
Chapter 6. Results and Discussion 139

Chapter 6

Results and Discussion

Parallel MOPAC was �rst developed on a Sun 4 workstation cluster using PVM. It was

ported to a Thinking Machine CM5 and an Intel iPSC/860. The code was changed

to use MPI in order to work with PNNL PeIGS later. The code was further ported

to a DEC Alpha farm with a Giga switch, the IBM SP2, the SGI Power Challenge,

as well as a LINUX workstation cluster.

A prime concern, performance is the most important factor of a parallel program.

Even if we have shown that our approach should improve the performance, we unde-

niable still need some benchmarks to illustrate how good parallel MOPAC is for real

world applications.

In this chapter, we will demonstrate the performance improvement of parallel

MOPAC using small and large data �les. The experiments were performed on SGI

Power Challenge shared memory parallel machines in NPAC and NCSA and an IBM

SP2 distributed memory parallel machine in Argonne National Laboratory. All results

are average as derived from at least 5 trials.

It will cost too many computer resources to run through all of the data �les

several times. The biggest data may run weeks. It will exceed the maximum allowed

reservation time for these parallel machines. Moreover, the node-hours accumulate

rapidly when many nodes are used. Obviously, we would run out of our quota before

Chapter 6. Results and Discussion 140

we could �nish our experiments. The big data benchmark experiences are stopped at

some carefully chosen cut points where all benchmarking subroutines are called for

at least 5 times.

Jobs running on other nodes may interfere the benchmarks. In order to avoid

unnecessary interference, we always allocate all 16 processors of the SGI Power Chal-

lenge for every trial. An accurate observation again is that it is too costly to allocate

all 80 IBM SP2 nodes for every trial. Fortunately, the SP2 switch can be parti-

tioned into smaller partitions such that there is no interference between partitions.

Therefore, we can still get reasonable results.

6.1 Running Parallel MOPAC

It is better to use the graphical user interface to run parallel MOPAC via AVS.

Nevertheless, for users who do not have AVS or do not want to use graphical user

interface, parallel MOPAC additionally provides a command line user interface. The

procedures for getting, con�guring, compiling, and installing parallel MOPAC are

described in Appendix A.

The parallel MOPAC graphic user interface consists two AVS modules, mopacavs

and geomcntl. Module mopacavs is the real user interface. It serves as the controller

and server of the parallelized MOPAC tasks. It is also the bridge between MOPAC

and AVS. It receives the internal molecule geometry information and thereby sends

it to the geomcntl molecule. Module geomcntl transforms the molecule geometry

information into AVS geometry objects. The AVS built-in module \geometry view"

then takes the objects and displays them on the screen.

A pre-con�gured AVS network for running parallel MOPAC is provided so that

users can simply load and run it. The AVS network for running parallel MOPAC is

shown in Figure 6.1(a).

After the network is connected, a blank geometry viewer window and a MOPAC

execution control panel window pop up. The MOPAC execution control panel shown

Chapter 6. Results and Discussion 141

(a) AVS network (b) AVS control panel

Figure 6.1: Parallel MOPAC AVS network and control panel

in Figure 6.1(b) requests the input �le name and number of nodes to be used. The

default number of nodes is 0 which means the MOPAC program will detect the number

of nodes automatically.

When MOPAC reads in a new molecule structure or changes an existing one, the

molecular structure will be displayed in the geometry viewer window. The user can

exploit the MOPAC geometry control panel to scale, move, or rotate the molecule

structure in order to get a clear view. Combining these associations, Figure 6.2 shows

how a protein molecule structure can be moved, scaled, and rotated by using the

parallel MOPAC geometry control panel.

For data which generates multiple molecule structures, module geomcntl keeps all

molecule structures. Users can view them one by one by clicking on the MOPAC

geometry control panel. The user can also click on the \slide show" button on the

MOPAC geometry control panel to comprehensively view all molecule structures one

after another. This is useful to the chemist for visualization of changes in structures

or reaction mechanisms. Figure 6.3 shows the MOPAC graphic user interface in AVS.

For users who do not use the MOPAC graphic user interface, A command line user

Chapter 6. Results and Discussion 142

(a) rotation (b) zooming

Figure 6.2: Parallel MOPAC geometry control

interface can be used to run parallel MOPAC. The command line format is as follows:

% mopacterm #proc

The optional argument #proc describes the number of nodes you want to use. This

command is a shell script to determine the architecture of the machine and starts

the correct binary of the MOPAC sequential computation module. The MOPAC se-

quential computation module then issues the mpirun command to start the MOPAC

parallel computation module.

A more complicated command line user interface is also provided for users who

can not use mpirun command to start parallel jobs. This means that IBM SP2 batch

system users need to use spsubmit command to run parallel jobs. The command line

format is as follows:

% mopacnode.rs6000.AIX 1:-1:0:0:filename

This command is actually used by the MOPAC sequential computation module to

start the MOPAC parallel computation module. The \:"-separated command line

Chapter 6. Results and Discussion 143

Figure 6.3: Parallel MOPAC AVS user interface

Chapter 6. Results and Discussion 144

parameter \1:�1:0:0:�lename" is used for the MOPAC sequential computation mod-

ule to pass parameters to the MOPAC parallel computation module when parallel

MOPAC is started by the graphic and above command line user interfaces. Special

values \1:�1:0:0" is used to tell the MOPAC parallel computation module that it

is run in reverse starting mode. In the reverse starting mode, the MOPAC parallel

computation module is started by batch command spsubmit. The number of nodes

to be used is controlled by the batch command. The batch command itself allocates

nodes for parallel jobs only. Presently engaged, the MOPAC sequential computation

module must share with one of these node. By the description in Section 4.3, the last

node is used to host the MOPAC sequential computation module and the distribution

in Figure 5.7(b) is used.

All important MOPAC results are written into disk �les in ASCII text. Users may

still examine results by checking those �les. The molecule structures are also saved in

disk �les with extension \.atom." An AVS module mopacshow is provided to display

the molecule structures �les generated by MOPAC command line user interface.

6.2 Performance with Small Data Sets

At the time we �nished the initial implementation of parallel MOPAC, we were using

an Intel iPSC/860 and a Sun 4 workstation cluster to run the benchmarks. Although

it was widely used in the early 1990's, Intel iPSC/860 has very little memory. There

is 8 MB of real memory on each node. Virtual memory is not supported by Intel

iPSC/860. More than 3 MB of real memory is used by the operating system which

leaves less than 5 MB for applications. The MOPAC executable takes another 1 MB.

Consequently, the maximum data size that we can run is very limited. Moreover, the

computing power of Intel iPSC/860 nodes is relatively low compared with today's

processors. The Sun 4 workstation cluster has virtual memory support and is capable

of running larger data sizes. However, the slow processors and Ethernet still seriously

limit the data size. In this connection, the \small" data �les are actually the largest

data size we can run on these machines.

Chapter 6. Results and Discussion 145

As better hardware became available, we were able to run larger data �les. Access

to an IBM SP2 and an SGI Power Challenge was obtained when parallel MOPAC was

completed. The performance of parallel MOPAC running large data �les is shown in

Section 6.3. In the mean time, we re-ran the smaller data �les to show the behavior

of parallel MOPAC running smaller data �les.

The data size of computation in parallel MOPAC is decided by the numbers of

heavy and light atoms in the input molecule structure. It roughly equals to 4 �

number of heavy atoms+ number of light atoms. The 5 test data �les have sizes

between 100 and 200. The total execution time of the sequential version ranges from

less than 1 minute to about 25 minutes on the 8-node SGI Power Challenge in NPAC.

The raw results are shown in Appendix D. Figures 6.4, 6.5, and 6.6 show the speed-up

of subroutines DENSIT, DIAG, and HQRII respectively. Figure 6.7 shows the overall

speed-up of parallel MOPAC.

The computation statements in the main loop of subroutine DENSIT are simpler

than those of subroutine DIAG and HQRII. Even though the load is balanced and

the only communication is the initial data distribution and �nal result collection, the

execution time saved by parallel execution is not signi�cant. Moreover, since the data

size is not large, the communication is, nevertheless, still a non-trivial portion. In all

cases, the communication drags down the overall speed-up. Until then, the maximum

speed-up ranges from 1.8 to 2.8 using 6 nodes.

Since the communication cost is still signi�cant and the data sizes are small, the

communication data chunk is small and the frequency is high. This communication

pattern favors the machine with smallest communication latency. The SGI Power

Challenge's shared memory architecture has shorter latency than IBM SP2's dis-

tributed memory architecture. It looks as if this is the reason why the SGI Power

Challenge outperforms the IBM SP2.

We can also observe an interesting phenomenon in Figure 6.4. The speed-up of the

SGI drops sharply at 7 nodes. This is because the benchmarks are run on an 8 node

SGI Power Challenge. The high volume of small data chunks �lls up the bandwidth

of the shared memory bus and degrades the performance. The same phenomenon

Chapter 6. Results and Discussion 146

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(a) apsbtest

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(b) chlorin

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(c) metenk

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(d) porphin

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(e) tetrabenz

Figure 6.4: Speed-ups of subroutine DENSIT with small data sets

Chapter 6. Results and Discussion 147

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(a) apsbtest

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(b) chlorin

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

(c) metenk (N/A)

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(d) porphin

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(e) tetrabenz

Figure 6.5: Speed-ups of subroutine DIAG with small data sets

Chapter 6. Results and Discussion 148

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(a) apsbtest

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(b) chlorin

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(c) metenk

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(d) porphin

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(e) tetrabenz

Figure 6.6: Speed-ups of subroutine HQRII with small data sets

Chapter 6. Results and Discussion 149

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(a) apsbtest

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(b) chlorin

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(c) metenk

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(d) porphin

number of processors

S
pe

ed
-u

ps

1 2 3 4 5 6 7
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Linear
SP2
PowCha

(e) tetrabenz

Figure 6.7: Speed-ups of parallel MOPAC with small data sets

Chapter 6. Results and Discussion 150

happens to subroutine DIAG and HQRII, too. In short, since their computation

stage is much longer than DENSIT's, the phenomenon is not as signi�cant as in

subroutine DENSIT.

The computation statements in the main loop of subroutine DIAG are more com-

plicated than those of subroutine DENSIT. The communication factor does not a�ect

the overall performance as much as that of subroutine DENSIT. The speed-up for SGI

Power Challenge and IBM SP2 are about the same. The speed-up curves are also

smoother than that of subroutine DENSIT. A summary indication, the maximum

speed-up ranges from 3.7 to 4.5 at 6 or 7 nodes.

Subroutine HQRII has some small data communication in the middle of the com-

putation. The overall performance is degraded somewhat. Like subroutine DENSIT,

the small data chunk communication favor the machine with short communication

latency. In contrast, the communication in the middle of computation also implies

synchronization, which can not bene�t from low latency communication. The SGI

Power Challenge outperforms the IBM SP2, but not as signi�cant as in subroutine

DENSIT. The maximum speed-up ranges from 1.7 to 2.9.

