8 16 32 64 128 256 512

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00 0.001%
 0.010%
 0.100%
 1.000%
10.000%

(a)interference factor=10�3

Number of nodes

Sp
ee

d-
up

2 4 8 16 32 64 128 256 512

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00 0.001%
 0.010%
 0.100%
 1.000%

10.000%

(b)interference factor=10�2

Number of nodes

Sp
ee

d-
up

2 4 8 16 32 64 128 256 512

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00 0.001%
 0.010%
 0.100%
 1.000%
10.000%

(c)interference factor=10�1

Number of nodes

Sp
ee

d-
up

2 4 8 16 32 64 128 256 512

1.00

2.00

4.00

8.00

16.00

32.00

64.00

128.00

256.00

512.00 0.001%
 0.010%
 0.100%
 1.000%

10.000%

(d)interference factor=1

Figure 2.6: Estimated maximum speed-up with interfered communications. Curves

correspond to fractions of time spent in communications, from 10% to 0.001%.

Chapter 2. Parallel Environments 39

2.2.3 Load Balance

The equations in previous sections are based on the assumption that perfect distri-

bution schemes are used and the load is evenly shared by all processors such that

all processors can �nish their computation at the same time. This is the case where

there is no CPU idle time. Each processor's computing power is, as a consequence,

fully utilized. Even so, sometimes the work load may not be distributed evenly due

to the following reasons:

� Non-breakable distribution unit, a segment of code which must be executed by

one processor, is too big. The whole work load can be broken into only several

parallelizable pieces. Some processors cannot even have one piece of the work

load.

� Problem size is too small for the number of processors used.

� The runtime of the parallelized pieces is unpredictable at the time of work load

distribution.

� The computing powers of all processors are not identical.

� The sizes of non-breakable distribution units are irregular.

The imbalance load makes some processors �nish later than others, leaves other

processors idle, reduces the CPU utilization and therefore lowers the scalability.

Besides the above diÆculties, sometimes we may not attempt to do perfect load

balancing for:

� Perfect distribution scheme entails too much CPU time. A fast but less than

perfect distribution scheme is used instead. Fast load balancing algorithms have

been studied for many applications [21, 62].

� Sometimes, to avoid communications contentions, the work load may be in-

tentionally distributed in an imbalance manner. The processors which �nish

Chapter 2. Parallel Environments 40

their computation earlier can start exchanging data earlier to avoid the link

contention and reduce the communication interference factor. For example, if

all processors start the communication phase at the same time on a workstation

cluster running over an Ethernet can cause many collisions and re-sends which

would degrade performance. A slightly imbalance work load makes processors

start their communication at a di�erent time and reduce the collisions and

re-sends. This is a useful trade-o� for systems with high communication inter-

ference factors, especially for those machines with communication interference

factor close or greater than 1.0.

2.3 Communication Sub-system Performance

Communication overhead signi�cantly a�ects the scalability of parallel applications.

The performance of the communication sub-system is important to parallel applica-

tions with heavy communication. We will discuss the factors that impact the perfor-

mance of communication sub-systems and some methods that can be used to improve

the performance of communication sub-systems.

Communication sub-system performance can be determined by several factors:

� bandwidth: the amount of data a network can send per second after the con-

nection link is established. This is the most commonly seen measuring of inter-

connection networks. Bandwidth is the most important parameter of inter-

connection networks. The higher the bandwidth is, the lower the communication

time is needed, and the lower the communication overhead will be. Bandwidth

is considered \raw power" of a communication channel. It is the most a net-

work can reach. In conjunction with other factors, an application can never

observe that high bandwidth. Bandwidth is the major part of the c2 in the

equation 2.2.5 discussed in the previous section.

� latency: the time required from the start of sending a message until the message

Chapter 2. Parallel Environments 41

is actually sent. It is also known as \communication set-up time." Communi-

cation latency includes both software and hardware latency. Software latency

is the time required from when the system receives the communication calls to

the out-going messages which are physically placed into the hardware bu�ers.

It includes the time required for dividing large messages into smaller packets,

packaging the data packets, copying data from user bu�ers to system bu�ers

and initializing the communication device drivers. Hardware latency is the time

it takes for the communication hardware to initiate itself and build the connec-

tion links between senders and receivers. Latency occurs once per message.

For a communication system with long latency, packing small messages into a

large message may improve performance a great deal. Long latency will drag

down the overall performance if applications require frequent communication.

Latency can a�ect the c2 in equation 2.2.5 if the data is in small chunks.

� network topology: how processors are connected. Network topology a�ects the

degree of communication interference that occurs when multiple nodes are send-

ing messages at the same time. A fully connected network provides direct links

between any two processors. All links are exclusively used by designated pro-

cessors without sharing with other processors. Any processor can send data to

any communication party without waiting for the link becomes available. Most

parallel machines do not have fully connected networks and need to share some

links sometimes. When a processor is using the shared links, other processors

need to wait for the link to become available, which forces all processors send out

messages sequentially. Network topology is the main cause of the interference

factor f in equation 2.2.5.

� routing scheme: how a message is sent between two non-directly connected

nodes. Most interconnection networks are not fully connected. Hardware rout-

ing circuits take over the packet store-and-forward operations from host com-

putes. Circuit switching [55] and store-and-forward packet switching were used

in older parallel machines. The worm-hole algorithm [67] determines the route

as soon as the packet header arrives and does not need to store-and-forward the

Chapter 2. Parallel Environments 42

whole packet. The worm-hole algorithm reduces the routing time to only a few

clocks. Above all, worm-hole has become the most widely used routing scheme

on distributed memory parallel computers.

Circuit switching allocates all links it requires between the source and destina-

tion before a message can be sent. It seriously reduces the utilization of shared

links and a�ects the interference factor f in equation 2.2.5. The routing in-

formation added in a packet enlarges the amount of message to be sent. For

example, 3 out of 8 words in the message packets of Thinking Machine CM5 are

used for routing information. 37.5% of network bandwidth is used for routing.

The routing information a�ects the c2 in equation 2.2.5.

Communication sub-system performance can be a�ected by many factors as men-

tioned above. Unfortunately, only bandwidth can be easily measured with certainty

by users. Latency is usually too small to be measured by users. Vendors usually only

provide information for hardware latency which is usually much smaller than software

latency. The performance impact of network topology and routing scheme depends

on the communication patterns and is rather diÆcult to quantify. Using bandwidth

as the only measure can mislead the analysis seriously. CM-5 fat tree interconnec-

tion network beats Intel Touch-stone Delta mesh topology in global operations by

its network topology. The fact that a 10 Mb ethernet that runs faster than a 4 Mb

token ring in a lightly loaded system and slower in a heavily loaded system is another

well-known example.

Most communication system parameters like network topology and bandwidth are

built into the hardware and cannot be changed. Still, some adjustments to improve

communication sub-system performance are still possible:

� avoid node contention: All processors send data to some or all other proces-

sors in the communication phase after a computation phase is �nished. An

unmanaged send may cause more than one processor to send data to the same

processor at the same time. In the following example, a program uses a loop

for all processors to send messages to all other processors:

Chapter 2. Parallel Environments 43

DO I=0, NPROC � 1

IF (I 6=MY ID) THEN

send message to node I

ENDIF

ENDDO

All nodes except for node 0 send data to node 0 at time 0. The data from all

other nodes jams the communication channel of node 0. The communication

cannot �nish until node 0 receive all messages. This problem can be solved by

introducing a permutation function f(i; p; n) which generates a permutation of

0, 1, . . . , p � 1, p + 1, . . . , n � 1 for i = 1, 2, . . . , n � 1, p = 0, 1, . . . , n � 1.

The revised algorithm looks like:

DO I=0, NPROC � 1

send message to node f(I;MY ID;NPROC)

ENDDO

Note that checking if the sender and receiver are not the same is not necessary

since we have the permutation not generating p. Suppose we have f(i; p; n) =

(i+p) mod n, every node will send to its i-away downstream neighbor at time i.

This permutation function assures that every node sends exactly one message

and receives exactly one message at all times. The permutation function works

if every processor needs to send data to all other processors. Some algorithms

that can be used to improve the performance are introduced in [74].

� avoid link contention: Like node contention, it is possible that more than one

node may want to send messages through some common communication links.

One message may need to wait for another if the common link is not sharable.

It is possible to schedule the order of sending such that at any time every

non-sharable link is used by at most one node. Above all, this communication

scheduling for avoiding link contention is not as straightforward as avoiding

node contention since it depends on the network topology. Some studies have

been reported in [71, 95].

Chapter 2. Parallel Environments 44

� user space communication library: The interconnection network used in dis-

tributed memory parallel computers is I/O devices. I/O devices are usually

controlled by operating systems. User programs need to switch to system mode

to perform I/O. Task switching is expensive for every computer since it needs

to save all status for the calling user program and restore the status when re-

turn. The system needs to check that the arguments the user program passes

in are correct and verify that the user program is allowed to perform the I/O

requests. A memory copy between user and system bu�er may be necessary.

These operations cause software latency.

A user space communication library can send and receive messages in user

space. No context switching and access rights veri�cation are necessary since

everything is done in the same user process. The data is directly injected to

the network hardware without copying to system bu�er �rst. Software latency

which is an important limitation for running �ne grain parallel programs is,

accordingly, reduced.

Examples of user space communication systems can be found on Thinking Ma-

chine CM-5 and IBM SP2.

2.4 Coarse and Fine Grain Parallelization

According to the classi�cation made by Decegama [27], parallelism is loosely classi�ed

into three grain sizes: coarse, medium, and �ne. Most people refer only to coarse and

�ne grains since medium grain is just an intermediate between coarse and �ne grains.

Coarse grain parallelism involves computational processes at the higher levels of

programs. Parallelism at the job or process level is considered coarse grain. Coarse

grain parallelism implies large chunks of computations and loosely coupled commu-

nications between distributed processing units. In essence, most of today's multi-

processor operating systems are coarse grain. The parallelism in these systems is at

job level, where processor handles a set of independent jobs. They communicate to

each other only when a system call is made and a system service is requested. The

Chapter 2. Parallel Environments 45

AVS network [2] (Section B) is also an example of coarse grain parallelism. Remote

modules can be distributed to di�erent machines and parallel execution occurs at

the process level. With respect to this, coarse grain parallelism introduces the least

communications and has a higher CPU utilization.

Fine grain parallelism typically involves computational processes at the inner lev-

els of programs. The unit of work is a statement, a set of statements, or a small loop.

Usually, the parallelism is within a subroutine. Clearly, �ne grain implies shorter

bursts of computation and tightly coupled communications between processors. Fine

grain parallelism introduces frequent communications and a high degree of synchro-

nization between processors. Each piece of data in each communication phase may

not be very large, but the communication frequency remains high. Since �ne grain

parallel programs send a lot of small packets, the latency, communication set-up time,

becomes an important factor. Communication systems with large set-up time are not

useful even if they have high bandwidth. Communication systems with small packets

and low set-up time such as Thinking Machines' CM-5 and shared memory parallel

computers such as SGI Power Challenge are good platforms for executing �ne grain

parallel programs.

Medium grain involves computational processes between the above-stated two

kinds of parallelism. The unit of work is typically a big loop, a subroutine, or a set

of subroutines. Correctly understood, communication requirements are intermediate

between the two extremes.

Coarse grain parallelization is not a�ected by the communication costs very much

since the frequency and the amount of data transfer are small. Indeed, because of the

low communication cost, coarse grain parallel programs usually have high scalability.

Their speed-ups are almost linear in many cases. Unfortunately, not every program

can be parallelized in a coarse grain manner. Programs with a high degree of data

dependency can only be parallelized in a �ne grain manner. Fine grain parallel

programs usually have lower scalability due to the high communication cost and may

even result in speed-ups Sp < 1. When parallelizing a code, it is prudent to choose the

method with largest work unit if more than one way is available. It may be advisable

Chapter 2. Parallel Environments 46

to give up on parallelization if the largest work unit we can �nd is considered too small

to gain any performance improvement. Because of these diÆculties, most parallel

algorithms address medium or coarse grain parallelism only.

In particular, the performance of coarse grain parallelization is not a�ected by

the communication system very much. Due to low communication cost, the overall

performance gain from a high-speed interconnection network is negligible for coarse

grain parallel programs. Most coarse grain parallel applications do not even need

special communication hardware to achieve high performance. To a great extents,

running these applications on a workstation cluster can achieve almost the same

speed-up as on an expensive parallel computer with a high-speed communication

sub-system.

The performance of �ne grain parallelization, on the other hand, heavily depends

on the performance of the communication system. Fine grain parallelization requires

frequent access to interconnection networks which are usually much slower than the

processors. Even in a highly optimized massive parallel processors, the interconnec-

tion networks are still at least 10 times slower than processors. Besides bandwidth,

the latency of interconnection networks is also very important to �ne grain paral-

lelization. A communication sub-system with lower latency and higher bandwidth

can improve the overall performance dramatically. Judging by this, specially de-

signed hardware and software can be used to improve the performance of �ne grain

parallel applications.

2.5 Parallel Communication Libraries

As described and illustrated in Figure 1.4 in the previous sections, parallel computers

need to exchange information between processors.

� A parallel program needs to distribute data to processing nodes before execu-

tion.

Chapter 2. Parallel Environments 47

� A parallel program needs to exchange results between two computation phases.

� Processing nodes need to synchronize their execution.

� Final results need to be collected after execution.

The above required communication functions can commonly be classi�ed into

three main categories:

Point-to-point communications Communications between two processing nodes.

It includes the following functions:

Blocking send/receive: communications do not start until both parties are

ready. Program execution is blocked until the communication is complete.

Non-blocking send/receive: The sender returns as soon as the data is copied

to system bu�er. Data may be sent out later. The receiver returns with

the data it receives if the data has been in or an error code if the data is

not received yet. No program execution is blocked.

Asynchronous send/receive: A status block is returned as soon as an asyn-

chronous send is requested. Data stays in the user bu�er without being

sent at the time of return. User programs need to check if the data is in user

bu�er, system bu�er, network, or receiver through the status block. The

same status block is returned for message status checking on the receiver

side.

Status block manipulation: Methods for message status checking and status

blocks removing for asynchronous send/receive.

Active message: A small amount for data associated with an action to be

performed when the message arrives at the receiver.

Collective communication Communications among more than two nodes. It in-

cludes the following functions:

Synchronization: Waiting for other processors to reach the synchronization

point.

Chapter 2. Parallel Environments 48

Broadcast: Sending data to all processors.

Global reduction: For a p-processor parallel machine, commutative operator

Æ, i = 0; 1, . . . , p� 1, processor i sends quantity qi and receives the results

of q0 Æ q1 Æ : : : Æ qp�1. The commonly used commutative operators Æ for

global reduction operations include add, multiply, minimum, maximum,

logical and, inclusive or, and exclusive or.

Scan: also known as a parallel pre�x operation. It works similar to global

reduction except that processor i receives the result of q0 Æ q1 Æ : : : Æ qi�1

where Æ is any commutative operator that can be used in global reduction.

Concatenation: Appending values from each processor in the order of node

number and sending to all processors.

Parallel Environment Status and Control Parallel environment information re-

trieval and parallel system con�guration. This catagory includes the following

functions:

System information: Returns system information such as the system names,

number of processors, my node ID, computation power, and interconnec-

tion network topology.

Signaling: Send/receive signals between nodes.

Data conversion: Data format conversion in heterogeneous system con�gura-

tions.

I/O: File, screen I/O, and I/O redirections.

Timing: Time service for benchmarks.

Debugging: Debugging information.

Massively Parallel Processors Communication Libraries Every parallel ma-

chine has at least one set of communication libraries to support part or all of the above

functions. Most parallel computers, in fact, have special communication hardware to

minimize the communication latency and maximize the communication bandwidth.

Chapter 2. Parallel Environments 49

For example, the CM5 uses a fat tree network topology to speed up global operations.

The Intel Paragon has a custom designed routing chip to handle the traÆc in its mesh

network topology. The manufacturers also build their speci�c communication library

to fully utilize their hardware [53, 54, 66, 89]. For instance, CM5's fat tree network

can do scalar mathematics when data is passing through the network. The result of

a global reduction is produced as soon as the data propagates to the root of tree. Its

global reduction functions are implemented to take one scalar at a time. The Intel

i860 microprocessor used in the iPSC/860 and the Paragon has a CPU built-in vector

processor. Sending data to one CPU and using vector units to perform array mathe-

matics are a more eÆcient means. Its global reduction functions are implemented to

handle an array of scalars at a time.

Since these native communication libraries are specially designed to fully utilize

the hardware, they are usually known to be the fastest communication libraries peo-

ple can use on a given machine [51, 52]. Increasingly, di�erences between these native

communication libraries inhibit the porting of parallel programs. It stands to rea-

son that the idea of de�ning a standard communication interface was proposed to

solve this problem. Communication libraries such as Chameleon [46], Express [68],

P4 [19, 20], and PVM [40, 59, 86], usually implemented on the top of the native com-

munication libraries, were popular packages intended to address portability concerns.

Workstation Cluster Communication Libraries Workstation clusters are usu-

ally connected by LAN. Although they do not have specially designed communica-

tion hardware as a sustained source, they still can run parallel programs as long as

they can communicate with each other. Most workstations run at least one of the

TCP/IP, XNS, SNA, or NetBIOS protocols [25, 80, 82]. Besides supporting NFS,

E-mail, printer service, and other network applications, these network protocols can

also serve as communication libraries for workstation cluster parallel computers. Like

MPPs, workstation clusters can utilize standard communication libraries built on the

top of the LAN protocols. Chameleon, Express, P4, and PVM all support workstation

clusters running over LAN protocols.

Chapter 2. Parallel Environments 50

As network performance improves over time, workstation cluster LANs run much

faster than their predecessors. 100Mb/sec token ring, fast Ethernet, and ATM have

blurred the border between workstation clusters and massively parallel processors.

Gigabit ethernet runs even faster than some specially designed interconnection net-

works on massive parallel processors [41]. In contrast, some companies implement

LAN protocols over the interconnection networks of their massive parallel processors,

so that heavily used network activities such as NFS and database accesses can run

more eÆciently. Software latency often remains an issue, nevertheless, for example,

IBM implements the IP protocol over the SP2 high-speed switch, therefore, an SP2

looks like a workstation cluster in many ways. The performance gap between massive

parallel processors and workstation clusters may totally disappear in the near future.

Standard Communication Library MPI The standard communication libraries

are designed to make porting of applications easier. Application program writers do

not need to worry about porting programs as long as the target machine has the same

standard communication library installed. By all accounts, the rarity of standard

communication libraries raises the porting problem again.

