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Chapter 1

Introduction

1.1 Motivations

The last 50 years have been particularly fruitful with regard to electronics innovation,

but only in the last 20 years have we seen a signi�cant development in network design.

Until the 1980s, the common types of traÆc handled by digital networks were interac-

tive data, generally transmitted in short bursts of a few characters, between terminals

or between terminals and computers; �le transfer, involving the transmission of up to

millions of characters or bytes between computers, or between mass storage systems;

and, increasingly, digital voice [90].

In the 1990's, with the evolutions from the telecommunication networks and

computer-communication networks towards the Broadband Integrated Services Dig-

ital Network (BISDN), some important directions and guidelines have been created.

The recent directions taken by the BISDN are inuenced by the emergence of a large
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number of teleservices with di�erent requirements, the fast evolution of the semi-

conductor and optical technology. In this information age, the most signi�cant tele-

services are HDTV (High De�nition TeleVision), video conferencing, high speed data

transfer, videophony, video library, home education, electronic marketing through

Internet, and video on demand (VOD). This wide range of network applications in-

troduces the need for one universal network which is exible enough to provide all

the required communication services.

With the recent developments in computer communication technologies, it is now

possible to develop high speed computer networks that operate at data rates in Giga

bit per second (Gbps) range. These networks have enabled high performance dis-

tributed computing and multimedia applications. The requirements of these applica-

tions are more diverse and adaptive than those of traditional data applications such

as �le transfer. The existing implementation of standard communications protocols

do not exploit eÆciently the high bandwidth o�ered by high speed networks and

consequently, can not provide network applications the required high throughput and

low latency communication services [45].

Many researchers have observed that while the link level rates of some networks

are now in the gigabit-per-second range, the e�ective throughput between remote

applications is usually several orders of magnitude less. This has intensi�ed the

e�orts to develop new high-performance computer communication environments that

can utilize the enormous bandwidth required by tele-multimedia services and o�ered

by high speed networks.

As can be concluded from the above, the network of today are very specialized

and su�er from a large number of disadvantages, the most important being [82]:

2



Service Dependence Each network is only capable of transporting one speci�c ser-

vice for which it was intentionally designed. Only in a limited number of cases

and by using additional equipment and with an ineÆcient use of its resources

can it be adapted to other services.

Inexibility Advances in audio, video, speech coding and compression algorithms,

and progress in Very Large Systems Integration (VLSI) technology inuence the

bit rate generated by a certain service and thus change the service requirements

for the network. In the future, new services with unknown requirements will

appear. A specialized network has great diÆculties in adapting to changing or

new service requirements.

IneÆciency The internal available resources are used ineÆciently. Resources which

are available in one network can not be made available to other networks.

Taking into account all these considerations on exibility, service dependence and

resource usage, it is consequently very important in the future that only a single

network exists and that this network of the future is service-independent. This implies

a single network capable of transporting all services, sharing all its available resources

between the di�erent services.

A single service-independent network will not su�er from the disadvantages de-

scribed above, but it will have the following main advantages;

Flexible and future-safe Advances in the state-of-the-art of coding algorithms and

VLSI technology may reduce the bandwidth of existing applications. A network

capable of transporting all type of services will be able to adapt itself to changing

or new needs.
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EÆcient in the use of its available resources All available resources can be shared

between all services, so that an optimal statistical sharing of the resources can

be obtained.

Less expensive Since only one network needs to be designed, manufactured and

maintained, the overall costs of the design, manufacturing, operations and main-

tenance will be smaller.

1.2 Problems with Current Designs

A host-network interface connects a host to a network for sending and receiving data.

It consists of the hardware that connects the network medium with the host I/O

bus and the network software that handles an application's communication requests

and manages the host-network interface [94]. Most applications communicate over the

network via the socket interface and the internet protocols (e:g: TCP/IP or UDP/IP).

Before de�ning problems on current designs of host-network interface, one needs

to understand where best to invest design e�orts to obtain the maximum performance

improvement for the host-network interface, given a particular host architecture and

some cost and complexity considerations. An implementation model is introduced as

follows [84]:

� The simplest in the range of alternatives available is to build a host-network

interface with no DMA capability, no processing on board, and leave all the

processing and data movement responsibilities up to the host processor and

software.

� The second model is to introduce DMA to assist in the data movement activities,
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while still doing very little processing on board. This model is implemented in

the current designs for interfacing workstations to the Ethernet.

� The third model is the host-network interface performing most of the protocol

processing, with the host software involved in �nally delivering the data to the

user.

In the same way, implementations of the transport protocol have followed three

approaches [45, 8]:

� Improving the implementation of standard transport protocols [17, 20].

� Introducing new protocols [89, 13, 18].

� Implementing protocols on a special hardware [57, 49].

Analyzing the above implementation models, three major problems with current

designs can be identi�ed [25, 57]:

� Poor protocol implementations.

� Poor interface between applications and the network interface.

� High overhead associated with operating system functions and context switch-

ings.

First, conventional transport protocols are too complex or awkward for hardware

implementation and too slow without it. On a send, the socket layer copies the data

from the user's address space into system bu�ers and invokes transport and network

protocols. If the user requests a reliable byte-stream protocol, TCP/IP (Transmission

Control Protocol/Internet Protocol) will be used, and the protocol processing will
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include packetization, error handling, end-to-end ow control, routing, and congestion

control. A best e�ort protocol such as UDP/IP (User Datagram Protocol/Internet

Protocol) is simpler and performs only a subset of these tasks. When the protocol

processing is �nished, one or more packets are handed to the data link layer, which

will transmit them over the network [98].

A similar sequence of operations is performed on the receive side, but in the reverse

order. Speci�cally, the data link layer places incoming packets in system bu�ers, called

receive bu�ers, and after protocol processing has been performed, the data is copied

into the user's address space by the socket layer as part of the application's receive

call.

The error handling performed by reliable transport protocols has a signi�cant

impact on how the data is handled by the protocol stack. Protocols typically use an

end-to-end checksum to verify data integrity and time-outs to detect lost packets.

Checksumming requires TCP on the sending and the receiving host to read the

data and calculate a checksum; if the checksum the receiver calculates di�ers from

the one inserted in the packet by the sender, the receiver ignores the packet.

To detect lost packets, the sending host starts a timer whenever it sends a packet.

If this timer expires before the packet has been acknowledged, the sender assumes

the packet was lost or corrupted and retransmits it. The sender keeps a copy of

all transmitted data in a system bu�er (the retransmit bu�er) until the reception is

acknowledged by the receiver.

As a part of a send operation, the application writes the message into a bu�er

in its address space. The socket code copies the data into a system bu�er, and

the transport protocol reads the data in order to calculate the checksum. Finally,

the data link layer copies the data to the host-network interface. In total, the data
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crosses the memory bus six times, including the �rst write by the application. The

receive operation follows the inverse path of the send operation.

Second, compared to the alternative system where a network interface does pro-

grammed I/O transfers and a host performs transport protocol functions, the inter-

faces that implement transport-level functions have lower performance at the trans-

port level [57]. The primary reason is an inadequate internal memory architecture.

Currently, the data transfers into and out of the bu�er memory reduces the number

of memory cycles available for packet processing. The future system bus technology

with a high transfer rate and the burst-mode transfer, and the future networks with

a high data rate, will make this problem even more acute.

Finally, most implementations of transport protocols are tied heavily into host op-

erating systems [80]. The reason for large operating system overhead is the structure

of the communication process in general and the implementation of network inter-

faces in particular. In other words, the CPU performs such an important role in the

communication process that, consequently, there are too many interrupts, too many

context switches, and too large a scheduling overhead.

Unfortunately, the impact of the overhead introduced by the operating systems

on the communication process strongly a�ects the application-to-application commu-

nication performance. The major sources of this overhead are [44]:

� Scheduling

� Redundant data transfers in main memory

� Overhead of entities management - timers, bu�ers, and connection states

� Overhead associated with division of the protocol processing into processes,

including interprocess communication
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� Interrupts

� Context switching

However, some of these problems may be solved with better implementations of

existing protocols. Clark et al: [17] suggested that even heavyweight protocols such

as the TCP/IP could be extremely eÆcient if implemented sensibly. It means that

while a poor implementation will impede performance, protocols such as TCP/IP are

not inherent performance-limiting factors.

Network interfaces were introduced to o�oad the CPU from the communication

process. However, they have been doing only a partial job; interfaces are still being

built that interrupt the processor for each received packet, leading to multiple context

switches and scheduler invocations.

1.3 Research Approach

When a domain of study or practice contains many distinct objects, the problem of

classi�cation arises. Classi�cation means partitioning the objects into a structured

set of classes on the basis of meaningful criteria. A taxonomic system is a system of

rules whereby objects in a given domain are classi�ed in a particular way. Thus far,

in proposed taxonomic systems [92, 26, 72], the motivations are:

� To establish a classi�cation scheme within which the position of architectures

relative to one another can be understood.

� As a foundation for constructing an architectural knowledge base.

� As a long-term objective, the construction of a comprehensive, comparative

atlas of computer architectures or host-network interfaces within the uni�ed
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framework of the taxonomy.

Given a set of objects which we wish to classify, the simplest of taxonomic sys-

tems must consist of a single set of taxons among which we can partition the objects.

A taxon is a named group of objects that are suÆciently distinct from the objects

belonging to some other taxon. The set of properties that determine how objects are

assigned to the various taxons are termed taxonomic characters. In more comprehen-

sive classi�cation schemes, several categories can be identi�ed, each with its own set

of taxons. These categories can be ranked in a hierarchy. Each object would appear

in exactly one taxon in each category.

1.3.1 Taxonomy Features

To refer to the categories and the taxons once a classi�cation scheme has been con-

structed, a taxonomic system must contain a convenient, methodical, and meaningful

system of nomenclature. A good taxonomy should have the following characteristics:

Descriptive It provides a basis for information ordering as needed, for example, for

cataloging documents on computer architectures in a library or for organizing

architectural descriptions in a textbook. Thus, this property is useful to es-

tablish a theoretical framework within which we can meaningfully compare and

discriminate between architectures and determine precisely how and where they

converge or diverge.

Hierarchical Hierarchical classi�cation systems by their very nature exhibit some

particularly attractive properties. They not only provide a basis for comparing

and discriminating between objects, but they also make it possible to determine

the points of their convergence to a common taxon across category levels. Thus
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they provide a conceptually more elegant picture of the relationships between

objects than do nonhierarchical schemes.

Predictive A classi�cation provides a foundation for predicting certain properties

of an architecture. Speci�cally, given a taxonomic system, and being informed

that architecture A belongs to taxon y in category x, we can infer properties or

characteristics of A from our knowledge of the taxonomic system.

Explanatory A stronger and more ambitious version of the predictive role is for

the classi�cation scheme to provide a basis for explanation. The distinction

between predictive and explanatory goals is often subtle and largely a matter

of degree. Given a taxonomy, and being informed that architecture A belongs

to taxon y in category x, the predictive power of the scheme will allow to infer

that A has such and such properties. The explanatory power of the scheme, if

at all present, will allow to deduce why A possess these properties.

1.3.2 Research Objectives

The main objective of this thesis is to present a new, comprehensive architectural

taxonomic system that appears to possess the desirable characteristics of a good tax-

onomic scheme. Usually, the discussion of a taxonomy should not be con�ned to a

small scope. Rather, it should encompass the entire architecture. Thus, it is meaning-

ful and often convenient to separate the whole into few levels and construct taxonomic

schemes for each level independently. Our taxonomy of host-network interfaces will,

hence, consists of two levels: architectural and protocol classi�cations.
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Architectural Classi�cation

We can consider top level as the architectural models of the host-network interface

according to the guidlines for classifying architectures.

First, an architectural classi�cation captures the essence of a particular archi-

tecture form, without distinguishing di�erent technologies, implementation sizes, or

the like. Architectural characteristics collectively constitute an architecture of the

host-network interface. Since every host-network interface possesses a physical archi-

tecture, the taxonomy should be a system for classifying physical-architecture char-

acteristics. This descriptive feature helps to understand each physical architectural

unit in the host-network interface.

Second, the architectural characteristics enable comparisons between physical ar-

chitectures to determine precisely how and where they converge or diverge. The

gaps in the classi�cation can suggest developing other possible physical architectures.

While the �rst feature gives the knowledge of architectural characteristics, this helps

to understand taxonomic characteristics within a category (out of several hierarchical

categories).

Third, proper architectural characteristics can help to predict the optimized host-

network interface. Even if some hardware components enable fast implementation,

the architectural structures have to be exible. Once a hardware component is used,

replacing of the unit is costly. Thus, a good taxonomy should support the architec-

tural predictive features on the host-network interface. It helps to understand the

performance improvement of a new designed host-network interface.

Following these guidlines, we can approach the architectural classi�cation with the

PMS (processor-memory-switch) notation which describes well the relations between

processor, memory, and I/O devices [39, 91]. In the PMS notation, a system is
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described as an interconnected set of components or individual devices, associated

with a set of operations. Such a description can be complicated by the amount of

detail involved. It may take a whole manual, for instance, to describe the operations

of a major host-network interface. Thus, the PMS descriptive system permits very

compressed descriptions, and description of only those aspects of the components that

are of interest, while ignoring the rest. It also permits primarily the analysis of the

amounts of information held in various components, the ow of information between

components, and the distribution mechanism that controls the ow.

Note that a physical communication system is built of hosts, host-network inter-

faces and a network. Thus, the physical characteristics are from these logical struc-

tures (i:e: hosts, host-network interfaces, and a network) and their connections. There

are six types of functional units from which any architecture of the host-network inter-

face can be constructed. These are host CPU, main memory, cache, network bu�er,

protocol processor, and a switch:

� Host CPU unit executes instructions of the user application which may require

a communication, if required, to the protocol processing related to the com-

munication, and it transforms data usually in ways that correspond to basic

arithmetic operations.

� Main memory unit is a storage device that passes data to and from the host

CPU.

� Cache unit consists of a small fast memory that acts as a bu�er between the

main memory and the host CPU.

� Network bu�er unit is a staging and speed-matching area for data in transit

between the host and the network. It consists of a network bu�er memory and

12



network FIFOs. Network bu�er memory is the storage for transport-layer data

(so called message) and information related to the control and management

parameters, while network FIFOs consist of two sets of registers for sending

and receiving data. It also provides the protocol processor with contention-free

memory access to the packet data.

� Protocol processor unit manages packet processing and various bookkeeping

functions associated with the protocol.

� Switch unit provides connectivity between other functional units by the one

of programmed I/O, DMA (Direct Memory Access), burst transfer by memory

controller, or register accessing.

Protocol Classi�cation

At a more detailed level, we can consider protocol implementations. A protocol

is a set of communication rules governing the format and semantics of the frames,

packets, or messages that are exchanged by the peers. It is used to implement network

services, which de�ne what operations are prepared to perform on behalf of its user

but do not de�ne how these operations are implemented. Thus, rather than by the

network service, a classi�cation by the protocol implementation is more reasonable

and understandable.

There are more reasons for having a taxonomical classi�cation of protocols. The

one reason is the impact of protocol implementations on the communication system.