It is more signi�cant that the speed-up curves promptly drop at 2 nodes. The

parallel version usually needs to do some extra initialization and communication to

calculate and distribute the work load. The extra initialization is not needed in

sequential programs. This extra work makes the speed-up curves show a small drop

at 2 nodes. The drop in the speed-up curves is not signi�cant for subroutine DENSIT

and DIAG. However, since we need to do a matrix transformation to adapt PeIGS

into HQRII in the beginning of the subroutine, the speed-up curve drop in subroutine

HQRII is more signi�cant than in the cases of subroutine DENSIT and DIAG.

Figure 6.7 shows the overall speed-up curves of parallel MOPAC. The speed-up

is lower than individual parallelized subroutines because the speed-up of MOPAC

includes non-parallelized parts.

Parallelization in each attempt does not bene�t small data sets very much. The

Chapter 6. Results and Discussion 151

initial data distribution and �nal result collection destroy the performance improve-

ment gained by parallelization. In fact, the calculation and initialization for work

load distribution, although small, add up more overhead. The performance does not

scale up very well and the speed-up curves reach the maximum at small number of

nodes. That is, the results discussed above suggest that small data sets should use

small number of processors or just use the sequential version because the parallel

version does not run much faster. If parallel version is still preferred, apparently, a

small machine with low latency communication should be used.

6.3 Performance with Big Data Sets

Figures 6.8, 6.9, and 6.10 show the speed-up curves of parallel MOPAC running big

data sets. The given data sizes range from 265 to 1308. The benchmarks are run on

a 16 node SGI Power Challenge and an 80 node IBM SP2.

Figure 6.8 shows the speed-up curves of subroutine DENSIT. As the data size gets

big, the execution time tends to dominate the total execution. The communication

time becomes negligible and the performance scales up much better. While the size of

the data chunks becomes large the advantage of low latency communication of shared

memory machine does not give much bene�t. The IBM SP2 outperforms the SGI

Power Challenge for the 3 bigger data sets. A speed-up of 25 is observed at 32 nodes.

Higher speed-ups are possible if more nodes are used.

The performance drop when all nodes are used on SGI Power Challenge is still

true, but it is improved for bigger data sets.

Like the discussion in previous section, subroutine DIAG favors high bandwidth

over low latency. The IBM SP2 outperforms the SGI Power Challenge for all 5 data

sets in Figure 6.9.

The communication in the middle of computation causes synchronization and

reduces the speed-up. The maximum speed-up of subroutine HQRII at 32 nodes is

only 14.7.

Chapter 6. Results and Discussion 152

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(a) 1crn

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(b) vcop 4

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(c) c60 3

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(d) c60 2

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(e) porphyrn

Figure 6.8: Speed-ups of subroutine DENSIT with big data sets

Chapter 6. Results and Discussion 153

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(a) 1crn

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(b) vcop 4

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(c) c60 3

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(d) c60 2

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(e) porphyrn

Figure 6.9: Speed-ups of subroutine DIAG with big data sets

Chapter 6. Results and Discussion 154

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(a) 1crn

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(b) vcop 4

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(c) c60 3

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(d) c60 2

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
SP2
PowCha

(e) porphyrn

Figure 6.10: Speed-ups of subroutine HQRII with big data sets

Chapter 6. Results and Discussion 155

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
1crn.dat
vcop_4.dat
c60_3.dat
c60_2.dat
porphyrn.dat

(a) densit/Power Challenge

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
1crn.dat
vcop_4.dat
c60_3.dat
c60_2.dat
porphyrn.dat

(b) densit/SP2

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
1crn.dat
vcop_4.dat
c60_3.dat
c60_2.dat
porphyrn.dat

(c) diag/Power Challenge

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
1crn.dat
vcop_4.dat
c60_3.dat
c60_2.dat
porphyrn.dat

(d) diag/SP2

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
1crn.dat
vcop_4.dat
c60_3.dat
c60_2.dat
porphyrn.dat

(e) hqrii/Power Challenge

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
1crn.dat
vcop_4.dat
c60_3.dat
c60_2.dat
porphyrn.dat

(f) hqrii/SP2

Figure 6.11: Speed-ups of subroutines/machines

Chapter 6. Results and Discussion 156

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
1crn.dat
vcop_4.dat
c60_3.dat
c60_2.dat
porphyrn.dat

(a1) Power Challenge

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
1crn.dat
vcop_4.dat
c60_3.dat
c60_2.dat
porphyrn.dat

(a2) SP2
(a) Best case - Assuming the non-parallelable part is O(1)

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
1crn.dat
vcop_4.dat
c60_3.dat
c60_2.dat
porphyrn.dat

(b1) Power Challenge

number of processors

S
pe

ed
-u

ps

1 2 4 8 16 32

1.00

2.00

4.00

8.00

16.00

32.00

Linear
1crn.dat
vcop_4.dat
c60_3.dat
c60_2.dat
porphyrn.dat

(b2) SP2
(b) Worst case - Assuming the non-parallelable part is O(N2)

Figure 6.12: Projected Speed-ups of parallel MOPAC

Chapter 6. Results and Discussion 157

Since the big data benchmark is stopped at some cut points, we need to estimate

the overall performance improvement. In this respect, since the highest computational

complexity of the computationally intensive parts is O(N3), we assume the non-

parallelized parts of MOPAC have computational complexity of O(1) and O(N2).

The projected overall speed-up is shown in Figure 6.12.

Chapter 6. Results and Discussion 158

Chapter 7. Summary 159

Chapter 7

Summary

The subject of this dissertation is to improve the performance of a legacy application

by cogently parallelizing it in a computer scientist's way. Getting the knowledge of the

area of the legacy application, parallelizing the code and keeping the legacy applica-

tion validated are the most strategic topics of this dissertation. Although parallelizing

and optimizing a program involve many technical issues, getting the knowledge of the

area of the legacy application can be more diÆcult and time-consuming for a com-

puter scientist. In essence, keeping the program validated is mandatory to a legacy

application. In this dissertation, we developed a procedure for a computer scientist

to parallelize legacy applications eÆciently and correctly apply the procedure to a

semi-empirical quantum chemistry package MOPAC.

It is not always possible for a computer scientist to be a domain expert of the

�eld of the application he intends to work on. By following our procedure, one can

work on a legacy application with only basic knowledge in that �eld. The sequential

analyses, including time pro�ling analysis, program
ow analysis and computational

complexity analysis, provide a way for computer scientists to correctly identify the

target subroutines to work on without the domain expertise. By combining the se-

quential analyses and the Amdahl's law, we can successfully estimate the performance

for di�erent input data sizes. The parallel analyses optimize the parallel code by re-

solving the data dependency, which maximize the parallelizable parts, and reducing

Chapter 7. Summary 160

the communication, which minimize the communication overhead. The applicable

methods we used in these parallel analyses transform the parallel code in a system-

atic way that guarantee that the program semantics of the legacy application are

not changed and the variables access are not troubled in the complex parallelization.

The inter-module communication binds the sequential and parallel modules together

and �nally the graphic user interface gives users a meaningful view of intact scienti�c

results.

The sequential and parallel analyses described in chapter 4 provide a systematic

way for computer scientists to improve the performance of a legacy application with

minimum domain expertise and keep the legacy application certi�ed.

In the example of MOPAC shown in chapter 5, we identi�ed 4 computational

intensive parts in time pro�ling and keep only the 3 which will still be computational

intensive in production. The computational intensive parts then can be parallelized

and optimized directly by the methods described in chapter 4 or by using a pre-existed

optimized parallel software. The data dependence problems are resolved. Thereafter,

the parallel code is optimized to minimize the communication costs. The parallel and

sequential modules are integrated by graphic user interface enabled AVS modules.

The benchmark shown in Chapter 6 shows the performance is improved as ex-

pected. The features of the performance curves are also discussed in Chapter 6. Small

data shows less improvement due to the sequential part still has signi�cant weight.

As larger input data is used, the weight of sequential part becomes insigni�cant and

better performance improvement is obtained.

The performance improvement makes interactive execution of MOPAC possible.

The AVS graphic user interface provided by our parallel MOPAC enables the users

to visualize the traditional text output for users interactively execute MOPAC in a

visualized environment. A traditional command line user interface is also precisely

provided for users not using graphic interface.

In addition to the IBM SP2/AIX and SGI Power Challenge/IRIX, parallel MOPAC

has also been ported to Sun Sun4/Solaris, DEC Alpha/OSF1, IBM PC/Linux, IBM

Chapter 7. Summary 161

PC/FreeBSD, and Thinking Machine CM5. Although we introduced about 10,000

lines of code, more than 70% of them are used for visualization and the inter-module

communication. The replaced sequential code is less than 1,000 lines, which is about

3% of the whole sequential version. The rest of 97% code is kept unchanged and

validated. Of heightened interest, the correctness of parallel MOPAC is con�rmed by

comparing the outputs with the outputs of sequential version.

Tried Approaches Before the parallel MOPAC implementation was �nalized, we

had also tried some di�erent works. Some of them are replaced by more responsible

methods while some are for other reasons. These works, although not included in

the current implementation, take the approach for responsible investigation to not

waste resource. Citing implications, some of them may still be picked up again in the

future.

� For a given input data, each parallel module has its own optimized machine

size. The best machine size for DENSIT may not be best for DIAG1. More-

over, a MOPAC input �le can contain several molecules in di�erent sizes. The

communication library used in the initial implementation of parallel MOPAC

was PVM. PVM was commonly used on workstation clusters. Above all, it

has a very practical feature which allows the parallel program dynamically to

change the number of nodes during execution. The optimized machine sizes can

be calculated and recon�gured for each parallel module before they are called.

We switched to MPI later to adopt PeIGS and port parallel MOPAC to more

platforms. In most MPI implementations, the machine size is decided at the

start-up and cannot be dynamically recon�gured. The code for dynamically

machine size optimization has to be abandoned.

� In the results from early benchmark, small data was used due to slow ma-

chines we used. The results reinforced very high communication costs which

seriously limit the scalability. To overcome this problem, we made some well-

charted studies on the performance impact by computation-communication ra-

tio of parallel computers and concluded a high computation-communication

Chapter 7. Summary 162

ratio is mandatory to parallel programs.

A parallel machine with high computation-communication ratio improves the

scalability of a parallel program. Parallel programs with a large amount of

frequently data communications can run slower than their sequential counter-

parts on parallel machines with a low computation-communication ratio. In

this manipulation, large input data size or small machine size is not a�ected by

the machine computation-communication ratio that much because the amount

and frequency of communication compared to computation have been reduced.

Moreover, for parallel programs having frequent communications, the commu-

nication latency a�ects the overall performance more than the computation-

communication ratio. What emerges is that the previous conclusion hence needs

to be corrected.

� Before we realized that the computational complexity can dramatically change

the work load distribution pattern, the time pro�ling analysis shows DCART is

a time-consuming part of MOPAC. Even though we found DCART has lower

computational complexity and will not be time-consuming when large data is

used, DCART still takes some work load for smaller data.