The Message Passing Interface (MPI) Forum, which involved most major vendors

of parallel machines and researchers from universities, government laboratories, and

industry, designed the standardized communication library [65]. The preliminary

draft proposal was put forward by Dongarra et al. in December 1992 whereas a

revised version was completed in February 1993.

The MPI Forum de�ned the MPI standard but left the implementation for the

vendors. IBM and SGI both have their own MPI implementations [57, 78]. In

many instances, research laboratories and universities also implemented di�erent

MPIs. Edinburgh Parallel Computing Center's CHIMP [4], Ohio Supercomputer

Center's LAM [18], Argonne National Laboratory and Mississippi State University's

mpich [45], and Mississippi State University's UNIFY [92] are examples of the more

popular ones. Unlike the manufacturer implementations, these MPI implementations

support more than one platform. Moreover, because these MPI implementations work

Chapter 2. Parallel Environments 51

across platforms, they not only make parallel programs portable to di�erent machines

but also make heterogeneous parallel machines possible.

These MPI implementations pay only a small performance penalty for their porta-

bility. The Argonne National Laboratory shows their mpich performs almost as fast

as the native communication library on an IBM SP-1 [44].

Irregular Communication Libraries Besides the basic regular pattern communi-

cation functions, some applications have irregular data accesses and require irregular

pattern communication libraries to handle irregular data accesses for them [77]. For

example, in a 2-processor machine, processor 0 needs to access data item 1, 5, 0

while processor 1 needs to access data item 4, 8, 3, 2. The access pattern is totally

random and can only be speci�ed by an index array rather than a formula. Hence

the data distribution needs to pack o�-processor data in some ways such that both

data access and communication is eÆcient [75]. Irregular communication libraries are

designed to speci�cally meet these requirements. University of Maryland's PARTI

was the �rst irregular communication library [76, 87]. With substantial adeptness,

Syracuse University's NICE improves the communication performance by integrating

communication scheduling schemes [94].

Chapter 2. Parallel Environments 52

Chapter 3. Quantum Chemistry and MOPAC Background 53

Chapter 3

Quantum Chemistry and MOPAC

Background

Using computer programs to derive and analyze chemical properties respectively has

become an important tool of study in theoretical chemistry. Solving the Schr�odinger

equation which describes the relationship between molecular structure and energy is

the basis of theoretical chemistry. Hartree-Fock (HF) theory, as an immediate task,

provides a successful and throughly tested framework for molecular calculation. The

rigorous ab initio method calculates the molecular system using all basis functions

and provides accuracy results. Still, the memory capacity and computing power are

limited resources. With the high complexity of calculation, the maximum molecule

size modern computers can handle is limited in about 100 basis functions [8]. Molec-

ular Mechanics methods replace the complicated calculation with empirical results

to simplify the calculation. These methods sacri�ce the generality and accuracy for

speed. These methods can easily handle molecular structures consisting of thou-

sands of molecules on modern computers. Semi-empirical methods are intermediate

to ab initio and Molecular Mechanics methods. Semi-empirical methods are quantum

mechanical like ab initio methods with more approximations based on experimental

data.

MOPAC is a general-purpose semi-empirical molecular orbital package developed

Chapter 3. Quantum Chemistry and MOPAC Background 54

several decades ago. It is a commonly used utility for studying chemical structures

and reactions. It was submitted to Quantum Chemistry Program Exchange (QCPE)

for distribution in 1985. Because MOPAC is powerful, easy to get, and work on many

platforms, there is, by and large, a huge population of chemists using MOPAC for

their studies and research.

Due to the fact that semi-empirical methods use an eigensolver in their calcula-

tions, the computational complexity of MOPAC is O(N3) or higher. It requires large

amounts of memory and days of CPU time for a molecule with less than 100 atoms.

Even though MOPAC can handle larger molecules, the long execution time and large

memory requirements prevent users from taking advantage of this.

Add to the foregoing that parallel computing is a good solution for computa-

tionally intensive applications like MOPAC. Unfortunately, decades of changes and

improvements not only make MOPAC a large program but also add to the diÆculty

in tracing the program. It is a challenging task to understand every detail inside

the MOPAC code on any level. A full parallelization may not be reasonable due to

the high level of programming e�ort that would be required. At the same time, the

amount of e�ort which has gone into the development of MOPAC itself over the years

distinctly makes it unreasonable for most researchers to consider a complete rewrite

to obtain parallelization either.

Fortunately, the heart of the computational problem in MOPAC involves matrix

diagonalization. We can, therefore, parallelize the legacy application MOPAC by

extracting the older sequential diagonalizer and replacing it with a more powerful

parallel engine for a more successful ascertainment.

In this chapter, a background in quantum chemistry and the MOPAC package is

presented. Some related research at IBM, San Diego Supercomputing Center (SDSC)

and Fujitsu company is also described in this chapter for a fuller analysis.

Chapter 3. Quantum Chemistry and MOPAC Background 55

3.1 Molecular Orbital Methods

Theoretical chemistry has been used to study chemical properties for some time.

Theoretical chemistry is very useful for transient species that occur in combustion, in

interstellar space or as proposed reaction intermediates. Theoretical calculations can

be the only way to obtain the data for these transient species. Theoretical calculations

can also be used to study the chemical properties and screen out some unnecessary

experiments to reduce the cost and time required for new products such as drugs.

Statistical mechanics deals with large numbers of molecules. This allows the pre-

diction of properties like pressure, free energy, enthalpy, etc., and of course, provides

the theoretical framework for macroscopic experiments at �nite temperatures. For

a more detailed scrutiny, to actually carry out such predictions from �rst principles

requires a knowledge of the individual electronic, vibrational and rotational energy

levels of the component molecules, which can be obtained from quantum chemistry.

3.1.1 Hartree-Fock Self-Consistent Field Theory

Quantum chemistry and quantum chemical concepts have had an enormous impact on

chemistry. Many experimental studies also report quantum calculations. Quantum

chemistry has clearly passed beyond the hands of the theorist and has become yet

another tool for the experimentalist to interpret and understand his data.

The electronic wavefunction (1; 2; : : : ; n) describes the n electrons in a molecule.

j (1; 2; : : : ; n) j2 gives the electronic probability distribution. The wavefunction is

a solution of the the Schr�odinger equation, Ĥ = E where Ĥ is the Hamiltonian

operator and E is the energy. Directly solving the eigenvalue problem is rather

diÆcult. One initial approximation to (1; 2; : : : ; n) is a product of molecular orbitals

(MOs), f�ig, each representing a single electron, so that

 (1; 2; : : : ; n) � �1(1)�2(2) : : : �n(n) (3.1.1)

An ab initio (from �rst principles) theory with optimummolecular orbitals constitutes

the Hartree-Fock Self Consistent Field (HF-SCF) solution.

Chapter 3. Quantum Chemistry and MOPAC Background 56

Based on chemical principles, these MOs are often expanded in a basis of functions

associated with the individual atoms of the molecules known as atomic orbitals (AOs),

f��g. When an MO is formed from a combination of AO's, we need to adjust the

proportions of the AOs. The MO f�ig in equation 3.1.1 can thus be described as

�i =
P

� c�i��. The coeÆcients c�i are the weight of �� and can be determined

from the Schr�odinger equation. This is called the Linear Combination AO (LCAO)

approximation.

Calculating the energy of an n-electron system requires calculating the energy of

all combinations of elections which leads to n! computational cost. Instead of calcu-

lating the energy of each electron pairs, we can simplify the calculation by calculating

the energy of each electron and the average energy of the rest of electrons. When

inserting equation 3.1.1 into the Schr�odinger equation, the electronic Hamiltonian

for all n-electrons is replaced by the sum of n one-electron e�ective Hamiltonians, f̂ ,

whose eigenfunctions are the MO's.

f̂�i = "i�i (3.1.2)

Equation 3.1.2 can be represented in the matrix equation form

FC = SC" (3.1.3)

where S is overlap of AO basis functions, C is the eigenvectors of the matrix equation

and " is the eigenvalues.

Because f̂ depends on the electronic charge density and the density must be

consistent with f̂ , the �nal wavefunction must be \self-consistent." We can build f̂

by specifying the AO's f��g and solving equation 3.1.2. The matrix representation

Fock matrix F�� can be derived by:

F�� = H
core

�� +

n

2X
a

X
��

C�aC
�

�a[2(��j��)� (��j��)]

= H
core

�� +
X
��

P��[(��j��)�
1

2
(��j��)] (3.1.4)

where Hcore is the core-Hamiltonian matrix, C is the expansion coeÆcient and P is

the density matrix.

Chapter 3. Quantum Chemistry and MOPAC Background 57

S1 : Calculate molecular integrals required in equation 3.1.3 and 3.1.4.

S2 : Guess initial eigenvector C.

S3 : Use C to compute Fock-matrix F .

S4 : Transform Fock-matrix F to orthogonal basis and diagonalize it to get a new C.

S5 : Compare the new and original C to see if C has converged.

S6 : If not converged, guess next C based on the new and original C and goto S3.

Figure 3.1: SCF procedure

For a more strategic coherence, the whole SCF procedure is shown in Figure 3.1.

Steps S1, S3 and S4 require extensive calculations. The calculation of the integrals in

S1 requires O(n4) computational time, as does their use in S3. The diagonalization

in S4 requires O(n3) computational complexity.

The fact that charged electrons avoid each other instantaneously lowers the energy

of the many-body systemmore than an \average" SCF treatment of electron repulsion

can. The correlation we ignored in equation 3.1.2 can be signi�cant. Constructing a

Con�guration Interaction (CI) wavefunction by replacing some occupied orbitals by

some of the unoccupied orbital functions can improve the product approximation.

3.1.2 Semi-empirical SCF

Ab initio methods calculate the SCF approximation rigorously. But full inclusion of

a large set of basis functions and rigorous calculations introduce huge numbers of

calculations which require O(n4) computation time [9].

Instead of introducing a large set of AOs and doing everything rigorously, semi-

empirical methods like CNDO, INDO, MNDO, MINDO, etc. simplify the SCF cal-

culations by using some carefully selected pieces of experimental information. The

most computationally intensive part of the SCF calculations are steps S1 and S3 in

Chapter 3. Quantum Chemistry and MOPAC Background 58

Figure 3.1. Most semi-empirical methods use the following methods to reduce the

computation requirement:

� Find fast ways to compute the integrals. The most commonly used method is

to substitute the integrals with empirical results.

� Ignore some insigni�cant integrals.

� Assume AO basis has already orthogonalized. i.e. let S = 1 in equation 3.1.3.

The computational complexity of steps S1 and S3 in SCF calculations can be reduced

to O(n2) in most semi-empirical methods. This makes the diagonalization in step S4

the most computationally intensive part of the SCF calculations. The computational

complexity of the diagonalization is O(n3). The overall computational complexity of

SCF calculation in semi-empirical methods is, as a consequence, reduced from O(n4)

to O(n3).

Since the experimental data may include some electron correlation e�ects, semi-

empirical methods account for some electron correlation e�ects in addition to the

faster calculation. However, unlike ab initio methods, most semi-empirical methods

cannot be systematically improved upon because the use of experimental data incor-

porates some electron correlation e�ects; but henceforth the degree of incorporation

is uncertain.

3.2 MOPAC

MOPAC is a general-purpose semi-empirical molecular orbital computer software

package for the study of chemical structures and reactions [14, 88]. The semi-empirical

Hamiltonians MNDO [30], MINDO/3 [15, 28], AM1 [29], and PM3 [83] are used in

the electronic part of the calculation to obtain molecular orbitals, the heat of forma-

tion, and the derivative with respect to the molecular geometry. Using these results

MOPAC calculates the vibrational spectra, thermodynamic quantities, isotopic sub-

stitution e�ects and force constants for molecules, radicals, ions, and polymers. For

Chapter 3. Quantum Chemistry and MOPAC Background 59

studying chemical reactions, a transition state location routine and two transition

state optimizing routines are available. For users to get the most out of the program,

they must understand how the program works, how to enter data, how to interpret

the results, and what to do when things go wrong regarding unforeseen aspects.

While MOPAC calls upon many concepts in quantum theory and thermodynamics

and uses some fairly advanced mathematics, the users are not required to be familiar

with these specialized topics. MOPAC is written with non-specialist is mind. The

input data is kept as simple as possible so users can give their attention to the

chemistry involved.

The main developing of MOPAC is under James J. P. Stewart at Frank J. Seiler

Research Laboratory, U.S. Air Force Academy. Several important MOPAC releases

are described in Section 3.2.1. The most recent version is MOPAC 7. Ever since the

main developer, James, J. P. Stewart became associated with the Fujitsu company,

Fujitsu company have worked on commercial versions of MOPAC. The commercial

versions MOPAC93, MOPAC97 and MOPAC2000 as well as the Microsoft Windows

port, WinMOPAC, will be described in Section 3.3.3.

The version of MOPAC in our study is the sixth edition. MOPAC 6 contains

about 30,000 lines of FORTRAN code in 160 subroutines and 20 functions. It runs

well on CDC, Data General, DEC-3100, Gould, and Digital computers. It also works

on CDC 205 and Cray X-MP mainframe computers. The Cray version has been

partly optimized to take advantage of the Cray architecture. Some versions have also

been ported to personal computers. The MOPAC used in our study is the UNIX port

for the SunOS.

3.2.1 MOPAC releases

In 1985 MOPAC 3.0 was submitted to the QCPE for distribution. Since 1985,

MOPAC development has been focused on providing a highly robust program. Relia-

bility that gives precise answers, as well as portability which bene�ts users on di�erent

platforms, are the main concerns in the subsequent versions. MOPAC 3.1 was ported

Chapter 3. Quantum Chemistry and MOPAC Background 60

to more platforms including VAX 11, IBM PC and Cray X-MP machines. The vector

operation of Cray X-MP machines show large performance improvement over regular

sequential machines. According to the MOPAC manual, the Cray X-MP/48 runs

about 60 times faster than the VAX 11/780 for small jobs (less than about 40 atoms)

and about 300 times faster for large jobs (more than about 130 atoms).

IBM PC introduced a low-cost computation platform to scientists. Although the

computation power of early IBM PCs was not big enough to handle large molecules,

many people had ported MOPAC 4 to IBM PCs to take advantage of the low-cost

platform.

� Santiago Olivella at University de Barcelona, Spain used IBM Professional

FORTRAN-77 (PROFORT), version 1.00 to port MOPAC 4 on IBM PC run-

ning MS-DOS versions 2.1. In order to work on IBM PCs with only 512 KB of

RAM, this porting of MOPAC 4 was broken up into four modules. The largest

molecule which can be dealt with is 7 heavy atoms and 7 light atoms.

� Norman E. Heimer, Jon T. Swanson and James J. P. Stewart at Frank J. Seiler

Research Laboratory, U.S. Air Force Academy ported MOPAC 4 to IBM PC

without splitting MOPAC into smaller modules. The largest molecule which

can be dealt with by this version is 8 heavy and 8 light atoms.

� Jon T. Swanson, Terri A. Miller and James J. P. Stewart at Frank J. Seiler

Research Laboratory, U.S. Air Force Academy modi�ed the above port to use

either the Ryan-McFarland or IBM Professional FORTRAN compilers.

� Jon T. Swanson, Herbert E. Klei and James J. P. Stewart at Frank J. Seiler

Research Laboratory, U.S. Air Force Academy have another 32-bit port of

MOPAC. This port requires a special 32-bit 032/PC board. It is capable of

handling up to 38 heavy atoms and 38 light atoms.

� G. Kapsomenos at Aristotle University of Thessaloniki, Greece ported MOPAC 4

to IBM PS/2. With 4 MB of memory, this version can handle 40 heavy and 40

light atoms and also performs C.I. calculations with 8 orbitals.

Chapter 3. Quantum Chemistry and MOPAC Background 61

MOPAC 5 incorporates all the previously available Hamiltonians, namely, AM1,

MINDO/3, and MNDO. In addition there is also incorporated the MNDO-PM3

Hamiltonian. The input �le is unchanged. The output is also modi�ed to include

several changes recommended by users. This causes the output not to be compatible

with other software which reads MOPAC output.

In addition to tradition platforms, MOPAC 5 is also ported to IBM 3090 with

vector facility. The IBM's ESSL is extensively used in this port.

Under these circumstances, after Version 5.0 of MOPAC was published, sev-

eral users made available software which they had developed or modi�ed to run on

MOPAC. Most of these modi�cations have been incorporated into MOPAC Version

6.0 and Version 6.1. The most important of these are:

� A geometry optimizer, G-DIIS, written by Csaszar and Pulay.

� The electrostatic potential �tting routine of Besler, Merz and Kollman, as im-

plemented in MOPAC 5.0 Electrostatic Potential, has been added.

� The eigenvector following routine of Baker, Jensen, Rzepa and Stebbings has

been added.

The entire MOPAC 6 is written in FORTRAN 77 except for CPU time and date

routines. This makes MOPAC 6 easy porting to other machines.

The new MS-DOS based MOPAC 6 port is divided into 3 modules. With the

improved Windows operating system, this version can handle 60 heavy and 60 light

atoms with 16 MB of memory.

MOPAC 7, the most recent MOPAC development release, has been ported to

more UNIX platforms as well as Microsoft Windows systems.

Chapter 3. Quantum Chemistry and MOPAC Background 62

3.2.2 MOPAC Input File and Keywords

The simplest description of how MOPAC works is that the user creates a data �le

which describes a molecular system and speci�es what kind of calculations and output

are desired. To this end, the user then commandsMOPAC to carry out the calculation

using that data �le. Finally the user extracts the desired output on the system from

the output �les created by MOPAC. There are at most four possible types of data

�les attainable for MOPAC, but the simplest data �le is the most commonly used.

Fig 3.2 shows a MOPAC sample input data �le. As can be seen, the �rst three

lines are textual. The �rst line consists of keywords. There are seven keywords shown

in this sample. These keywords control the behavior of MOPAC. The keyword directs

MOPAC to \do an unrestricted Hartree-Fock calculation", \use Pulay's converger to

obtain an SCF", \use the MINDO/3 Hamiltonian", \print �nal eigenvectors", \print

�nal density matrix", \print localized orbitals", and \write restart �le every 300

seconds." MOPAC checks the input keywords before execution. If two keywords

which are incompatible, e.g. UHF and CI, are supplied then error trapping will occur

and an error message will be printed. MOPAC recognizes more than 130 keywords.

The next two lines are comments or titles. They will be printed in the corre-

sponding output �le. Users can use these lines to put the name of the molecule or

the purpose of the data �le.