As the set of rules related to the instructions and data paths has strong inuence

on the computer structure, protocol implementations can a�ect organizations of the

host-network interfaces.
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The other reason is that protocol implementation can support various network-

service requirements instead of changing the physical architecture characteristics.

Nowadays, with developments of networks, various user applications require some-

times extremely di�erent network services within a network. The host-network in-

terface can support those requirements via di�erent protocol implementations. With

how to implement it, therefore, the protocol a�ects the structure of host-network

interfaces.

Another reason is devising a useful model of performances for host-network in-

terfaces. Since the protocol implementation has several common categories, we can

�gure out a protocol classi�cation to the host-network interface, compare protocol

functional units in a category, thus predict useful model. Even in the same physical

architecture, the di�erent protocol processing can cause the system to greatly improve

the performance.

With these reasons, the taxonomical classi�cation of protocols may approach with

functional units and providers of these functional units. In my approach, the main

functional units of a protocol implementation are de�ned as follows:

� Data access in main memory has inuence on the performance of host-network

interface. For example, for protocol processing such as checksumming, the oper-

ating system needs to copy data into the kernel space from the user-application

space in a conventional protocol structure.

� Routing by network addresses to �nd proper destination.

� Flow control to govern the transmission rate in order to avoid overruns at the

receiver and/or to avoid congesting the network.

� Error handling in order to detect and correct errors occurred during the data
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transmission if required by transport service users.

1.4 Organization of Thesis

The organization of this dissertation is as follows. Chapter 1 is the overview of the

retionale for my research.

Chapter 2 identi�es the driving forces towards better host-network interfaces by

surveying the basic architecture, the desirable features, limitations and bottlenecks

of current designs.

In chapter 3, we �rst review the conventional classi�cations of host-network in-

terfaces. The classi�cations consider various host-network interfaces for terminals,

Ethernets, token-rings, FDDIs, and even for ATM networks. Then, host-network

interfaces are analyzed to uncover limitations for the each given classi�cation and

propose requirements that a new comprehensive taxonomy has to include. As a re-

sult, a comprehensive taxonomy is introduced based on the sublayers which are an

architectural and a protocol-processing classi�cations. We demonstrates the useful-

ness of the new taxonomic scheme by applying it to several typical host-network

interface designs.

Chapter 4 presents new designs of host-network interfaces, which are created ac-

cording to the design method enabled by the new comprehensive taxonomic scheme

proposed in the previous chapter. A simple host-network interface is one example.

The interface is designed for cost-e�ective and minimal hardware-support systems.

The major part of protocol processing is implemented on the host processor. These

features are described by the new taxonomic scheme. Another new design example,

the intelligent host-network interface, is proposed with features of no data copy in
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main memory, simple and fast protocol processing, and o�-the-shelf components re-

lated to the network bu�er. The host processor can access the network memory as it

accesses a cache. Such design has a potential of supporting very high speed networks

in the Gbps or even Tera bit per second range.

Chapter 5 analyzes the performances of simple and intelligent host-network inter-

faces based on the comprehensive taxonomic scheme presented on previous chapter.

The e�ective application-to-application bandwidth of both transmitting and receiv-

ing communications is analyzed for the simple and intelligent host-network interfaces,

respectively.

Chapter 6 summarizes and concludes this dissertation with a concise presentation

and e�ects of taxonomic scheme on the design of host-network interfaces, which is

the main concepts of this research.
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Chapter 2

Review of Host Network Interfaces

2.1 Introduction

The network I/O architectures become a bottleneck in the communication subsys-

tems, since the current processors have been optimized for computational tasks but

not for data moving tasks. In current local area networks (LANs), the eÆctive ap-

plication bandwidth is often an order of magnitude lower than a nominal bandwidth

provided at the network medium [14]. For example, out of the physical bandwidth

of 10 Mbps at the medium level of the Ethernet, only about 1.2 Mbps is available to

each application [14].

The host-network interface is the network I/O which becomes the bottleneck in

communication subsystems. As mentioned in [16], the recognition of this resulted

in an increasing interest on designing high performance host-network interfaces [4,

19, 27, 8, 84]. The reason that the network I/O becomes the bottleneck lies on the

implementation of communication protocols and redundant data copying, as discussed

on Chapter 1.
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Therefore, to understand why the interfaces become the bottleneck on commu-

nication systems, it is necessary to �rst consider how communication protocols are

implemented in most of the existing machines.

2.2 Overview of Host-Network-Interface Architec-

tures

The main functions of a host-network interface include sending data from the host to

the network and receiving data from the network to the host. These functions can be

described with a simple host-network interface shown in Figure 2.1 [94].

System Bus

MemoryHost CPU

I/O

Network

Figure 2.1: Diagram for the architecture of a host-network interface

In the sending path, which is taken by data through a conventional protocol stack

(TCP/IP), the application writes data into its application bu�er and then invokes a

system call to send data. The socket layer copies the application data into a socket

bu�er in the kernel space. The transport protocol reads the data in the socket bu�er

to compute a checksum and, �nally, the data is copied out to the network by the host

CPU with the routing information. Thus, the memory system is accessed �ve times

for each portion of data sent. Figure 2.2 shows the diagram with 5 data copying

steps. In the receive path, data is copied �rst from the network into a socket bu�er
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in kernel memory by the host CPU. The transport layer checksum is veri�ed and, as

soon as the application is ready, the socket layer copies data from the socket bu�er to

the application bu�er in user memory. Finally, the application reads the data. Thus,

the memory system is also accessed �ve times for each portion of data received.

2.2.1 Design Techniques

The architecture of a host-network interface depends on the required performance

and cost. If we implement all the functions in software, we end up with a very simple

host-network interface that consists of just network bu�er (FIFO). It is, of course,

going to be very slow since the host CPU must perform the normal computing tasks

as well as the communication tasks.

One can reduce the load of the processing from the host CPU by adding processing

capabilities to the host-network interface. They are of two types: simple DMA (Direct

Memory Access) based and intelligent host network interfaces.

DMA based Design

A network adapter board for a LAN can be based on DMA with on-board controller

[86]. Programs running on the host CPU can exchange frames with on-board con-

troller through shared areas in main memory. The on-board controller performs all

operations required by the network medium-access scheme automatically and inde-

pendently from the host CPU. The host CPU attention is required only to handle

error-free data frames. The controller is able to perform a network recon�guration al-

gorithm when joining a network, that is network jamming, polling, and establishment

of the NID (Network Identi�cation). It is also able to detect a token-loss situation and

perform the token-recovery algorithm. All these operations are performed without
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Figure 2.2: The diagram of data copying on a simple host-network interface
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Figure 2.3: The connection between a host and a simple DMA-based host-network

interface

the host CPU intervention, and the CPU is informed only about the ultimate failure

or success. During normal operation, the controller monitors all frames arriving from

the network medium. It accepts only the error-free frames with destination addresses

matching MIDs (Medium-layer Identi�cation) stored registers in the controller during

its initialization. The token and acknowledge frames are handled by the controller

and do not require the host CPU's attention.

Figure 2.3 represents a model of a host-network interface equipped with WD-

2840 LAN controller. The host CPU can either write to or read from the controller's

internal registers (CTL registers). The controller can draw the host CPU's attention -

for example, after frame reception - via the interrupt (IR line). A program running on

the host CPU can prepare data frames to be transmitted by the controller by placing

them in the shared memory area. The host CPU programs can a�ect the controller's

operation. For example, they can request frame transmission by writing order codes

to the controller's internal registers. The controller can prepare received frames for

the host programs by placing them in shared memory (RBC). Status information
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reecting the controller's operation is made available for host programs partially in

the internal status registers of the controller and partially in the shared memory

(CTL). All the controller's accesses to shared memory are performed as DMA read

or write operations. The DMA access is controlled by the bus request (BR) and bus

grant (BG) lines.

Intelligent Design

The most complicated design, but the one likely to yield the highest performance

for real-time traÆc, is a host-network interface with an on-board protocol proces-

sor, DMA capability, and CRC-checksum error handling during transferring data, as

shown in Figure 2.4.

The AURORA OSIRIS host-network interface [31] implements the most critical,
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high-speed functions in hardware and consists of two independent halves - send and

receive - each controlled by an Intel 80960 microprocessor.

The host-network interface board attaches to a TURBOchannel slot provided by

DEC workstations. From the host's prospective, the interface board looks like a region

of memory. A combination of host software and code running in the on-board protocol

processors determine the detailed structure of this memory. In general, the memory is

used to pass bu�er descriptors between the host and the host-network interface such

as header information, ow control parameters, and commands between the host and

the protocol processor. Network data is not bu�ered in the dual-port network bu�er

memory; it is transferred directly from/to main memory bu�ers using DMA.

In the transmission, the general paradigm is that the host passes bu�er descriptors

to the protocol processor through the dual-port network bu�er memory, and the

protocol processor executes a segmentation algorithm to determine the order in which

cells are sent. The program running on the protocol processor writes commands to

a DMA controller and a cell generator. Thus, the DMA controller with base address

and length of the intended data transfers directly data from the user space of main

memory to the transmission FIFO. Simultaneously to the data transfer, CRC-32 is

partially checked by a hardware for the intended data, then the protocol processor

sums the partially computed CRC values to put the CRC value on the trailer of AAL

(ATM Adaptation Layer). On the other hand, the header error checksum is computed

by a CRC-8 hardware component.

In the reception, the protocol processor reads from a FIFO the VCI (Virtual Chan-

nel Interface) and AAL information that is stripped from cells as they are received.

The VCI lookup bu�er keeps VCIs to refer VCI at header formatting of the trans-

mitting direction and to protect cell-misordering of the receiving direction. CRC-32
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hardware computes partially the AAL CRC-checksum during transferring of data into

the Rx FIFO. Then, the protocol processor sums partial CRC values. By examin-

ing this information, and using other information from the host (a list of reassembly

bu�er), the protocol processor determines the appropriate host memory address at

which the payload (T-PDU) of each received cell is to be stored [28, 7]. It then issues

commands to a DMA controller; typically one command is issued for each ATM cell

received. As part of the reassembly algorithm, the protocol processor decides when

it is necessary to interrupt the host.

2.2.2 Parallel Architectural Designs

Other techniques to reduce latency in sending/receiving of data introduce parallel

protocol processing [44, 107, 75]. Applying parallelism in designing communication

subsystems is an important approach to achieve the high-performance needed in to-

day's distributed computing environment.

The main idea behind horizontally oriented protocol [44] is the division of the

protocol into functions instead of layers based on ISO/OSI reference model. The

functions, in general, are mutually independent in the sense that the execution of one

function can be performed without knowing the results of the execution of another.

Thus, intercommunication between the functions is substantially reduced and some

functions can be executed in parallel.

Zitterbart [107] discussed the di�erent levels and types of parallelism that are typ-

ically applied to communication subsystems design. They adopt a hybrid parallelism

approach, which is based on layer and packet levels. In layer parallelism, di�erent

layers of the hierarchical protocol layers are executed in parallel, while in packet par-

allelism, a pool of processing units is used to process incoming (and outgoing) packets
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concurrently.

In the design shown in Figure 2.5, a processor is used (IP proc) to handle the IP

processing, and four transport processors (proc 1, proc 2, proc 3, and proc 4) are

used to handle the TCP processing. On the arrival of a segment, IP proc executes

the IP. Then, one of the transport processors is selected according to a round robin

scheduling policy, to run the TCP for the arrived segment. Therefore, multiple seg-

ments can be processed concurrently using di�erent transport processors. G. Neufeld

also introduced these techniques to develop a parallel host interface [75].

2.3 Conventional Host-Network Interfaces

Several conventional host-network interfaces are described as examples. All interfaces

are reviewed based on the degree of intelligence of the interface, the way to partition
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protocol processing between host and interface, the host interfacing, the data copying

level, and how to perform checksumming functions.

2.3.1 Medusa FDDI Interface

The Medusa FDDI interface, loosely based on WITLESS, is a research prototype that

was designed for the HP Apollo Series 700 workstation at Hewlett-Packard Labs in

Bristol [4].

The most demanding aspects of the host-network interface and protocol stack

design is viewed as the provision of high throughput all the way up the protocol stack

to the application.

Therefore, as shown on the Figure 2.6, the interface contains the retransmission

bu�er memory that is required to support a single-copy protocol stack, and appears

to the host as a block of memory in I/O space. All network, transport, and socket

layer processing is performed by the host. And the network bu�er memory is used as

an mbuf (memory bu�er) in conventional protocol processing of TCP/IP, resulting in

a single copy architecture. The network bu�er memory is placed in the host-network

interface and a number of �xed-size blocks. The only protocol-speci�c part of the

host-network interface design is hardware support for the transport-layer checksum.

A user process presents data to the interface bu�er by means of socket layer

procedures. By allowing the socket layer to perform the copy operation, the data is

packetized before passing to TCP. And a checksum is computed on the y during the

data copy operation. After the packet data is copied to the network bu�er memory,

then the device driver copies the headers into the space reserved at the front of the

bu�er and causes the packet to be transmitted.
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This architecture has advantages: Single data copy operation between main mem-

ory and the network bu�er memory; Hardware support for transport-layer checksum.

But it also has a disadvantage: Since the HNI does not support protocol processing

on board, data transfers between the network bu�er memory and the main memory

have overhead (for example, packet header bits).

2.3.2 Communication Accelerator Board (CAB)

The interface is used in the context of the Gigabit Nectar testbed at Carnegie Mel-

lon University. The CAB design [69] provides an architecture that interfaces high

speed networks to di�erent types of hosts. In contrast to most out-board protocol

engines, the Nectar CAB has a exible architecture, where all interactions between

the network and the host are programmable. This structure allows arbitrary proto-

cols to be implemented. One of the implementations is for DEC workstation using

the TurboChannel bus.

In the CAB for DEC workstation, protocol processing is performed on the host.

Data is transferred between user space to CAB memory and by using system DMA,

resulting in a single copy scheme. Checksum is calculated when the data ows into

network memory from the host main memory or from the network. Media access

control (MAC) is performed by hardware on the CAB, under control of the host.

And the CAB is designed to concentrate on MAC support for switch-based networks,

speci�cally HIPPI networks. The upper layer protocol processing is performed at host

and its headers and trailers are copied to the reserved memory space on the interface

to cause the packet to be transmitted.

Figure 2.7 (b) shows the block diagram of CAB architecture. There are three

major blocks of the CAB architecture: processing unit, host interface, and network
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interface. The processing unit consists of a SPARC processor, program memory, and

support logic including counters, timers and a serial port. The host interface is de-

signed for VME bus, and includes slave ports for the host to access the CAB, DMA

controller and bus master logic for the CAB to access VME bus devices, and interrupt

logic. Network-bu�er memory, called packet memory, may be considered as a com-

ponent of host interfacing. The network interface consists of �ber optic data links,

queues (called FIFO's) for bu�ering data streams, DMA channels for transmission

and reception, and associated control and status logic. The host communicates in

programmed I/O with the protocol processor on CAB for control information. But

data is transfered through direct memory access (DMA).