Parallelizing DCART was attempted. About 50 common blocks with 100 global

variables in 20 subroutines were analyzed for data dependency. Some global

variables used in both sequential and parallel parts need to be synchronized.

Certain subroutines used in both sequential and parallel parts need to be split

into two versions. The data dependence problems of some variables are found

and resolved by the methods described in Section 4.2.

Our initial analysis shows subroutine DCART can be parallelized without tech-

nical problems. It warrants raising the question that the parallelization of

subroutine DCART involves the rewriting of 11% of MOPAC code that may

introduce bugs and invalidate the application. Because of this train of thought,

the parallelization of subroutine DCART was then dropped.

Chapter 7. Summary 163

Future Work Although parallel MOPAC delivers good performance improvement

for small e�ort and proves our approach is a cost eÆcient way of improving perfor-

mance for legacy applications, there are still some topics that can be worked on:

� Parallelizing legacy applications using a shared memory implementation. Tradi-

tionally shared memorymachines can connect few nodes together, typically 8 or

16 maximum. Today, with the new hardware technology, large SMPs have been

widely used as enterprise servers. Sun HPC 10000 [85] server can connect up to

64 UltraSPARC. IBM S80 Enterprise server [56] is a 24-way PowerPC RS64 III

SMP. HP 9000 V2600 Enterprise Server [49] supports up to 32 PA-8600.

The NUMA architecture further expands the number of processors a shared

memory machine can connect. SGI has been working on its ccNUMA architec-

ture for some time. The SGI Origin 2000 can connect up to 256 nodes and 512

mips R10000 processors with its ccNUMA architecture. In addition to SMP,

HP also provides its ccNUMA based HP 9000 V2600 Enterprise Server which

can connect up to 128 PA-8600 processors. IBM started adapting the NUMA

architecture to AIX for PowerPC and Monterey for IA-64 in 1998. The �rst

PowerPC and IA-64-based NUMA platforms are planned to be delivered in

2001.

Shared memorymachines have the favorable advantage of higher communication

bandwidth and lower latency than distributed memory machines. Communica-

tionally intensive applications can take advantage of shared memory machines.

It would be interesting to do some research on the shared memory programming

model.

� Web based user interface. Presently, network computing is the most rapidly

growing topic of computer science. The enhancement is that with a web based

user interface, users can use computer resources remotely. The Gateway Sys-

tem [47] developed at Northeast Parallel Architecture Center (NPAC) is a seam-

less interface designed enabling scientists and engineers to utilize High Perfor-

mance Computing (HPC) resources like computational engines, software, and

visualization systems. Users can use the browser based graphic user interface to

Chapter 7. Summary 164

access the remote HPC resources through a secure web server and object broker

middleware. The Gateway System not only provides graphic user interface for

accessing computational engines but also provides secure accesses on these HPC

resources. By adapting the Gateway System, a secure \parallel MOPAC com-

putation web site" can be setup on a computer center with large computation

power to serve users anywhere on the internet securely.

� Determining and using the optimized number of nodes dynamically. Using too

many processors to run a small data set could be slower than using a small

number of processors. Likewise, we cannot know the unpredictable optimal

number of processors before the data is read in. The initial implementation of

parallel MOPAC used PVM. PVM allows dynamically con�guring the size of

the parallel virtual machine at run time. We could dynamically con�gure the

machine size to optimize the execution time based on the size of input data. The

MPI implementations we use are needed to de�ne the size of the parallel machine

when the program starts. The real optimal number of processors for a certain

data set is determined, at this juncture, by the size of data, the communication

pattern, and the characteristics of the communication subsystem.

� Subroutine DCART was picked by our time pro�ling analysis and dropped be-

cause increasing the input data size decreases the weight of subroutine DCART.

However, subroutine DCART is still a time-consuming part for smallermolecules.

In this special context, despite the high risk of changing a large portion of

MOPAC may invalidate MOPAC, it may be worth it to parallelize subroutine

DCART if the validation problem can be resolved.

Appendix A. Installing Parallel MOPAC 165

Appendix A

Installing Parallel MOPAC

Requirements The current version of parallel MOPAC requires that MPI and

PeIGS should be installed before installing MOPAC. Before beginning installation,

the following should be kept in mind:

� Platform: Parallel MOPAC supports the following platforms:

{ IBM [345]86 PC cluster running Linux (both a.out and ELF)

{ IBM [345]86 PC cluster running FreeBSD

{ IBM RS6000 workstation cluster running AIX

{ IBM SP-2 running AIX

{ Sun workstation cluster running SunOS 3.x, 4.x

{ Sun workstation cluster running SunOS 5.x (Solaris)

{ DEC Alpha farm running OSF/1

{ SGI MIPS running IRIX

� Have MPI installed. MPI is a communication interface. Parallel MOPAC uses

MPI to communicate among processes. There are at least four freely distributed

implementations on the internet. Parallel MOPAC uses mpich. You can get

Appendix A. Installing Parallel MOPAC 166

mpich via anonymous FTP from info.mcs.anl.gov:/pub/mpi/mpich.tar.Z. IBM

and SGI MPI are also supported in parallel MOPAC.

� Have PeIGS installed. PeIGS is an optimized parallel eigensystem solver devel-

oped by PNNL. Parallel MOPAC takes advantage of PeIGS's optimized parallel

eigensystem solvers' performance. PeIGS is distributed as part of NWCHEM.

NWCHEM is available at:

http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html.

� Have GNU make installed. PeIGS requires GNU make version 3.68 or higher

to install correctly.

The tar and gzip-ed parallel MOPAC source code is called mopac.<mmmyy>.tar.gz.

Where \mmm"and \yy" are the month and year of the release date. Create a MOPAC

home directory and unpack mopac.<mmmyy>.tar.gz in the MOPAC home directory.

We will call the MOPAC home directory $fMOPAC HOMEg in the remaining por-

tion of this document. Parallel MOPAC is distributed in gzip compressed tar �le.

You can use either one of the following commands to unpack it.

� gtar xfz mopac.dec95.tar.gz

� gzcat mopac.dec95.tar.gz | tar xf -

To justify this, two �les and one directory will appear in the current directory. The

directory structure looks like Figure A.1. Where con�gure is the con�guration script,

Make�le is the top level make�le of MOPAC. Directory Src holds the second level

make�les and all source �les.

Con�gure parallel MOPAC As a sort of prelude, MOPAC needs to know the

architecture and operating system of the target machine and where the required

software PeIGS and MPI are. Shell script con�gure, which resides in the top level of

the parallel MOPAC directory tree, can automatically detect the type of machine and

operating system as well as get the correct settings for compiling parallel MOPAC.

Appendix A. Installing Parallel MOPAC 167

Dir $fMOPAC HOMEg

?

File con�gure

File Make�le

Dir Src

Dir Install

Dir Con�g (Con�guration subdirectory)

Dir sun4.SunOs.ch p4 (Object subdirectory)

Dir rs6000.AIX.ch eui (Object subdirectory)

Dir i486.Linux.ch p4 (Object subdirectory)

Dir Other ARCH.OS.DEV object subdirectories

Figure A.1: MOPAC directory structure

It also attempts to �nd the required software in their normal places if, in short, they

are not speci�ed in the command line options of con�gure. Users can use command

line options to force con�gure to use the settings users want parallel MOPAC to use.

You will need to change working directory to $fMOPAC HOMEg to run con�gure.

The syntax of con�gure is as follow:

� Command :

configure [-p PeIGS-dir][-m MPI-dir][-d MPI-device][-i install-dir]

con�gure is a shell script. According to what is presumably the simplest inter-

pretation, it creates a con�guration subdirectory, Con�g, and generates a ma-

chine speci�c con�guration �le, make.incl.MACHNAME for making MOPAC.

Where MACHNAME is the machine base name. e.g. if you are con�gur-

ing MOPAC on machine nova.npac.syr.edu, you will get a con�guration �le

make.incl.nova. con�gure also creates an object �le directory, ARCH.OS.DEV,

to hold object �les. Where ARCH is the architecture name, OS is the operating

Appendix A. Installing Parallel MOPAC 168

system name, and DEV is the MPI device name. e.g.. If you are con�gur-

ing MOPAC on a IBM SP-2 using ch eui, con�gure will create subdirectory

rs6000.AIX.ch eui for you.

� Options:

-p PeiGS-dir : The location of PeIGS. MOPAC will look for PeIGS libraries

libpeigs.a, liblapack.a, and libblas.a in this directory. If you have PeIGS

libraries installed in directory /foo/bar/Pnl/peigs2.1-SunOs, then, to be

resourceful, you should use: -p /foo/bar/Pnl/peigs2.1-SunOs. con�gure

will search for PeIGS in some default place if the -p option is not used.

The default directories are:

1. $fMOPAC HOMEg/peigs-OS

2. $fMOPAC HOMEg/Peigs-OS

3. $fMOPAC HOMEg/PEIGS-OS

4. $fMOPAC HOMEg/peigs

5. $fMOPAC HOMEg/Peigs

6. $fMOPAC HOMEg/PEIGS

7. $fHOMEg/Pnl/peigs2.1

PeIGS became the oÆcial eigensolver of Chemistry package NWCHEM

developed by PNNL. The libraries were moved to new locations. The new

locations depend on the platform that NWCHEM runs on. Environment

variables NWCHEM TOP and NWCHEM TARGET must be speci�ed to

compile NWCHEM properly. The following new locations will be searched

for PeIGS libraries before the traditional locations are searched.

1. /usr/local/lib/$fNWCHEM TARGETg

2. /usr/local/nwchem/lib/$fNWCHEM TARGETg

3. $fNWCHEM TOPg/lib/$fNWCHEM TARGETg

-m MPI-dir : This option speci�es the location of MPI. Some default locations

will be searched if this option is not used.

Appendix A. Installing Parallel MOPAC 169

1. $fHOMEg/[mpi,mpich]

2. /usr/local/[mpi,mpich]

3. /usr/[mpi,mpich]

4. /usr/local

5. /usr

If MPI is not installed in the above locations, you need to specify it by -m

option to force the con�gure script to look for it.

-d MPI-device : This option speci�es the device MPI is using. con�gure shell

script can determine the MPI device for most architectures automatically.

This option is used only for machines supporting more than one MPI

communication device and the con�gure shell script cannot determineMPI

device correctly. For example, con�gure checks /dev/cmni for CM-5. If

you are con�guring and compiling MOPAC on a regular SUN 4 without a

CM-5 NI installed, you need to specify \-d ch cmmd" if you do not want

to use default device. On this occasion, the default device of IBM SP-2

is ch eui. If you want to use ch p4 instead of ch eui, you need to specify

\-d ch p4."

-i install-dir : This option speci�es the directory where you want to put par-

allel MOPAC. The default directory is $fMOPAC HOMEg/Install.

- -checkcon�g : This option is used in MOPAC internally.

Compile parallel MOPAC After con�gure, you can just use make to compile

parallel MOPAC.