Lines 41 to 46 de�ne the geometry of molecular structure. Note that the geometry

is de�ned in internal coordinates format or Gaussian Z-matrix instead of Cartesian

coordinates. Each line represents one atom. For each atom ai, the internal coordinates

consists of an inter-atomic distance in Angstroms from a previous atom aj, an inter-

atomic angle in degrees between atom ai and aj and a previous atom ak, and �nally

a torsional angle in degrees between atoms ai, aj, ak and a previous atom al. Line 44

speci�es a hydrogen is located in the space that is 1.098326�A from the atom de�ned

in Line 42, with an inter-atomic angle 123:572063Æ between the atom de�ned in Line

41, and a dihedral of 180Æ with the atoms de�ned in Lines 42, 41, and 43.

Line 5 should be a blank line or 0 to terminate the geometry de�nition.

Chapter 3. Quantum Chemistry and MOPAC Background 63

Line 1 : UHF PULAY MINDO3 VECTORS DENSITY LOCAL T=300

Line 2 : EXAMPLE OF DATA FOR MOPAC

Line 3 : MINDO/3 UHF CLOSED-SHELL D2D ETHYLENE

Line 41 : C

Line 42 : C 1.400118 1

Line 43 : H 1.098326 1 123.572063 1

Line 44 : H 1.098326 1 123.572063 1 180.000000 0 2 1 3

Line 45 : H 1.098326 1 123.572063 1 90.000000 0 1 2 3

Line 46 : H 1.098326 1 123.572063 1 270.000000 0 1 2 3

Line 5 :

Figure 3.2: A MOPAC sample input data �le

3.3 Related Work

In this section, we will is essence brie
y introduce MOPAC works done in other orga-

nizations. The MOPAC parallelization developed by IBM focuses on improving the

throughput of MOPAC. Kim Baldridge at SDSC parallelized MOPAC to improve its

performance. The MOPAC2000 released by Fujitsu company is a commercial product

integrating the new patented MOZYME algorithms to calculate large molecules of

up to 10,000 atoms and MOS-F V4.0 to calculate UV-visible spectra. The Windows

port of MOPAC, WinMOPAC V2.0, adds graphic user interface to MOPAC.

3.3.1 IBM

In reference to this criterion, Brian T. Luke at International Business Machines Cor-

poration was also working on parallelizing MOPAC. Both IBM's and our work is

based on MOPAC version 6. We call our work \parallel MOPAC" while IBM people

call their work \MOPAC-7."

Chapter 3. Quantum Chemistry and MOPAC Background 64

Our work on parallel MOPAC focuses on reducing the runtime of a single large job

(improving performance), while IBM's approach assumes that users will performmany

closely related calculations (such as changing bond angles), and simply provides a

mechanism to spawn multiple single-processor jobs on the nodes of a parallel machine

(improving throughput). Parallel MOPAC focuses on improving the performance of

a single run of MOPAC. That is, we are trying to reduce the time of a single MOPAC

run from, say, hours to minutes. We analyze the MOPAC code to �nd the most

computationally intensive portions and use parallelizing technology to speed up the

computationally intensive portions of MOPAC in order to reduce the total execution

time.

IBMMOPAC-7 takes a di�erent approach. They assume that chemists mainly use

MOPAC on conformational search, i.e. running MOPAC many times with slightly

modi�ed input �les. For example, someone may want to run MOPAC to see the

heat di�erence for the skew of three atoms from 30Æ to 40Æ. They may need to

repeatedly run MOPAC for 11 times with slightly di�erent data �les, which di�er

from its neighbor only in the skew of that three atoms for 1Æ. IBM exploits the coarse

grained parallelism in this kind of application: the 11 runs can execute in parallel.

IBM MOPAC-7 introduces new control keywords to MOPAC's input �le that

speci�es what and how input data changes. In our example, the skew is speci�ed as a

range from 30Æ to 40Æ with 1Æ di�erence instead of a constant. MOPAC-7 analyzes the

new data �le and �nds out how many runs are needed. It then generates MOPAC 6

format data �les. In above example, MOPAC-7 knows there will be 11 runs and

generates 11 data �les with the skew 30Æ for the �rst data �le, 31Æ for the second

data �le, . . . , and 40Æ for the last data �le. It then starts up 11 MOPAC processes

on 11 IBM SP2 nodes and feeds the 11 MOPAC processes with the 11 data �les. The

11 MOPAC processes do not need to communicate with each other until they �nish

running. MOPAC-7 then collects the result �les from the SP2 nodes for users.

Figure 3.3 shows the IBM MOPAC-7 parallelism. Users specify the data range by

the new IBM MOPAC-7 keywords in the MOPAC input �le. IBM MOPAC-7 then

generates the input �le sets and distributes the data �les as well as MOPAC program

Chapter 3. Quantum Chemistry and MOPAC Background 65

and MOPAC-7
distribution

KEYWORDS

origional input
IBM

MOPAC-7

input-1

input-2

input-n

MOPAC

MOPAC

MOPAC

Output-1

Output-2

Output-n

IBM SP2

Figure 3.3: IBM MOPAC-7 parallelism

to SP2 nodes. IBM MOPAC-7 distributes work load at the job level, which is the

coarsest grain MOPAC has. The communication is not an issue since there is no

communication during execution time except for the data �le distribution and result

�le collection. Moreover, since the calculations are very similar, the execution time

of each job is about the same. Insofar as activity, load balancing is, thus, achieved.

This approach yields nearly linear speed-up.

IBM MOPAC-7 works excellently if the users use MOPAC in the above manner.

When this becomes clear, it will not bene�t those who run MOPAC with a set of

di�erent input data �les or a single large input data.

3.3.2 SDSC

As this work was proceeding, a similar e�ort was undertaken by Kim Baldridge at

the San Diego Supercomputer Center also tried to implement a parallel version of

MOPAC [7, 8]. Her work focused on improving the performance of the following four

parts:

Chapter 3. Quantum Chemistry and MOPAC Background 66

� evaluating the electronic repulsion integrals

� calculating �rst derivatives

� calculating second derivatives

� solving the resulting eigensystem

Her approach is very similar to ours. One distinction is that she implemented her

work from a chemist's point of view while we did it from a computer scientist's point

of view. She knows the above 4 parts are computationally intensive based on the func-

tions of the 4 parts and her chemistry expertise. We �nd out these computationally

intensive parts through time pro�ling analysis in Section 4.1.2. She used time pro�ling

to demonstrate that these parts are really the time-consuming parts of MOPAC. She

also made computational complexity analysis for these parts. Of vital importance,

she did not know that the work load distribution can be changed dramatically for

large molecule systems. Section 4.1.3 shows how we use computational complexity

analysis with time pro�ling analysis to determine the time-consuming parts.

The parallel algorithms were implemented on a 64 processor Intel iPSC/860 hy-

percube, and subsequently on an Intel Paragon. Calculations were performed on node

combinations up to 128 processors. Optimization level 3, which incorporates global

optimization and software pipelining, was invoked during code compilation. There

is no data dependency analysis and communication optimization discussion in her

paper.

The results are categorized in two categories: geometry optimization and vibra-

tional analysis. The speed-up of geometry optimization was disappointing. The best

result is 5.2 times faster by using 64 nodes. The speed-up of vibrational analysis was

better. A 40.8 times speed-up is observed using 64 nodes.

The problem of the poor performance of geometry optimization is because of the

memory limitation of iPSC/860. iPSC/860 nodes have 8 MB real memory and no

virtual memory. The operating system and communication library take about 3 MB of

memory and at best leave about 5 MB for application code and data. The replicated

Chapter 3. Quantum Chemistry and MOPAC Background 67

data parallel decomposition used in this implementation requires large amount of

memory. Only molecules with less than 20 heavy atoms can run on an iPSC/860.

Above all, the results on Paragon are similar except for Paragon has faster CPU and

larger memory (32 MB/node).

Drawn into a closer collaboration, the other problem is the communication. There

are a lot of small data packets exchanged in the eigensolver in geometry optimization.

They were implemented by using fast-library global routines. This was observed to

be extremely expensive.

Global communications are expensive unless hardware supports them. iPSC/860

and Paragon both use mesh topology. Global communications are implemented by

point-to-point send and receive operations. All nodes sending data to communication

networks at the same time may congest the network links and reduce the communi-

cation performance. In accordance with this, using global communications to replace

regular send and receive communication simpli�es the programming but increases the

communication cost and should be avoided if not supported by hardware.

3.3.3 Fujitsu

As Dr. James J. P. Stewart, the main developer of MOPAC, began as a consultant

with Fujitsu company in 1991, Fujitsu company has been working on commercializing

MOPAC. Unlike the research branch, the commercial branch of MOPAC is named

after the year of release. The �rst commercial release of MOPAC is MOPAC93,

followed by MOPAC97 and MOPAC2000. MOPAC93 was forked from research release

MOPAC 7. A Microsoft Windows port of MOPAC,WinMOPAC V2.0, is also released

by Fujitsu.

Chapter 3. Quantum Chemistry and MOPAC Background 68

MOPAC2000

MOPAC2000 [38] was released in March 1999. The most important new feature of

MOPAC2000 is its new MOZYME algorithm. Memory size and CPU time require-

ments limited conventional quantum mechanics packages to a few hundred atoms.

The patented MOZYME algorithms enables biochemists and materials chemists to

readily take advantage of the powerful property prediction capabilities of quantum

mechanics on systems of over ten thousand atoms. MOPAC2000 can perform opti-

mizations orders of magnitude faster, using dramatically less memory than conven-

tional semiempirical and ab initio packages. By this trend, the electronic properties of

systems with thousands of atoms, including proteins, polymers, semiconductors and

crystals, can now be calculated in just minutes or hours. With MOZYME algorithm,

MOPAC2000 allows chemists to perform very fast quantum mechanics computations

on macromolecular systems such as proteins, polymers and crystals.

MOZYME algorithm reduces the scaling by reformulating the problem in such a

way that the Fock matrix construction becomes linear and the diagonalization step is

avoided. This dramatically reduces the time required for SCF calculations. However,

it is not applicable to every molecular system and all the properties provided by the

traditional SCF calculations. The traditional SCF calculations are still needed for

those systems.

MOPAC2000 also incorporates over thirty other new capabilities and features, in-

cluding d-orbitals and metals, crystal properties, geometry in electric �elds, NLO, 2D

and 3D periodic boundaries, band structures, photon spectra, Young's modulus, ten-

sile strength, MOS-F for UV spectra, inter-system crossing, excited states in solution,

etc.

MOPAC was written in FORTRAN. The required memory space was statisti-

cally allocated. The maximum array and matrix sizes de�ned in �le SIZES must be

changed and the whole MOPAC source needs to be re-compile to change the maximum

array and matrix sizes. The dynamic memory allocation introduced in MOPAC97

eliminates this problem and make more eÆcient memory usage.

Chapter 3. Quantum Chemistry and MOPAC Background 69

MOPAC includes the semiempiricalHamiltonians, MNDO,MINDO/3, AM1, PM3

and MNDO-d calculation methods. These methods have been calibrated using ex-

perimental data for thermodynamic properties such as heats of formation.

Besides the traditional UNIX workstations, MOPAC2000 is also ported to parallel

computers using distributed memory message passing programming model and MPI

communication library. Fujitsu AP3000, VX/VPP300/VPP700, SGI Power Chal-

lenge and Sun Ultra Enterprise 10000 are the �rst parallel machines MOPAC2000

was ported to at the time of release. No detailed description was published at the

time MOPAC2000 was released.

WinMOPAC

To support the popularly used Microsoft Windows platforms, Fujitsu developed Win-

MOPAC based on MOPAC97. WinMOPAC V2.0 [39] is a 32-bit Microsoft Windows

application running on Windows 95, Windows 98 and Windows NT 4.0 released in

August 1998.

The most important new feature of WinMOPAC V2.0 is its graphic user interface.

WinMOPAC V2.0 supports a nice 3D graphic user interface. Besides traditional text

input �les, it also allow input molecule structures using graphic user interface. Its 3D

structure building function allows the user to create or change the bond lengths, angles

and dihedral angles of molecule structures by dragging and clicking on a mouse. It

also provides about 100 templates to help users to build molecules easily. Figure 3.4,

downloaded from [39], shows the molecule sketching and property calculating using

the WinMOPAC V2.0 graphic user interface.

WinMOPAC V2.0 also includes MOS-F, a semi-empirical molecular orbital cal-

culation program, which was developed and has been used for material design by

Fujitsu Laboratories Ltd. The main function of the MOS-F program is to assist in

the screening and molecular design of organic dyes and related light-sensitive mate-

rials, especially organic nonlinear optical materials, by using the INDO/S method.

The MOS-F program can calculate over 1,000 atoms of large molecules because of

Chapter 3. Quantum Chemistry and MOPAC Background 70

(a) Sketch the molecule (b) Calculate the property

Figure 3.4: WinMOPAC V2.0 graphic user interface

eÆcient memory usage.

WinMOPAC V2.0 supports AM1, PM3, MNDO, MNDO-d, MINDO/3, CNDO/2,

CNDO/S, CNDO/S2, CNDO/3 and INDO/S computional methods. It requires Pen-

tium 100MHz or higher with 32 MB or more RAM. In such matters, the maximum

size of calculation is limited to 100 hydrogen atoms and 100 heavy atoms due to the

memory and computing power limitations at the time of release.

Chapter 4. Parallelizing a Legacy Application 71

Chapter 4

Parallelizing a Legacy Application

The purpose of parallelization is to decrease the total execution time constrained in

a single program or increase throughput of multiple processes. Since we focus on

improving the performance of legacy applications, how to reduce the execution time

is the main topic of the analysis.

A legacy application, as stated in Section 1.3, is usually large and complex. A

complete re-write of the program takes enormous e�ort. Moreover, the new code may

introduce new bugs and invalidate the legacy application. Fortunately, the compu-

tationally intensive part is usually concentrated in a small part of the program. In

general, in scienti�c codes, we expect that most of the CPU time will be spent in

various loops within the code. Parallelizing these parts results in approximately the

same performance boost as totally parallelizing the entire program but takes a much

lesser e�ort. Moreover, most code is not changed and kept validated.

Since we are interested in revealing small portions of a legacy application instead

of totally rewriting it, we need to �nd out which parts take the most CPU time. We

apply the parallelization technology to the time-consuming parts to reduce the total

execution time but leave the other parts unchanged as illustrated in Figure 4.1. Only

small computationally intensive parts are parallelized and run on a parallel computer.

Most parts of a legacy application are not changed and run on a workstation or one

Chapter 4. Parallelizing a Legacy Application 72

Workstation

Parallelized
Legacy Application

Parallel computer

Parallel code
New

Old Sequential code

Figure 4.1: Parallelizing a legacy application

of the nodes of the parallel machine. The e�ort is minimized while the performance

is improved and, the most important, the legacy application is still validated.

In this chapter, we will give the procedures used for parallelizing a legacy appli-

cation in the model described above. A sequence of sequential analysis, including

program
ow analysis, time pro�ling analysis and complexity analysis, for paralleliz-

ing a legacy application are used to identify the time-consuming parts from the legacy

application eÆciently. Before we start parallelizing the time-consuming code, we need

to perform a data dependency analysis to ensure the code can be parallelized with-

out altering the semantics of the code. Data dependency can prevent programs from

being parallelized. We need to make sure that there is no data dependency before

beginning to parallelize a segment of code to ensure the program integrity. Some data

dependency relationships can be resolved by code rearrangement or transformation.

Amdahl's law described in Chapter 2 states that the non-parallelable parts can seri-

ously limit the maximumpossible speed-up of a parallel program. We need to resolve

all resolvable data dependency to maximize the parallelable portion of the legacy code

to improve the overall performance of the legacy program. Data dependency analysis

and some commonly used loop parallelization optimization methods are described in

Section 4.2 and Section 4.3. At last, integration issues are discussed in Section 4.4.

Chapter 4. Parallelizing a Legacy Application 73

4.1 Sequential Analysis

A segment of time-consuming code can be as small as a few statements or may span

several subroutines. The �rst step in analyzing a legacy application for parallelization

is to browse through the code to get an idea about the program execution
ow and

which subroutines are used together.

Time pro�ling is the second step of analyzing a legacy application. We know the

program structure from the program
ow analysis. We may be able to identify which

subroutines serve as data input, which handle error checking and recovering, which

do results output, and which perform the real computation. Program
ow analysis

is important to time pro�ling because some code may be complicated and consume

CPU time, but they may be used only occasionally or even not used at all in normal

cases. For example, some code may be used to handle special cases. These special

cases may be complex and require a signi�cant amount of computation. However

they are not used very often. Program
ow analysis can identify these code and keep

them out of time pro�ling. These subroutines need not be parallelized unless other

more frequently used subroutines have been parallelized. We cannot �nd out which

part is frequently used unless we feed some typical test data to the legacy application

and measure the CPU time these subroutines use.

Time pro�ling analysis widely shows the time distribution of a legacy application

for input data. However, the work load distribution can be changed for di�erent

sizes of input data. A complexity analysis is useful to �nd out how the CPU time

distribution changes when larger data �les are used. We can estimate the speed-ups

for di�erent sizes of input data �les by combining the results of time pro�ling and

complexity analysis.

4.1.1 Program Flow Analysis

A program usually consists of many subroutines and functions. Each subroutine

usually performs one or more tasks. Subroutines performing large tasks may divide

Chapter 4. Parallelizing a Legacy Application 74

the tasks into smaller sub-tasks and call other subroutines to perform these sub-tasks.

A subroutine is a good starting point for analyzing program
ows. A
ow diagram

can show the inevitable relationships between subroutines. We can easily �nd out

which subroutines are together and what functions they perform.

Legacy applications, however, are usually large and complex. Precisely �nding

the function of every subroutine is very time-consuming and requires expertise in the

�eld the legacy application is designed for. It is diÆcult for a computer scientist to

do these kinds of analysis without years of training.

Fortunately, the information we need form program
ow analysis is to identify

time-consuming parts. Not knowing the functions of most parts is not a problem

since we do not change them at all. We only need to determine if a subroutine

is used for normal data processing, which is used regularly, or abnormal data and

error handling, which is seldom used in normal cases. This can be done with basic

knowledge.

In general, in scienti�c codes, most of the CPU time will be spent in various loops.

It is easy for computer scientists to identify loops. A loop can be in several forms:

deterministic loop : The number of iterations can be determined when the loop

starts. These are typically, but not necessarily expressed using language con-

structs such as DO loops in FORTRAN and for loops in C. A loop index variable

serves as the iteration counter of the loop. The number of iterations is �xed

and can be calculated from the loop parameters before the loop is executed.

indeterministic loop : The number of iterations cannot be determined when the

loop starts. The loop keeps iterating until some conditions are satis�ed. Since

we have no way of knowing in advance when the conditions will be satis�ed,

we do not know how many iterations an indeterminate loop will run. REPEAT

and WHILE loops in C belong to this category.