The Nectar CAB implements the source routing. Thus, it generates HUB identi�er

which selects the proper switch port (see Figure 2.7 (a)). The data-copying is the

one-copying from user space of main memory to the network bu�er memory. Then,

processing unit generates CRC checksums and other header information. Flow control

between CAB and HUB at the packet level is maintained by the use of start of packet

(SOP) acknowledge commands. When the CAB sends an SOP to the HUB, a ag is

set in the CAB network interface. The mechanism allows only one unacknowledged

packet at any time. The error-handling is processed with CRC checking, length

indicator of data, and sequence number on each packet.

This architecture has advantages of transport layer protocol processing on the

host-network interface, supporting a variable-size packet format, and no data copying

in main memory and in network bu�er memory by the help of mailbox and upcall

procedure. But low-level ow control between CAB and HUB may be unnecessary,

which is also not supported in ATM architectures.
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2.3.3 VMTP-NAB

The Network Adapter Board (NAB) [57] is an intelligent interface designed to couple

with a transport protocol called Versatile Message Transaction Protocol (VMTP).

VMTP is a request-response transport protocol speci�cally designed to facilitate im-

plementation by a high-performance network adaptor.

The host interfacing architecture is designed for minimal latency, minimal inter-

rupt processing overhead and minimal data transfer on the system bus. The NAB

uses an internal memory and pipelined processing architecture that implements some

performance-critical transport layer functions in hardware.

The network adapter board for VMP multiprocessor system has been designed

using an on-board processor and network bu�er memory. Besides a general-purpose

processor on the NAB, there are other hardware elements to assist protocol process-

ing, such as a host block copier for moving data between the host and the interface

bu�er using a burst-transfer bus protocol, and a packet processing pipelined for check-

summing, encryption and decryption. Figure 2.8 describes the block diagram.

Host Interfacing: The host-to-HNI treats small and large data transfers di�erently,

handling the small transfers using a programmed I/O interface and the large data

transfers with DMA. The HNI-to-host interrupts host on a data segment boundary
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and not for each packet transferred. For multi-packet transfers, this signi�cantly

reduces interrupt processing overhead.

NAB protocol-processing architecture: On-board processing of checksumming,

encryption, and packetization of data minimizes bus transfers. This also avoids having

to transfer data to the host cache, which may improve the cache performance. A

packet pipeline, executing some key performance critical functions is used to increase

throughput, particularly for large data transfers. The pipeline latency for short packet

transfers is reduced by using few stages and a small unit for data transfers between the

stages. Connectionless memory accessing provided by a memory architecture based

on dual-ported memory reduces bu�ering latency and increase the packet processing

rate. It allows processing of a packet by the on-board processor to proceed in parallel

with the transfer of subsequent packets from the host to the bu�er memory and from

the network to the bu�er memory. Block copier hardware is used to transfer data at

full blast between host memory and the HNI memory, thus reducing bus occupancy

and bu�ering latency.

VMTP NAB architecture is an intelligent host interfacing: that is, for short mes-

sage programmed I/O and for large message DMA data transfer. Other advantages

are that host interrupts for the packet reception is reduced and a hardware support

for CRC, encryption. But NAB board is designed only for VMTP protocol process-

ing, not for TCP/IP or others. NAB architecture reduced data copying but still has

unnecessary data copying into the network bu�er memory.

In protocol implementation, VMP NAB has an advanced packet format in which

the checksum �eld is located in the trailer of the packet rather than in the header.

Data ows with one-copying from user space of main memory to network bu�er

memory. Then, the network adaptor board adds 32-bit CRC checksum. The packet
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processing on the network adaptor board is pipelined to perform checksumming, en-

cryption and transmitting of packets. To support the ow control on transmission of

packets, a timer is used in implementing a �ne-grained rate-based policy.

2.3.4 OSIRIS/ORBIT ATM Interface

AURORA is an experimental wide area network testbed whose main objective is

the exploration and evaluation of technologies that will support operation at or near

giga-bit per second bandwidths. To support such network speed and convert data

between the network format (ATM cells) and a format useful to the host (transport

level message - TPDU), two host-network interfaces, OSIRIS [31] and ORBIT [7]

are designed to support TURBOchannel bus on DECstation 5000 workstations and

MICROchannel bus on the IBM RS/6000 workstations, respectively. But they have

an architectural design concept.

ORBIT [7, 8], the host interface designed at University of Pennsylvania has been

centered on developing a high-performance and intelligent host interface for IBM

RISC System/6000 workstation host in the Aurora Gigabit testbed environment.

The design philosophy for the architecture is based on providing a \common de-

nominator" set of services in dedicated hardware. All per-cell activities, such as ATM

header and adaption layer creation and processing (including segmentation and re-

assembly) are performed by the host interface in hardware. The host is responsible

for all high-level activities to achieve exibility in protocol implementations.

The MicroChannel architecture bus on the RISC System/6000 has been chosen

as the host interface's point of attachment for its high bandwidth. DMA scheme is

used in transferring data between the memory in host and the bu�er on interface.

It has on-board hardware elements for cell related activities and DMA device for
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data transfer. Zero data copying is involved. The network interface is connected to

the host main memory through I/O bus.

The OSIRIS ATM interface is built for the AURORA Gigabit Testbed at Bellcore

Communications Research [27, 31]. There are two Intel 80960 RISC microprocessors,

one for transmitting and one for receiving, to perform the ATM protocol processing

and ow control for a trunk group of four STS-3c lines (622 Mb/s). The commu-

nications between the host and the microprocessors is through shared memory. In

addition to DMA, there are other hardware elements designed to assist data transfer.

As a result, the OSIRIS yield highest throughput so far. It is an intelligent interface.

Figure 2.9 shows that the host does not have a direct connection to the protocol

processor. But the host communicates with a protocol processor in the network

adaptor through control and network management information bu�er in terms of

programmed I/O and polling schemes. The most important architectural feature is
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direct memory access between user-space main memory and a space of transmitting

FIFO, which is a register bu�er, at sending data to the intended network channel.

With the start address and the length of data on the control and communication

management information by the host, the protocol processor segments data which is

on user-space main memory. After segmentation, the protocol processor invokes DMA

controller to transfer segmented data into the transmitting FIFO on the network

adaptor. Conventional taxonomic schemes, however, can not explain this unique

feature of AURORA project.

In protocol implementation, AURORA supports ATM network with statistical

switching. In particular, data-copying functional unit is very eÆcient and distin-

guishable. In OSIRIS or ORBIT the intended data is copied to transmitting FIFO

directly, while in VMP NAB data is copied to network memory and then to trans-

mitting FIFO. The ow control is also based on data arrival rates. According to the

error-handling speci�cation of ATM network, error handling is supported only for

transport layer. For data-link layer, no error reporting and correction processes are

supported, but only header error bit checking is supported.

2.3.5 Fore's Systems ATM adapters

Two types of ATM interfaces were developed at Fore's Systems [19, 20]: simple slave,

and intelligent host-network interfaces as shown in the (a) and (b) of Figure 2.10.

The simple slave interface implements protocol processing in the slave mode of

the I/O bus. Thus, data is read and written to the transmit FIFO and incoming cells

are read from the receive FIFO. Since interrupting the host is costly, a number of

cells are queued before interrupting the host to reduce the interrupt overhead.

High layer protocol processing, ATM Adaptation Layer and ATM layer protocol
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processing are performed at the host. The transmitted data is copied to interface

through programmed I/O in the conventional manner.

The transmit engine handles CRC generation, cell formatting and delineation.

The receive engine handles cell synchronization, CRC checking for the cell header and

VBR (Variable Bit Rate) segmentation and reassembly payload, and word alignment.

In the contrast, the intelligent interface has an on-board processor with local

memory and DMA capability as well as CRC checksum hardware. In the receive path,

the on-board processor polls the status of the receive FIFO. When a cell is received,

it reads the header information and determines where the cell payload should be

transferred over the system bus. It then instructs the DMA controller to carry out

the actual transfer. On the transmit path, the networked data is �rst copied to the

kernel space for high layer protocol processing in host then DMAed to the interface

memory for ATM layer protocol processing using the RISC CPU on board. The host

writes a descriptor to the network bu�er memory indicating the address and length

of a message to be transmitted. The on-board processor generates the cell header

and instructs the DMA controller to transfer the payload over the host system bus to

the transmit FIFO. The process is repeated until the entire message is transmitted.

The segmentation and reassembly (SAR) processing code can interleave the reception

and transmission of cells, and take into account cells with di�erent priorities. The

network bu�er memory stores the tables and the code for SAR processing, the header

information (VPI, VCI, MID, and service type), and the transfer address on the host

memory.

Since the simple interface has low cost to build but the signi�cant host interrupt

latency for time-critical services, it is applicable for data communication in which

the latency may not be signi�cant. The host processor should spend processing time
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on protocol processing such as SAR and header information. As other disadvantage,

network data can not access directly to the other peripheral devices. The network

data can reach the peripheral devices via the host processor or main memory.

Since the on-board processors allow direct data transfer between the network and

audio or video devices, it can eliminates the latency and overhead of going through

the host memory system. It is useful for real-time multimedia applications. But

the interface is not able to implement other transport protocols except TCP/IP. For

example, To implement XTP, the CRC should be included on the trailer. But the

HNI puts the CRC value on the header by a hardware component.

2.4 Summary

In this chapter, we reviewed several host-network interfaces based on their fundamen-

tal protocol functions, architectural features, some example conventional interfaces,

classi�cations, limitations and overheads, and desirable features.

The fundamental functions which are common in conventional designs can be

grouped as protocol processing and data manipulation functions. The protocol pro-

cessing functions are typically packetization, error handling, ow control, and routing

functions. Typical data manipulation functions involve data copying, error detection

for data, bu�er management, encryption, and packet formatting functions.

Classi�cations of conventional host-network interfaces have been described in sev-

eral literatures and many papers, as a formalized review (we will refer these in next

chapter). However, conventional classi�cations are focused on interface designs. They

do not cover all host-network interfaces but only few small categories. They do not

support the whole systematic view. Some classi�cations are based only on hardware,

38



some others are based on the protocol processing (It will be refered in next chapter

too ). Thus, they do not provide suÆcient help to support a new design work based

on the classi�cation.

As the network I/O system, host-network interface seems to cause bottlenecks in

communication systems. The functional limitations of current host-network interfaces

can be related to the memory access, operating system, or protocol processing. While

memory-accessing overheads are related to features of the hardware components, op-

erating system and protocol-processing overheads stem from software shortcomings.

Thus, those overheads should be removed to improve cost/performance, reliability,

and exibility features.

In addition to the network speci�cations, the host-network interfaces are designed

according to the exibility, eÆciency, high-speed data transport, cost/performance

e�ect, and operation reliability. However, existing taxonomic schemes do not address

these issues.

According to those classi�cation limitations, a new comprehensive classi�cation

scheme is needed to support a new design of cost e�ective, exible, reliable, and high-

speed host-network interface. In the following chapter, a taxonomy will be introduced

full�ling these requirements.
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Chapter 3

Comprehensive Taxonomy of

Host-Network Interfaces

Whenever a domain of research for a system contains many di�erent objects or fea-

tures, a classi�cation scheme can help to understand the system better. Objects are

partitioned into a structured set of classes on the basis of meaningful set of criteria.

The classi�cation scheme, so called taxonomic system, is a system of rules whereby

objects in a given domain are classi�ed in a particular way.

Beyond that, a useful role of developing a classi�cation scheme is to establish

a theoretical framework within which we can meaningfully compare and discrimi-

nate between architectures and precisely determine how and where they converge

or diverge. Sometimes, a good classi�cation scheme can provide a foundation for

predicting certain properties of an architecture.
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3.1 Introduction

Skillicorn [92] has mentioned three reasons for classifying architectures: The �rst

reason is to understand what has already been achieved. Until the past two decades,

almost all computer systems used von Neumann architecture. However, since that

time, the growth in computer systems with di�erent kinds of parallel and distributed

features has been explosive, and it is not at all clear which architectures have the

best prospects for the future. Within a computer system, the communication system

is regarded as an important component.

The second reason for having a classi�cation of architectures is that it reveals

possible con�gurations that might not have otherwise occurred to a system designer.

Once existing systems have been classi�ed, the gaps in the classi�cation can suggest

other possibilities. Of course, not all such possibilities will result in improvements.

The third reason for a classi�cation scheme is that it allows useful models of per-

formance to be built and used. As already mentioned, a drive for greater performance

lies behind almost all new architectural ventures. A good classi�cation scheme should

reveal why a particular architecture is likely to provide a performance improvement.

It can also serve as a model for performance analysis.

Over the past 10 years, there has been a rapid growth in the number of proposed

and constructed host-network-interface architectures. Despite of the bred deployment

of the host-network-interface architectures, there is no comprehensive taxonomy. The

only existing classi�cations are often used to argue that the proposed architecture will

praise better performances than other architectures. For these reasons, therefore, a

comprehensive taxonomy will be introduced in this chapter without any prejudice.

The development of taxonomic system for host-network interfaces serves several
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points of immediate interest. First, the taxonomy helps to understand the host-

network interfaces. Since the architectures of host-network interfaces have been devel-

oped according to the requirements of network topology, performance, and eÆciency,

the structural distinctions can issue the points of classi�cation scheme. For example,

programmed I/O and DMA data accesses in main memory are the di�erent techniques

on these requirements. Further, taxonomic system introduces exible and optimized

designs for special applications. The best host-network interface can be designed

based on the comparison between classes of taxons, the elements of classi�cation in

taxonomic system. Optimizations such as block copy or special store bu�ers can help

improve the performance of unnecessary accesses by transferring data in chunks.

Before exploring the classi�cation of host-network interface, because limitations of

host architectures related to the communication paths have caused the host-network

interfaces to be developed in several ways, the understanding of these limitations can

help to get the reason why the classi�cation is important and how it is focused on.

Thus, it can contribute to understand why a good taxonomy is useful in studying the

host-network interface architectures and how new approach applies to a number of

modern architectures of host-network interfaces.

Thus, after showing the limitation of current connections between a host and a

host-network interface, the new taxonomy will be presented.

3.2 Examples of Taxonomy

Good taxonomy should group together those objects that are strongly related in an

important way. For example, computer engineers classify computers based on their

functional views and on information ow between units. Flynn [35] classi�es computer
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architecture as four categories by the number of instruction and data streams that

they can process simultaneously. The categories are:

SISD single instruction stream with single data stream: Traditional sequential com-

puters are based on this model introduced by John von Neumann.

SIMD single instruction stream with multiple data stream: A single control unit

dispatches instructions to each processing unit. In an SIMD computer, the

same instruction is executed synchronously by all processing units. Processing

units can be selectively switched o� during an instruction cycle. Examples of

SIMD computers include the Illiac IV, MPP, DAP, CM-2, MasPar MP-1, and

MasPar MP-2.

MISD multiple instruction stream with single data stream: The same data stream

ows through a linear array of processors executing di�erent instruction streams.

This architecture is also known as systolic arrays by H.T. Kung for pipelined

execution of speci�c algorithms.

MIMD multiple instruction stream with multiple data stream: Each processor is

capable of executing a di�erent program independent of the other processors.