� Command: make [nodeprogram] [termprogram] [avsprogram] [nodeclean]

[termclean] [avsclean] [clean]

� All object �les and the �nal executables will be kept in the object �le directory.

The executables are:

mopacnode : MOPAC node program.

Appendix A. Installing Parallel MOPAC 170

mopacterm : MOPAC host program for people that do not have AVS.

mopacavs : MOPAC host program for people that have AVS.

geomcntl : AVS module which controls the view of atom structures.

mopacshow : AVS module which displays static atom structures.

� Options:

nodeprogram : generate mopacnode.

termprogram : generate mopacterm.

avsprogram : generate mopacavs, geomcntl, and mopacshow.

cleannode : clean mopacnode and associated object �les.

cleanterm : clean mopacterm.

cleanavs : clean AVS associated �les.

clean : clean all object �les.

If no option is given, mopacnode and mopacterm are generated.

Install parallel MOPAC You can use \make install" to install parallel MOPAC.

\make install" will install the intended parallel MOPAC modules into the destination

directory speci�ed in con�gure.

Appendix B. Data Visualization and AVS Parallel Modules 171

Appendix B

Data Visualization and AVS

Parallel Modules

The increasing power of supercomputers and graphic systems has made it possible for

scienti�c and engineering users to use real-time interactive graphic visualization on

their data and results. In the areas as diverse as
uid dynamics, molecular modeling,

geophysics, and other computer-aided engineering, scientists and engineers no longer

need to use their imagination to �gure out what their data looks like from numbers

and tables. It is now possible to show the physical meaning of those numbers and

tables by the means of graphics. Two dimensional graphics show
at pictures. Three

dimensional graphics enable users to see data preferably from di�erent viewpoints.

Of value, animations even show the progress and change of data over time.

Visual data requires three processes to be able to display on screen.

Filtering It may be diÆcult to show the raw data on a screen. For example, the

air
ow analysis over the wings of an airplane contains one million data points.

It is impossible to display all one million data points on screen. For practical

reasons, some data points must be merged or removed before producing the

graph.

Mapping The data can be represented in either geometric or image representations.

Appendix B. Data Visualization and AVS Parallel Modules 172

Geometric representation uses triangles, lines, spheres, and other geometric

primitives to represent the data while image representation uses colored pixels

to display two dimensional pictures.

Rendering The geometric image representations must be converted into the graphic

languages or use a graphic software to display the pictures on graphic devices

like screens or printers.

This brings us to the programming for displaying graphic data which is compli-

cated and time-consuming. For it is the contention that scientists and engineers would

rather use the familiar number and table representation if they would otherwise need

to spend a lot of time on graphical programming. Application Visualization System

(AVS) is a visualization system which provides powerful but easy to use programming

tools and libraries for graphic programming [2].

AVS Introduction

From this frame of constructs, one of the most important features of AVS is its user

interface. All this refers to the fact that the AVS user interface is designed to be easy

to use such that the users can concentrate on their specialty without traditionally

wasting much time on graphical programming. AVS users can namely construct their

visualization applications by combining software components into executable
ow

networks, which consist of modules and links, to implement speci�c functions in the

visualization processes.

The
ow networks are built from an elemental menu of modules by using a visual

programming interface called the AVS Network Editor. The AVS system allows users

to dynamically connect software modules to create data
ow networks for scienti�c

computations. The modules are the AVS computational units. Modules pass data of

mutually agreed upon types to each other. AVS supports a wide range of ready-to-use

standard modules. Many general purpose applications can be constructed by using

only the standard modules. Users can build their own customized modules in C or

FORTRAN to meet their needs [1].

Appendix B. Data Visualization and AVS Parallel Modules 173

AVS can display visualization data in either a pixel-based method or a geometry-

based method. A pixel-based visualization strategy is simply taking a raw data

value and translating it into a number that represents a color. AVS accomplishes

this translation with a table lookup called a colormap. Colormaps can be de�ned,

saved, and retrieved by users. AVS also provides a Colormap Editor tool to generate

colormaps easily and quickly.

Pixel-based visualization shows only two dimensional data. Higher dimensional

data needs to be mapped to two dimensions in order to be displayed. Such data

can be converted to pixels by slicing or blending. Slicing makes a two dimensional

cross-section through a three dimensional block of pixels. If a three dimensional

block of pixels is passed through a colormap whose auxiliary �eld contains opacity

or transparency data, pixels can be blended along the line of sight. By following

this procedure, it produces a two-dimensional picture of what appears to be in three-

dimensional space.

As a general proposition, a geometry-based visualization strategy maps the raw

data into the vertices of geometric objects. The values of data are used to assign

colors to the vertices by using the AVS colormap. There are several techniques to

create geometric descriptions from raw data. For example, an atom of a molecule

can be potentially represented as a sphere. Color and transparency can be used to

represent the type of atom.

AVS supports three viewer subsystems to render visual data on the screen.

Image Viewer subsystems The AVS Image Viewer subsystem is an interactive

tool for displaying, manipulating, and processing images.

Geometry Viewer subsystems The AVS Geometry Viewer is an interactive tool

for manipulating and viewing one or more three dimensional objects of the

fundamental AVS data type geometry.

Graph Viewer subsystems The AVS Graph Viewer subsystem is an interactive

tool for creating XY or contour plots of data.

Appendix B. Data Visualization and AVS Parallel Modules 174

Users can use the three viewers interactively from the AVS main control panel. The

three viewers also exist as AVS built-in modules and can be connected to users' AVS

networks in the AVS Network Editor.

AVS Modules

The module is the AVS computational unit. Each module can perform its function

independently. Several modules can also work together to achieve a more complex

function. Modules take typed data as inputs and produce typed data as output. For

the most part, modules specify to the AVS kernel what data inputs they expect to

receive from other modules and data outputs they send out to other modules. User

interface parameters are also de�ned by modules to allow user interactions.

There are two kinds of modules, subroutine modules and coroutine modules. A

subroutine module acts like a subroutine. Its computation function is invoked by

AVS whenever its inputs or parameters change. AVS maintains a run queue. The

ow executive activates a subroutine module only when it is in the run queue. A

module is put into the run queue when one of its inputs or parameters has been

modi�ed. A coroutine module executes independently. The anticipation is that it

obtains inputs from AVS and sends outputs to AVS as needed. Coroutine modules

are mainly used in simulations or animations.

User AVS modules are implemented as separate UNIX programs. They commu-

nicate with the AVS kernel using the Berkeley UNIX socket mechanism and shared

memory. UNIX domain sockets are persistently used where possible for eÆciency.

TCP domain sockets are used on remote modules or where UNIX domain sockets

cannot be used.

Besides primitive data such as integers,
oating points, and strings, AVS supports

the following aggregate data types:

Field One, two and three dimensional grids of numbers with scaler values or vectors,

integer or
oating point values at each grid point. The grids can be:

Appendix B. Data Visualization and AVS Parallel Modules 175

Uniform the grids are regular

Rectilinear the grids' physical spaces are orthogonal but the distances between

grid points can be variables.

Irregular no restriction on the correspondence between computational space

and physical space.

Unstructured Cell Data geometric objects composed of discrete cells with associ-

ated data.

Molecular Data Type molecular and quantum structures.

Images Two dimensional pictures.

Geometric Data Three dimensional objects that describe the geometry.

An AVS module communicates with other modules via parameters and ports. A

parameter is a variable that has a constant value during an invocation of a module.

AVS users can change the value of parameters by manipulating their associated wid-

gets. A widget is a virtual input device such as a dial or a push button. Besides

parameters, a module can have zero or more input and output ports. Like arguments

of a subroutine, a port is a channel through which data pass to or from other modules.

When an AVS network is constructed, modules are connected to each other via

ports, though it is not necessary for all input and out ports of a module to be con-

nected to other modules. AVS ports are color coded by its data type. Ports with the

same data type can be connected to pass data from one module to another. Several

modules can be connected to perform more powerful functions. An AVS network is

used to con�gure modules together into a strong visualization application. An AVS

Network Editor subsystem is ultimately used to help users create AVS networks.

AVS communications

The purpose of constructing a network is to provide a data processing pipeline. The

output of one module becomes an input of another particularly in regard at each step.

Appendix B. Data Visualization and AVS Parallel Modules 176

AVS Kernel
and

other modules

remote
module m1

remote
module m2

�

�

�

�

�

�

�

�

�

�
�3

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q
Qs

Machine M1

Machine M2

Control
to m1

outputs to
other modules

Control to m2

inputs from
other modules

data from
m1 to m2

�
�
�
�
�

�
�
�
�

��+

Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

?

Figure B.1: AVS Directly Module Communication

Data enters AVS,
ows through the modules of a network, and �nally is rendered on

a display.

AVS modules, as described in the previous section, are activated only when one

of their parameters or input ports is changed. AVS uses a
ow executive to supervise

data movement and to invoke modules in the correct order. AVS uses a remote

procedure call mechanism to establish communications between modules. When a

module starts, AVS creates a new process in which that module runs. AVS also sets

up a connection between the module and the AVS kernel by using Berkeley UNIX

socket mechanism.

AVS supports remote execution of modules. An AVS network can distribute its

modules on several di�erent machines. These machines may or may not have the

same architecture. AVS uses eXternal Data Representation (XDR) format to pass

data between the machines of a heterogeneous network.

All data passing between modules is controlled by the AVS kernel. Remote mod-

ule m1 needs to send its output data back to the AVS kernel and the AVS kernel

Appendix B. Data Visualization and AVS Parallel Modules 177

re-sends the data out to the down stream remote module m2. To reduce the commu-

nication overhead, AVS supports Direct Module Communication (DMC). As shown

in Figure B.1, suppose an AVS network contains a remote module m1 running on

machine M1 and remote module m2 running on machine M2. An output port of

m1 connects to an input port of m2. An additional direct module communication

socket between m1 and m2 will be created by AVS to send data directly from m1 to

m2 without sending data through the AVS kernel. AVS performs these operations of

socket communication transparently to users.

Remote modules are coarse grained programs which are distributed on several

hosts and work cooperatively. The communication between modules is controlled,

but not transfered, by the AVS kernel. The AVS DMC provides convenient socket

communication between the remote modules running in parallel. Users can easily cre-

ate connections between modules by clicking on the ports of the icons of the modules.

The communication is transparent to users even if the modules are run on heteroge-

neous hosts. The AVS kernel is also smart enough to use shared memory to make the

connections if both modules are on the same host.

Appendix B. Data Visualization and AVS Parallel Modules 178

Appendix C. Computational Complexity of Subroutine DHC 179

Appendix C

Computational Complexity of

Subroutine DHC

The computational complexity of subroutine DCART cannot be determined by just

analyzing the consonant loop structure of the subroutine itself. There are subroutine

calls inside of loops. The computational complexity of a loop with subroutine calls

equals the product of the computational complexity of the loop and the computational

complexity of the subroutines called inside the loop. The computational complexity

of subroutine DCART cannot be determined without knowing the computational

complexity of the subroutines called inside the loop.