Backward goto : Programs are executed statement by statement. A backward

GOTO can change the execution
ow may be used to construct a loop, especially

in FORTRAN codes.

Chapter 4. Parallelizing a Legacy Application 75

Recursive : The code itself does not contain the loop structures speci�ed above.

However, it still can form a loop by calling itself. A recursive subroutine does

not necessarily directly call itself. It can call other subroutines and then call

back to itself from these subroutines to form a recursive execution sequence

indirectly. Recursive subroutines are more diÆcult to identify and parallelize

than other types of loop. Fortunately, earlier FORTRAN languages, which most

scienti�c legacy applications were written in, do not allow recursion.

Program initialization, data input and result output are used only once in the

beginning or end of program execution. Abnormal case and error handling routines

are seldom used in normal cases. They are not eligible for parallelization even if they

appear to have high computational complexity and be time-consuming. We need to

exclude them from the rest of analysis to avoid accidentally picking them up in time

pro�ling analysis.

4.1.2 Time Pro�ling Analysis

A program
ow analysis shows the structure of a legacy program. We can intentionally

learn the various functions of the subroutines. The
ow diagrams also give us some

rough ideas about the execution time of each segment. At another point, the time

required for a program segment does not solely depend on the complexity of the code.

The frequency of calls also plays a very important role in CPU time consumption.

Unfortunately, the behavior of program execution depends heavily on the input data.

Di�erent sets of input data may use di�erent parts of a program. At this stage, we

do not know the actual execution time and the frequency that these subroutines are

called from
ow diagram. Time pro�ling is the only way to know how much CPU

time a segment of code needs to run a set of input data.

Care must be taken when doing time pro�ling analysis. The input data must be

carefully chosen and the time measurement cannot interfere the regular execution.

The most common way to do time pro�ling analysis is to write time stamps at the

start and end point of the code we are interested in. The execution time of each code

Chapter 4. Parallelizing a Legacy Application 76

segment can therefore be calculated from these time stamps. As a consequence, the

writing of the time stamps should be as fast as possible to reduce the interference of

time measurement.

Time stamps are kept in a large memory bu�er. Memory access is fast and the

access time is uniform. We can ignore it or measure and subtract it from the results.

However, in many cases, time stamps take large space. They need to be written to

disk �les. The time used in writing data to a disk �le is clearly quite un-predictable.

It may be very fast if the data goes to the �le bu�er only. It may take longer if the

�le bu�er is full and needs to physically write the �le bu�er to a hard disk. The time

required to write a �le bu�er to hard disk depends on the position of the hard disk

head and the location of the data on the disk platter. The time may vary from nano-

seconds to a few hundred milli-seconds in normal operation. In some very special

cases, e.g. disk head re-calibration, it may take up to several seconds for very large

disks. We can neither ignore it, since it may be very long, nor measure it, since it

varies in large range.

Since UNIX systems count resource usage by process, each process has a set of

counters to count its resource usages. The best way to do time pro�ling is to use

separate processes. As shown in Figure 4.2(a), the results of time pro�ling includes

the timing and tracing and data logging and analysis modules. The timing and tracing

module reads system time and increases some tracing counters. These operations

are fast and do not vary very much. The data logging and analysis module, which

involves disk accesses, can be slow and non-uniform. Dual process time pro�ling, as

shown in Figure 4.2(b), moves the data logging and analysis module to a separate

process. Instead of disk �les, the time stamps and trace counters are sent to the the

data logging and analysis module through faster UNIX Inter Process Communication

(IPC), e.g. shared memory. Data is written to a memory bu�er, whose access time

is fast and uniform. When the memory bu�er is full, the context switches to the

data logging and analysis module. The timers pause when the context switches out

of time pro�ling process stops and resume when the context switches back. Notably,

the operating system takes care of the accounting. The time used by the data logging

Chapter 4. Parallelizing a Legacy Application 77

Program to

Timming and
Tracing

Data Logging
and Analyzing

Program to

Timming and
Tracing

Data Logging
and Analyzing

Sys V IPC

profile profile

(b) Dual processes(a) Single process

Figure 4.2: Single and dual process time pro�ling

and analysis module is not counted since it is in di�erent process. The interference

introduced by the time stamp writing is minimized.

The behavior of a program is heavily dependent upon the input data. Evidently,

giving unusual input data will mislead the analysis. For example, we may observe

certain routines are used very frequently and take a lot of CPU time if the input data

we use contains many unusual situations. A set of \typical" input data should be

carefully chosen for the time pro�ling.

The more test data we run, the better accuracy with which the time distribution

can be measured. It is good to run as many test data as possible to reduce the bias

caused by the choice of input data. Moreover, the results of running the test data �les

need not carry the same weights. By contrast, some test data may be more \typical"

and carry more weight than the others. Weights should be added to the results of

the time pro�ling to re
ect the types of data that these test data �les represent. A

larger job should carry more weight too.

Time pro�ling analysis shows the time distribution of a legacy application. We

can easily �nd out which parts consume most of CPU time. Moreover, we can also

estimate how much speed-up we can gain from parallelizing these segments of codes for

Chapter 4. Parallelizing a Legacy Application 78

the test data. For example, we �nd a legacy application spends 99% of CPU time in

a data processing subroutine. Even with unlimited number of processors and perfect

parallelization, the speed-up of the legacy application will not exceed 100. Actually,

by looking at Figure 2.5, we �nd the maximum possible speed-up does not indeed

increase when the number of processors is larger than 256. A more cost-e�ective cut

point would be 128 processors.

4.1.3 Complexity Analysis

Time pro�ling analysis �nds the relatively time-consuming parts for certain test data

sets. By carefully choosing di�erent types of data �les, we can throughly test all

major execution paths of a legacy application and �nd out the work load patterns.

However, beside of the types of data �les, the size of data sets changes the work load

patterns also.

As a set-piece, we usually use smaller data at the analysis stage to simplify the

analysis. In production, on the other hand, the input data �les are usually much

larger. The work load patterns found in time pro�ling analysis may not re
ect the

real work load patterns in production. An adjustment on data size needs to be applied

to the results of time pro�ling analysis to correctly show the work load patterns of

large data used in production.

Computational complexity a�ects the CPU time required for a subroutine when

the input data size changes. Codes with higher computational complexity gain higher

work load than those with lower computational complexity does when the data size

gets larger. Computational complexity is originally the function of the change of CPU

time required and the change of input data size. We can �nd the change of CPU time

of each parts of a legacy application from the change of data size.

For example, a legacy application spends 50% of CPU time in subroutine A with

computational complexityO(N3) and the rest 50% of CPU time on subroutine B with

computational complexity O(N). Likewise, when a 10 times larger data �le is given,

subroutine A needs 1000 times of CPU time while subroutine B needs only 10 times.

Chapter 4. Parallelizing a Legacy Application 79

The work load pattern is changed to 99% and 1% for subroutine A and B respectively.

Subroutine A will be more time-consuming than subroutine B in production.

The work load change caused by data size change not only changes the time-

consuming degrees of various subroutines but also changes the maximum possible

speed-ups. For example, if we have a program that contains 2 parts. Part A has

computational complexity O(n) while part B has O(n2). The time pro�ling on a

data of size n = 100 gets the result that part A takes 1 second and part B takes 9

seconds. The time-consuming part B takes 90% of CPU time and has a maximum

possible speed-up of 10. Now we run a larger data of size n = 1000. Part A takes 10

seconds and part B takes 900 seconds. This time part B takes 98.9% and raises the

performance ceiling to a factor of 91.

By combining time pro�ling and computational complexity analysis, we can better

estimate the work load patterns of a legacy application for any data size of every type

of input data. We can �nd which parts of a legacy application are the most time-

consuming in production. These parts are utterly the targets of parallelization.

Beside of identifying the targets of parallelization, by using Figure 2.5, we can

also �nd the maximum possible speed-up of a legacy application and the most urgent

cost-e�ective cut points for running the legacy application.

4.2 Data Dependence Analysis

As described in Section 2.1, data dependence can prevent parallelization. It is there-

fore prudent to check data dependence before performing parallelization in order to

avoid changing program semantics. Since parallelization typically takes advantage of

concurrently executing iterations of a loop in order to shorten the total execution time,

the data dependences between iterations of a loop are the most important subject

of parallelization. However, the data dependence between the iterations of a loop is,

nonetheless, not as simple as within a sequence of statements. Some data dependence

relationships can be very diÆcult to check due to the complexity of a program. We

Chapter 4. Parallelizing a Legacy Application 80

need to de�ne a formal procedure to ensure that the valid data dependence analysis

can correctly determine if there are data dependencies between iterations of a loop.

Some tools will be introduced to ease the analysis.

Data dependence happens between two statements that need to access the same

variable. By the very de�nition and use of a variable in di�erent orders, we can have

true, anti-, and output dependencies. We will need to check the execution order of

instances of loops and the use of common variables to determine if there are data

dependences between any statements.

4.2.1 Determination of Loop Data Dependence

The �rst step of data dependence analysis is to de�ne the execution order. It may be

remarked that the sequential code implies an execution order for all statements. A

program counter points to the next statement to be executed. The program counter

moves to the next statement in the program unless the current statement is a branch

statement. Variables are de�ned and used in this execution order.

In order to simplify the analysis, the loop we discuss in this section is a normalized

loop. A normalized loop is a loop with an index variable that has a start value 1,

a positive �nal value n, and an increment value of 1. Any non-normalized loop can

be normalized by the transformation described later. Suppose we have a normalized

m-level loop L with loop indices I1, I2, : : :, Im and �nal values n1, n2, : : :, nm where

1 � I1 � n1, 1 � I2 � n2; : : : ; 1 � Im � nm. An iteration vector is de�ned as an

m-tuple �I = (i1; i2; : : : ; im) to represent the instance of the m-level loop where I1 = i1,

I2 = i2, . . . , Im = im.

The instances of the m-level loop are executed in the order

(1; 1; : : : ; 1; 1), (1; 1; : : : ; 1; 2), . . . , (1; 1; : : : ; 1; nm),

(1; 1; : : : ; 2; 1), (1; 1; : : : ; 2; 2), . . . , (1; 1; : : : ; 2; nm),
...

(n1; n2; : : : ; nm�1; 1), (n1; n2; : : : ; nm�1; 2), . . . , (n1; n2; : : : ; nm�1; nm).

Any two instances �I1 and �I2 will have one of 3 execution order relationships �I1 < �I2

Chapter 4. Parallelizing a Legacy Application 81

which means �I1 is executed before �I2, �I1 > �I2 which means �I1 is executed after �I2,

and �I1 = �I2 which means �I1 and �I2 are the same instance. We can tell the execution

order relation between any two instance �I1 and �I2 by checking their iteration vectors.

The following rules hold:

� �I1 > �I2 if i1j = i2j for all j = 1, k and i1k+1 > i2k+1 where 1 � k < m.

� �I1 < �I2 if i1j = i2j for all j = 1, k and i1k+1 < i2k+1 where 1 � k < m.

� �I1 = �I2 if i1j = i2j for all j = 1, m.

As described earlier in this section, data dependence between two statements

occurs when these two statements access the same variables. An input set of statement

S is the set of variables whose values are used for the statement S. An output set of

statement S is the set of variables whose values are assigned in statement S. Variables

used as subscripts of other variables are considered input variables.

Data dependence in the same instance can be determined by the method described

in Section 2.1. Now the data dependence between two statements S1 and S2 in

di�erent instances �I1 and �I2 where �I1 < �I2, with the input sets Î(S1) and Î(S2) and

output sets Ô(S1) and Ô(S2) can be determined in the following conditions:

� True dependence S1
Æt

�! S2 if 9v 2 Ô(S1) \ Î(S2).

� Anti-dependence S1
Æa

�! S2 if 9v 2 Î(S1) \ Ô(S2).

� Output dependence S1
Æo

�! S2 if 9v 2 Ô(S1) \ Ô(S2).

4.2.2 Loop Index and Variable Subscript Transformations

To simplify the determination of data dependence, we assumed that all loops dis-

played are normalized. However, not all loops are normalized in real programs. Some

subscripts of variables have complex forms which make the dependence analysis very

diÆcult. Some program transformation methods [97] transform the program into

Chapter 4. Parallelizing a Legacy Application 82

some standard formats that can be easily checked for data dependency relations

without altering the program semantics. These transformation methods can be used

to simplify data dependence analysis.

These transformation methods are used to ease the data dependency analysis.

Some transformations are the inverses of optimizations. Optimizations should not be

given up for parallelization. Optimizations still can be re-applied after the dependence

analysis is completed.

DO Loop Normalization A DO loop has an index variable which is assigned

an initial value in the beginning, increased by an increment value in the end of each

iteration, and stopped when the index variable exceeds the limit value. The increment

value can be anything except for 0. Some languages such as C even allow
oating

point values. The
exibility of the DO loop makes DO loops easier to use. However,

it may cause diÆculty when checking the dependency in the loop.

The simple way to make the addressed checking easier without losing the func-

tionality of DO loop is to normalize it. A DO loop is normalized if its initial value

and increment equal to one.

This normalization is straightforward. The upper bound of the loop is simply

changed to (Exp2 - Exp1 + Exp3) / Exp3 and all loop indices are substituted in the

loop to Inormalized � Exp3 + Exp1. Thus the DO loop normalization is done. The

�nal value of the loop index variable can be set to Exp1 + (Exp2 - Exp1 + Exp3) /

Exp3 � Exp3 if needed. The normalization is shown in Figure 4.3

Scalar Forward Substitution Equally well, programmers often use temporary

variables to store the values of common expressions. This reduces the amount of com-

putation necessary. However, the temporary variables may be used in the subscript

expressions of statements with data dependency and complicate the data dependency

checking. One may falsely think there are data dependences between some statements

if there are several statement references to these temporary variables in a big loop.

Chapter 4. Parallelizing a Legacy Application 83

S1 : DO I = Exp1, Exp2, Exp3

S2 : DO-Body

S3 : ENDDO

(a) Unnormalized DO loop

S10 : DO Inormalized = 1, (Exp2 � Exp1 + Exp3) / Exp3

S20 : DO-Body (with all I substituted by Inormalized � Exp3 + Exp1)

S30 : ENDDO

S40 : I = Exp1 + (Exp2 � Exp1 + Exp3) / Exp3 � Exp3

(b) Normalized DO loop

Figure 4.3: DO loop normalization

Scalar forward substitution replaces all such temporary variables with their orig-

inal expressions. This may cause the expressions which in e�ect use these temporary

variables to be more complex and ineÆcient, but the data dependency of these state-

ments will be easier to check because these expressions now use only the necessary

variables.

Induction Variable Substitution Induction variables are variables that used in

a loop and its value is generated from the value in the previous iteration of the loop.

Induction variables have have the following form:

Chapter 4. Parallelizing a Legacy Application 84

IV=initial value

DO I = 1, N

IV = F(IV)
...

ENDDO

The value of induction variable IV is generated form its previous value by a

function F. A true data dependence of variable IV is found between the current

iteration and previous iteration of the DO loop. The induction variable may force

the iterations of the DO loop to be executed sequentially. The iterations of the

loop cannot be executed in parallel unless we can produce a function of the form

F (F (� � � F| {z }
N

(initial value) � � �)).

Induction variables are usually used in loops to serve as another index variable of

a DO loop. Consider the following example:

A triangular matrix A is stored in a one dimensional array B to save some space.

A[1, 1] = B[1], A[2, 1] = B[2], A[2, 2] = B[3], A[3, 1] = B[4], . . . , A[4, 1] = B[7],

. . . , A[n, 1] = B[(n - 1) � n / 2 + 1], . . . , A[n, n] = B[n � (n + 1) / 2]. Now we

want to assign A[i, 1] = i, for i = 1, N. One may use the program in Figure 4.4(a).

The variable BI is an induction variable of the loop. Induction variable BI prevents

the above program from being parallelized. Fortunately, calculating the value of

F (F (� � � F| {z }
N

(initial value) � � �)) is possible if F(x) has the form F(x) = a � x + b

where a and b are constant.

Let IVi denotes the value of induction variable IV at the i0th iteration where

1 � i � N . Suppose IV has initial value IV0.

Chapter 4. Parallelizing a Legacy Application 85

S1 : BI = 1

S2 : DO I = 1, N

S3 : B[BI] = I

S4 : BI = BI + I

S5 : ENDDO

(a) loop with induction variable

S10 : BI = 1

S20 : DO I = 1, N

S30 : B[I � (I + 1) / 2] = I

S40 : ENDDO

S50 : BI = N � (N + 1) / 2

(b) loop without induction variable

Figure 4.4: Induction variable substitution

IV1 = F (IV0) = a� IV0 + b

IV2 = F (IV1) = a
2 � IV0 + (a+ 1) � b

IV3 = F (IV2) = a
3 � IV0 + (a2 + a+ 1)� b

...

IVN = F (IVN�1) = a
N � IV0 + (aN�1 + a

N�2 + � � �+ a+ 1)� b

We can generalize the above equations as follows:

IVi = a
i � IV0 + (ai�1 + a

i�2 + � � � + a+ 1) � b

= a
i � IV0 +

a
i � 1

a� 1
� b (4.2.1)

Chapter 4. Parallelizing a Legacy Application 86

The induction variable IV can be substituted by equation 4.2.1 to eliminate the data

dependency and make the DO loop parallelizable. The DO loop that substitutes its

induction variable by applying equation 4.2.1 is shown in Figure 4.4(b).

4.3 Loop Parallelization

Loops are the main causes accounting for time-consuming and the targets of par-

allelization. Loop parallelization changes the sequential codes to parallel codes and

guarantees the �nal results is the same as the results generated by the sequential codes.

As introduced in Section 2.1, only true dependence is unresolveable. Loop interchange

exchanges the loops organization to improves the performance while maintain the pro-

gram correctness. Anti- and output data dependence between loop instances can be

resolved by introducing new variables. Scalar expansion and variable copying not only

improve the performance but also resolve the perplexing data dependence between

loop instances. These optimization methods for loop parallelization are described in

this section.

Loop Interchange We would like to have coarse granularity when parallelizing a

loop. It reduces the frequency of communication and synchronization. For the above

straightforward reason, we prefer distributing the outermost loop if possible.

It is common that the work load cannot be 100% evenly distributed to all pro-

cessors when the number of distributable work load units is not an integer multiple

of the number of processor. Some processors may receive a more generous work load

than the others due to the residual. This causes a minor imbalance. The work load

distribution will be more balanced if the number of work load units is far bigger than

the number of processors. For example, distributing 3 units of work load to 2 proces-

sors results 50% imbalance while 101 units results only 2% imbalance. We prefer to

distribute bigger loops for load balance reasons.