Examples of MIMD computers include the Cosmic Cube, nCUBE 2, iPSC,

Symmetry, FX-8, FX-2800, TC-2000, CM-5, KSR-1, and Paragon XP/S.

More descriptive classi�cation of the computer architectures has been proposed by

D. V. Skillicorn [92]. It extends Flynn's taxonomy, especially in the multiprocessor

category. It is also a two-level hierarchy in which the upper level classi�es computer

architectures based on the numbers of processors for data and for instructions and

the interconnections between them. A lower level can be used to distinguish variants
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even more precisely and based on the state machine level of processors. The scheme

can be summarized as follows: The �rst level describes an architecture by specifying:

� the number of instruction processors, denoted by nIP.

� the number of instruction memories, denoted by nIM.

� the type of switch connecting IPs to IMs.

� the number of data processors, denoted by nDP.

� the number of data memories, denoted by nDM.

� the type of switch connecting DPs to DMs.

� the type of switch connecting IPs and DPs.

� the type of switch connecting DPs to DPs.

The second level re�nes the �rst level taxonomy describing whether or not the proces-

sors can be pipelined and to what degree, and by giving the state diagram behavior

of the processors.

Because there are multiple functional units, connections between functional units

are made using abstract switches that can be implemented in four di�erent ways:

� 1-1, a single functional unit of one type connects to a single functional unit of

another.

� n-n, the ith unit of one set of functional units connects to the ith unit of another.

� 1-n, one functional unit connects to all n units of another set of functional units.

� n�n, each units of one set of functional units can communicate with any unit

of another set of functional units and vice versa.

44



The main functional units in this scheme are the instruction processors and the

data processors. Skillicorn precisely de�nes these concepts in terms of the set of

functions each element performs.

Thus, the functions of the instruction processor are to

� determine the address of the next instruction to be executed on the basis of

local state information and the state information passed to it by the DP,

� access the IM to fetch the instruction,

� receive and decodes the fetched instruction,

� inform the DP of the operation to be performed,

� determine the operand addresses and passes them to the DP, and

� receive the state information from the DP after the latter has executed the

operation.

The data processor carries out the following steps:

� receive the operation to be performed from the IP,

� receive operand addresses from the IP,

� fetch operands from the DM,

� execute the operation,

� store results in the DM, and

� return state information to the IP.
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Table 3.1: A fragment of Skillicorn's taxonomy
class nIP nDP IP-DP IP-IM DP-DM DP-DP Name

3 0 n - - n� n n� n loosely coupled dataow

4 0 n - - n� n - tightly coupled dataow

6 1 n 1� 1 1� 1 1� 1 - von Neumann uniprocessor

8 1 n 1� n 1� 1 n� n n� n type 1 array processor

9 1 n 1� n 1� 1 n� n - type 2 array processor

13 n n n� n n� n n� n - separate von Neumann uniprocessors

14 n n n� n n� n n� n n� n loosely coupled von Neumann

15 n n n� n n� n n� n - tightly coupled von Neumann

Using this taxonomic scheme, Skillicorn established a single category of 28 classes.

Table 3.1 reproduces a small fragment of his taxonomy.

According to the nature of the instruction interpretation and execution cycle,

the internal organization of, and the relationships between, storage components and

functional units, and the means by which instruction processing is controlled, S.

Dasgupta [26] proposed a hierarchical taxonomic scheme using the chemical metaphor.

The taxonomy is built from seven primitive concepts referred to as atoms. Atoms

of the same type can be combined into more complex entities called atomic radicals,

which in turn can be combined into still more complex concepts called nonatomic

radicals. Finally, nonatomic radicals are combined into molecules, which denote entire

architectural entities.

The symbols iM, sM, C, sI, pI, sX, and pX identify the atoms as follows:

� M stands for a main memory module for instructions or data. By the pre�x, sM

denotes a simple memory and represents a potential for a unit of information

to be accessed per memory cycle, while iM denotes an interleaved memory

and represents a potential for multiple units of information to be accessed per

memory cycle.

� C stands for cache.
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� I stands for an instruction preparation unit. The symbol sI represents a single-

stage instruction preparation unit/processor and pI represents the pipelined

instruction preparation unit/processor. The function of an instruction prepa-

ration unit is de�ned by the following set of operations:

{ determine the next instruction to be executed,

{ fetch the instruction from instruction M or instruction C,

{ decode the instruction,

{ compute the e�ective address of the operands,

{ transfer the operand addresses and the operation to the instruction execu-

tion unit, and

{ receive the state information from the execution unit.

� X stands for an instruction execution unit/processor. The symbol sX represents

an X that can execute only a single instruction at a time, while the symbol pX

represents an X with the potential for executing several instructions at a time.

The function of X is de�ned as following:

{ receive operand addresses and operation from I,

{ fetch operands from data M or data C,

{ carry out the operation,

{ store the result in M or C, and

{ return state information to I.

Except that operands can be fetched from C and results stored in C, X is functionally

identical to the DP in Skillicorn's scheme. Similarly, except that instructions can be

fetched from C, I is functionally identical to the IP in Skillicorn's scheme.
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A replicated atom is termed an atomic radical. The subscript is termed the radical

number, for example, pIm denotes m instances of an instruction preparation unit.

A combination of a C radical or a M radical with an I radical, an X radical, or

another combination constitutes a nonatomic radical. By convention, the C or M

radical must be to left of the nonatomic radical. When the number of replicated

atomic radicals is more than one, the combination is enclosed in parentheses, for

example, (iM)m:(C:pI)n.

An I (X) molecule is a single or a replicated combination of an MCI (MCX) radical

that represents a complete instruction preparation (execution) subsystem within a

computer at abstraction level (or called endoarchitectural level). A macromolecule is

a single or a replicated combination of an I molecule and an X molecule that represents

a complete computer at the endoarchitectural level. By notational convention, the I

molecule appears to the left of the X molecule.

The structure of a radical or molecule is determined by using replication and link

operation. Let head(R) and tail(R) denote, respectively, the largest leftmost radical

and the largest rightmost radical in a radical R. For example, R = iMm:(C:pI)n, then

head(R) = iMm; tail(R) = (C:pI)n. By de�nition of replication, the rep(R) means

multiple replicated radicals of the R radical. On the other hand, the link operation

has several ways to link between radicals or molecules as following: with radicals of

R1 and R2, link(R1, R2) cause

� the simple link if tail(R1) and head(R2) are both nonreplicated,

� the right divergent link if tail(R1) is nonreplicated but head(R2) is replicated,

� the left divergent link if tail(R1) is replicated but head(R2) is nonreplicated,

and
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� the bidivergent link if both tail(R1) and head(R2) are replicated.

where the simple link is similar to the 1 � 1 or n � n connections, the left (right)

divergent link is the 1-n (n-1), and the bidivergent link is the n � n in Skillicorn's

switch connections.

Table 3.2 shows the molecular formulas for a variety of well-known computer

architectures.

Table 3.2: Molecular formulas for some well-known computers
Name Formula

Illiac IV (sM64:sI)(sM:sX)64

Cray-1 (iM:C:pI)(iM:Cn:pX9)

Cray X-MP (iMm:(C:pI)n)(iMm:(Cr :pXs)q)

CM-2 (iM:C:pI)(sM:sX)64k

IBM 3838 (sM:pI)(sM:pX7)

IBM RP3 (iM:(sM:C:sI)n)(iM:(sM:C:sX2)n)

3.3 Conventional Taxonomy for Host-Network In-

terfaces

In this subsection, we review the main taxonomic features of host-network interfaces

and identify their limitations. Classi�cation schemes for host-network interfaces have

been described in several articles [45, 95, 50, 19]. Even though there are a lot of clas-

si�cation schemes, a formalized taxonomy which can include and classify all of them

in terms of proved methods does not seem to exist. The conventional classi�cations

are focused on the aspects described in the following section.
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3.3.1 The number of Copies for Data Transfer

Steenkiste et al [94] classi�es the interface architectures by the number of copies to

transfer data from memory into network. He describes several overhead sources such

as data copying, bu�er management, protocol processing, interrupt handling and

system calls, and some other depending on the system. In particular, as networks get

faster, data copying and checksumming dominate the other overheads because those

operations make heavy use of a critical resource such as memory bus. Therefore,

host-network interfaces are classi�ed as one of traditional 5-copy data ow, outboard

bu�ering, and DMA based host-network interface architectures. Similarly, Dalton

et al [25] analyzes TCP/IP protocol implementation in terms of minimizing data

movement in memory.

Figure 3.1 (a) shows the dataow when sending a message using simple host-

network interface. Application data in user space of main memory are copied to one

place of a system bu�er on kernel space of main memory. The transport and network

protocols processes data on the system bu�er. The shadow line is the checksum

calculation which comes after data copying into system bu�er. Then, data is copied

into the transmit FIFO on network interface board. Therefore, there are a total of

�ve bus transfers for every word sent.

Moving the system bu�er into the network interface board, the number of data

transfers can be reduced. Figure 3.1 (b) shows the data ow with outboard bu�er-

ing. While data is being copied into the system bu�er in the network interface, a

partial checksum is calculated and after summing the partial checksums the complete

checksum is sent to the system bu�er. The number of data transfers through bus

has been reduced to three. Besides using the bus more eÆciently, outboard bu�er-

ing also allows packets to be sent over the network at the full network-medium rate,
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independent of the speed of the internal host bus.

Using DMA (Direct Memory Access) and user-level protocol processing, the num-

ber of data transfers can be further reduced. Transport layer and network layer

protocols usually have been processed at the kernel-level for data protection or other

reasons. This kernel-level protocol processing causes data to be copied from user space

to kernel space of main memory. On the other hand, this unnecessary data copying

can be removed with protocol processing at the user-level. For example, a daemon

owned by root can work as a transport protocol and can solve the data protection

problems between user spaces on the memory. Thus, data-copying protocol at user

level sends to the DMA controller the start address and the length of intended data on

the user-space of main memory. Then, the DMA controller copies data directly from

an application space of main memory to the outboard bu�er. Moreover, while data

is being copied, the checksumming is done with a special hardware, which results in

less load on the host. Besides reducing the load on the bus, DMA has the advantage

that it allows the use of burst transfers.

3.3.2 Access Control Bu�er Size

When a processor receives data from external devices such as network through DMA

and device registers for access control, the processor becomes aware of an external

event (e.g. message arrival) via interrupts or by polling status registers. Both noti�-

cation mechanisms are costly because interrupts have high latency and polling wastes

processor cycles and other system resources. In Typhoon systems [85], access control

logic with cache snooping protocol reduces delay such as zero-cycle access to all pro-

tocol state information. Only network-queue and memory-bus interfacing delays are

occured. In other words, the cache snooping protocol saves time from the delays for
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Table 3.3: Summary of network interface devices
NI/CNI Accessible Queue Size Queue Pointers Home Name

NI2w 2 words - - CM-5

NI16w 16 words - - Alewife

NI128Q 64Byte cache blocks - - StarT-NG

CNI4 4 cache blocks - network interface Typhoon

CNI512 512 cache blocks explicit network interface Typhoon

CNI16Qm 16 cache blocks explicit main memory Typhoon

frequently-using-control informations between host processor and protocol processor

on the network adaptor.

Mukherjee [72] classi�es host-network interfaces based on the cache coherent pro-

tocol, the size of control information queue, and where the queue is. He denotes the

traditional host-network-interface devices asNIiX an coherent host-network-interface

devices as CNIiX. The subscript i speci�es the portion of a network bu�er queue

accessible to the processor. The default unit of i is memory/cache block unit, but can

also be speci�ed in 4-byte words by adding the suÆx, w. The place holder X is either

empty, Q, or Qm. Empty for X �eld represents the simple case without explicit head

or tail pointers to manage the network bu�er queue, Q represents that the accessi-

ble queue can be mapped in memory address space, and Qm denotes that the queue

is main memory. Table 3.3 shows the taxonomic scheme of coherent host-network

interfaces.

He has also examined host-network interfaces with how to connect to the host,

� by memory [70] or I/O buses [27, 7]: It is popular host interfacing in conven-

tional host-network interfaces. The host processor is connected to the interface

by a port of dual-ported main memory or system bus.

� by processor registers [50]: By adding new registers on the processor, the host

CPU store and load network data through those registers. Those registers are
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connected to the host-network interface.

� by level-1 cache controller [50]: The cache controller control data transfers. At

transmitting, the host CPU give command to the controller to send data to the

network. At receiving, cache controller store data to the main memory without

host instructions.

� by level-2 cache bus [6]: The host interfacing is through cache bus. Data transfer

can be fast but can cause cache bus to be overloaded and cache coherence

problem.

Examples of this host-network interface taxonomy are listed in table 3.4.

Table 3.4: Taxonomy of host-network interfaces with connectivity
Placing Name

Memory or I/O bus OSIRIS

Processor Registers J-machine

L-1 cache controller MIT Alewife

L-2 cache bus StarT-ng

3.3.3 Protocol Co-processing between host and protocol pro-

cessor

Cooper et al [19] classi�ed high-speed host-network interfaces as simple and intelligent

network interfaces due to the signi�cant di�erence in performance and implementation

complexity such as protocol processor, memory accessing way, and DMA capability.

To perform the protocol processing on interface board, some kind of controller or

CPU must be used. The onboard processor can access the physical network interface

with signi�cantly higher bandwidth than the host processor, and it can respond to
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individual packets more quickly than the host processor because the host interrupt

overhead is avoided.

The connection between the host and the host interface is either a FIFO that

is accessed via a single address in the host's address space or a network-bu�er that

is mapped into a potentially large range of the host's address space with random

accessibility.

The actual bandwidth of transfers to and from host memory over the bus depends

much on the transfer mode, single-word versus burst mode. While the host executes

some processes, DMA controller can access the main memory with burst-mode data

transfer without host interrupts.

In simple interfaces, the receive architecture handles packet synchronization, CRC

checking for the packet header and the payload of VBR (Variable Bit Rate) SAR

(Segmentation and Reassemble), and word alignment. The transmitter architecture

similarly handles CRC generation, packet formatting and delineation. Together with

those features, data is read and written directly by the host processor. On the other

hand, intelligent interface likely to yield the highest performance for real-time traÆc

can perform the SAR processing more eÆciently than the host processor, thus the

host processor can assign more processing power to application layers. With DMA

capability for burst mode data transfer, more bandwidth can be achieved and host

processor uses less interrupts.

3.3.4 Memory Access

In [31], the comparison of the DMA performance with programmed I/O is determined

by how fast an application program can access the data in each case. Even though

reading data into the cache causes a dramatic decrease in throughput from the pure
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DMA results, the throughput of the DMA remains above what can be achieved by

programmed I/O simply because of the high performance penalty for word-sized reads

across the bus.

In [4], memory access is described with address-mapping spaces and data accessing

mechanisms to classify host-network interfaces. Thus, there are network interface

boards in memory space and in I/O space with programmed I/O, DMA, and burst

mode by the memory controller.

The network bu�er memory on host-network interface board can be mapped as

a part of main memory. In this class, data can be moved between network bu�er

memory and main memory by the processor using load and store instructions.

With programmed I/O, the processor may read or write from I/O space using

single-word load and store instructions, just like the case of memory space. The only

di�erence is the uncached access to the I/O space.