The most complicated subroutine called by subroutine DCART is subroutine

DHC. Figure C.1 shows that subroutine DHC is called inside of an O(n2) two-

level DO-loop of DCART. The computational complexity of the two-level DO-loop is

O(n2�computational complexity of DHC). We will break into these subroutines in

\depth �rst" order to �nd out their computational complexity and derive the overall

computational complexity of subroutine DHC.

Subroutine JAB There is a two-level DO-loop in subroutine JAB. The outer loop

has constant lower bound and upper bound of 1 and 4. The higher bound of inner

Appendix C. Computational Complexity of Subroutine DHC 180

SUBROUTINE DHC

SUBROUTINE FOCK2

SUBROUTINE JAB

SUBROUTINE KAB

SUBROUTINE H1ELEC

SUBROUTINE DIAT

SUBROUTINE DIAT2

SUBROUTINE SET

SUBROUTINE AINTGS

SUBROUTINE BINTGS

SUBROUTINE COE

FUNCTION SS

SUBROUTINE BFN

SUBROUTINE GOVER

FUNCTION HELECT

SUBROUTINE ROTATE

SUBROUTINE REPP

SUBROUTINE SOLROT

SUBROUTINE ROTATE

SUBROUTINE REPP

Figure C.1: Subroutine DHC calling tree

Appendix C. Computational Complexity of Subroutine DHC 181

loop is the index of the outer loop. The two-level loop will iterate a �xed number of
(1+4)�4

2
= 10 times. The computational complexity of this subroutine is O(1).

Subroutine KAB There are two two-level DO-loops in subroutine KAB. Both

two-level DO-loops iterate a �xed number of 4 � 4 = 16 times. The computational

complexity of this subroutine is O(1).

Subroutine FOCK2 Besides the loops with constant lower bound and upper

bound, this subroutine has some DO-loops with variable bounds. A one-level DO-

loop with variable MAXORB upper bound makes the computational complexity of

subroutine FOCK2 at least O(n). However, this O(n) loop is inside of an \IF" struc-

ture which is executed only when FOCK2 is �rst time called. This O(n) loop should

not be included in the established computational complexity analysis since it is used

only once in the whole program execution.

A two-level DO-loop with input argument NUMAT as the upper bound of the

outer loop and the index of the outer loop as the upper bound of the inner loop

produces a O(NUMAT
2) computational complexity. Since NUMAT is a foreseen

argument, we need to �nd out what is passed in from the caller of subroutine FOCK2.

Subroutine FOCK2 forms the two-electron two-center repulsion part of the Fock ma-

trix. It is called in two subroutines. The input argument NUMAT equals the num-

ber of atoms when subroutine FOCK2 is called from subroutine ITER and makes the

computational complexity of subroutine FOCK2 O(n2). However, when subroutine

FOCK2 is called by subroutine DHC in a derivative, it equals a small �x number 2.

Although subroutine FOCK2 has some loops related to the input molecule size,

they are not in e�ect in the way called from DHC. Therefore, the computational

complexity of subroutines FOCK2 itself is O(1). The computational complexity of

the subroutines called by FOCK2 are both O(1). By now, the overall computational

complexity of this subroutine is O(1).

Appendix C. Computational Complexity of Subroutine DHC 182

Subroutine AINTGS There is one one-level DO-loop perceived in subroutine

AINTGS. The upper bound of the DO-loop is the number of types of the overlaps

between atomic orbitals of atoms. There are six of them. The DO-loop iterates

maximum of six times. The computational complexity of this subroutine is O(1).

Subroutine BINTGS There is one two-level DO-loop in subroutine BINTGS.

The outer loop iterates a maximum number of six times. The inner loop has a �xed

upper bound of 6, 7, 12, or 15 depending on an input argument. No matter what

value the input argument is, the upper bound of this loop is a small constant. The

computational complexity of this subroutine is O(1).

Subroutine SET This subroutine has no loop at all. The computational complex-

ity of the subroutines it calls are both O(1). The computational complexity of this

subroutine is O(1).

Subroutine DIAT2 Like subroutine BINTGS, this subroutine has only one loop

with constant bounds. The computational complexity of the subroutines it calls is

O(1). In accordance with this, the overall computational complexity of this subroutine

is O(1).

Subroutine COE This subroutine has only one loop with constant bounds. The

computational complexity of this subroutine is O(1).

Subroutine BFN Like subroutine BINTGS, the outer loop of the only two-level

DO-loop in subroutine BFN iterates a maximum number of six times and the inner

loop has a �xed upper bound of 6, 7, 12, and 15 depends on a input argument. Both

inner and outer loops are O(1). The computational complexity of this subroutine is

O(1).

Appendix C. Computational Complexity of Subroutine DHC 183

Function SS The DO-loops in function SS have either �xed bounds or small vari-

able upper bounds. The computational complexity of the subroutine it calls is O(1).

The computational complexity of this subroutine is O(1). However, the six-level DO-

loop with maximum 13 iterations for each level may produce up to 136 = 4826809

iterations and take a lot of CPU time. In any event, this is an important reason

that makes subroutine DCART look like a computationally intensive subroutine in

the time pro�le of MOPAC.

Subroutine GOVER There are two two-level DO-loops in another two-level DO-

loop. This produces two four-level loops with constant number of 4� 4� 6� 6 = 576

iterations. The computational complexity of this subroutine is O(1).

Subroutine DIAT The DO-loops in subroutine DIAT have either �xed bounds or

small variable upper bounds. The computational complexity of the subroutines it

calls are all O(1). The computational complexity of this subroutine is O(1).

Subroutine H1ELEC All DO-loops in subroutine H1ELEC have either �xed bounds

or small variable upper bounds except for two two-level DO-loops. The two two-level

DO-loops have variables for their upper bounds. Fortunately, in such a distinction,

the two two-level DO-loops are both applied on a 9� 9 matrix. The maximum num-

ber of iterations the two two-level DO-loops are 81. The computational complexity

of the subroutines it calls are all O(1). The overall computational complexity of this

subroutine is O(1).

Function HELECT There is one two-level DO-loop in function HELECT. The

upper bound of the inner loop depends on the index of the outer loop. The upper

bound of the outer loop N is an argument of subroutine HELECT. Like subroutine

FOCK2, we need to examine what values are passed in. In addition to subroutine

DHC, subroutine HELECT is called by subroutine ITER and DERI1, too. Argument

N is passed with NORBS, the number of atomic orbitals, when HELECT is called in

Appendix C. Computational Complexity of Subroutine DHC 184

ITER and DERI1 and has computational complexityO(n2). However, when called in

subroutine DHC, HELECT is used to calculate the energy contributions from those

pairs of atoms that have been moved by subroutine DERIV. The value of N is derived

from NATORB, which is the number of atomic orbitals per atom. The maximum

possible value of NATORB is 9, which makes the computational complexity of the

two-level DO-loop and subroutine HELECT O(1).

Subroutine REPP The DO-loops in subroutine REPP have �xed bounds. The

computational complexity of this subroutine is O(1).

Subroutine ROTATE The four DO-loops in subroutine ROTATE have �xed

bounds. The computational complexity of the subroutine it calls is O(1). The com-

putational complexity of this subroutine is O(1).

Subroutine SOLROT The DO-loops in subroutine DIAT have either �xed bounds

or small variable upper bounds. The computational complexity of the subroutine it

calls is O(1). The computational complexity of this subroutine is O(1).

Subroutine DHC The DO-loops in subroutine DHC have either �xed bounds or

small variable upper bounds. The computational complexity of all subroutines it calls

is O(1). Therefore, the overall computational complexity of subroutine DHC is O(1).

Appendix D. Results of Parallel MOPAC 185

Appendix D

Results of Parallel MOPAC

This appendix contains tables of time and speed-up of running parallel MOPAC by

using di�erent data sets. The time unit in the tables is second. The time shown in

the small data sets is the total time of the speci�c parallel modules while the time

shown in the big data sets is the average time of one instance of call to the parallel

modules. The results in the �rst column (one node) are measured by the sequential

MOPAC. The benchmark of small data �les is run on a 8-node SGI Power Challenge

and a 80-node IBM SP2. The benchmark of small data �les is run on a 16-node SGI

Power Challenge and a 80-node IBM SP2. To prevent shared memory interference

from other processes in SGI Power Challenge machines, the machines were reserved

for exclusive use when running benchmark.

The data �les used for benchmark are listed in Figure D.1.