Loop interchange is a transformation that exchanges two levels of a nested loop.

Chapter 4. Parallelizing a Legacy Application 87

S1 : DO I = 1, N1

S2 : DO J = 1, N2

S3 : DO loop body

S4 : ENDDO

S5 : ENDDO

(a) Loop I outside of loop J

S10 : DO J = 1, N2

S20 : DO I = 1, N1

S30 : DO loop body

S40 : ENDDO

S50 : ENDDO

(b) Loop J outside of loop I

Figure 4.5: Loop interchange

Consider the example in Figure 4.5(a), loop I is the outer loop. Suppose N1 � N2.

We may not get a good load balance if we distribute the outer loop I. We may get

a �ne grain parallelization if we distribute the inner loop J. Fairly simple, we can

exchange the two loops as long as there is no correlation between the two loop index

variables I and J. The loop structure after applying loop interchange is shown in

Figure 4.5(b).

By applying loop interchange, we can move the largest loop to the outermost of a

multi-level loop structure and distribute the outermost loop. This will entirely satisfy

both the concerns of coarse granularity and load balancing.

Chapter 4. Parallelizing a Legacy Application 88

S1 : DO I = 1, N

S2 : A = F(B[I]) + G(X)

S3 : C[I] = H(A)

S4 : ENDDO

(a) Data dependence caused by intermediate scalar variable

S10 : DO I = 1, N

S20 : AA[I] = F(B[I]) + G(X)

S30 : C[I] = H(AA[I])

S40 : ENDDO

S50 : A = AA[N]

(b) Data dependency resolved by scalar expension

Figure 4.6: Scalar variable expansion

Scalar Expansion Scalar variables are commonly used to store intermediate re-

sults of a complex expression. The complex expression is divided into smaller sub-

expressions. The sub-expressions are then executed and the results are stored in some

intermediate variables. The �nal result of the complex expression is calculated from

these intermediate scalar variables.

Scalar variable A is used as an intermediate variable to store the result from

the right hand side of statement S2 in Figure 4.6(a). The statement S3 cannot

execute until S2 is executed. This causes a true dependence from S2 to S3. This true

dependence does not cause any problem since S2 and S3 are in the same loop and we

are interested in parallelizing the loop only, not statements inside the loop.

However, variable A will be assigned new value at next iteration. Statement S2

Chapter 4. Parallelizing a Legacy Application 89

cannot be executed if statement S3, in previous iteration, has not be executed yet.

This causes an anti-dependence from S3i�1 to S2i. Moreover, the �nal value of variable

A should be the value assigned in the last iteration of the loop. The last iteration

must, therefore, be executed last. This causes an output dependence from S2i to S2N

for all i = 1, N.

To resolve this problem, one can give each iteration of the loop a variable instead

of sharing one. As shown in Figure 4.6(b), an array of size N is introduced to give

every iteration its own intermediate variable. The data dependence relations are thus

eliminated in Figure 4.6(b).

Variable Copying Consider the example in Figure 4.7(a), array A in statement

S2 cannot be re-written until statement S3 in previous iteration is executed because

A[I+1] in S3i�1 is the same as theAi in statement S2i. This causes an anti-dependence

from S3i�1 to S2i.

To resolve this problem, one can use a working array A2 to store the values of

A[I+1]. As shown in Figure 4.7(b), statement S10 copies the contents of array A to

working variable A2. By paying the extra cost of array copying and associate storage,

we resolve the data dependence problem and parallelize the loop. Not surprisingly,

note that the extra cost of copying the array can be parallelized as well.

4.4 Integration

A parallelized legacy application consists at least a sequential and a parallel parts.

The parallel parts must run on a parallel machine and the sequential parts can run

on a workstation or a node of the parallel machine. In many cases, especially for

large shared servers, a user interface module is also needed. Figure 4.8 shows the

relationship between these modules. Once again, no matter how the machines are

used, these modules need to work cooperatively. Synchronization and data exchange

mechanism must be implemented.

Chapter 4. Parallelizing a Legacy Application 90

S1 : DO I = 1, N

S2 : A[I] = F(B[I])

S3 : C[I] = H(A[I], A[I + 1])

S4 : ENDDO

(a) Data dependence caused by anti dependence

S10 : DO I = 1, N

S20 : A2[I] = A[I + 1]

S30 : ENDDO

S40 : DO I = 1, N

S50 : A[I] = F(B[I])

S60 : C[I] = H(A[I], A2[I])

S70 : ENDDO

(b) Data dependency resolved by variable copying

Figure 4.7: Variable copying

The data exchanged between these modules are:

� Sequential part and parallel functions: the parameters of the parallel functions.

� User interface and sequential part: input data and output �les. Access control

if the parallelized legacy application is a shared server.

� Display and user interface: text stream if in text only environment. Graphic

data if GUI is used.

These functionally distributed modules can be considered coarse grain parallelism.

Chapter 4. Parallelizing a Legacy Application 91

Function 2
New Parallel

Sequential Part
Unchanged

Display

New Parallel
Function 1

New Parallel
Function n

User Interface and
Access Control

Figure 4.8: Integration

The traÆc between these modules are emphatically as low as regular local area net-

work activities. They can use any local area network protocols such as TCP/IP. If

both parties run on the same machine, inter-process communication such as UNIX

domain socket and shared memory can be used to improve the performance.

By contrast, while the unchanged sequential parts is running, the parallel machine

is idle if it is not used by other programs. In this case, we can simply replicate the

unchanged sequential parts on all nodes. The results of the sequential parts are

available in all nodes and do not need to be distributed. Still more clearly, this saves

the data distribution time. However, replication is not recommended in the following

cases:

� Heterogeneous node types. Di�erent platform may produce slightly di�erent

results for the same program. When the sequential parts are �nished, each

node starts the parallel parts computation based on slightly di�erent data. The

Chapter 4. Parallelizing a Legacy Application 92

di�erence may cause some problems for the parallel parts if the program does

not tolerate the di�erence.

� Heterogeneous node performance. When a parallel machine contains slow nodes,

faster nodes may need to wait for slow nodes to �nish running the sequential

parts. Running sequential parts on a fast node and then broadcasting the results

may be faster.

� The sequential parts contain non-sharable operations. The most commonly seen

non-sharable operations is I/O. Only one node can actually perform output,

other nodes need to discard the data. Input data must be retrieved by one

node and broadcast to all nodes.

Chapter 5. Parallelizing MOPAC 93

Chapter 5

Parallelizing MOPAC

Parallelizing a legacy application like MOPAC is no doubt a large job to confront.

These programs are large, complicated and diÆcult to trace. The goal is to improve

the performance in the most economical way. As the analysis procedures speci�ed

in the previous chapter showed, it is necessary to analyze the sequential version of

the code in order to �nd the most time-consuming parts. These time-consuming

parts are examined for possible of parallelization. These computationally intensive

sections usually reside in a small number of subroutines. Parallelizing only these

time-consuming parts and leaving the rest of program unchanged achieve the same

performance improvement as parallelizing the whole program while saving a lot of

e�ort. Four subroutines, DCART, DENSIT, DIAG and HQRII are identi�ed as the

time-consuming parts of MOPAC in the time pro�ling analysis.

The work load distribution for each part of program is not a �xed pattern. The

pattern depends heavily on the input data. It is very urgent to �nd out the com-

putational complexity of the whole program when we parallelize the computational

intensive parts. The computationally intensive parts that have the highest computa-

tional complexity of the whole program are nominally considered the dominant parts

of the program. The other parts that have lower computational complexity are non-

dominant. The percentage of CPU time required by the non-dominant parts reduces

and becomes negligible when N gets large even if they take large portion of CPU time

Chapter 5. Parallelizing MOPAC 94

for small data sizes. The dominant parts will bene�t from parallelization more than

the non-dominant parts.

The computational complexity of the four computationally intensive parts of

MOPAC is O(N3) except for subroutine DCART. Subroutine DCART it is not eligi-

ble for parallelization because its computational complexity is O(N2). The CPU time

it needs will not grow as fast as other computationally intensive parts and become

very shortly not computationally intensive when the data size grows larger.

The computationally intensive subroutines are parallelized by applying the pro-

cedure drawn attention to in Chapter 4. Subroutine HQRII is identi�ed as a fast

eigensolver. The sequential code is optimized for sequential execution and diÆcult

to parallelize. Parallel eigensolvers, however, are commonly used and have been well

studied. Many algorithms have been implemented, tested and available for public

use. Using a well known code not only save us e�orts but also reduce the risk of in-

troducing software bugs. Subroutine HQRII will be parallelized by using a pre-exist

parallel eigensolvers called PeIGS in the �nal retrospect.

Finally, the sequential module and parallel modules as well as the newly added

data visualization part patently need to be integrated. We use AVS to integrate these

coarse grain modules to allow these modules run in heterogeneous platforms.

5.1 Sequential Analysis

In this section, we will show how we perform the three sequential analyses on the

sequential MOPAC to identify the target subroutines for ultimate parallelization.

5.1.1 Program Flow Analysis

As described in previous chapter, we do not want to analyses the functions of MOPAC

subroutines like chemists' do. We just want to distinguish the frequently used data

processing subroutines from MOPAC so that we can focus the time pro�ling analysis

Chapter 5. Parallelizing MOPAC 95

on these subroutines.

The sequential MOPAC code was developed by hundreds of authors over more

than 30 years [37]. The version we are using was published in Dec. 1990. It consists

of thirty thousand lines of FORTRAN 4 and FORTRAN 77 code. MOPAC version

6 was originally developed on a DEC-3100 and ported to several di�erent platforms.

Since UNIX is the most popular OS for scienti�c workstations, we utilized the SUN4

port as our origin.

The idea behind creating MOPAC was to integrate several independent algorithms

into a single package. The program o�ers di�erent routes at some points. The

behavior and execution
ow are controlled by the keywords speci�ed in the �rst three

lines of the input data �le.

The MOPAC
ow diagram is shown in Figure 5.1. The text in the diagram shows

the subroutine names. MOPAC allows putting multiple molecule structures in one

data �le. A loop in the main program repeatedly call subroutine READMO to read

in one set of input data at a time. The loop ends when all input data is read and

processed. Since we are obstinately interested in determining which are data pro-

cessing subroutines, Figure 5.1 suppresses the loop. There are two main sequences in

MOPAC. They are the geometric sequence and the electronic sequence. The diagram

above the subroutine COMPFG shows the geometric sequence. The diagram beneath

the subroutine COMPFG shows the electronic sequence. Subroutine READMO reads

in one set of data and selects the execution
ow in MOPAC geometric and electronic

sequences. The molecular structure then feeds one geometric sequence into one of the

execution paths, passes through COMPFG, and then again as elsewhere goes through

one of the execution paths in the electronic sequence.

Above all, all of the data required for a subroutine is passed in either as arguments

or in common blocks. Variables used only inside a subroutine are local to the subrou-

tine and not passed outside of the subroutine. The data that a subroutine is going

to work on is passed via its argument list. Reference data is passed into a subroutine

through common blocks.

Chapter 5. Parallelizing MOPAC 96

FORCESEARCH
or

LOCMIN

REACT1 PATHS

FMAT

FLEPO

LIMIN

IRC/DRC
or

EF
or

POLAR

MECI RSP

DHC

DERIVHCORE

DCART

GMETRY
and

SYMTRY

and
ROTATE

H1ELEC
and

FOCK2

FOCK1 DENSIT
and

CNVG
and

PULAY

SS

DIAT

ITER

COMPFG

POWSQ
and

NLLSQ

READMO

Figure 5.1: MOPAC
ow diagrams

Chapter 5. Parallelizing MOPAC 97

The most notable subroutine in Figure 5.1 is subroutine COMPFG. There is no

major loop in COMPFG. It acts as a coordinator that calls other main routines to

perform computations and organizes the results to feed into another routine if needed.

The main data processing and computation start by COMPFG. The major CPU time

consumers must be among the subroutines called by COMPFG.

Besides the program
ow, the core of the calculation of MOPAC consists of the

repeated application of a diagonalization routine in subroutine ITER. In order to

speed up the calculation, one starts �rst with a matrix which is close to its diagonal

form and performs a fast diagonalization routine. The last step of the iteration uses

an exact diagonalization routine. Subroutine DIAG does the fast diagonalization and

subroutine HQRII the exact one. These two subroutines consume a lot of CPU time

which the time pro�ling analysis in next section will show.

5.1.2 Time Pro�ling Analysis

Time pro�ling must use some time measuring mechanism. The most common way is

inserting code to write time stamps in the beginning and end of the codes we want to

trace. These time measuring mechanisms may take some disarming CPU time and

introduce some errors in the pro�le. The CPU time used by time measuring must be

small enough to be ignored or it should be taken into account at the end of the time

pro�ling.

MOPAC was written in FORTRAN. FORTRAN does not interact with UNIX

operating systems very well. The resolution of timing subroutines is one second. This

is not enough accuracy to support fast scienti�c workstations. We have to use C to

do a better time pro�ling. C system calls provide up to micro-second time resolution.

The real resolution depends on operating system and hardware implementations.

Modern workstations have at least milli-seconds time resolution. Micro-seconds time

resolution are provided through real time clock system calls.

The MOPAC time pro�ling is implemented using dual process. As shown in

Figure 5.2, our time pro�ling program consist of two parts. The �rst part is linked

Chapter 5. Parallelizing MOPAC 98

Execution Flow Pattern Finding

Repeating Pattern Eliminating

Results Output

Data Collecting

Timming and Tracing

MOPAC

Process 2Process 1

UNIX Pipe

Figure 5.2: MOPAC time pro�ling tool

with MOPAC so that it can cogently report how muchCPU times has been consumed.

The second part runs as a separate process to collect the timing information sent out

by the �rst part. One gets time stamps and the other writes time stamps. The two

parts are connected by a UNIX pipe.

The CPU time used by the time pro�ling utility can be divided into two parts,

CPU time reading and time stamp recording. The CPU time reading system calls

read a system time variable which is updated by the operating system. A UNIX pipe

is implemented as a circular queue in main memory. Writing to the pipe is as fast

as memory accesses and the CPU time used by writing data to the pipe is about the

same for every write operation. Unlike writing to disk, the operating system stops

CPU time accumulation and switches to the other process when the pipe is full. The

time used by the time pro�ling utility is small and fully uniform for all data stamps.

It can be measured easily or ignored. The time pro�ling interference to MOPAC

is minimized. The data collection process can subtract the time used by the time

reading and time stamp writing system calls to get precise time pro�ling results.

As mentioned previously, the results of time pro�ling is highly dependent on the

test data. Di�erent types of test data at once show di�erent work load distributions.

Three test data �les are chosen for the time pro�ling. The tests are run on two

Sun Sparc and two IBM RS6000 workstations. We run these test �les on the test

machines with and without our time pro�ling routines. The total time required by

time pro�ling utility is less than 1.5% of the total CPU time.

Di�erent machines have di�erent performance characteristics. The CPU time may

Chapter 5. Parallelizing MOPAC 99

Subroutine apsbtest porphin tetrabenz

Weight 0.667 0.101 0.232 1.000

CPU time CPU time CPU time Weighted

percentage percentage percentage percentage

DCART 6.51 % 11.56 % 8.22 % 7.42 %

DENSIT 16.18 % 14.14 % 15.83 % 15.89 %

DIAG 63.17 % 63.98 % 68.69 % 64.53 %

HQRII 8.22 % 1.72 % 1.52 % 6.01 %

Sum 94.08 % 91.40 % 94.26 % 93.85 %

Table 5.1: MOPAC execution time pro�ling

vary from one machine to another. We need to use the CPU time percentages instead

of raw CPU time to calculate the average for results coming from di�erent machines.

It is not a correct approach to treat the results equally. The data for larger

calculations should be given a larger weight. The weights are therefore given based

on the total CPU time. Detailed procedures and processes can be found in [63].

Table 5.1 shows the �nal results of MOPAC time pro�ling.

Four subroutines, DCART, DENSIT, DIAG, and HQRII, are found to take the

most CPU time. These four subroutines are all called by core subroutine COMPFG

directly or indirectly. Subroutine DCART calculates the derivatives of the energy

with respect to the Cartesian coordinates of the atoms in the molecule. Subroutine

DENSIT is a utility that constructs the Coulson electron density matrix from the

eigenvectors. Subroutine DIAG and HQRII are diagonalization routines.

The four subroutines take 93.85% of total CPU time. By the same token, from

Amdahl's law, we can expect a maximum of 1
1�93:85% = 16:3 times speed-up for the

data �les of the same size as our test data.

The above timing pro�ling analysis gives us some idea about the work load dis-

tribution of an application running certain input data. We can also estimate the

Chapter 5. Parallelizing MOPAC 100

maximum possible speed-up the application can gain from parallelization. The 16.3

times speed-up we get from time pro�ling MOPAC is not very attractive. Fortunately,

from Section 4.1.3, we expressly know that data size a�ects the maximum possible

speed-up. Usually the time-consuming parts have higher computational complexity

than other parts. The larger data sizes used in productions raise the maximum pos-

sible speed-up of a parallel program. We need to combine the results of time pro�ling

analysis with computational complexities of those subroutines to do profoundly better

estimations.

5.1.3 Complexity Analysis

For complexity analysis of the MOPAC time-consuming subroutines, the abbrevia-

tions shown in the following are used:

� nl: number of light atoms, e.g. H.

� nh: number of heavy atoms, e.g. C.

� N : number of atoms. N = nl + nh.

� no: number of occupied orbitals. Typically, no � 0:5n.

� nv: number of virtual orbitals.

� n: number of orbitals. n = no + nv. Typically, n � 4nh + nl.

Complexity Analysis for DCART

Subroutine DCART calculates the derivatives of the energy with respect to the Carte-

sian coordinates of the atoms in the molecule. It uses a �nite di�erence method. When

DCART is called by subroutine DERIV, it sets up a list of Cartesian derivatives of the

energy with respect to coordinates. Subroutine DERIV can then use it to construct

the internal coordinate derivatives.

Chapter 5. Parallelizing MOPAC 101

// nHNCO : number of H-N-C=O

// all possible 3-D moves : single step move for (x,y,z) = (�1:1, �1:1, �1:1)

S1 : for i = 1, N do

S2 : for j = 1, i do

S3 : for k 2 all possible 3-D moves do

S4 : make one step move on the second atom

S5 : calculate the energy contribution from the move

S6 : endfor

S7 : endfor

S8 : endfor

S9 : // add in molecular-mechanics correlation to H-N-C=O torsion if any

S10 : if (nNHCO > 0) then

S11 : for i = 1, nHNCO do

S12 : calculate H-N-C=O torsion

S13 : endfor

S14 : endif

Figure 5.3: simpli�ed DCART algorithm for complexity analysis

As shown in Figure 5.3, subroutine DCART can be divided into two parts. The

main computation is in the �rst part while the second part handles a special H-N-C=O

structure.