With DMA, an I/O device can read or write main memory directly without involv-

ing the host processor. Cache coherence during DMA is maintained by the operating

system. When each transfer-intended data is smaller than the transfer unit of a DMA

data, DMA can cause data to be delayed to compose bulk of data during transfer.

Finally, an I/O device can use the burst mode data transfer by the memory

controller between memory and I/O space. With pipelining, the burst mode by the

memory controller can boost up the speed of data transfer.

3.3.5 Host Interfacing

Typical implementations of network interfaces using the I/O bus su�er from band-

width and latency limitations imposed by DMA start-up times, low I/O cycle times
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compared to the CPU cycle times, limited I/O address space, multiple data copy-

ing, and CPU bus contention. Placing the network interface on the other side of

dual-ported main memory can alleviate these problems and it is compatible with new

wide-bandwidth memory techniques such as Rambus technique [101]. Using VLSI

technology, [50] designs a network interface chip for very high-speed network. Henry

and Joerg [50] propose four categories for existing host-network-interface architec-

tures: operating system based DMA; user-level memory mapped; user-level register

mapped; and hardwired.

OS-level DMA-based Interfaces The host relegates message handling to the DMA

under the operating system's control. At the hardware level, both of send-

and receive- machines send and receive messages by initiating a DMA transfer

between main memory and the network channel. At the software level, the

sending of a message is accomplished by writing the message into the memory

and executing a send system call which initiates the DMA transfer from the

memory to the channel. Receiving messages also involves the operating system,

and requires the program on the receiving host to explicitly perform a receive

operation.

User-level Memory-mapped Interfaces Sending and receiving messages can be

processed by user level operations and by memory mapping. The important

feature of these interfaces is not that the hardware is actually memory mapped,

but that the bandwidth and latency of accessing the network adaptor is similar

to that of accessing memory. Typically, messages are sent by the user's process

composing the message and executing a send command. The host �nds out that

a message has arrived either by polling to check if a message has arrived or by

an interrupt which is generated upon message arrival.
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User-level Register-mapped Interfaces While the memory mapped interfaces

store or load messages into memory to send or receive, a processor with an

on-chip network adaptor can eliminate these loads and stores by mapping the

interface into the processor's register �le rather than its memory. An incom-

ing message can implicitly appear in a predetermined set of general registers.

Words of an outgoing message can be computed directly into other predeter-

mined general registers. By mapping the host-network interface into the regis-

ter �le, network systems at sending and receiving sides allow for low-overhead,

high-bandwidth communication of data.

Hardwired Interfaces To execute a function in many communication environments,

a hardwired unit can implement the function much faster than a software. The

hardwired interfaces completely support the sending, receiving, and the inter-

pretation of arrived messages in hardware. Since the messages are controlled

without software intervention, they can be handled very eÆciently. These inter-

faces, however, do not implement the general message passing model or explicit

user-level model of the network because they take control away from the pro-

grammer and the compiler. This model is appropriate for a shared memory or

dataow machines.

Examples for each of classi�cation categories are shown in the table 3.5. Since the

classi�cation is for host-network interfaces of the tightly-coupled processor systems,

all examples are related to the parallel computer systems.
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Table 3.5: Examples of the classi�cation for tightly-coupled processor-network inter-

faces
Class Name

OS-level DMA based nCUBEs, iPSC/2

User-level memory mapped CM-5, MDP

User-level register mapped CM-2, iWARP

Hardwired Alewife, Monsoon

3.4 Limitations of Conventional Schemes

Although a number of classi�cations have been proposed for taxonomic features of the

host-network interfaces, it seems that these classi�cations are often designed to sup-

port only the argument about superiority of the proposed solution. The conventional

taxonomic schemes have some important limitations.

The �rst limitation is lack of the predictive power. With a given information from

the taxonomic scheme, our knowledge of the scheme would then allow us to predict

the values of the taxonomic characters corresponding to this class. However, neither

the schemes nor their nomenclatures allow us to infer to what extent or at what level

two or more architectures belonging to distinct classes are similar or the extent to

which di�erent architectures from a single host-network-interface family are similar,

without actually comparing the values of the respective taxonomic characters. This

is because conventional taxonomic schemes have only one category and, consequently,

are non-hierarchical.

The second limitation is the comprehensive power. So far, the communication

networks have been developed in local area, metropolitan area, wide area, and inter-

processor communication networks, respectively. Thus, the host-network interfaces

have deployed adaptively to their network systems. Even though a taxonomic scheme

59



has the predictive power in a narrow scope, it should have the taxonomic character-

istics for all kinds of host-network interfaces. However, each taxonomic scheme has

selected taxonomic characteristics to provide the superior of its architecture to other

architectures. For example, some articles, [50, 72], classify host-network interfaces in

tightly-coupled systems, while the others, [19, 4, 94], classify them in loosely-coupled

systems.

The third limitation is the systematic power. A computer network system im-

plements proposed protocols based on hardware or software functional units. Ar-

chitectural taxonomy must consider both aspects of the hardware and the software.

However, conventional taxonomic schemes only consider taxonomic characteristics im-

plicitly, called hardware functional units. They might be considered explicitly with

separated levels such as an abstract machine and a protocol processing levels.

The fourth limitation is the explanatory power. When the notion of explanation

is considered explicitly as a desirable system characteristic, the signi�cance of the

various taxonomic characters and their possible values should probably have been

more carefully delineated. For example, Steenkiste et al's [94] scheme has little overt

explanatory power. However, if it is given the precise characterization of data-copying

place with the number of data copying, this scheme has considerable potential, or

latent explanatory capabilities.

3.5 Proposed Taxonomy for Host-Network Inter-

faces

Our approach is based on two classi�cation techniques that have been used to classify

and characterize computer systems [92, 91].
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Our objective in this research is to develop a taxonomy with the following features:

� Good descriptive capability that can clearly describe the architecture of a host-

network interface in short time period and price manner.

� With predictive power, the taxonomy can be used to extrapolate the behavior

of a host-network interface and thus can be used to design future host-network

interfaces that can eÆciently and cost-e�ectively meet the requirements of a

given class of applications.

� The hierarchical feature allows us to introduce more detailed and di�erent lev-

els of abstraction in order to achieve accurate description of the host-network

interface architecture and thus, gives better foundation to extrapolate the host-

network behavior.

Figure 3.2 shows a block diagram of our taxonomy that consists of two main levels

of classi�cation: Architectural and Protocol classi�cations.

In the architectural classi�cation, we delineate the main components required to

transfer data from the host to the network and vice versa, i:e: receiving data from

the network and delivering it to the host. Furthermore, we delineate at this level how

these components are connected as well as how they interact to perform their tasks.

Host - Network processor

Host - Network memory

Cache - Network processor

Cache - Network memory

Main memory - Network memory

Packetization

Data copying

Flow control

Error handling

Routing

Flow control

Error handling

Routing

Depacketization

Data copying

Architectural Level
Protocol Level

Transmission Reception

Figure 3.2: A block diagram of hierarchical taxonomy by architecture and protocol

for host-network interfaces
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In the protocol classi�cation, we identify all the software functions, required to

transfer data from the host to the network and vice versa, i:e: the tasks required to

receive data from the network and deliver them to the host. In addition, this level

shows how each task is mapped into the component identi�ed by the architectural

classi�cation. The protocol classi�cation can be further re�ned by identifying all

possible techniques to implement each protocol task. This re�nement is useful to

guide designers to develop a host-network interface architecture that meets a certain

performance and cost objectives.

These two levels of classi�cation provide us with all the information required to

describe and thus analyze the performance of a host-network interface architecture.

3.5.1 Architectural Classi�cation

We will approach the architectural classi�cation with the PMS (processor-memory-

switch) notation, which describes well the relations between processor, memory, and

I/O devices [39, 91]. In PMS notation, a system is described as an interconnected

set of components or individual devices, associated with a set of operations. Such

a description can be complicated by the amount of detail involved. Thus, the PMS

descriptive system permits very compressed descriptions, that is, describes only those

aspects of the components that are of interest, while ignoring the rest. It also permits

the analysis of the amounts of information held in various components, the ow of in-

formation between components, and the distribution of the control that accomplishes

the ow.

Note that the physical communication system consists of hosts, host-network in-

terfaces and a network. Thus, the physical characteristics result from these logical

structures and their connections. There are six types of functional units from which
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any architecture of the host-network interface can be constructed. These are host

CPU, main memory, cache, network bu�er, protocol processor, and a switch:

� Host CPU unit is to execute instructions of the user application which may

require a communication to, if required, the protocol processing related to the

communication, and to transform data usually in ways that correspond to basic

arithmetic operations.

� Main memory unit is an intelligent storage device that passes data to and from

the host CPU.

� Cache unit consists of a small fast memory that acts as a bu�er between the

main memory and the host CPU.

� Network bu�er unit is a staging and speed-matching area for data in transit

between the host and the network. It consists of a network bu�er memory and

network FIFOs. Network bu�er memory is the storage for transport-layer data

(so called message) and information related to the control and management pa-

rameters, while network FIFOs are two set of registers for sending and receiving.

It also provides the protocol processor with contention-free memory access to

the packet data.

� Protocol processor unit manages packet processing and various bookkeeping

functions associated the protocol.

� Switch unit provides connectivity between other functional units in one way

of programmed I/O, DMA (Direct Memory Access), burst transfer by memory

controller, or register accessing.
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3.5.2 Protocol Implementation Classi�cation

The main protocol tasks are packetization/depacketization, error handling, ow con-

trol, and routing. In what follows, we describe each of these tasks and the di�erent

mechanisms or techniques to implement each tasks.

Packetization/Depacketization Unit

Functionality: Since received data might be di�erent from those sent to the network,

data is bundled to catch such errors and it is transmitted as packets of bits with

some overhead bits.

A packet consists of a sequence of bytes with a header, an intended data (pay-

load), and with or without a trailer. According to the routing unit and bu�er-

size limits in the sender and receiver, the intended data size can be �xed or

variable. If an application program sends a message larger than the packet

data size, then the operating system or a protocol processing unit fragments

the message into a series of packet data and reassembles the packets into the

message in the receiving process.

Packets may arrive for several receiving processes in one host, and it would

be desirable to receive data directly in the receiving process' address space.

Most medium interfaces put received packets in the �rst available bu�er on

the queue (i:e: network bu�er FIFO), without interpreting the packet contents.

The depacketization, also called data composing, of the incoming packet stream,

therefore, has to be done by a protocol engine and copying message to the ap-

propriate location in the receiving application process's address space is usually

unavoidable.
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Classi�cation: The packetization functional unit can be classi�ed by the processing

unit and by packet length as follows:

1. A variable-sized data unit packetized by the host.

2. A variable-sized data unit packetized by the interface.

3. A �xed-sized data unit packetized by the host.

4. A �xed-sized data unit packetized by the interface.

Data-Copying Unit

Functionality: The path taken by the data as it progresses through a conventional

protocol stack is illustrated in [4, 94]. The application writes data into its

bu�er and then invokes a system call to send the data. A typical interface

between the application layer and the transport layer is the socket function.

The socket copies the application data into a bu�er in kernel space called the

socket bu�er. Then, the transport layer reads the data in the socket bu�er to

compute a checksum and �nally the data is copied out to the network inter-

face using programmed I/O, Direct Memory Access (DMA), burst transfer by

memory controller, or register �le on host processor. Thus, the memory system

is accessed �ve times for each word of intended data. Similarly on the receive

path, data is copied �rst from the network interface (FIFO) into kernel memory

using programmed I/O, DMA, burst transfer by memory controller, or register

�le on host processor. The transport layer checksum is veri�ed and when the

application layer is ready, the socket function copies data from the socket bu�er

in kernel memory to the application bu�er in user memory space. Finally, the

application process reads the data. Thus the memory system is also accessed
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�ve times for each word of intended data.

There are several ways to reduce the number of data copies between main

memory in the host and the network adaptor. Few of these techniques are

illustrated in Figure 3.3 through Figure 3.6 showing the path of data in pictorial.

Classi�cation: 1. 0-copy from user space on main memory to network:

� The host processor informs the intended data address and length to

the network protocol processor.

� The network protocol processor initiates DMA controller to transfer

data from user space of main memory to network.

� Data ow is described as arrows on Figure 3.3.

Kernel-space

User-space

PH

DMA
controller

FIFO

MN

PN

MH

Network

Host/Adaptor
communication

Network AdaptorHost system

Figure 3.3: Dataow in network interface with zero copying

2. 1-copy from user space of main memory to network bu�er memory, then

to network:

� After data is copied to network bu�er memory, network interface pro-

cesses some other protocol processing such as CRC and composing of

header �elds.
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� This is showed on Figure 3.4.

PH

FIFO

MN

PN

MH
Network

Host/Adaptor
communication

Network AdaptorHost system

Kernel-space

User-space

Figure 3.4: Dataow in network interface with 1-copying from user space in memory

to network bu�er memory

3. 1-copy from user space of main memory to kernel space of main memory:

� To process protocol, data is copied to kernel space.

� Good security and protection of data between users.

� Figure 3.5 shows the pictorial scheme of this category.

4. 2-copy from user space to kernel space of main memory then to network

bu�er memory:

� Transport protocol processing on kernel space except CRC checking

which is supported on host-network interface.

� Figure 3.6 shows the data ow of this scheme.

Flow-Control Unit

Functionality: The objective of the ow control is to ensure the sender the ow of

o�ered-data load just enough to achieve a throughput that is very close to that
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FIFO
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Network
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Figure 3.5: Dataow in network interface with 1-copying from user space to kernel

space in main memory

FIFO

MN

Network
PH

Host/Adaptor
communication

PN

MH

Kernel-space

User-space

Host system Network Adaptor

Figure 3.6: Dataow in network interface with 2-copying

of the resources' capacity at which the receiver can receive, process, and forward

the data to its user, with very low loss. This requires cooperation between the

users and the network. The network noti�es congested users in a timely fashion,

and then, the user's application reduces the ow accordingly.

At a more detailed level, the receiver decides the optimal capacity of packets by

the number of connected channels, protocol processing, bu�er availability and

so on.

68



The host-network interface on the receiver side usually detects the time, burst

size, and acknowledgements of packets, while the host of receiving side reports

the ow-control states to the transmitter. The state-reporting is a mix of ac-

knowledgements, packet arrival rate, credit signal, or control symbols. Then,

the transmitter extracts the state-reporting parameters of ow control from the

opposite link and applies usually to a hardware on the host-network interface

to control the packet ow of an intended channel.

There are, generally, three methods of ow control: window-based, rate-based,

and credit-based. Window-based ow control, [56, 3], limits the amount of

source transmit data that can be sent, called the window, and dynamically

adjusts the window size based upon feedback. Rate-based ow control, [76],

dynamically adapts the source transmit rate in response to feedback. The trans-

mitter needs to know the transmission rate and the burst size of packets. But

VMP NAB uses the interpacket time instead of burst size. Credit-based ow

control, [64], is a scheme which returns permission (or credit) to send data to

a source end or intermediate node. In addition, Myrinet and MINI (Memory-

Integrated Network Interface) uses ow-control symbols such as START and

STOP.