Appendix D. Results of Parallel MOPAC 186

legend data number of number of data size

�le name light atoms heavy atoms nlight + 4 � nheavy

a apsbtest.dat 38 25 138

b chlorin.dat 16 24 112

c metenk.dat 30 41 194

d porphin.dat 14 24 110

e tetrabenz.dat 20 42 188

(a) Small data �les

legend data number of number of data size

�le name light atoms heavy atoms nlight + 4� nheavy

A 1crn.dat 0 327 1308

B vcop 4.dat 279 169 955

C c60 3.dat 0 180 720

D c60 2.dat 0 120 480

E porphyrn.dat 33 58 265

(b) Big data �les

Table D.1: Data �les used for benchmark

Appendix D. Results of Parallel MOPAC 187

unit: sec Number of nodes

1 2 3 4 5 6 7

a SP2 304.411 339.272 159.552 145.435 144.453 136.136 117.446

PowCha 196.484 106.864 77.488 65.265 59.169 55.507 79.931

b SP2 11.967 8.841 7.607 6.626 6.204 5.616 5.424

PowCha 5.608 3.260 2.463 2.195 1.891 1.842 2.801

c SP2 16.444 11.916 8.806 8.385 7.239 6.625 6.225

PowCha 8.446 4.702 3.401 2.886 2.535 2.218 2.403

d SP2 62.272 46.813 37.920 31.176 26.693 22.403 21.278

PowCha 26.219 15.388 11.494 10.265 8.757 8.463 14.422

e SP2 192.419 134.876 103.009 89.735 88.869 83.396 81.478

PowCha 135.358 101.319 64.097 49.520 44.449 40.735 55.371

(a) run time

Number of nodes

1 2 3 4 5 6 7

a SP2 1.000 0.897 1.908 2.093 2.107 2.236 2.592

PowCha 1.000 1.839 2.536 3.011 3.321 3.540 2.458

b SP2 1.000 1.354 1.573 1.806 1.929 2.131 2.206

PowCha 1.000 1.720 2.276 2.555 2.966 3.045 2.002

c SP2 1.000 1.380 1.867 1.961 2.272 2.482 2.642

PowCha 1.000 1.796 2.483 2.926 3.331 3.807 3.515

d SP2 1.000 1.330 1.642 1.997 2.333 2.780 2.927

PowCha 1.000 1.704 2.281 2.554 2.994 3.098 1.818

e SP2 1.000 1.427 1.868 2.144 2.165 2.307 2.362

PowCha 1.000 1.336 2.112 2.733 3.045 3.323 2.445

(b) speed-up

Table D.2: Subroutine DENSIT run time and speed-ups with small data sets

Appendix D. Results of Parallel MOPAC 188

unit: sec Number of nodes

1 2 3 4 5 6 7

a SP2 796.259 511.074 292.599 249.008 219.945 201.816 174.623

PowCha 564.587 297.926 208.437 173.169 151.613 139.908 131.189

b SP2 24.829 13.411 9.771 8.036 6.888 6.197 5.752

PowCha 17.894 9.665 7.057 6.055 5.270 4.558 4.591

c SP2 0.000 0.000 0.000 0.000 0.000 0.000 0.000

PowCha 0.000 0.000 0.000 0.000 0.000 0.000 0.000

d SP2 119.026 65.711 47.461 39.121 34.014 30.044 28.217

PowCha 86.004 48.262 35.030 29.141 24.677 22.382 22.860

e SP2 813.644 450.142 300.387 236.582 209.818 209.370 201.550

PowCha 607.140 372.497 219.820 183.664 183.281 162.258 165.133

(a) run time

Number of nodes

1 2 3 4 5 6 7

a SP2 1.000 1.558 2.721 3.198 3.620 3.945 4.560

PowCha 1.000 1.895 2.709 3.260 3.724 4.035 4.304

b SP2 1.000 1.851 2.541 3.090 3.605 4.007 4.317

PowCha 1.000 1.851 2.535 2.955 3.395 3.926 3.898

c SP2 NA NA NA NA NA NA NA

PowCha NA NA NA NA NA NA NA

d SP2 1.000 1.811 2.508 3.043 3.499 3.962 4.218

PowCha 1.000 1.782 2.455 2.951 3.485 3.843 3.762

e SP2 1.000 1.808 2.709 3.439 3.878 3.886 4.037

PowCha 1.000 1.630 2.762 3.306 3.313 3.742 3.677

(b) speed-up

Table D.3: Subroutine DIAG run time and speed-ups with small data sets

Appendix D. Results of Parallel MOPAC 189

unit: sec Number of nodes

1 2 3 4 5 6 7

a SP2 112.896 102.863 68.763 62.548 60.635 57.188 56.474

PowCha 88.278 64.331 49.109 42.430 38.298 36.635 38.197

b SP2 2.231 1.696 1.433 1.338 1.306 1.320 1.282

PowCha 1.802 1.359 1.061 1.053 0.874 0.819 0.965

c SP2 68.340 48.532 37.178 32.227 28.821 26.699 25.669

PowCha 57.940 40.696 30.214 25.123 22.509 20.541 22.301

d SP2 3.918 3.348 2.364 2.200 2.215 2.149 2.131

PowCha 2.941 2.186 1.694 1.557 1.489 1.440 1.507

e SP2 14.884 10.554 8.297 6.639 6.334 6.286 4.976

PowCha 11.518 8.718 5.922 5.167 4.616 4.355 4.899

(a) run time

Number of nodes

1 2 3 4 5 6 7

a SP2 1.000 1.098 1.642 1.805 1.862 1.974 1.999

PowCha 1.000 1.372 1.798 2.081 2.305 2.410 2.311

b SP2 1.000 1.315 1.557 1.667 1.709 1.690 1.740

PowCha 1.000 1.326 1.699 1.712 2.062 2.200 1.867

c SP2 1.000 1.408 1.838 2.121 2.371 2.560 2.662

PowCha 1.000 1.424 1.918 2.306 2.574 2.821 2.598

d SP2 1.000 1.170 1.657 1.781 1.769 1.823 1.838

PowCha 1.000 1.345 1.737 1.890 1.976 2.042 1.952

e SP2 1.000 1.410 1.794 2.242 2.350 2.368 2.991

PowCha 1.000 1.321 1.945 2.229 2.495 2.644 2.351

(b) speed-up

Table D.4: Subroutine HQRII run time and speed-ups with small data sets

Appendix D. Results of Parallel MOPAC 190

unit: sec Number of nodes

1 2 3 4 5 6 7

a SP2 1367.938 1114.397 682.985 621.592 578.152 555.458 510.527

PowCha 969.034 585.026 455.363 406.419 367.736 359.898 363.343

b SP2 47.602 32.771 27.008 24.820 22.401 21.390 21.885

PowCha 31.987 20.645 16.929 16.609 14.691 13.666 15.693

c SP2 99.589 75.229 60.186 54.412 50.576 48.242 47.053

PowCha 79.758 59.708 48.034 42.336 39.360 36.299 38.371

d SP2 229.426 161.305 130.152 115.871 107.769 96.618 94.800

PowCha 143.974 95.618 78.701 70.853 63.712 60.486 66.376

e SP2 1159.408 731.598 553.803 469.579 443.620 436.824 425.806

PowCha 859.377 587.956 395.903 345.839 335.464 313.960 330.130

(a) run time

Number of nodes

1 2 3 4 5 6 7

a SP2 1.000 1.228 2.003 2.201 2.366 2.463 2.679

PowCha 1.000 1.656 2.128 2.384 2.635 2.693 2.667

b SP2 1.000 1.453 1.763 1.918 2.125 2.225 2.175

PowCha 1.000 1.549 1.889 1.926 2.177 2.341 2.038

c SP2 1.000 1.324 1.655 1.830 1.969 2.064 2.117

PowCha 1.000 1.336 1.660 1.884 2.026 2.197 2.079

d SP2 1.000 1.422 1.763 1.980 2.129 2.375 2.420

PowCha 1.000 1.506 1.829 2.032 2.260 2.380 2.169

e SP2 1.000 1.585 2.094 2.469 2.614 2.654 2.723

PowCha 1.000 1.462 2.171 2.485 2.562 2.737 2.603

(b) speed-up

Table D.5: Total run time and speed-ups with small data sets

Appendix D. Results of Parallel MOPAC 191

unit: sec Number of nodes

1 2 4 8 16 32

A SP2 432.344 218.564 113.306 56.430 29.437 17.359

PowCha 164.185 84.680 43.309 22.757 14.276 NA

B SP2 178.345 89.421 45.069 23.576 13.136 7.655

PowCha 60.147 32.025 16.692 8.905 5.736 NA

C SP2 74.994 37.437 19.267 10.267 5.848 3.804

PowCha 22.481 11.439 5.989 3.306 2.494 NA

D SP2 11.610 6.047 3.253 1.885 1.253 0.991

PowCha 6.209 3.194 1.691 0.965 0.837 NA

E SP2 1.117 0.625 0.385 0.277 0.236 0.234

PowCha 0.894 0.467 0.258 0.157 0.178 NA

(a) run time

Number of nodes

1 2 4 8 16 32

A SP2 1.000 1.978 3.816 7.662 14.687 24.905

PowCha 1.000 1.939 3.791 7.215 11.500 NA

B SP2 1.000 1.994 3.957 7.565 13.577 23.297

PowCha 1.000 1.878 3.603 6.754 10.485 NA

C SP2 1.000 2.003 3.892 7.304 12.823 19.717

PowCha 1.000 1.965 3.754 6.801 9.013 NA

D SP2 1.000 1.920 3.569 6.159 9.263 11.714

PowCha 1.000 1.944 3.672 6.436 7.417 NA

E SP2 1.000 1.786 2.898 4.039 4.722 4.774

PowCha 1.000 1.913 3.460 5.697 5.019 NA

(b) speed-up

Table D.6: Subroutine DENSIT run time and speed-ups for big data sets

Appendix D. Results of Parallel MOPAC 192

unit: sec Number of nodes

1 2 4 8 16 32

A SP2 462.818 236.085 119.434 60.631 31.872 19.851

PowCha 317.223 160.885 82.575 43.601 26.733 NA

B SP2 188.194 94.464 47.775 24.811 13.870 8.230

PowCha 124.316 62.888 32.636 17.492 10.853 NA

C SP2 76.651 38.805 19.550 10.225 5.792 3.739

PowCha 50.344 25.661 13.281 7.245 4.877 NA

D SP2 21.404 10.728 5.808 3.038 1.811 1.292

PowCha 14.270 7.498 3.944 2.242 1.570 NA

E SP2 3.353 1.727 0.927 0.544 0.388 0.323

PowCha 2.223 1.161 0.638 0.381 0.277 NA

(a) run time

Number of nodes

1 2 4 8 16 32

A SP2 1.000 1.960 3.875 7.633 14.521 23.315

PowCha 1.000 1.972 3.842 7.276 11.867 NA

B SP2 1.000 1.992 3.939 7.585 13.568 22.866

PowCha 1.000 1.977 3.809 7.107 11.454 NA

C SP2 1.000 1.975 3.921 7.496 13.234 20.498

PowCha 1.000 1.962 3.791 6.949 10.323 NA

D SP2 1.000 1.995 3.686 7.046 11.817 16.562

PowCha 1.000 1.903 3.618 6.365 9.088 NA

E SP2 1.000 1.941 3.617 6.168 8.639 10.366

PowCha 1.000 1.915 3.485 5.829 8.039 NA

(b) speed-up

Table D.7: Subroutine DIAG run time and speed-ups for big data sets

Appendix D. Results of Parallel MOPAC 193

unit: sec Number of nodes

1 2 4 8 16 32

A SP2 567.300 373.266 201.211 111.643 66.334 38.937

PowCha 814.361 505.417 250.637 109.269 61.399 NA

B SP2 222.215 142.709 78.000 45.361 28.728 18.221

PowCha 291.704 188.225 77.465 39.845 26.442 NA

C SP2 94.487 61.405 33.979 20.160 13.104 9.425

PowCha 110.436 62.884 30.124 17.618 12.215 NA

D SP2 29.858 19.930 11.186 7.016 4.941 3.874

PowCha 28.719 17.336 9.655 5.987 4.777 NA

E SP2 5.698 3.979 2.446 1.770 1.519 1.515

PowCha 4.702 3.296 1.982 1.438 1.565 NA

(a) run time

Number of nodes

1 2 4 8 16 32

A SP2 1.000 1.520 2.819 5.081 8.552 14.570

PowCha 1.000 1.611 3.249 7.453 13.263 NA

B SP2 1.000 1.557 2.849 4.899 7.735 12.195

PowCha 1.000 1.550 3.766 7.321 11.032 NA

C SP2 1.000 1.539 2.781 4.687 7.211 10.025

PowCha 1.000 1.756 3.666 6.268 9.041 NA

D SP2 1.000 1.498 2.669 4.256 6.043 7.707

PowCha 1.000 1.657 2.974 4.797 6.011 NA

E SP2 1.000 1.432 2.330 3.219 3.751 3.760

PowCha 1.000 1.426 2.372 3.269 3.005 NA

(b) speed-up

Table D.8: Subroutine HQRII run time and speed-ups for big data sets

Appendix D. Results of Parallel MOPAC 194

Number of nodes

1 2 4 8 16 32

A SP2 1.000 1.924 3.764 7.370 13.838 22.531

PowCha 1.000 1.935 3.782 7.267 11.856 NA

B SP2 1.000 1.954 3.834 7.278 12.809 21.380

PowCha 1.000 1.920 3.761 7.030 11.170 NA

C SP2 1.000 1.940 3.793 7.106 12.258 18.551

PowCha 1.000 1.944 3.762 6.818 9.845 NA

D SP2 1.000 1.929 3.530 6.417 10.156 13.544

PowCha 1.000 1.884 3.534 6.098 8.174 NA

E SP2 1.000 1.825 3.151 4.792 6.042 6.622

PowCha 1.000 1.830 3.180 4.944 5.746 NA

(a) Best case - Assuming the non-parallelable part is O(1)

Number of nodes

1 2 4 8 16 32

A SP2 1.000 1.895 3.596 6.653 11.367 16.511

PowCha 1.000 1.905 3.612 6.569 10.015 NA

B SP2 1.000 1.912 3.602 6.367 10.092 14.598

PowCha 1.000 1.881 3.538 6.181 9.068 NA

C SP2 1.000 1.887 3.505 6.023 9.204 12.227

PowCha 1.000 1.892 3.478 5.820 7.810 NA

D SP2 1.000 1.858 3.197 5.246 7.373 8.928

PowCha 1.000 1.817 3.200 5.039 6.309 NA

E SP2 1.000 1.746 2.815 3.960 4.722 5.049

PowCha 1.000 1.749 2.837 4.057 4.549 NA

(b) Worst case - Assuming the non-parallelable part is O(N2)

Table D.9: Projected overall speed-ups for big data based on Table 5.1

Bibliography 195

Bibliography

[1] Advanced Visual Systems Inc., 300 Fifth Ave., Waltham, MA 02154. AVS De-

veloper's Guide. Release 4, May 1992.