The loop at step S3 is used for a 3 dimensional atom movement calculations. The

atom moves one step in either direction of all three dimensions, that is, x = �1, 0,

+1, y = �1, 0, +1, z = �1, 0, +1. This yields a constant number of (3�3�3 = 27)

iterations. The upper bound variable of the loop at step S2 is the index variable of

the outermost loop at step S1. This gives the total of N�(N+1)
2

iterations for the loops

S1 and S2. Likewise, the computational complexity of the three loops is therefore

Chapter 5. Parallelizing MOPAC 102

O(N � (N + 1)=2 � 27) = O(N2).

The second part of DCART is a single level loop and iterates nHNCO times.

However, it is used only when the input atom structure contains H-N-C=O structure.

We do not count this designated part in the computational complexity analysis since

it is not a general case.

Note that the step S5 is not a simple step. Step S5 calls subroutine DHC. The

computational complexity should be O(n2� complexity of DHC). Appendix C shows

at some length that the computational complexity of subroutine DHC is O(1). There-

fore, the total computational complexity of subroutine DHC is O(n2).

Complexity Analysis for DENSIT

Subroutine DENSIT is a utility that constructs the Coulson electron density matrix

from the eigenvectors. It takes the eigenvectors, number of singly and number of

doubly occupied levels as inputs and produces the density matrix as output.

The program structure of this subroutine is very simple. There are no subroutine

calls to any other subroutine. The algorithm of DENSIT is shown in Figure 5.4.

Step S1 sets some boundary variables from the number of singly and doubly occupied

levels. The values of the boundaries are determined by the mode input argument

which speci�es whether the electron or positron equivalent is used. An \if" structure

handles the checking and the range assignments. It is embedded in step S1 and not

shown in Figure 5.4 because it has no impact to the complexity analysis.

The second level loop at step S3 depends on the index variable of the outermost

loop at step S2. The two outer level loops will iterate n � (n+ 1)=2 times. The two

innermost loops at step S5 and S8 are single level loops. S5 iterates \the number

of singly occupied orbitals" times and S8 iterates \the number of doubly occupied

orbitals" times. The total number of singly and doubly occupied orbitals is less than

n. Therefore the total number of construed iterations that loop S5 and S8 has is less

than n times. The three-level loop structure yields a computational complexity of

O(n�(n+1)
2

� n) = O(n3) for subroutine DENSIT.

Chapter 5. Parallelizing MOPAC 103

// evec : eigenvectors matrix

// den : density matrix

S1 : nl1 = beginning of one electron sum; nu1 = end of one electron sum;

nl2 = beginning of two electron sum; nu2 = end of two electron sum;

S2 : for i = 1, n do

S3 : for j = 1, i do

S4 : sum1 = sum2 = 0;

S5 : for k = nl1, nu1 do

S6 : sum1 = sum1 + evec[i,k] � evec[j,k];

S7 : endfor

S8 : for k = nl2, nu2 do

S9 : sum2 = sum2 + evec[i,k] � evec[j,k];

S10 : endfor

S11 : den[i,j] = sum1 � fract + sum2 � 2;

S12 : endfor

S13 : endfor

Figure 5.4: simpli�ed DENSIT algorithm for complexity analysis

Complexity Analysis for DIAG

As described in prescribed program
ow analysis, the core of the calculation is the

repeated application of a diagonalization routine. Subroutine DIAG is a fast diagonal-

ization routine that is used as a good starting approximation. Typically a few steps

of the conventional SCF iteration are then required to bring the suggested secular

determinant (Fock matrix) into approximately diagonal form in the orbital basis.

Subroutine DIAG is a pseudo diagonalization routine in that the vectors that

are generated by it are more nearly able to block-diagonalize the Fock matrix over

Chapter 5. Parallelizing MOPAC 104

molecular orbitals than the starting vectors. It must be considered pseudo for several

reinforcing reasons:

� It does not generate a complete set of eigenvectors. The secular determinant

is not diagonalized, only the occupied-virtual intersection is. That means only

the eigenvectors for the occupied orbitals are generated.

� Many small elements in the secular determinant are ignored as being too small

compared with the largest element.

� When elements are eliminated by rotation, the rest of the secular determinant

is assumed not to change, i.e. elements created are ignored.

� The rotation required to eliminate those elements considered signi�cant is ap-

proximated to using the eigenvalues of the exact diagonalization throughout the

rest of the iterative procedure.

The procedure has the following arguments:

� A: contains the lower half triangle of the matrix to be diagonalized in a packed

format.

� evec: contains the old eigenvectors on input, the new vectors on output.

� no: number of occupied molecular orbitals.

� eval: eigenvalues from an exact diagonalization.

� n: number of atomic orbitals in the basis set.

The algorithm of subroutine DIAG can be divided into two parts. To this end,

the �rst part of the diagonalization routine constructs the secular determinant over

molecular orbitals which connects occupied and virtual sets. The sequential algo-

rithm uses a triangular matrix as input argument in order to save memory. For the

parallelization of this sequential algorithm, it is better to keep the whole matrix even

Chapter 5. Parallelizing MOPAC 105

though more memory is used. Substituting the triangular matrix by its complete

counterpart would enable one to rewrite the sequential algorithm in the way shown

in Figure 5.5.

In Figure 5.5, the array w is a temporary variable, matrix fmo holds the Fock

molecular orbital interaction matrix, and evec(*,i) is the i0th column vector of the

matrix evec of length n. Temporary variable tiny holds the value of the largest

element of fmo. It will be used as a threshold to determine if a 2 by 2 rotation is

needed in the second part of subroutine DIAG. The computational complexity of

calculating the occupied virtual block of the secular determinant as shown above is

O(nv � (n2 + no � n)) � O(n3)

The second part of DIAG performs a crude 2 by 2 rotation to the eigenvectors to

eliminate the signi�cant elements. The simpli�ed algorithm of DIAG part 2 is shown

in Figure 5.6. The step S7-9 that perform the 2 by 2 rotation are a set of simple

statements and contain no loop. In the worst case where step S4 is satis�ed all the

time, the computational complexity of the algorithm is O(nv � no � n) � O(n3).

Complexity Analysis for HQRII

As a matter of course, subroutine HQRII is a fast standard diagonalization routine

designed to solve the standard eigenvalue problems [12]. The name HQRII is short

for \Householder-QR-Inverse Iteration method", which are the methods it uses. The

HQRII subroutine is divided into three major steps re
ecting the names of the rou-

tines.

� (Householder) the dense matrix A is converted into the tridiagonal matrix T by

the Householder algorithm.

� (QR) all eigenvalues of the tridiagonal matrix T are determined by the QR

algorithm.

� (Inverse Iteration) Some of the eigenvectors of the tridiagonal matrix T are

found by the inverse iteration algorithm where Gaussian elimination with partial

Chapter 5. Parallelizing MOPAC 106

// A : matrix to be diagonalized

// evec : eigenvector matrix

// fmo : Fock molecular orbital interaction matrix

// w : working space

S1 : tiny = 0;

S2 : for i = 1, nv do

S3 : for j = 1, n do

S4 : ws[j] = 0;

S5 : for k = 1, n do

S6 : ws[j] = ws[j] + A[j,k] � evec[k,i];

S7 : endfor

S8 : endfor

S9 : for j = 1, no do

S10 : fmo[i,j] = 0;

S11 : for k = 1, n do

S12 : fmo[i,j] = fmo[i,j] + ws[k] � evec[k,j];

S13 : endfor

S14 : if (tiny < abs(fmo[i,j]) then

S15 : tiny = abs(fmo[i,j]);

S16 : endif

S17 : endfor

S18 : endfor

S19 : tiny = 0.05 � tiny;

Figure 5.5: simpli�ed DIAG part 1 algorithm for complexity analysis

Chapter 5. Parallelizing MOPAC 107

// fmo : Fock molecular orbital interaction matrix from part 1

// evec : eigenvector matrix

// eval : eigenvalues array

S1 : for i = 1, nv do

S2 : for j = 1, no do

S3 : calculate threshold from fmo and eval;

S4 : if (fmo[i,j] � threshold) then

S5 : calculate alpha and beta from eval[i], eval[j] and fmo[i,j];

S6 : for m = 1, n do

S7 : a = evec[m,j]; b = evec[m,i];

S8 : evec[m,j] = alpha � a + beta � b;

S9 : evec[m,i] = alpha � b � beta � a;

S10 : endfor

S11 : endif

S12 : endfor

S13 : endfor

Figure 5.6: simpli�ed DIAG part 2 algorithm for complexity analysis

pivoting is used. The eigenvectors of matrix A are obtained as the product of

the Householder transformation matrix H and the eigenvectors.

In the main, these algorithms are numerically stable even when some eigenvalues

might be degenerate, which is common in chemistry applications.

Now this modi�ed matrix can be used to �nd eigenvalues eÆciently with the QR

method. Only the eigenvectors for the occupied orbitals in this respect are calculated.

These algorithms have been well studied and their computational complexities are

known:

Chapter 5. Parallelizing MOPAC 108

� Householder transformation: O(n3)

� QR-Inverse Iteration: O(n2)

� Calculating no eigenvectors: O(no � n)

� Transforming no eigenvectors: O(no � n
2)

The above break-down elaborates that the Householder transformation to a triago-

nal matrix is the most expensive part of subroutine HQRII. It leads to a computational

complexity of O(n3) in subroutine HQRII.

Performance Estimation

The above computational complexity analysis shows that all the independent time-

consuming subroutines are O(n3) except for DCART. Although DCART takes large

portion of CPU time in time pro�ling analysis, we know the percentage of CPU time

requirement by DCART will decline when large data �les are used in production.

Subroutine DCART is not as critical as the other three time-consuming subroutines.

We should parallelize DENSIT, DIAG and HQRII �rst. According to Table 5.1,

the total weighted percentage of the three computationally intensive subroutines is

15:89% + 64:53% + 6:01% = 86:43%. The maximum possible speed-up for the input

data size used in our time pro�ling analysis is 7.37.

Appendix D shows the data sizes used in time pro�ling analysis are roughly 50

molecules. As illustrated in Section 4.1.3, the work load distribution and the max-

imum possible speed-up changes dramatically when the size of input data changes.

By the above result from time pro�ling analysis and the complexity analysis, we can

predict the work load of each part and the maximumpossible speed-up for large input

data. For example, the weighted work load percentage of the three subroutines will be

98.45% and the maximum possible speed-up is 64.52 if the computational complexity

of the non-parallelized part is O(n2) and the data �les are 10 times larger.

Chapter 5. Parallelizing MOPAC 109

5.2 Work Load Distribution

Work load distribution is important to parallel programs not only because imbalance

work load lengthens total execution time seriously but also because bad work load

distribution can result high communication time. As described in previous chap-

ters, communication costs is an important factor of parallelization. Since we use

a distributed memory programming model, frequently transmitting small packets

degrades the performance of communication signi�cantly. This seriously a�ects dis-

tributed memory machines since distributed memory machines have higher network

set-up time. Packing small pieces of data into a larger chunk reduces the frequency

of data communication. The bigger the packet size is, the better the performance we

can achieve. Thus, it is useful to aggregate data before injecting it into the network.

Sometimes we may need to rearrange the program structure, exchange the inner and

outer loops so that the data can be packed and the frequency of communication can

be reduced.

Distributing a problem of size N to a p-nodes of a parallel machine always causes

some load imbalance unless p evenly divides N . Some nodes receive bN
p
c work load

while the others receive bN
p
c+1. Load balance is unlikely a serious problem if the size

of the problem to be distributed is far bigger than the number of nodes. Therefore

we need to maximize the number of distributable computational units. If we have a

two-level loop L1 and L2. L2 is inside of L1. L1 and L2 share the same loop body

and there is no data dependency preventing us from parallelizing both loops. We can

merge the two-level loop into a new loop L3. The size of new loop L3 is usually the

product of size L1 and L2 if the range of L2 is not a function of the index of L1.

The size of L3 is larger than L1 and L2 and L3 can be distributed more evenly than

L1 or L2. Multiple levels of loops will be merged for a better balanced work load

distribution.

Load distribution is extra computation cost of parallel programs. There are many

complex algorithms that can produce optimized work load distribution schemes for

very complex problems. However, other research on communication also points out

Chapter 5. Parallelizing MOPAC 110

that a perfectly balanced load may result in high communication contention due to all

nodes �nishing computation and starting communication at the same time. Similarity,

a non-optimized work load distribution scheme may not fully minimize the computa-

tion time, but takes less total time by avoiding the communication contention.

Figure 5.7 shows the most straightforward block distribution scheme. Subroutine

DISTRIB �nds the lower and higher bounds of a range [LB, UB] for processor MYID

in a NPROC-processor system. A commonly made mistake is shown in Figure 5.7(a).

Every node receives the same amount of work load except for the last one. The

last node receives as much as NPROC�1 more work load than other nodes if the

size of work load UB�LB+1 does not divide NPROC. The last node will need as

many as UB�LB+1 units of extra time to �nish its work. Figure 5.7(b) is similar to

Figure 5.7(a) but the last node receives less work load than other nodes. In a word,

the small di�erence makes Figure 5.7(b) distributes work load much better than

Figure 5.7(a). All nodes except for the last one receive no more than 1 extra unit of

work load. Moreover, in programs that need a host node to do some extra work, this

last node may be used as the host node because it can �nish its computation earlier

than other nodes. The work on the extra host node may be for result collecting.

Figure 5.7(c) distributes work load evenly. In short, there is no extra heavy or light

work load distributed by the program in Figure 5.7(c). The maximum di�erence is 1

unit. That is, some nodes �nish 1 unit of time earlier than other nodes. Figure 5.7(c)

is used when no host node is needed.

Communication is generally an expensive process for a parallel program. A proces-

sor may take advantage of a multi-level cache memory to operate at a very high-speed

while communication can only move data at lower memory bus and network interface

speed. The internal processor clock rates are 5 to 10 times faster than memory bus

clock rates. At length, the memory buses are usually several times faster and wider

than network interfaces. Moreover, communication driver software may further drag

down the performance of communication and enlarge the performance gap between

computation and communication. It is true, this large performance gap between com-

putation and communication gives us an extra consideration when we determine the

Chapter 5. Parallelizing MOPAC 111

C Processor ID starts from 0 to NPROC�1.

C In (b), (X+Y�1)/Y returns the celling of X/Y

S1 : SUBROUTINE DISTRIB(MYLB,MYUB,LB,UB)

S2 : INTEGER MYLB,MYUB,LB,UB,NPROC,MYPID,LEN,SHARE

S3 : SHARE = (UB�LB+1)/NPROC

S4 : MYLB = SHARE*MYID+LB

S5 : MYUB = MYLB+SHARE�1

S6 : IF (MYID .EQ. NPROC�1) THEN MYUB = UB

S7 : END

(a) Bad distribution

S03 : SHARE = (UB�LB+1+NPROC�1)/NPROC

S04 : MYLB = SHARE*MYID+LB

S05 : MYUB = MYLB+SHARE�1

S05 : IF (MYID .EQ. NPROC�1) THEN MYUB = UB

(b) Good distribution when using last node as host node

S003 : LEN = UB�LB+1

S004 : MYLB = LEN*MYID/NPROC+LB

S005 : MYUB = LEN*(MYID+1)/NPROC�1+LB

(c) Good distribution

Figure 5.7: Simple block distributions

Chapter 5. Parallelizing MOPAC 112

// There are p = 2m processors, where m in a positive integer

// Processor ID=[0..p�1]

S1 : Find Amax, the local maximum of the portion of array A owned locally;

S2 : for i = m�1, 0, �1

S3 : if (myid � 2i) then

S4 : send data Amax to node myid �2i;

S5 : else

S6 : receive data Atemp from node myid + 2i;

S7 : Amax = max(Amax, Atemp);

S8 : endif

S9 : endfor

Figure 5.8: Parallel algorithm that �nds a global maximum

complexity of an algorithm.

In some parallel algorithms, the total data to be sent may grow when more pro-

cessors are used. For example, the algorithm in Figure 5.8 �nds the global maximum

of array A in a p-processor system. The total data to be sent rises as p rises. The

total number of communications is:

2m�1 + 2m�2 + � � �+ 1 = 2m

2�1 = 2m � 1 = p� 1

The amount of data to be sent rises solely because more processors are used. The

communication cost can rise even when the total data that is sent does not change.

For example, distributing an array A to p processors requires p� 1 sends. Each send

requires one network setup time. Lastly, this can be signi�cant if the network setup

time is long or p is very large.

The communication costs need to be precisely veri�ed to ensure they do not

degrade the performance gained from work load distribution. The communication

costs include the communication and synchronization during the computing, initial

Chapter 5. Parallelizing MOPAC 113

data distribution, �nal results collection, and global variable synchronization. Global

variables are also parts of input or output arguments. They are easily forgotten since

they often do not appear in argument lists. FORTRAN supports equivalent variables,

which gives the same variables di�erent names. It may be diÆcult to identify the

global variables if they are equivalent to other variables.

In summary, the procedure described in Chapter 4 identi�es the code to be par-

allelized. However, the method of parallelizing a piece of code also relies on some

other factors, especially communication. For programs with stern loops but no data

dependencies, we need only to add data distribution and results collection code, and

modify the upper and lower boundaries of index variables. For programs with data

dependencies, we need to resolve the dependencies between variables by applying the

procedures described in the previous chapter and re-write the loop. For programs

that cannot be parallelized by modifying parts of them, we may need to �nd new

algorithms to replace the part of program totally.

5.3 Parallelizing Subroutine DENSIT

Subroutine DENSIT computes the density matrix, given the eigenvector matrix, and

information about the M.O. occupancy. It takes about 16% of the total CPU time

in the time pro�ling analysis. As analyzed in Section 5.1.3, the computational com-

plexity of subroutine DENSIT is O(N3), which makes it eligible for parallelizing in

the �rst round.

Subroutine DENSIT does not call any other subroutine. The main loop structure

of subroutine DENSIT is shown in Figure 5.4. Four for-loops at S2, S3, S5, and S8

form a three level loop. This loop is the computational kernel of subroutine DENSIT.

The two innermost loops at S5 and S7 accumulate the values of sum1 and sum2. The

results of loop S5 and S7 are used to calculate the density matrix at S11. The true

dependency between loop S5, S7 and statement S11 bonds statements S4 through

S11 into a non-parallelizable computation unit. Each combination of indices (I; J) is

an occurrence of S4-11. Each occurrence of S4-11 produces an element of the density

Chapter 5. Parallelizing MOPAC 114

matrix. There is no data dependence between any two occurrences of S4-11.