Classi�cation: Receiver ow control schemes (RFC):

1. Maintaining a receiving window based on acknowledgements and sequence

numbers.

2. Packet counting by software on the host processor.

3. Packet counting by hardware on the host-network interface.

4. Inter-packet time by hardware on the host-network interface.
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5. Packet accepting/discarding based on bu�er availability.

State-reporting schemes (SR):

1. Acknowledgements based on window.

2. Packet arrival rate based on inter-packet time or burst size of packets.

3. Start/stop control symbol.

Transmitter ow control (TFC):

1. Sending packets based on window.

2. Control the rate of transmitting packets.

3. Detecting control-symbols/controlling the ow of sending packets.

Error Handling Unit

Functionality: The error handling of high-level protocol layer must perform error

detection, reporting, and correction if the network is not reliable. however, the

error handling of low-level protocol layer is up to the protocol implementation.

For example, ATM network handles errors only for header �elds, not for payload

part. On the other hand, Ethernet handles any errors in the low-level protocol

layer (data-link layer level).

Error detection is performed by means of sequence numbers, length �elds, and

checksums. Sequence number can be used to detect lost and miss-routed deliv-

ery, and to protect against duplicated informations. Even in case of complete

delivery of data through the network, the data can be veri�ed by means of

length �elds in packet headers or trailers to detect errors. The basic method
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enabling the receiver to check for corrupted delivery is the transmission of re-

dundant information on the CRC �eld along with the data to be protected.

To support high-speed networks, some hardware components complemented by

software algorithms help to check CRC �elds because conventional high-speed

networks carry small �xed-length packets and require fast routing (Cut-through

routing).

Error reporting mechanisms serve to explicitly inform the sender about errors

detected by the receiver, then the sender retransmits the erred data to the re-

ceiver. Error reporting by the receiver is desirable to expedite error correction.

The error reporting should indicate the receiver's complete state with respect

to received data such as gaps if out-of-sequence data is bu�ered, negative ac-

knowledgements if out-of-sequence packet is received.

Error correction method used by almost all protocols to recover from errors

is retransmission of the corrupted or missing data. According to the error re-

porting, there are two methods: Forward error correction (FEC); and backward

error correction, which is so called automatic repeat request (ARQ). With FEC,

the receiver itself can correct some errors in terms of polynomial coding tech-

nique such as Hamming code. The CRC checking unit can correct single-bit

error(s) according to the number of digits in the polynomial code without any

retransmission from transmitter. It might reduce the overhead resulted from

retransmission. But this technique requires more processing power from the

receiver processor. Even if this technique could serve to recover from any type

of one-bit errors, it did not work by itself. With ARQ, data are retransmitted

based on control information. This control information is obtained from the

receiver side.
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Classi�cation: Error-detection functions (D):

1. CRC

� Type: CRC-8, CRC-10, CRC-12, CRC-16, CRC-32, or CRC-CCITT.

� Domain: A control part, A data part, or A control + data part.

� Implementor: Hardware or software.

2. Length indicator of data.

3. Sequence number.

4. Multiplexing identi�er (MID).

In the domain part of CRC, a control part means the control information in a

packet such as header. A data part also means user information part such as

cell payload in ATM network.

Error-correction functions (C):

1. Forward Error Correction (FEC).

2. Automatic Repeat Request (ARQ).

3. FEC + ARQ.

Routing/switching Unit

Functionality: When an application process tries to setup a connection to an-

other application process, it must specify which process and destination pro-

cess to connect to. The address generating (or address resolution) functions

work to generate the source address, destination address(es) on network and

intermediate-node addresses if needed.
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The transport protocol address is the application port number on which the

application process is running. Also network protocol address consists of host

number and network number as well as transport protocol address. On the

other hand, data link protocol address comes from frame numbers. Therefore,

all elements to compose addresses upon establishing a connection and on sending

packets are, at least, port numbers, host numbers, network numbers, and frame

numbers [99].

In the Internet as an example, TCP addresses are a pair of IP addresses and

port numbers each for source and destination applications. An IP address is also

a pair of a network number and a local host number, and each host should have

at least one unique network address. On the other hand, a data link protocol

address consists of a pair of a local frame number and a neighbor frame number,

not the one of destination host.

In the classical approach of the circuit switching transfer mode, a physical cir-

cuit is occupied for the complete duration of the connection. In packet switching

transfer mode, user data is encapsulated in packets which are containing addi-

tional data in header of packets to be used inside the network for routing, error

handling, ow control, and so on. The physical circuit is shared with other

connections and is occupied only short time for each connection in circulating

order, no matter when the connection use the time slot. These packets have a

variable length and thus require a rather complex bu�er management. Accord-

ing to the routing information on the header of each packet, the source-end can

generate the destination address as well as intermediate node port addresses.

This is called source routing information scheme. On the other hand, the vir-

tual circuit switching multiplexes statistically data from each connection for
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better network utilization. Thus the physical circuit is only occupied at a time

for connections which require data transfers. Also, the virtual circuit switching

reduces the protocol processing such as error detection and correction in data

link layer.

Classi�cation: Therefore, the routing/switching functional unit can be classi�ed as

the following:

1. Circuit switching

2. Source routing

3. Packet switching

4. Virtual circuit switching (statistical switching)

3.6 Illustrative Examples

In this section, we show that our taxonomy can be applied to a representative set

of host-network interface architectures. We also discuss its novel features to describe

the host-network interface architecture at protocol implementation as well to predict

the performance of the host-network interface architecture under consideration.

AURORA

Figure 3.7 shows the architectural classi�cation of the AURORA OSIRIS or ORBIT

host-network interface [8]. Even if this is one of the most complicated host-network

interfaces, the PMS notation can simplify it's description with only architectural

characteristics, capturing all selected features.
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Figure 3.7: The architectural classi�cation of AURORA host-network interface

The only direct communication between a host (PH) and a protocol processor

(PN) is performed via bu�er and status/control registers in order to maintain control

information and network parameters. A program running on the host can prepare

commands and data to be transmitted for the protocol processor by placing them in

the bu�er space of the main memory. The protocol processor can also prepare status

information and received data for the control programs by placing them in the bu�er

space of the main memory.

In contrast to the connection between PH and PN , the connection between MH

and MN on AURORA provides the ability to transfer a block of data between MH

and MN without PH intervention. This requires that the DMA controller should

be capable of generating memory addresses and transferring data through a system

bus, i:e: it must be a bus master. The PH is still responsible for initiating each

block transfer. The DMA controller can then carry out the transfer without further

program execution by the PH . PH and DMA controller interact only when PH must

yield control of the system bus to the DMA controller in response to requests.

As shown in the architectural classi�cation, an example has captured the behavior
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Figure 3.8: The protocol classi�cation of AURORA host-network interface
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of protocol functional units, using AURORA host-network interface.

Figure 3.8 (a) shows the functions of protocol classi�cation at transmitting data

into a network:

� Initialization: Data transmission is initialized from the host's instructions. It

causes MN to store network parameters, and status and control information.

� Packetization: PN generates the address and length of data in the main memory

which are computed from the information given by the host. These address and

length of data are informed to the DMA controller.

� Data copying: PH gives to PN the information which is the memory address and

o�sets for ATM payloads, (ATM protocol data units). After PN segments data,

DMA controller transfers data on the user space into the send FIFO which is

a part of MN . This transfers data directly from user application space of main

memory into the network.

� Flow control: Cell count signals from the receiving Connection Management

Table and cell arrival rate from the PH is used by PN to control the ow of

ATM cells.

� Error handling: During data transfer from MH to MN , checksumming is exe-

cuted for data and cell header error is checked with the information on MN by

the CRC-8.

� Routing: Network addresses include application port numbers, host numbers,

network numbers for both source and destination. these information is stored in

the Connection Management Table at the MN after connection establishment.
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� Sending: Data link level protocol send ATM cells into the synchronous optical

network.

Figure 3.8 (b) shows the state diagram of receiving protocol functions. That is,

at receiving data from network, the functions of protocol classi�cation are:

� Receiving: Data link layer protocol processes ATM cell receiving from ATM

switch. The received cell is stored in a receiving FIFO.

� Error handling: The CRC checksum unit compares a header CRC value from

the cell header �eld with the cell header. Non-consecutive 1-bit errors can be

corrected by the CRC algorithm in a limited number. CRC-32 unit executes

the checksumming for the cell payload but the comparisons are executed on the

PH .

� Flow control: PN counts the cell arrival rate from the state information for the

threshold of the receiving FIFO.

� Routing: PN has the routing information from received cell header. Thus, PN

extracts VCIs (virtual channel identi�ers) and sequence numbers. If the cell

does not have correct routing information, the cell is discarded. Also, PN uses

application port numbers to decide the receiving application space during data

transfer.

� Data copying: According to the user port number and sequence number given

from the PN , DMA controller transfers data into the user space of main memory.

� Depacketization: Each decomposed data (cell payload) are by the PN reassem-

bled with each other according to the header and AAL information. PN gen-

erates the proper address in main memory for reassembed data. The addresses
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for reassembled data is informed to the DMA controller to transfer into the user

space of main memory directly.

� Interrupt: After transferring of a whole message, DMA controller interrupts PH

to alarm that data is safely stored in main memory.

As we discussed previously, these two classi�cations can clearly describe how the

host-network interface can perform the tasks required to transmit and receive data.

Furthermore, our taxonomy can provide hints for the performance and for limita-

tions of the architecture (Figures 3.7, 3.8):

� Even though this architecture is the one of the most complicated host-network

interfaces, the PMS notation provides comprehensive descriptions of architec-

tural characteristics.

� The protocol classi�cation state diagram shows the parallel protocol processing

between error handling and data copying.

� The state diagram also clearly shows how many number of data copying and

where/when happen.

� The provider of the protocol processing is shown on �gure.

We can also use syntax notation to classify this host-network interface (Figure 3.9).

As shown in the previous section, RFC means receiver ow control, SR for state re-

port, TFC for transmitter ow control, and D/C in error handling means for detec-

tion/correction, respectively. In architectural classi�cation, \reg" denotes register.
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Figure 3.9: The syntax notation of AURORA host-network interface
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Figure 3.10: The architectural classi�cation of Western Digital WD2840

WD2840

Following in analogous, we can classify other architectures. For example, Figure 3.10

shows a block diagram for architectural host-network interface proposed with West-

ern Digital's WD 2840 Ethernet chip [86]. Figure L2-DMA-uC shows the protocol

classi�cation of this design.

In Figure 3.10, a DMA data transfer is controlled by a controller which is not

designed to execute commands fetched from the main memory and it can not operate

as a processor on the host's system bus. The processing orders for the controller from

programs running on the host are passed by writing order codes at �xed addresses to

control registers located on host-network interface. Data transfer is between the host
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Figure 3.11: The protocol classi�cation of Western Digital WD2840

main memory (MH) and network FIFOs using DMA.

Figure 3.11 shows that the host-network interface implements CRC-checksumming,

data copying from kernel space of main memory to network FIFO, routing, and

medium interfacing (in data-link layer). It shows the reduced data copying as three

memory accesses during protocol processing to send each data unit since both CRC-

checksum and data copying works simultaneously.

Jaguar

Matt Welsh et al [102] at University of California at Berkeley have presented a new

mechanism, Jaguar. It provides Java applications with eÆcient access to system re-

sources such as network interfaces while retaining the protection of the Java environ-

ment. In fact, implementing eÆcient communication in Java requires both fast access

to low-level system resources and direct manipulation of memory regions external to

the Java heap such as communication bu�ers.

The direct and protected access to system resources is accomplished through
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compile-time code transformation which maps certain Java bytecodes to short, in-

lined machine code segments. It is called a Jaguar code mapping concept.

Jaguar also allows Java applications to directly manipulate memory outside of the

Java heap such as specially-allocated bu�ers for communication. This eliminates the

expense of copying data between Java and external memory which is outside of the

Java heap.

An example of Jaguar, JaguarVIA, is implemented as a Java interface to the

Berkeley Virtual Interface Architecture (VIA) communication layer [10, 66, 1].

Berkeley VIA is implemented over the Myrinet system area network. Thus, the

architectural context in our taxonomy is the same as Myrinet's host-network interface.

� Host processors are dual intel PentiumII processors with Linux operating sys-

tem.

� Protocol processor is the Myrinet's LanAI.

� Switching components are programmed I/O for control and status information

(transmit and receive descriptors and doorbells), DMA for data transfers.

Figure 3.12 shows the architectural context of JaguarVIA. A user application in

Host makes transmit descriptor which has data location and size in main memory.

And it sends a transmit doorbell, the pointer of the transmit desscriptor, to the

protocol processor in the host-network interface board. Thus, the protocol processor

can directly access the main memory without copying data.

In the protocol implementation context of our taxonomy, JaguarVIA has the fol-

lowing features:

� Packtization: A packet has a variable sized data unit and is composed by the

host.
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� Data copying: In user application, Jaguar implements pre-serialization of Java

object codes. Also, by External objects mechanism, a user application of Java

does not need to copy data to kernel space. Data is transfered by DMA directly

between network FIFOs and user space in main memory.

� Error handling: The 8-bit CRC is checked on the entire packet, including the

header, and is carried in the packet trailer. This CRC is computed by hard-

ware in the host-network interface board. The user application includes length

indicator of data and sequence number in the purpose of error handling.

� Flow control: JaguarVIA does not support ow control mechanism. In Myrinet

system area network, the data ow is controlled on every communication link.

At the receiver, the packet is accepted or discarded according to bu�er avail-

ability and the state reporting is by start or stop control symbol. When the

transmitter get the start or stop control symbol from the receiver, the ow of

packets are controlled.

� Routing: With cut-through routing, the packet is advanced into the required

outgoing channel as soon as the header is received and decoded.

JaguarVIA accesses low-level of machine resources without system calls which are

issued by the operating system, while Java native methods have the communication

system that copies data from a user space into a kernel space in main memory. As ex-

ampli�ed in Jaguar, direct accessing machine resources, which is developed from Java

native methods by inlining of Java codes, our taxonomy shows that a communication

system can be improved in performance, associated with only high-level protocol pro-

cessing. This leads us to an understanding that performance of the communication

system can be achieved only by optimizing application programming interface (API).
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Table 3.6: The syntax notation of conventional host-network interfaces

PHPH PN

Bmc

Bmc Bmc

Bcc

Bcc

Architectural Level

Data copying
Flow control Error handling

D/CRFC/SR/TFC

Protocol Level

M MC MC MN MH MNP N
Packetization

reg DMA DMA

PIO DMA DMA

reg PIO

Name

Nectar CAB

VMP NAB

Yes V2

ORBIT reg DMA

WD 2840 PIO DMA

PHNI PIO PIO PIO

Medusa PIO PIO

SHRIMP DMA

Myrinet PIO PIO DMA

MINI PIO PIO

VuNet DMA

1

1

3

4

4

4

1

4

2

2

4

Routing

3

3

4

4

4

4

2

2

3

3

4

3

4

3

3

2

3

2

2

2

1

3

1/1/1

1/1/1

1/1/1

3/2/2

1/1/1

5,1/3,1/3,1

5/3/3

1/1/1

4/2/2

1/1/1

2/2/2 1,2,3,4/3

1,2,3/3

1,2,3/3

1,2,3,4/3

1,2,3,4/3

1,2,3,4/3

1,2,3/3

1,2,3/3

1,2,3/3

1,2,3/3

N

1,2,3,4/3

Syntax Notations for Host-Network Interfaces

Table 3.6 shows our syntax notation for host-network interface designs that have

been reported in the literature. As shown in the table, in the architectural classi�ca-

tion, \PIO" stands for programmed I/O, \DMA" for direct memory access, \reg" for

register, and \Bx" for burst mode transfer by either of memory controller or cache

controller. In the protocol classi�cation, RFC under ow control stands for receiver

ow control, SR for state report, TFC for transmitter ow control, and D/C in error

handling means for detection/correction, respectively.