[2] Advanced Visual Systems Inc., 300 Fifth Ave., Waltham, MA 02154. AVS User's

Guide. Release 4, May 1992.

[3] S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice Hall,

Englewood Cli�s, NJ, 1989.

[4] R. Alasdair, A. Bruce, J. G. Mills, and G. Smith. CHIMP/MPI User Guide.

Technical Report EPCC-KTP-CHIMP-V2-USER.1.2, Edinburgh Parallel Com-

puting Centre, 1994.

[5] R. J. Allen and I. J. Bush. Parallel Application Software on High Performance

Computers: Parallel Diagonalisation Routines. Technical report, The CCLRC

HPCI Centre at Daresbury Laboratory, August 1996. soft copy available at

http://www.dl.ac.uk/TCSC/Subjects/Parallel Algorithms/diags/diags.ps.

[6] I. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on Concurrent

Processors, volume II. Prentice Hall, Englewood Cli�s, NJ, 1990.

[7] K. K. Baldridge. Promises and Perils of Parallel Semiempirical Quantum Meth-

ods. In T. G. Mattson, editor, Parallel Computating in Computational Chem-

istry. Chapter 8, pages pp. 97-113. American Chemical Society, 1995.

[8] K. K. Baldridge. Parallel Implementation of Semiempirical Quantum Methods

for the Intel Platforms. Journal of Mathematical Chemistry, 19:pp. 87{109, 1996.

Bibliography 196

[9] R. J. Bartlett, N. Y. �Ohrn, G. D. Purvis III, and M. C. Zerner. Florida School

on Applied Molecular Orbital Theory. Lecture Notes, May 1990.

[10] D. Basak and D. K. Panda. Designing Clustered Multiprocessor Systems under

Packaging and Technological Advancements. IEEE Transactions on Parallel and

Distributed Systems, 7(9):pp. 962{978, 1996.

[11] D. J. Becker, T. Sterling, D. Savarese, B. Fryxell, and K. Olson. Communication

Overhead for Space Science Applications on the Beowulf Parallel Workstation.

In Proceedings of the 1995 International Conference on Parallel Processing, Pen-

tagon City, VA, August 1995.

[12] Y. Beppu and I. Ninomiya. HQRII: A Fast Diagonalization Subroutine. Com-

puters and Chemistry, 6(2):pp. 87{91, 1982.

[13] H. J. Bernstein and M. Goldstein. Parallel Implementation of Bisection for

the Calculation of Eigenvalues of Tridiagonal Symmetric Matrices. Computing,

37:pp. 85{91, 1986.

[14] B. H. Besler, K. M. Merz, Jr., and P. A. Kollman. Atomic Charges Derived from

Semiempirical Methods. Journal of Computational Chemistry, 11(4):pp. 431{

439, 1990.

[15] R. C. Bingham, M. J. S. Dewar, and D. H. Lo. Ground States of Molecules.

XXVI. MINDO/3. Calculations for Hydrocabons. Journal of the American

Chemical Society, 97(6):pp. 1294{1301, March 1975.

[16] L. S. Blackford, J. Choi, A. Cleary, A. Petitet, R. C. Whaley, J. Demmel,

I. Dhillon, K. Stanley, J. Dongarra, S. Hammarling, G. Henry, and D. Walker.

ScaLAPACK: A Portable Linear Algebra Library for Distributed Memory Com-

puters - Design Issues and Performance. In Supercomputing '96 Proceedings

CD-ROM, Pittsburgh, PA, November 1996.

[17] S. H. Bokhari. Communication Overhead on the Intel iPSC/860 Hypercube.

Technical Report NASA Contractor Report: ICASE Interim Report No. 10,

NASA Langley Research Center, May 1990.

Bibliography 197

[18] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster Environment for

MPI. Technical report, Ohio Supercomputer Center, undated.

[19] R. Butler and E. Lusk. User's Guide to the P4 Parallel Programming System.

Technical Report ANL-92/17, Argonne National Laboratory, 1992.

[20] R. Butler and E. Lusk. Monitors, Messages, and Clusters: The p4 Paral-

lel Programming System. Parallel Computing, 20:pp. 547{564, April 1994.

Also Argonne National Laboratory Mathematics and Computer Science Divi-

sion preprint P362-0493.

[21] P. M. Campbell and E. A. Carmona. Hierarchical Domain Decomposition with

Unitary Load Balancing for Electromagnetic Particle-In-Cell Codes. IEEE, pages

pp. 943{950, 1990.

[22] Center of Excellence in Space Data and Information Sciences. Beowulf Project

at CESDIS. web page document at http://cesdis.gsfc.nasa.gov/beowulf.

[23] H. Y. Chang, S. Utku, M. Salama, and D. Rapp. A Parallel Householder Tridiago-

nalisation Stratagen Using Scattered Square Decomposition. Parallel Computing,

6:pp. 297{311, 1988.

[24] J. Choi, J. Dongarra, and D. Walker. The Design of a Parallel Dense Linear

Algebra Software Library: Reduction to Hessenberg, Tridiagonal and Bidiagonal

Forms. Numerical Algorithms, 10:pp. 379{400, 1995.

[25] D. E. Comer and D. L. Stevens. Internetworking with TCP/IP. Vol II: Design,

Implementation, and Internals. Prentice Hall, Englewood Cli�s, NJ, 1991.

[26] S. Dandamudi and D. Eager. Hierarchical Interconnection Networks for Multi-

computer Systems. IEEE Transactions on Computers, 39(6):pp. 786{797, June

1990.

[27] A. L. Decegama. The Technology of Parallel Processing Volume I: Parallel Pro-

cessing Architectures and VLSI Hardware. Prentice Hall Inc., Englewood Cli�s,

NJ, 1989.

Bibliography 198

[28] M. J. S. Dewar and G. P. Ford. Ground States of Molecules. 44. MINDO/3

Calculations of Absolute Heat Capacities and Entropies of Molecules without

Internal Rotations. Journal of the American Chemical Society, 99(24):pp. 7822{

7834, November 1977.

[29] M. J. S. Dewar and E. F. Healy. AM1: A New General Purpose Quan-

tum Mechanical Molecular Model. Journal of the American Chemical Society,

107(13):pp. 3902{3909, 1985.

[30] M. J. S. Dewar and W. Thiel. Ground States of Molecules. 38. The MNDO

Method. Approximations and Parameters. Journal of the American Chemical

Society, 99(15):pp. 4899{4907, July 1977.

[31] I. Dhillon, G. Fann, and B. Parlett. Application of a New Algorithm for the

Symmetric Eigenproblem to Computational Quantum Chemistry. In Proceedings

of the SIAM 8th Conference on Parallel Processing for Scienti�c Computing,

Minn, MN, March 1997.

[32] J. Dongarra and D. Sorensen. A Fully Parallel Algorithm for the Symmetric

Eigenproblem. SIAM Journal of Scienti�c Computing, 8:pp. 139{154, 1987.

[33] A. Edelman. Optimal Matrix Transposition and Bit Reversal on Hypercubes:

All-to-All Personalized Communication. Journal of Parallel and Distributed

Computing, 11:pp. 328{331, 1991.

[34] D. M. Elwood, G. I. Fann, and R. J. Little�eld. PeIGS, Parallel Eigensystem

Solver. Paci�c Northwest Laboratory, July 1995.

[35] G. Fann and R. Little�eld. Parallel Inverse Iteration with Reorthogonalization.

In 6th SIAM Conference on Parallel Computing, pages pp. 409{413, Norfolk,

VA, March 1993. SIAM.

[36] G. Fann, R. Little�eld, and D. Elwood. Performance of a Fully Paralle Dense

Real Symmetric Eigensolver in Quantum Chemistry Applications. In Simulation

MultiConference 1995. Society for Computer Simulation, 1995.

Bibliography 199

[37] Frank J. Seiler Research Laboratory, United States Air Force Academy, CO

80840. MOPAC Manual, DEC-3100 edition, December 1990.

[38] Fujitsu Company. MOPAC 2000 home page. web page document at http://

www.fujitsu.co.jp/hypertext/softinfo/product/indust/winmopac/mopac2000/-

index e.html.

[39] Fujitsu Company. WinMOPAC V2.0 home page. web page document at http://-

www.fujitsu.co.jp/hypertext/softinfo/product/indust/winmopac/index e.html.

[40] A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: Parallel Virtual Machine. The MIT Press, Cambridge, MA, 1994. Also

available at http://www.netlib.org/pvm3/book/pvm-book.ps.

[41] The Gigabit Ethernet Alliance. Gigabit Ethernet Technical Overview, May

1999. soft copy available at http://www.gigabit-ethernet.org/technology/-

whitepapers/gige 0698/papers98 toc.html.

[42] G. Golub and J. M. Ortega. Scienti�c Computing an Introduction with Parallel

Computing. Academic Press, Inc., 1250 Sixth Avenue, San Diago, CA 92101-

4311, 1993.

[43] J. R. Goodman. Using Cache Memory to Reduce Processor-Memory TraÆc. In

Proceedings of the 10'th Annual International Symposium on Computer Archi-

tecture, Stockholm, Sweden, 1983.

[44] W. Gropp and E. Lusk. Some Early Performance Results with MPI on the IBM

SP1. Early draft. Comes with MPICH 1.0.12 package, June 1995.