The skeleton of the loop structure of Figure 5.4 is shown in Figure 5.9(a). The

outer two loops S02 and S03 have common loop body. Moreover, the upper bound of

loop S03 is the index of loop S02. The two loops S02 and S03 produce
N�(N+1)

2
di�erent

combinations of the index pair (I; J). We can distribute the work load over either

loop S02 or S03. Either way works, but the fact remains that it has two drawbacks:

� The work load is not even for each index i or j. There are N occurrences of

S04-6 for i = 1 while only 1 occurrence for i = N. It is, therefore, diÆcult to

distribute work load evenly.

� The distribution space is small. The size of distribution space is N if we dis-

tribute the work load over loop S02. The work load will not be distributed

evenly if n is small or the number of processors, p, is large.

We can principally resolve the above two problems by merging the two loops S02

and S03 into one single loop with N�(N+1)
2 iterations. Each occurrence of the new loop

contains one occurrence of the loop body S04-6. The size of the distribution space

is therefore enlarged. The larger N�(N+1)
2 distribution space size can be distributed

more evenly than N.

The parallelized subroutine DENSIT is shown in Figure 5.9(b). A new loop index

L is introduced to be the loop index of the merged loop. Since we still need old loop

indices I and J to access the eigenvector matrix C, we need a translation from index

L to indices I and J to keep I and J synchronized with L.

Analyzing the relation between I, J, and L: I ranges from 1 to N, J ranges from 1

to I, and L is number of all possible combination of I and J.

(I=1, J=1)�(L=1)

(I=2, J=1)�(L=2), (I=2, J=2)�(L=3)

(I=3, J=1)�(L=4), (I=3, J=2)�(L=5), (I=3, J=3)�(L=6)
...

(I=N, J=1)�(L= (N�1)�N
2), (I=N, J=2)�(L= (N�1)�N

2 +1), . . . , (I=N, J=N)�(L=N�(N+1)
2)

Chapter 5. Parallelizing MOPAC 115

C FRAC, SIGN, CONST are scalar constant to the loop

C P is the packed density matrix

S01 : L = 0

S02 : DO I = 1, NORBS

S03 : DO J = 1, I

S04 : L = L + 1

S05 : Figure 5.4 step S4�S10, O(N)

S06 : P(L) = (SUM1*FRAC+SUM2*2)*SIGN

S07 : ENDDO J

S08 : ENDDO I

(a) Sequential

P1 : CALL DISTRIB(MYLB,MYUB,1,NORBS*(NORBS�1)/2)

P2 : DO L = MYLB,MYUB

P3 : Calculate I and J values from L using equations 5.3.3 and 5.3.4

P4 : Figure 5.4 step S4�S10, O(N)

P5 : P(L) = (SUM1*FRAC+SUM2*2)*SIGN

P6 : ENDDO L

(b) Parallelized

Figure 5.9: Parallelizing DENSIT loop structure

Chapter 5. Parallelizing MOPAC 116

Since the computational space is triangular, the formula of L should be:

L =
(I � 1) � I

2
+ J (5.3.1)

The range of the inner loop is from 1 to I. The index of the inner loop should be less

than or equal to I.

0 < J � I (5.3.2)

From equation 5.3.1, left half of equation 5.3.2, and the fact of I > 0, we have:

(I � 1) � I < 2� L

(I �
1

2
)2 < 2� L +

1

4

I <

s
2� L+

1

4
+
1

2

Since I is a positive integer that satis�es the above equation, the �nal formula for

�nding I from L is:

I = INT

0
@
s
2� L+

1

4
+
1

2

1
A (5.3.3)

and the formula for �nding J from L and I is:

J = L�
(I � 1) � I

2
(5.3.4)

By the above formulas 5.3.3 and 5.3.4. We can distribute the work load over main

loop by dividing the range L= 1 to NORBS�(NORBS�1)
2 to all computational nodes and

calculate the starting indices of I and J from distributed loop index L.

There is no communication in the middle of computation. There are no global

variables either. In actuality, the only communication is the initial data distribution

and �nal data collection. The input eigenvector matrix is used by all processors. It

must be broadcast to all processors. The cost of broadcasting an N � N matrix is

O(N2). The result density matrix P is a packed triangular matrix. The total data

item is N�(N+1)
2

. Since the result is collected by one node, the communication must

be serialized. The total communication cost is, thus, O(N2).

Chapter 5. Parallelizing MOPAC 117

5.4 Parallelizing Subroutine DIAG

Subroutine DIAG is a pseudo-diagonalization procedure. It generates only the oc-

cupied orbitals and ignores small elements so that it runs much faster than a full

diagonalization. It is used as a good starting approximation. Diagonalization is the

most time-consuming part of the whole MOPAC program. It takes about 65% of

total CPU time in our time pro�ling analysis.

As analyzed in Section 5.1.3, subroutine DIAG can be further divided into two

parts. The �rst part generates the Fock molecular orbital interaction matrix FMO

and a threshold TINY from the matrix to be diagonalized A and its eigenvector ma-

trix EV EC. The second part then performs a 2 by 2 rotation on the eigenvectors to

eliminate the signi�cant elements. The use of the Fock molecular orbital interaction

matrix FMO and the threshold TINY generated in part 1 introduces a true depen-

dency between the two parts. This true dependency forces part 2 of subroutine DIAG

execute after part 1. Preferably, we need to parallelize these two parts separately. We

will refer DIAG1 as the �rst part of subroutine DIAG and DIAG2 the second part of

subroutine DIAG.

The computational complexity of both parts is O(N3), which makes both parts

eligible for parallelization. We will parallelize DIAG1 and DIAG2 in the following

sub-sections.

5.4.1 Parallelizing Subroutine DIAG1

As shown in Figure 5.5, the loop structure of DIAG1 contains 5 loops. The loop S2,

S3 and S5 forms an O(N3) loop and loop S2, S9 and S11 forms the other O(N3)

loop. Loop S3 produces a working matrix ws which is used in loop S9. This true

dependency forces loop S3 to execute before loop S9.

We cannot simply divide loop S2, S3, S5 and S2, S9, S11 into two three-level

loops because the value of the working matrix ws will be re-assigned. Although

this output dependency can be resolved by introducing new variables as described in

Chapter 5. Parallelizing MOPAC 118

Section 2.1, we do not want to do that because instead of introducing one variable,

it adds another dimension to a matrix. The size of the new matrix will grow in the

rate of N�(N+1)
2

� Nv � O(N3). Consider N = 1000, the new matrix will be 1000

times larger than the old one and take a large amount of memory. It is, therefore,

not practical. This leaves us no option but to parallelize loop S2.

The skeleton of loop structure of Figure 5.5 is shown in 5.10(a). The paralleliza-

tion is straightforward. The parallelized DIAG1 is shown in Figure 5.10(b).

There is no communication in the middle of the computation. There are no global

variables either. The initial data distribution is straightforward. The matrix to be

diagonalized (size N�(N+1)
2

), the eigenvalues (size N), and the initial eigenvectors (size

N
2) are needed by all nodes. The cost of broadcasting N�(N+1)

2 +N
2+N data items

is O(N2).

The results produced by the program is the Fock molecular orbital interaction

matrix FMO and a threshold TINY . Since the Fock molecular orbital interaction

matrix, FMO, is generated in parallel, each node holds a slice of the FMO. Since the

whole FMO will be needed by all nodes in DIAG2, we need to collect the distributed

FMO from all nodes and send it in whole to all nodes. The best way to do the job

is letting every node broadcast their own slice of FMO to all other nodes. The cost

of broadcasting FMO equals to the size of FMO, which is O(N2).

The threshold TINY is the maximum of the elements of FMO. Since each node

produces a slice of FMO, every node gets only the local maximum of the elements

of FMO they hold. The global maximum reduction function in MPI communication

library can be used to �nd the global maximum from the local maximum. The cost

of the global maximum reduction on a scalar variable is a constant.

The total communication cost of subroutine DIAG1 is, therefore, O(N2).

Chapter 5. Parallelizing MOPAC 119

C NOCC (No) is the number of occupied orbitals

C N�NOCC (Nv) is the number of virtual orbitals

S01 : TINY = 0

S02 : DO I = NOCC+1, N

S03 : Figure 5.5 steps S3�S8 that produce WS(1:N), O(N2)

S04 : Figure 5.5 steps S9�S17 that produce FMO(I,1:I) and

calculate local maximum of variable TINY, O(N �No)

S05 : ENDDO I

(a) Sequential

P1 : CALL DISTRIB(MYLB,MYUB,NOCC+1,N�NOCC)

P2 : TINY = 0

P3 : DO L = LB,MYUB

P4 : Figure 5.5 steps S3�S8 that produce WS(1:N), O(N2)

P5 : Figure 5.5 steps S9�S17 that produce FMO(I,1:I) and

calculate local maximum of variable TINY, O(N �No)

P6 : ENDDO L

P7 : Find global maximum of variable TINY

(b) Parallelized

Figure 5.10: Parallelizing DIAG part 1 loop structure

Chapter 5. Parallelizing MOPAC 120

5.4.2 Parallelizing Subroutine DIAG2

The second part of subroutine DIAG checks on the Fock molecular orbital interaction

matrix FMO and performs a 2 by 2 rotation on the eigenvectors to eliminate the

signi�cant elements. The algorithm here is simply walking through the entire FMO

matrix and performing a 2 by 2 rotation if the value of the FMO element exceeds a

certain threshold.

The simpli�ed algorithm is shown in Figure 5.6. The only matrix changed in

this part of program is the eigenvector V ECTOR. As far as possible, it would be

easy to parallelize the outer loops if the 2 by 2 rotation did not produce any data

dependency on V ECTOR. Unfortunately, statement S8 in Figure 5.6 uses index j

to access the eigenvector matrix in the left hand side and uses both indices i and j

to access the same matrix in the right hand side. This causes a true dependency on

matrix V ECTOR between di�erent occurrences of j and prevents us from breaking

loop S2. Statement S9 in Figure 5.6 has the same data access pattern except for

using index i in the left hand side. Again, this causes a true dependency on matrix

V ECTOR between di�erent occurrences of i and prevents us from breaking up loop

S1 in any given instance.

The only loop we can try to break up is the innermost loop S6. Fortunately, loop

S6 just applies the 2 by 2 rotation to all elements of the vector we want to rotate. It

does not matter which element to rotate in a vector. There is no data dependence

between di�erent occurrences of the index m.

The skeleton loop structure of Figure 5.6 is shown in Figure 5.11(a). The loop

breaking is simply distributing the range of loop S04. The parallelization of the second

part of subroutine DIAG is shown in Figure 5.11(b).

There is no communication in the middle of computation. The communication for

data distribution has been covered in the end of DIAG1. The �nal result is the newly

updated eigenvector matrix V ECTOR. Since every node holds a strip of matrix

V ECTOR, collecting the distributed matrix V ECTOR is the main work in results

collection. The size of matrix V ECTOR is N �N . The total communication cost of

Chapter 5. Parallelizing MOPAC 121

C VECTOR, evec in Figure 5.6, is the matrix that holds eigenvectors

C EIG, eval in Figure 5.6, is the array that holds eigenvalues

S01 : Figure 5.6 steps S1�S3 loop I, J headers and threshold calculation

S02 : IF (FMO(I,J) � threshold) THEN

S03 : Calc ALPHA and BETA from EIG(I), EIG(J), and FMO(I,J)

S04 : DO M = 1,N

S05 : Figure 5.6 steps S7�S9 that does a 2 by 2 rotation on

VECTOR(M,I) and VECTOR(M,J)

S06 : ENDDO M

S07 : ENDIF

S08 : Figure 5.6 steps S12�S13 loop I, J tails

(a) Sequential

P1 : CALL DISTRIB(MYLB,MYUB,1,N)

P2 : Figure 5.6 steps S1�S3 loop I, J headers and threshold calculation

P3 : IF (FMO(I,J) � threshold) THEN

P4 : Calc ALPHA and BETA from EIG(I), EIG(J), and FMO(I,J)

P5 : DO L = MYLB,MYUB

P6 : Figure 5.6 steps S7�S9 that does a 2 by 2 rotation on

VECTOR(L,I) and VECTOR(L,J)

P7 : ENDDO L

P8 : ENDIF

P9 : Figure 5.6 steps S12�S13 loop I, J tails

(b) Parallelized

Figure 5.11: Parallelizing DIAG part 2 loop structure

Chapter 5. Parallelizing MOPAC 122

the DIAG2 is O(N2).

There is another operative way to parallelize the second part of subroutine DIAG.

The major problem that forces us to break the innermost loop S6 of Figure 5.6 is

the 2 by 2 rotation. Everything else does not cause any exclusive data dependency

on breaking the two outer loops S1 and S2. By introducing a matrix rotate to keep

the result of threshold checking and expand the scalar variable alpha and beta to

arrays, we can divide the algorithm in Figure 5.6 into two disjoint loop sets as shown

in Figure 5.12.

Loops Ŝ1 and Ŝ2 in Figure 5.12 can easily be parallelized since there is no data

dependency on any variable used inside of the loops. Although loop Ŝ12 and Ŝ13 still

su�er from the data dependency of V ECTOR and only loop Ŝ15 can be parallelized,

the parallelization of loops Ŝ1 and Ŝ2 gives us advantage for the parallel computation.

However, the alternative needs to redistribute the matrix alpha, beta, and rotate.

It introduces an extra O(N2) communication cost, and parallelizes a portion of the

routine that has a computational complexity of O(N2) instead of O(N3). This part is

not a dominant part of the whole application. The percentage of CPU time required

by this part is reduced when N grows and the advantage shrinks as well. This

alternative will be bene�cial only for small data sizes.

5.5 Parallelizing Subroutine HQRII

A segment of program code recognized as a well known algorithm may not need to

be parallelized. Many commonly used algorithms have already been parallelized and

optimized. It is a good idea to use those optimized packages if they are applicable.

As analyzed in Section 5.1.3, HQRII is a fast standard eigensolver based on the

Householder-QR-Inverse Iteration method. Eigensystems have been actively studied

for some time. and many parallel eigensolvers have been developed to solve di�er-

ent categories of eigen-problems. These pre-existing packages have been e�ectively

optimized and well studied. Their characteristics are well known. To �nd a well

Chapter 5. Parallelizing MOPAC 123

// fmo : Fock molecular orbital interaction matrix from part 1

// evec : eigenvector matrix

// eval : eigenvalues array

Ŝ1 : for i = 1, nv do

Ŝ2 : for j = 1, no do

Ŝ3 : calculate threshold from fmo and eval;

Ŝ4 : if (fmo[i,j] � threshold) then

Ŝ5 : calculate alpha[i,j] and beta[i,j] from eval[i], eval[j] and fmo[i,j];

Ŝ6 : rotate = TRUE;

Ŝ7 : else

Ŝ8 : rotate = FALSE;

Ŝ9 : endif

Ŝ10 : endfor

Ŝ11 : endfor

Ŝ12 : for i = 1, nv do

Ŝ13 : for j = 1, no do

Ŝ14 : if (rotate) then

Ŝ15 : for m = 1, n do

Ŝ16 : a = evec[m,j]; b = evec[m,i];

Ŝ17 : evec[m,j] = alpha � a + beta � b;

Ŝ18 : evec[m,i] = alpha � b � beta � a;

Ŝ19 : endfor

Ŝ20 : endif

Ŝ21 : endfor

Ŝ22 : endfor

Figure 5.12: Modi�ed DIAG part 2 loop structure

Chapter 5. Parallelizing MOPAC 124

developed eigensolver and adopt for use in MOPAC is more eÆcient in both cost

and performance. Allen and Bush have written a very good survey purely about the

parallel implementations of eigensolvers [5].

Parallel Eigensolver

The eigensolver algorithms broadly fall into three camps:

Direct methods Directly apply Householder reduction to tridiagonal form followed

by QL or QR diagonalization.

Jacobi type iterative methods Repeated application of orthogonal Jacobi rota-

tions to bring the matrix to diagonal form quickly.

Conjugate gradient type iterative methods They are generally used on solving

large sparse systems of linear equations. They are also applied to the eigenvalue

problems. It includes Lanczos, Arnoldi and Subspace Decomposition methods.

Allen and Bush [5] gave a good survey on parallel implementations of eigensolvers.

The parallel eigensolver implementations surveyed are:

� Direct methods

{ Cleve Moler and Richard Chamberlain's EISCUBE released by Intel is the

oldest parallel Householder-QR method. No orthogonalization is done in

EISCUBE.

{ Scalable Linear Algebra Package (ScaLAPACK) [16] is the most popular

linear algebra package. It has been ported to most MPPs like Cray T3D,

the IBM SP2, Thinking Machine CM5 and workstation clusters. It does

not do orthogonalization.

{ PeIGS [34, 35, 36] released by PNNL is a collection of commonly used lin-

ear algebra routines for solving dense real orthogonalization eigensystems.

Chapter 5. Parallelizing MOPAC 125

Orthogonalization in one sense is guaranteed implicitly by using inverse

iteration.

{ HJS algorithm [48] is another eigensolver for solving dense symmetric sys-

tems developed by Hendrickson, Jessup and Smith of Sandia National Lab-

oratory. It uses a modi�ed Gram-Schemidt procedure thereupon to achieve

the orthogonality of eigenvectors.

� Jacobi type iterative methods

{ Ian Bush's one-sided block Jacobi BFG

{ Pittsburgh Supercomputer Center 2-sided Jacobi PJAC (can also do com-

plex symmetric or Hermitian)

{ Parallel NAG library

� Conjugate gradient type iterative methods

{ Kristi Maschho�'s parallel ARPACK

{ PRISM project Symmetric Invariant Subspace Decomposition Algorithm

(SYISDA) invariant subspace decomposition approach

{ Chris Potter's parallel divide and conquer algorithm

{ Soren Paedkjar's Spectral Transform Lanchos Method

Allen's experiments compare the execution time of representative routines for a

1024 by 1024 matrix on various parallel machines including Cray T3D and IBM SP2.

The results show that the Jacobi methods scale better than QL methods because

the QL factorization does not scale very well. For example, PDSPEV scales poorly

compared to EISCUBE or ScaLAPACK PDSYEVX due to the Gram-Schmidt or-

thogonalization, which being essentially a QL step.