3.7 Summary

I have described a classi�cation for host-network interfaces that is considerably more

comprehensive and discriminating than those proposed in the past. My taxonomy

extends conventional schemes by better discriminating between architectures and be-

tween protocol processing, as proposed in this thesis.
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The taxonomic scheme includes hierarchical structure in architectural classi�ca-

tion. It results in understanding similar interface families by showing underlying

relationships. With it's predictive power, the taxonomy also suggests a number of

unexplored architectural versions that might be outstanding to look for new, innova-

tive designs. It also classi�es almost all of the common host-network interfaces that

support local area networks, telecommunication networks, and networks for parallel

and distributed systems. The taxonomy is divided into two levels, and each taxo-

nomic characteristics are carefully selected to reduce the implicit concepts of software

protocol implementations as possible.

At the architectural classi�cation level, architectures are distinguished by the

host processor, the protocol processor, main memory, cache, network bu�er memory,

FIFOs, and their connections. At this level, the connection is denoted by programmed

I/O, DMA, burst transfer by memory or cache controller, or register. At the protocol

implementation classi�cation level, further discriminations can be made by describing

whether each of the protocols is processed by hardware or software, each of the

protocol functional units is in the host or in the network adaptor board. In this

classi�cation, the functional units are routing/switching, data-copying, ow-control,

and error-handling. With this scheme, transport protocols can be fully classi�ed.

To be useful, a taxonomy must shed light on what is already known and help in

assimilating new understanding. I believe that the proposed taxonomy is a natural

extension of conventional classi�cations and that it is straightforward enough to be

used as an intellectual tool for understanding, and as an engineering tool for the

design of future host-network interfaces.
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Chapter 4

Taxonomy-based Designs of

Network Adaptors

In the chapter 3, we have described the new approach to designing host-network

interfaces. In the proposed approach, we base network design on the new detailed

taxonomy we have developed.

In this chapter, we apply this methodology to design host-network interfaces.

To demonstrate e�ectiveness of our approach we have designed two host-network

interfaces: a simple and economical interface; an intelligent interface with protocol

processors and the burst mode data transfer capability. Both interfaces support

asynchronous transfer mode (ATM) network and ATM adaptation layer 5 (AAL-5).

4.1 Simple Host-Network Interface Design

The objective in designing the simple network interface is to design a host network

interface which supports a cost-e�ective system that require minimal hardware sup-

port or be used privately. There is a couple of points to be made regarding this
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consideration.

First, a host and a network should be connected by a fast-but-cost-e�ective com-

ponent through the system I/O peripheral bus such a DMA (Direct Memory Access).

In the architectural classi�cation, this simple host-network interface is advantageous

because it does not need an on-board protocol processor that is the most costly com-

ponent in an interface design.

Second, the simple host-network interface should be easily adjusted to the changes

of environment when there is a need. This exibility of the host-network interface can

be obtained by supporting transport protocols without modifying the host-network

interface architecture. When an application requires two di�erent transport protocols,

the host executes those protocols. Thus, the host-network interface does not need to

be modi�ed.

With the advantage of the low cost and minimal protocol processing on the host-

network interface, this simple interface can be used for low speed network and multiple

protocol support environments such as personal computers or inexpensive worksta-

tions. The interface will be described according to the two-layer model used in our

taxonomy.

4.1.1 Design Requirements

In chapter 3, our taxonomy has two layers, architectural and protocol implemen-

tation classi�cation layers. Thus, we will describe the design requirements in two

taxonomical contexts.
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Design Requirements in Architectural Context

This design requires a connection component at the host-network interface by the

architectural classi�cation of the proposed taxonomy. This connection component

a�ects mostly the performance of the host-network interface system. It can be the

bottle-neck of the whole network system compared to fast-enough network medium.

On typical system peripheral buses of workstations or PC's, peak bandwidth can

be achieved by some form of burst mode transfer. Because the interface should share

the system peripheral bus with local peripheral devices, the connection component

is required to have the comparative bandwidth to that of the system bus. Thus the

connection component should be designed very carefully.

The error checking on the cell header requires fast processing. If a cell arrives

before error checking on the previously arrived cell is completed, the newly arrived

cell may be lost. Therefore, the interface is required to support at least the CRC

checking for header part on each cell. Because the header is only �ve-bytes long,

this component can be implemented by a low-cost hardware. Also, it is possible to

implement the error detection and correction of a message data by the host since the

payload is 48-bytes long and CRC checking on transport layer depends on transport

protocol. For example, on AAL3/4 each cell has the CRC �eld for payload but on

AAL5 only the last cell has the CRC �eld for the transport protocol data unit.

The simple interface requires neither on-board processor nor state information

which is necessary to be maintained between cells. Such a host-network interface

presents individual cells to the host and the ATM protocol processing is done by the

host.
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Design Requirements in Protocol-implementation Context

This design, also, has the following requirements on protocol processing based on our

taxonomy:

Routing/switching In ATM network, the virtual circuit switching (asynchronous

transfer mode) is required. Thus, the host needs to generate only the sender's

and receiver's addresses. The addresses should be stored in main memory as

cell header parameters.

Data copying Data copying should be reduced to zero with transport protocol pro-

cessing in user space of main memory because it causes the system performance

to be degraded.

Error handling The host is required to detect, report, and correct errors for each

cell. But CRC checking for cell header should be faster than CRC checking for

a message. Also, it is not eÆcient to load the host because the host consumes

so much processing power on interrupting system and computing every CRC

checking for cell headers. Thus, it is better to implement CRC checking for cell

headers by a hardware component on the host-network interface.

Flow control Since this design is not for high performance system, the host can

implement the ow controls of incoming and outgoing data. For this design,

the rate-based and window-based ow control can work well.

Packetization The host is required to segment and reassemble data in �xed size

since there is no need of on-board protocol processor as well as since the status

and control information is stored in main memory.
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4.1.2 Taxonomy-based Design Approach

According to a new taxonomy given in the previous chapter, the simple-interface

design supports the following taxonomic schemes:

� In the architectural context,

{ the only connection is between main memory and network FIFO in terms

of direct memory access: DMA for MH � FIFO.

� In protocol implementation context,

{ Virtual circuit switching.

{ Data copying between user space of main memory and network FIFO.

{ CRC-8 by hardware for header error check, CRC-10 by software for data

error check, sequence number, MID, and length indicator of data.

{ Window-based and rate-based ow control

On the above paragraph, we showed the concised taxonomical contexts. In next

subsections, we will see them more in deatil.

Architectural Classi�cation

In the context of architectural classi�cation layer, the simple interface is structured

with transmit FIFO, receive FIFO, CRC-8 for header error check, and a simple control

logic to directly access main memory. Figure 4.1 shows the simple ATM host-network

interface architecture.

Thus, in this simple interface architecture, the host executes any protocol process-

ing in software. The host network interface works only for CRC checking of header
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Figure 4.1: The architectural classi�cation of simple ATM host network interface

error check and for correctness of destination address. Then, DMA controller trans-

fers data from/to FIFO to/from main memory. Since the host executes almost all

of protocol processing, the transport protocol data units (TPDU) are stored on the

main memory by the host at transmitting time and by the DMA at receiving time.

As a result, the host network interface does not need to have expensive network bu�er

memory.

CRC checking by hardware on the interface supports only header part for both

receiving and transmitting paths. For cell payloads, the host processor calculates

CRC in terms of CRC checking software.

Indeed, real performance improvements come from relieving the host processor

which has to transfer packets to and from main memory. This can be achieved if

the transfers are handled directly by the host-network interface instead of the host

processor, assuming the host can assign more cycles to the applications while the

transfers are served by the host-network interface. Also, the actual bandwidth of

transfers to/from host main memory over the system bus depends more on the mode

of transfer and single-word versus burst mode, than whether the transfer is done by
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Figure 4.2: The protocol implementation of the simple ATM host-network interface

the host processor or the host-network interface. With excluding the host on the data

transfer, the host can, at least, save clock cycles by not serving transfers of packets.

Under the above facts, through direct memory access (DMA), the host-network

interface as an I/O device can read or write main memory directly with burst mode

data transfer, but without involving the host processor. Cache coherence during DMA

is maintained by the operating system, with the aid of purge cache and ush cache

instructions.

When the cells are received, the host-network interface interrupts the host. Since

interrupting the host is costly, it is not feasible to interrupt the host on a per-cell

basis. The DMA controller interrupts the host when the last cell of the intended

channel is received. For the real time service, the DMA controller should interrupt

more frequently based on a timer or a threshold of receiving FIFO ful�llment.

Protocol-Implementation Classi�cation

Figure 4.2 shows the protocol implementation of the simple host-network interface as

the other classi�cation context of architectural classi�cation.
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Routing/switching To support ATM network, the simple host-network interface

has the virtual circuit switching (or asynchronous transfer mode). It means that

one application occupies the network medium only when it has data needed

to send. No matter when it is sending data, it is not necessary to occupy

the network medium at a short moment (which is called a time slot) if the

application program does not have data to send at the moment. Thus, the

network is utilized with maximal bandwidth by applications. The host generates

the source-end and the destination-end addresses. The intermediate-switch-

port addresses are generated and routed by the routing server on the network.

Addresses, routing information, and control information are stored in the main

memory since protocol processing is done by the host.

Data copying Instead of copying data from user application memory space to the

kernel space to process transport protocol, data for communication is taken

care of in the user space memory area by a daemon process which is owned by

root authority. With the shared memory technique, the daemon process can

access di�erent user spaces occupied by each process without any data copying

overheads. It occurs between the user space of the main memory and the

transmitting/receiving FIFO's. Thus, this data copying scheme reduces several

copying between the host and the host network interface.

Error handling To handle errors on networks, the simple interface uses CRC, se-

quence number, multiplexing identi�cation number (MID), and length indicator

of data as the error detection parameters, and forward error correction with au-

tomatic repeat request (FEC + ARQ) as the error correction schemes. Since

the AAL-5 puts the CRC for data at the last cell of the message and the host

computes the CRC for data, the CRC for data is stored on the main memory
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and attached on the last packet with the length indicator of data. The CRC for

header error check is required to be computed for every cell. Sequence number

and MID are also put on each cell. CRC-8 is used for header error check and

computed by the hardware on the host-network interface. After segmentation

of data, the host puts sequence number on the payload of the ATM cell to

re-compose the complete message of a user application on the destination-end.

When the same channel is shared by several messages, the MID's are used to

distinguish them. For example, a voice and a picture can have the same chan-

nel with di�erent MID's, then, this multiplexing may solve the synchronization

problem. A single-bit error can be corrected by CRC, and concatenated single-

bit errors can be corrected by ARQ. The error correction algorithm converts

the mode from FEC to ARQ when any single-bit error is detected from no error

state and it converts from ARQ to FEC when no error is detected from any

error state [82].

Flow control To control the data ow, the host uses basically acknowledgements.

When the receiver acknowledges a cell, the receiver means receiving cells until

the cell owned the sequence number in a window size. Thus, the transmitter

retransmits the rest of cells. When the transmitter receives the acknowledge-

ment for the last cell of the window the transmitter steps up to the next window.

Moreover, the host counts the number of received cells at a time for an intended

channel to control of data ow accurately.

Packetization The host brings the message data and segments it with a cell payload

size. When the cell header parameters are storing into the network FIFO, the

CRC for the cell header is checked and the value is stored in the FIFO. Since

the cell size is �xed, the transmit and receive FIFOs can reduce the FIFO
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fragmentation problem. For example, each block of the FIFO can be �xed to

53 bytes for ATM network. Then, the FIFO does not have any un-using FIFO

spaces. It means that this system does not have internal fragmentation problem

on the FIFOs.

4.2 Intelligent Host Network Interface

The most complicated design, but the one likely to yield the highest performance for

real-time traÆc, is the ATM (Asynchronous Transfer Mode) host-network interface

which implements some protocol services by the on-board protocol processor and by

other components.

The network interface should use the resources of the host as eÆcient as possible

in high speed network because it is not desirable to take up most of the host's CPU

and memory resources to network related activities.

This design is mainly focused on network-related processing by the host-network

interface, not by the host. The objective of this design is reducing the heavy loads

of the host processor on protocol processing and the system I/O peripheral bus for

more usage by multimedia peripherals. Thus, the host can support more-processing-

required jobs such as real-time video compressions or a huge database searching.

To accomplish our objectives, the host-network interface should meet some strin-

gent requirements to provide an eÆcient network connection.

4.2.1 Design Requirements

We will show the design requirements according to the taxonomical two-layerd con-

texts.
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Design Requirements in Architectural Context

In the architectural context, this host-network interface is an intelligent and high-

speed I/O peripheral connected to a network. To support all transport protocol

implementations at high speed, the interface is required to have hardware components

that are high costly. The on-board protocol processor reduces the heavy load of

protocol processing on the host processor and it can adjust better to fast changes of

high-speed network such as a sudden increase of incoming data from network, delay

and jitters, or even on error handling.

CRC checking by a hardware component can also be implemented simultaneously

while data is being transferred between main memory and network FIFO. This par-

allelized processing can support the better performance than host's software CRC

checking for the high speed network.

As a connection component in our taxonomy, the system peripheral bus is popular

but it can cause other I/O peripherals to have more competition on the bus. For

example, video/audio-related or massive data storage peripherals need to occupy the

system peripheral bus prior to other I/O peripherals. The conventional host-network

interface design in ATM network system has been focused on the Direct Memory

Access (DMA) technique between the host and the network interface. However, if

the format of data in memory is not compatible with the format of DMA data path,

DMA-based host-network interfaces have to access the host with time delays which

are occurred on the DMA. For example, on an Alpha processor machine, a transfer

on 64 bit DMA has one delay time unit to the �rst 32 bit data until the later 32 bit

arrives. Also, in DMA techniques, on-board protocol processor gives the information

for a needed data to the on-board DMA controller. Then, the controller takes the

intended data from main memory. If the host has just created the intended data
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and saved it into the cache, the data transfer through DMA should wait until data

is stored in main memory. Therefore, a better technique is required, instead of DMA

on the system I/O peripheral bus, as the connection component between the host

system and the host-network interface.

Design Requirements in Protocol-implementation Context

In the protocol implementation context, each protocol component can be implemented

in a pipelined or parallelized way by a protocol processor or hardware components.