[45] W. Gropp and E. Lusk. User's Guide for mpich, a Portable Implementation of

MPI. Technical Report ANL/MCS-TM-ANL-96/6, Mathematics and Computer

Science Division, Argonne National Laboratory, 1996.

[46] W. D. Gropp and B. Smith. Chameleon Parallel Programming Tools Usrs Man-

ual. Technical Report ANL-93/23, Argonne National Laboratory, March 1993.

Bibliography 200

[47] T. Haupt, E. Akarsu, G. Fox, A. Kalinichenko, H. Kim, P. Sheethalnath, and

C. Youn. The Gateway System: Uniform Web Based Access to Remote Re-

sources. Technical Report SCCS-837, Northeast Parallel Architectures Center at

Syracuse University, February 1999.

[48] B. Hendrickson and D. Womble. The Torus-Wrap Mapping for Dense Matrix

Calculations on Massively Parallel Computers. SIAM Journal of Scienti�c Com-

puting, 15:pp. 1201{1226, 1994.

[49] Hewlett-Packard Company. HP 9000 V-Class Enterprise Server Speci�ca-

tions. web page document at http://www.unixsolutions.hp.com/products/-

servers/vclass/speci�cations.html.

[50] Hewlett-Packard Company. HP 9000 V2600 Enterprise Server White Paper. web

page document at http://www.unixsolutions.hp.com/products/servers/vclass/-

v2600 wp.html.

[51] C. T. Ho and M. T. Raghunath. EÆcient Communication Primitives on Hyper-

cubes. Concurrency: Practice and Experience, 4(6):pp. 1{31, 1992.

[52] K. Hwang, Z. Xu, and M. Arakawa. Benchmark Evaluation of the IBM SP2

for Parallel Signal Processing. IEEE Transactions on Parallel and Distributed

Systems, 7(5):pp. 522{535, 1996.

[53] Intel Corporation, Beaverton, Oregon. Touchstone Delta System User's Guide,

1991.

[54] Intel Corporation, Beaverton, Oregon. iPSC/860 System Calls Reference Man-

ual, 1992.

[55] Intel Corporation, Beaverton, Oregon. iPSC/860 System User's Guide, 1992.

[56] International Business Machines Corporation. IBM RS/6000 Enterprise

Server Model S80 Speci�cation Sheet. web page document at http://-

www.rs6000.ibm.com/hardware/enterprise/s80 specs.html.

Bibliography 201

[57] International Business Machines Corporation. MPI-F: An MPI implementation

for IBM SP.

[58] International Business Machines Corporation. RS/6000 SP Directory. web page

document at http://www.rs6000.ibm.com/resource/features/1999/sp.html.

[59] International Business Machines Corporation. IBM AIX PVMe User's Guide

and Subroutine Reference, third edition, July 1994.

[60] D. M. Koppelman. Reducing PE/Memory Tra�c in Multiprocessors by the Dif-

ference Coding of Memory Addresses. IEEE Transactions on Parallel and Dis-

tributed Systems, 5(11):pp. 1156{1168, November 1994.

[61] M. H. Lee and S. R. Seidel. Concurrent Communication on the Intel iPSC/2.

Technical Report CS-TR 9003, Michigan Technological University, July 1990.

[62] P. C. Liewer, E. W. Leaver, V. K. Decyk, and J. M. Dawson. Dynamic Load

Balancing in a Concurrent Plasma PIC Code on the JPL/Caltech Mark III Hy-

percube. IEEE, pages pp. 939{942, 1990.

[63] T. H. Lin, T. Haupt, and G. C. Fox. Parallelizing MOPAC on distributed com-

puting systems within AVS framework. Technical Report Syracuse Center for

Computational Science, SCCS-744, Northeast Parallel Architectures Center at

Syracuse University, 1995.

[64] R. J. Little�eld and K. J. Marchho�. Investigating the Performance of Parallel

Eigensolvers for Large Processor Counts. Theor. Chim. Acta, 84:pp. 457{473,

1993.

[65] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,

June 1995. on-line manual available at http://www.mpi-forum.org/docs/mpi-

11.ps.

[66] nCUBE Corporation, Foster City, CA. nCUBE 2 Programmer's Guide 2.0, 1990.

[67] L. M. Ni and P. K. McKinley. A Survey of Wormhole Routing Techniques in

Direct Networks. IEEE Computer, 26(2):pp. 62{76, February 1993.

Bibliography 202

[68] Parasoft Corporation, Pasadena, CA. Express User's Guide. Version 3.2.5, 1992.

[69] M. J. Quinn. Designing EÆcient Algorithms for Parallel Computers. McGraw-

Hill Book Company, 1987.

[70] M. T. Raghunath and A. Ranade. Designing Interconnection Networks for Multi-

Level Packaging. In Proc. of Supercomputing '93, pages pp. 772{781. IEEE

Computer Society Press, 1993.

[71] S. Ranka and J. C. Wang. Static and Runtime Scheduling of Unstructured

Communication. International Journal of Computing Systems in Engineering,

1993.

[72] S. Ranka, J. C. Wang, and G. C. Fox. Static and Runtime Algorithms for All-to-

Many Personalized Communications on Permutation Networks. In Proceedings

of the 1992 International Conference on Parallel and Distributed Systems, pages

pp. 211{218, HsinChu, Taiwan, December 1992.

[73] S. Ranka, J. C. Wang, and G. C. Fox. Static and Runtime Algorithms for All-to-

Many Personalized Communications on Permutation Networks. IEEE Transac-

tions on Parallel and Distributed Systems, 5(12):pp. 1266{1274, December 1994.

[74] S. Ranka, J. C. Wang, and M. Kumar. Personalized Communication Avoiding

Node Contention on Distributed Memory Systems. In Proceedings of the 1993

International Conference on Parallel Processing, volume I, pages pp. 241{244,

St. Charles, IL, August 1993.

[75] S. Ranka, J. C. Wang, and M. Kumar. Irregular Personalized Communication on

Distributed Memory Machines. Journal of Parallel and Distributed Computing,

25(1):pp. 58{71, Febrary 1995.

[76] J. Saltz, R. Das, R. Ponnusamy, D. Mavriplis, H. Berryman, and J. Wu. PARTI

Procedures for Realistic Loops. In Proceedings of Sixth Distributed Memory

Computing Conference, Portland, Oregon, 1991.

Bibliography 203

[77] J. Saltz, S. Petiton, H. Berryman, and A. Rifkin. Performance E�ects of Irregular

Communications Patterns on Massively Parallel Multiprocessors. Technical Re-

port NASA Contractor Report 187514, ICASE Report No. 91-12, Institute for

Computer Applications in Science and Engineering at NASA Langley Center,

January 1991.

[78] SGI. SGI Origin Family Technical Overview. web page document at http://-

www.sgi.com/origin/tech info.html.

[79] A. J. Smith. Cache Memories. ACM Computing Surveys, 14(3):pp. 473{530,

September 1982.

[80] W. Stallings. Handbook of Computer Communications Standards - Local Network

Standards, volume 2. Howard W. Sams & Company, Indianapilis, Indiana, USA,

First edition, 1988.

[81] T. Sterling, D. Becker, D. Savarese, et al. BEOWULF: A Parallel Workstation

for Scienti�c Computation. In Proceedings of the 1995 International Conference

on Parallel Processing. Volume I, pages pp. 11-14, August 1995.

[82] R. W. Stevens. UNIX Network Programming. Prentice Hall, Englewood Cli�s,

NJ, 1990.

[83] J. J. P. Stewart. Optimization of Parameters for Semiempirical Methods II.

Applications. Journal of Computational Chemistry, 10(2):pp. 221{264, March

1989.

[84] C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A. Bender, D. G. Grice,

P. Hochschild, D. J. Joseph, B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao,

and P. R. Varker. The SP2 High Performance Switch. IBM Systems Journal,

34(2):pp. 185{204, 1995.

[85] Sun Microsystems, Inc. SUN HPC 10000 speci�cations. web page document at

http://www.sun.com/servers/hpc/products/hpc10000 spec.html.

Bibliography 204

[86] V. Sunderam. PVM: A Framework for Parallel Distributed Computing. Con-

currency: practice and experience, 2(4), December 1990.

[87] A. Sussman, J. Saltz, R. Das, S. Gupta, D. Mavriplis, R. Ponnusamy, and

K Crowley. PARTI Primitives for Unstructured and Block Structured Problems.

Computing Systems in Engineering, 3:pp. 73{86, 1992.

[88] A. Szabo and N. S. Ostlund. Modern Quantum Chemistry. McGraw-Hill, New

York, First edition, 1989. Revised.

[89] Thinking Machines Corporation, Cambridge, MA. CMMD Reference Manual.

Version 3.0, December 1992.

[90] Thinking Machines Corporation, Cambridge, MA. The Connection Machine

CM-5 Technical Summary, October 1991.

[91] Thinking Machines Corporation, Cambridge, MA. The Connection Machine

CM-5 Reference Manual, 1992.

[92] P. L. Vaughan, A. Skjellum, D. S. Reese, and F. Cheng. Migrating from PVM

to MPI, Part I: The UNIFY System. Technical report, Mississippi State Uni-

versity, July 1994. ftp://aurora.cs.msstate.edu/pub/reports/Message-Passing/-

unify frontiers95.ps.Z.

[93] T. von Eichen, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Mes-

sages: a Mechanism for Integrated Communication and Computation. In Pro-

ceedings of the 19'th International Symposium on Computer Architecture, Gold

Coast, Australia, May 1992.

[94] J. C. Wang, T. H. Lin, and S. Ranka. NICE: Non-uniform Irregular Communi-

cation Exchange on Distributed Memory Systems. Technical Report SU-CIS-93,

Syracuse University, June 1993.

[95] J. C. Wang, T. H. Lin, and S. Ranka. Distributed Scheduling of Unstructured

Collective Communication on the CM5. Parallel Processing Letters, 5(4):pp. 647{

658, 1995.

Bibliography 205

[96] M. C. Zerner. Semiempirical Molecular Orbital Methods. In K. B. Lipkowitz and

D. B. Boyd, editors, Reviews in Computational Chemistry II, chapter 8, pages

pp. 313{366. VCH Publishers, Inc., 1991.

[97] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.

ACM Press, New York, NY, 1991.

Bibliography 206

Biographical Data 207

Biographical Data

Name: Tseng-Hui Lin

Date and Place of Birth: January 8, 1964

Hsin-Chu City, Taiwan, R.O.C.

Degrees Awarded: Master of Science, 1999

Syracuse University

Syracuse, NY, U.S.A.

Master of Engineer, 1988

National Central University

Chung-Li, Tao-Yuan, Taiwan, R.O.C.

Bachelor of Engineer, 1986

National Chiao-Tung University

Hsin-Chu, Taiwan, R.O.C.

Professional Experience: Software Developer

IBM Scalable POWERparallel Systems

Poughkeepsie, NY, U.S.A., 1998 -

Engineer

Education and Training Division

Institute of Information Industry

Chung-Li, Tao-Yuan, Taiwan, R.O.C., 1988 - 1990

Biographical Data 208