The other reason that the Jacobi method scales better is because the serial version

of Jacobi method runs slower than the direct method algorithms. The results of course

also show that large processor counts favor the best scaling algorithms while small

processor counts favor the best serial algorithms. The reason is that large processor

Chapter 5. Parallelizing MOPAC 126

counts means smaller data chunks while small processor counts means larger data

chunks. Allen concludes overall that for an order N matrix over a p processor system,

one-sided Jacobi will be the best for N

p
< 8 and the direct methods will win for N

p
> 8.

It is diÆcult to �nd a capable parallel machine with a large enough processor

count for the matrix sizes of MOPAC. In Allen's example, N = 1024, Jacobi methods

need P > 128 to out-perform direct methods. Consider N = 5000, Jacobi methods

cannot match direct methods until P > 640, which is about the largest substantial

con�guration available today. Direct methods will better �t into MOPAC rather than

the Jacobi methods.

Direct methods

The traditional method for determining the eigensystem of a real, dense symmetric

matrix A employs a three-step technique. First, A is reduced to tridiagonal form

using a series of Householder transformations (re
ections). Next, the eigensystem

of the tridiagonal matrix T is computed. The eigenvalues of T are the same as

those of A, while the noteworthy eigenvectors of A are found in the third step by

back-transforming the eigenvectors of the tridiagonal matrix T via reduction trans-

formations.

Although the sequential algorithms for the tridiagonalization and back-transfor-

mation steps are well understood, tridiagonal eigensolvers continue to be a critical

area of active research. With respect to parallel algorithms the eÆciency criteria

and therefore the situation is somewhat reversed. There has been much work on

the tridiagonal eigensolver since Huang's 1974 study of multi-section methods on

the ILLIAC IV. This continued with the implementation of several other tridiagonal

eigensolvers on a variety of shared and distributed memory systems [13, 32, 64].

There is still a problem of assuring orthogonality which is not fully worked out

and is of particular importance in this application. Most commonly, the parallel

implementations use bisection to �nd the eigenvalues, followed by inverse iteration

to get the vectors. However this does not guarantee orthogonality if the values are

Chapter 5. Parallelizing MOPAC 127

clustered. In this case a modi�ed Gram-Schmidt procedure is conventionally needed

to re-orthogonalize. However if clustered values belong to di�erent processors, this

involves extra communication [35].

Work on parallel tridiagonalization and back-transformation began more recently

and has been con�ned to distributed memory systems. Chang et al. [23] described, but

not implemented, a parallel version of the Householder algorithm. Several implemen-

tations of the traditional tridiagonalization algorithm have appeared in [24, 48, 64].

Whilst the QL method is often the worthwhile method of choice on sequential

machines when the system is not very diagonally dominant, the QL and QR methods

are generally considered to be problematic on a parallel computer because of poor

scaling. Up to 95% of the time spent in the method is in the Householder reduction

to tridiagonal form.

However the suggested QL and QR methods produce eigenvalues which are not

ordered. This means that closely similar (or even degenerate to machine precision)

values may be on di�erent processors. We cannot guarantee orthogonality of eigenvec-

tors from similar eigenvalues if they are computed on di�erent processors, as usually

eigenvectors are orthogonal to the previously found one on the same processor. In

general, an explicit parallel Gram-Schmidt orthogonalization step would be required.

This could result in poor load balancing in the full algorithm. No orthogonaliza-

tion is done in EISCUBE or ScaLAPACK, which therefore do not guarantee to give

orthogonal eigenvectors.

Allen's experience also shows that among the direct methods on systems with low

latency communications, e.g. Cray T3D, block cyclic distribution as in ScaLAPACK

using BLACS is an advantage. However on other systems with higher communica-

tion latency, e.g. the IBM SP2, EISPACK or PeIGS wins. After all, since distributed

memory parallel computers usually have higher communication latency, PeIGS be-

comes the best choice.

Chapter 5. Parallelizing MOPAC 128

PNNL PeIGS

PeIGS [31] is a collection of linear algebra subroutines for computing the eigensystem

of the real standard problem Ax = �x and the general eigensystem Ax = �Bx where

A and B are dense real symmetric matrices with B positive de�nite and � is an

eigenvalue corresponding to eigenvector x.

PeIGS was developed by David Elwood, George Fann, and Richard Little�eld of

Paci�c Northwest National Laboratory. Its functions are documented in the PeIGS

manual [34]. For the moment, there are also papers benchmarking several methods

tested at PNNL [35, 36].

PeIGS can solve problems in linear algebra that are associated with the general

symmetric and the standard symmetric eigensystem problems. PeIGS can also handle

associated computations such as the Choleski factorization of positive de�nite matri-

ces in packed storage format and linear matrix equations involving lower and upper

triangular matrices in distributed packed form.

PeIGS was written to use BLAS (Basic Linear Algebra Subprograms) library

calling interfaces for most of its computation. PeIGS comes with a general BLAS

library. Users of machines that equip with optimized BLAS libraries can use them to

accelerate the computation.

PeIGS uses the SPMD (Single Program Multiple Data) programming model. It

was designed for distributed memory parallel computers with high startup communi-

cation time like workstation clusters. PeIGS supports Intel iPSC/860 and Touchstone

Delta native communication libraries as well as the TCGMSG and MPI communica-

tion libraries.

For the most part, the computational kernel of PeIGS is its QL routine PDSPEV.

The routine PDSPEV() is a parallel implementation equivalent to the LAPACK rou-

tine DSPEV().

The diagonalization method proceeds by Householder reduction to tridiagonal

Chapter 5. Parallelizing MOPAC 129

form using a subordinate parallel version of the EISPACK routine TRED2(). Pro-

cessor 0 broadcasts the diagonal and sub-diagonal of the tridiagonal matrix to all

processors, which each used to compute a set of eigenvalues using DSTEBZ() from

LAPACK. This uses Sturm sequencing and bisection, some redundant computation

is performed if there are closely clustered eigenvalues, just by having the intervals

overlapping slightly.

Processor 0 then collects all eigenvalues and block numbers and broadcasts them

to all processors. Inverse iteration is used with a modi�ed Gram-Schmidt procedure

for re-orthogonalization to �nd the orthogonal eigenvectors [35]. This gives results

comparable to LAPACK routine DSTEIN(). Standard back-transformation with the

Householder matrix gives the eigenvectors of the original problem.

PeIGS uses a
exible column distribution with packed storage for real symmetric

matrices. The user speci�es the processor which stores each column. Basic linear

algebra operations, such as triangular matrix multiplication are performed in a panel-

block systolic loop. The program is capable of taking data in a column(row)-wise

distribution with processor mapping speci�ed in integer vectors. It can also handle

data in compact lower triangular format, which is useful. This is done by pointers

and dynamic memory allocation in the C routines. Scratch memory of about 4N2

p
is

required.

The driver routine for the general eigenvalue problem is PDSPGV(). The problem

is reduced to a standard one by Cholesky factorization of B, so B = LL
T where L is

a lower triangular matrix. This exists providing B is symmetric and positive de�nite,

which guarantees real square roots. We have: Cx = �x where C = L
�1
AL

�T .

The parallel routine CHOLESKI() uses a sub-matrix algorithm and instead of

doing two solutions to form C the L is inverted using a routine INVERSEL() and

a lower triangular and upper triangular matrix multiplication is performed. The

back-transformation step must also include L�1 for the general case.

Chapter 5. Parallelizing MOPAC 130

Adapting PeIGS to MOPAC

As described above, although the modi�ed Gram-Schmidt procedure involves extra

communication which reduces its performance, the performance is still comparable

with other packages that can take advantage of block-cyclic data decomposition on

Cray T3D. On distributed memory machines like the IBM SP2, it is the best choice.

Especially when the problem size is much larger than the number of processors.

Parallel MOPAC uses the FORTRAN language and PeIGS supports both FOR-

TRAN and C interfaces. Parallel MOPAC uses MPI to communicate between nodes

and PeIGS supports MPI as well. PeIGS matches our environment well. At this

stage, the speci�c work needed is to �nd the applicable functions in PeIGS and adapt

them into parallel MOPAC.

PeIGS supports various eigensolvers for di�erent uses. The eigensolver needed in

HQRII is a general purpose one for real symmetric matrices, and the PeIGS function

pdspevxmatches this. Subroutine pdspevx is a very general purpose eigensolver and

the calling interface of pdspevx is shown in Figure 5.13. To be able to cover most

uses, pdspevx requires as many as 21 arguments. Not all arguments are useful for

MOPAC, in fact only a few arguments are useful. Some arguments can be assigned

constant values, while some arguments are not used. The arguments of pdspevx will

be adjusted to make HQRII work as desired.

The useful pdspevx arguments are n, vecA, mapA, meigval, vecZ, mapZ, and eval.

� n: the number of rows and columns of the matrix A.

� vecA: lower triangular part of the i-th column of A which is owned by this

processor. The columns of A owned by this processor are determined by mapA.

� mapA: the id of the processor which owns column i of the A matrix, i = 0::n�1.

� meigval: the total number of eigenvalues found.

� vecZ: i-th eigenvector (as determined by the exit values in mapZ) owned by this

processor. The eigenvectors are normalized.

Chapter 5. Parallelizing MOPAC 131

subroutine pdspevx(ivector, irange, n, vecA, mapA,

$ lb, ub, ilb, iub, abstol,

$ meigval, vecZ, mapZ, eval, iscratch, iscsize,

$ dblptr, ibuffsize, scratch, ssize, info)

integer ivector, irange, n, mapA, ilb, iub, meigval,

$ mapZ, iscratch, iscsize, ibuffsize,

$ ssize, info

double precision lb, ub, abstol, eval(*), scratch(*)

$ vecA(*), vecZ(*), dblptr(*)

Figure 5.13: The PeIGS subroutine pdspevx user interface

� mapZ: the id of a processor which owns the memory for storing the i-th eigen-

vector, i = 0..n�1.

� eval: the eigenvalues of the matrix in no particular order.

The input arguments vecA needs to be distributed before calling pdsvex and

the result eigenvectors vecZ needs to be collected after calling pdsvex. An interesting

problem is that the de�nition of the canonical form of the input matrix vecA in PeIGS

is di�erent from that in MOPAC. One uses row-major while the other uses column-

major. It is revealing because that PeIGS was implemented in C and the FORTRAN

user interface of PeIGS is just a wrapper of this C interface. An adjustment is needed

before pdsvex is called. This adjustment takes n�(n+1)
2

steps. It can be distributed to

the p processors and takes n�(n+1)
2�p � O(n

2

p
), which is smaller than the computational

complexity of pdsvex and is negligible when the size of the input matrix n gets large.

Chapter 5. Parallelizing MOPAC 132

5.6 Integration and Visualization

A parallelized legacy application contains at least two parts, the parallelized com-

putation engine and the old sequential part. Besides the two parallel and sequential

computation parts, our parallel MOPAC implementation adds a molecule structure

rendering AVS module and an X-windows display module. The four parts are im-

plemented as independent modules and can run nonetheless on networked heteroge-

neous machines, networked homogeneous machines, or on a single machine. AVS, as

described in Appendix B, is a data visualization system that better provides easy

user interface to show visual data for scienti�c applications. Besides the data visual-

ization, AVS remote module can be used to integrate programs running on di�erent

platforms across networks. We will describe how we integrate the MOPAC modules

using AVS remote modules.

MOPAC system con�guration

The most important part is the parallel computational module. The parallel compu-

tational module contains the parallel versions of the computationally intensive sub-

routines. A powerful parallel computer with high speed, low latency communication

system is recommended to serve as the Parallel Computation Host (PCH). An MPI

communication library is required to supply the communication functions needed by

the parallel computation module. The public domain mpich works for most parallel

computers as well as workstation clusters. It is easy to obtain, con�gure, and install.

However, a vendor supplied MPI implementation is preferred since the vendor sup-

plied MPI implementation can take better advantage of the communication hardware

and boost the communication performance. The SGI MPI runs as much as 1.8 times

faster than mpich for some communication functions. Similarly, a vendor supplied

BLAS is preferred since it is optimized for the maximum performance of the
oating

point processing unit.

The sequential computation module is the original MOPAC one with the abil-

ity to use the parallel computation module to speed up the computation time of

Chapter 5. Parallelizing MOPAC 133

the computationally intensive portions. The sequential versions of the parallelized

subroutines are available to run small calculations. The main task of the sequential

computation module is providing the user interface, �le I/O, error handling, and other

non-computationally intensive portions. A general purpose workstation with a local

hard disk is good enough to serve as the Sequential Computation Host (SCH).

The output of MOPAC is only text �les. Some results such as the �nal energy can

be easily read from the output �le. However, other results such as molecule structures

can only be output in coordinates. Users needed to use their imagination to visualize

the molecule structures from the coordinates. Parallel MOPAC adds the molecule

structure rendering AVS module to provide a better compensated user interface. AVS

is a very powerful graphic rendering system. It supports three dimensional viewpoints

and animations. A fast workstation with the AVS system is required to serve as the

AVS Host (AVSH).

The graphic data generated by AVS can be displayed on a number of graphic

devices. The most commonly used graphic displaying tool is X-windows. An X-

server with high resolution true color display is required for AVS to display pictures

properly. We can use AVSH to run the X-server. However, AVS is licensed software

which cannot run outside of registered machines. In that case, a separate X-windows

Display Host (XDH) is needed to display the AVS output.

Figure 5.14 shows the integrated MOPAC system con�guration. The four modules

can run on four di�erent hosts to improve the performance.

Coarse grained communication between MOPAC modules

Like the nodes of a parallel computer, the four MOPAC modules need to exchange

information. The communication between modules is similar in many ways to the

communication between the nodes of a parallel computer. The major di�erence be-

tween these two kinds of communication is that the communication between MOPAC

modules is coarse grain while the communication between node programs is medium

or �ne grained.

Chapter 5. Parallelizing MOPAC 134

A workstation with

color display as XDH

File I/O
workstation as SCH

A high speed

AVSH
running AVS as
A workstation

Heterogeneous Networks

Workstation Clusters

Ethernet SP Switch FDDI GIGA switch

DEC Alpha Farm

Ethernet

SGI PowerChallenge

Shared Memory

IBM SP2

Homogeneous or heterogenous parallel machines as PCH

Figure 5.14: Parallel MOPAC system con�guration

The frequency of coarse grained communication is lower than �ne grained com-

munication. The amount of data is often smaller, too. The performance of the

communication subsystem does not a�ect overall performance of coarse grained pro-

grams as much as those of �ne grained programs. However, due to the di�erence in

functionality requirements of the four modules, it may be a desirable situation to run

the MOPAC modules on di�erent platforms. Heterogeneous machine con�gurations

require a standard, widely supported communication system to pass data between

coarse grained modules. Compatibility is the most important issue for coarse grained

programs.

TCP/IP is the most popular and inter-operable communication protocol. A spe-

cial virtue, it is supported on almost all modern computers. Many system calls and

libraries are made available for communication programming. Using TCP/IP avoids

incompatibility problems.

Chapter 5. Parallelizing MOPAC 135

AVS not only supports visualization but also supports inter-processor communica-

tion. This means that AVS remote modules can be distributed on di�erent machines

working cooperatively. Each AVS module is represented by a rectangular icon with

access points called ports. Ports are colored regarding their data types. Several AVS

modules can be connected via ports to form a AVS network to provide the required

functions. Making data a connection between two AVS modules is as easy as click-

ing on an output port of one module and dragging it to the input port of another

module. AVS automatically creates a TCP connection between the two modules and

everything written to the output port of the �rst module is transmitted through the

TCP connection to the input port of the second module transparently. If the two

modules are on the same machine, AVS is smart enough to upgrade the connection

to use shared memory inter-process communication.

AVS eases the implementation of the communication for the coarse grained mod-

ules. Unfortunately, it is licensed software and mainly used on workstations. We can

use it to implement the data connections between all MOPAC modules except for the

one between the MOPAC sequential computation module and parallel computation

module. We use a Berkeley socket to build TCP connections between the MOPAC se-

quential computation module and parallel computation module. The communication

handling routines of these two modules are also smart enough to use faster shared

memory inter-process communication if they detect the MOPAC sequential module

runs on a common node of the parallel computer. The node is then assigned to be

the communication host to distribute data and collect results.

Figure 5.15 shows the communication between the MOPAC coarse grained mod-

ules. Data
ows between the MOPAC mopacavs module, the MOPAC geomcntl

module, and the AVS geometry viewer module are unidirectional. Communications

between these modules are handled by AVS. Communications between the MOPAC

mopacavs module, the sequential processing, and the parallel computation engine are

bidirectional. Berkeley sockets are used to transmit potential data between these

modules. Faster shared memory inter-process communication is used automatically

if possible.

Chapter 5. Parallelizing MOPAC 136

Host
Shared memory Computation

Sequential

MOPAC
file processing and
other operations

MOPAC
mopacavs module

parallel module
MOPAC DENSIT

parallel module
MOPAC DIAG

parallel module
MOPAC HQRII

AVS
geometry viewer AVS Host

AVS local module communication

MOPAC
geomcntl module

AVS remote module communication

Parallel Computation Host

Berkeley socket

Figure 5.15: Parallel MOPAC communications between coarse grained modules

MOPAC Visual Data

The most important results in MOPAC are the energy and molecule structures. En-

ergy can be speci�ed by numbers while molecule structures are better viewed in graph.

The parallel MOPAC graphic user interface consists a control panel and several dis-

play windows.

The control panel is implemented by using AVS widgets. Users can click on the

buttons to input data �le, specify the number of processors to use, select molecule

to display, control the viewpoint of molecules and make a slide show if the molecule

structures is a series of change of a molecule.

Chapter 5. Parallelizing MOPAC 137

Molecule structures are speci�ed in internal and Cartesian coordinates. Cartesian

coordinates are easier for specifying graphic data. MOPAC has subroutines to convert

internal coordinates to Cartesian coordinates. Cartesian coordinates are re-organized

into AVS 1-dimensional 3-vector uniform double �elds. A corresponding atom name is

speci�ed as the order in the periodic table. They are kept in AVS 1-dimensional scalar

uniform integer �elds. The bonds between atoms are speci�ed in AVS 1-dimensional

2-vector uniform integer �elds.

AVS module geomcntl converts the molecule structures into a list of graphic ob-

jects of type GEOMedit list which can be drawn on the screen by AVS build-in ge-

ometry viewer. Atoms are shown in di�erent sizes and colors to indicate their weights

and the column in periodic table. AVS module, geomcntl, converts the molecule

structures based on the parameters speci�ed by the MOPAC graphic control panel.

Molecule structures can be rotated, moved and enlarged. The user can change the

viewpoint to see the molecule structures from di�erent angles or take a close-up view.

The light sources can also be changed to make the molecule structures look much

clearer to users.

The parallel MOPAC graphic user interface and sample visual data can be found

in Section 6.1.

Chapter 5. Parallelizing MOPAC 138