Thus, each protocol component has the following requirements:

Routing/Switching Only the sender's and receiver's addresses are required during

connection. The addresses should be accessed by both the host and the protocol

processor because the host refers addresses at sending and the protocol processor

refers those at receiving.

Data copying In kernel mode, protocol processing of the conventional TCP/IP,

the data should be copied from an application process in user level memory

area into a kernel level memory area to process TCP by the \Socket functions."

Alternatively, the data can be transferred from the user space via network bu�er

memory using multiple threads or shared memory without copying to the kernel

space. Thus, a user-mode thread or daemon is required to transfer data between

the main memory and the network bu�er memory.

Error handling Since ATM network can be used for multiple applications simul-

taneously, an identi�cation is required to distinguish each applications. Also,

CRC-8 error checking is required for ATM cell headers and CRC-32 error check-

ing is required for ATM cell payloads. Since the network is considered as a high
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speed, the network bu�er should be managed without any blocking of data

transfers. Every incoming data should be transfered to main memory or other

peripherals before next incoming data become lost because of no space to store.

Flow control The network bu�er memory is required to store the ow control pa-

rameters. The on-board protocol processor counts the sending and receiving

cells, informs the rate to the host, and sets the optimized ow control parame-

ters.

Packetization The protocol processor is required to packetize a payload with a cell

header parameters which are stored in network bu�er memory. If the message

data is segmented and reassembled by the protocol processor the host is likely

to process data from the ATM network as a local data.

4.2.2 Taxonomy-based Design Approach

A complicated design, however the one likely to yield the highest performance for

real-time traÆc, is an ATM host-network interface based on the pipelined dual-port

cache memory and an on-board protocol processor, as shown in Figure 4.3.

By the taxonomy, the cache-based host-network interface has the following taxo-

nomical features:

1. Figure 4.4 shows the architectural classi�cation of the intelligence host-network

interface in architectural level.

� PH �MN : Burst transfer by cache controller (Bcc) for status and control

information, start address and length of data, and connection establish-

ment parameters.
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� CH �MN : Bcc for data transfer.

� MH �MN : Bcc for data transfer.
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Figure 4.4: The architectural classi�cation of the intelligence ATM host network

interface

2. Figure 4.5 shows the protocol-implementation classi�cation of the intelligence

host-network interface in protocol implementation level.

� The protocol processor packetizes in the �xed size.

� Virtual circuit switching.

� UNF (user space in memory-network bu�er-FIFO) data copying scheme.

� Error-handling,

{ Type: CRC-8, CRC-32, sequence number, MID, length indicator of

data.

{ Domain: control part, data part.

{ Implementor: Hardware.

� Rate-based ow control.
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Figure 4.5: The protocol implementation of the intelligent ATM host-network inter-

face

Architectural Classi�cation

A processor on the ATM host interface can perform the segmentation and reassemble

(SAR) processing more eÆciently than the host processor as it is dedicated to this

task and it has low-latency, high-bandwidth access to the network interface, [19]. The

on-board processor would allow direct data transfer between the network and audio

and video devices, eliminating the latency and overhead of going through the host.

Moreover, since the network bu�er memory is a dual-ported cache, the data access

can be faster than the data access from main memory through a system bus. During

transmission of the data into the network, the host can write data directly into the

network bu�er or the cache controller can transfer data in burst mode into the network

bu�er from main memory or other I/O devices. Additionally, the network bu�er can

be mapped into memory space with high bandwidth and lower latency to/from main

memory via pipelined burst data transfer mode. Also, the network bu�er has less

cache-coherency problem since data is accessed from/to cache.

The host has a connection with the network bu�er memory to execute instructions
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for status and control information, start addresses and length of data, and connection

establishment parameters. The connection is the bursted transfer mode by the cache

controller.

If the host need to move data from cache memory to network bu�er memory, it

can be moved in pipelined burst transfer by cache controller. As even worst, when

the host need to move data from main memory into the network bu�er memory, data

can be transferred in pipelined burst mode by the cache controller because the bu�er

is dual-ported memory in which one way is accessed by the host and the other one is

by network protocol processor. The transfer is the exact same as cache miss of data

in cache system.

Protocol-Implementation Classi�cation

Lightweight protocols and protocol o�oad to programmable adapters, each based on

a single protocol processor, are two approaches that are proposed to cope with the

bottleneck in communications. However, programmable adapters do not seem to have

good cost-performance rates since they use expensive hardware components.

Therefore, we will look at mechanisms of protocol processing in the host and in

the on-board processor with the lightweight protocol concepts, simple and high speed

processing.

Routing/Switching For the routing of ATM network, the host manages the infor-

mation to route the destination(s). However, the on-board protocol processor

can access the routing table in the network bu�er and packetize/depacketize to

destinations by this table. By the ATM switching technique, the ATM switch

assorts packets based on the addresses given in the header of the packet itself.
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Especially, in our connection scheme, it is accomplished in a deterministic man-

ner, VCI ring [75]. According to a round-robin processing policy, VCI ring can

process the preemptive policy for a special channel. The VCI ring also serves as

a pointer into the packet descriptor. When a connection comes up for service

in the VCI ring, the packet descriptor is pointed, read, and then the network

addresses are generated for the connection, and other control information is

prepared for the header of the cell. The VCI ring allows continuous control of

bandwidth. Managing changes in bandwidth assigned to connections is done

by the on-board processor, simply by modifying the number of ring elements in

use by each connection. The packet descriptor, called connection management

table, is shared and updated by the host and the network protocol processors.

Data-Copying in user space The data in a user space is copied through the net-

work bu�er which is a kind of cache memory. Thus, it can reduce the number

of copying and even result in the very fast data accessing (just like from main

memory to the cache).

Even in the category of the user-space data copying, there may be several ways

according to using the shared-memory processes or multithreads. We use shared

memory (e:g: shmem() in UNIX) between the daemon process and application

processes in terms of bu�er managers on interface part in Figure 4.6.

Figure 4.6 shows a general model for protocols derived under the user-level

multiprocesses. A client process sends requests to the daemon via an IPC

message queue (for example, ipcs() in UNIX) built into the interface object.

The daemon returns the result of the request via the same IPC facility. User

data, however, is written to and read from two bu�ers that are managed by a

bu�er manager in the interface. This separates the request/response activity
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Figure 4.6: Implementation of a user-level transport protocol

from the maintenance of data bu�ers. The core program in the daemon is a

loop that accepts user requests and invokes the appropriate entry point into

the actual protocol processing. These entry points are procedures (functions

or methods) in the protocol control block manager. The state structure for

control information is called the protocol control block or context. The context

manager owns all of the contexts in the daemon and steers incoming packets to

the proper context. The contexts implement the protocol-speci�c procedures,

some of which generate packets. The daemon also owns a data delivery service

objects that manage the use of the network.

Figure 4.7 shows how the bu�er managers, the shared memory segments, and

the client and daemon processes are related. A client process has two data

bu�ers: one for sending and the other for receiving. Each of the client's bu�ers
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Figure 4.7: Bu�er Management between an application process and a daemon process

is controlled by a bu�er manager. When the client registers these bu�ers with

the daemon, the context (or protocol control block) assigned to the client process

attaches its two bu�er managers to the client's bu�ers. In this way, each bu�er

is controlled by two bu�er managers: one at the user application side and

the other in the protocol control block associated with this client process. In

general, one of the managers writes to the bu�er and the other manager reads

from it, so there must be some way of coordinating the head and tail markers

for the bu�er. This is done via user request commands: When a send request

is issued, the interface object places the new marker values into the request

so that the context's bu�er manager can acknowledge which data to send. A

similar exchange occurs for receiving data through the receiver bu�er.

The bu�ers are implemented as segments of shared memory. The user applica-

tion, through the user interface library, creates two shared memory segments.

The identi�ers for these segments are relayed to the daemon, where the newly
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initialized context for this user attaches the daemon process to the shared mem-

ory segment.

Error Handling The host-network interface on the receiver checks CRC bits for

header and payload, length indicator of data, and sequence number of the cell.

The receiver host checks the multiplexing identi�er (MID). The checked error

information is sent to the transmitter, then the transmitter corrects the error

based on the forward error correction and automatic repeat request.

There are two CRC checking hardware units: CRC-8 for header error check

and CRC-32 for the payload error of the cell. When a cell arrives, the CRC-8

hardware unit checks header error before any other functions serve. If there is

no error, the destination address is checked to protect the mis-routed cell. The

partial checksum with CRC-32 is processed by the host. The CRC-32 checksum

is processed only at the source-end and destination-end systems, not in the any

ATM switch system. Error correction schemes are implemented by FEC and

ARQ as in the case of the simple interface.

Flow Control The receiver maintains the ow of incoming cells through counting

the arrival rate of packets and reports it to the transmitter by the packet arrival

rates. Then, the transmitter controls the rate of transmitting cells.

Specially, the ow control via the medium access protocol is a backward explicit

congestion noti�cation mechanism. When a bu�er in a switch exceeds a thresh-

old, the control logic of the switch sends congestion noti�cation cells back to

the sources of the virtual channels currently submitting traÆc to this switch.

On receiving a congestion noti�cation cell on a particular virtual channel, called

signaling channel, a source must reduce its transmission rate for the indicated
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virtual channel. If there is no such a cell on the intended channel for a certain

period of time, a source may gradually restore its transmission rate on that

channel.

The SONET interface on the source-end counts the number of outgoing cells for

a particular channel for a given time and computes the transmitting cell rate.

The SONET interface on the destination-end also counts the incoming cells for

the channel for a given time. If there is a need to control the cell rate, the

destination host puts the information for ow control on the signaling channel

for the intended channel. Thus, the source-end host can adjust the optimized

cell rate between the source and the destination-ends.

4.3 Summary

In this chapter, two host-network-interface designs have been discussed with the new

taxonomy: simple and intelligent interfaces.

Major philosophies in designing simple interface are exibility of protocol imple-

mentation, minimal hardware components, and data transfer between main memory

and FIFOs by direct memory access. By the descriptive feature of the taxonomy,

the simple host-network interface is designed and explained that cell-header CRC is

checked by a hardware, the host implements the protocol processing, and the DMA

transfers data. However, we can predict from the predictive feature of the taxon-

omy that the host is likely to be overloaded by the protocol processing since simple

interface does not have any on-board processor.

In designing the intelligent interface, the major objectives are to support very
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high-speed and low-latency ATM networks. With the descriptive feature of the tax-

onomy, we explained each components. In the architectural context, an on-board

protocol processor, CRC-8, CRC-32, and cache-based network bu�er memory are

explained. In the protocol implementation context, data copying as cache memory,

error handling, cell ow rate counting, ow reporting by the protocol processor are

described. In detail, the intelligent interface supports no data copying in main mem-

ory. Data is moved from a user space of main memory to the transmitting FIFO

through dual-ported cache memory which is working as a network bu�er memory.

Since dual-ported, pipelined, and burst mode SRAM is used for cache and network

bu�er memory, we can predict that it can support faster data transfer and it results

in supporting real-time applications very well.
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Chapter 5

Performance Analysis

In this chapter, we analyze the latency of data transfers between a host and host-

network interfaces designed by our taxonomy and show their e�ective transfer rates.

We also analyze performances of a simple interface and an intelligent interface, then

compare them with performance of a conventional host-network interface. In design-

ing host-network interfaces, we have focused on reducing overheads of unnecessary

protocol processing and parallelizing procedures as possible. Thus, the analysis is

focused on the data transfer between the host and a host interface.

5.1 Introduction

The custom-designed host-network interface is the key system component which con-

nects each computer to a port of an ATM switch. Depending on the purposes of

applications or the required loads of the given network, the host-network interface

should be selected as an optimized component.

In analyzing performances of our designed host-network interfaces, we made an

110



assumption that the host processor is the Alpha 21164 processor from Degital Equip-

ment Corp. The AlphaPC consists of Alpha 21164 microprocessor (500 MHz clock

speed) with a second-level external cache via 128-bit bidirectional data bus, a 36-

bit bidirectional address bus, and several control signals [32]. The 21164 external

interface is exible such that read and write speeds (33 or 66 MHz) of the external

cache array can be programmed by means of register bits. Read and write speeds are

independent of each other and the system interface clock frequency.

The simple interface is designed for low-data transfer rates, for requirements of

small board size of interface, and thus for low cost. With the simple interface, the

host is connected to the interface via main memory through the system bus, PCI bus.

On the other hand, the intelligent host-network interface is connected to an ex-

ternal cache slot which uses the 128-bit data bus of the Alpha 21164 processor. The

external cache slots connect the host system and the network adaptor board.

5.1.1 Formal Performance Metrics

Eric Cooper et al: formalized a performance analysis parameters in [19]. Performance

parameters are simpli�ed but translate each characteristics very well. Since it presents

the comparison of bottlenecks related to the data transfers, this model is formalized

as the performance metrics of host-network interfaces in this chapter.

This model is parameterized using the following set of performance characteristics

for loads and stores of 32-bit words.

1. T�p: The clock cycle time of CPU data bus in nanoseconds. For Alpha 21164,

it is 33MHz or 30:3nsec.

2. T�c: Clock cycle time in data bus for adaptor control processor. MC88110 has
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25 nsec data bus clock cycle time for 64 bits.

3. Lf
�p
: The number of clock cycles per load from cache to host CPU, or from

network bu�er to host CPU.

4. Lf
�c
: The number of clock cycles per load from network bu�er to network-

adaptor control processor. It takes 3-1-1-1 data transfer clock cycles.

5. Ls
�p
: The number of clock cycles per load from main memory to host CPU. For

typical EDO (Expanded Data Output) dynamic RAMs, 7-2-2-2 data transfer

clock cycles in a pipelined-burst mode.

6. Ls
�c
: The number of clock cycles per load through bus. It is supposed to have

the same value with L
s

�p
.

7. Sf
�p
: The number of clock cycles per store to the network bu�er, or to the cache

from the host CPU.

8. Sf
�c
: The number of clock cycles per store to one cell FIFO in network adaptor.

9. Ss
�c
: The number of clock cycles per store to main memory from host CPU or

to cell FIFO from main memory in conventional architecture.

Figure 5.1 shows di�erent connections between a host and a host-network interface

with describing whether a processor can access a component fast or not.

This modeling simpli�es all arithmetics and control instructions to take one clock

cycle. Pollings or message waiting durations are not considered. Only time delays

during transferring data are assumed.
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5.2 Performance Analysis of Simple Interface

The simple host-network interface is designed with the concept of minimal hardware

support. The host processor, therefore, implements protocol processing, instead of

protocol processor on the interface board. It may cause the system bus, PCI, to be

overloaded or to be the bottleneck of data transfers. It can be formalized in terms

of performances on transmitting and receiving sides whether the system bus cause

data transfer to be slow down. The following is the performance analysis of simple

interface.

5.2.1 Transmitting Performance

Since the host performs the segmentation processing, the host informs the start ad-

dress and the o�sets of intended payload-sized data to the DMA controller on the

interface board, while the host informs the start address and length of message-sized

data to the on-board protocol processor in intelligent interfaces such as the OSIRIS

or ORBIT of AURORA project. Thus, the segmented data, payload, goes simply

over the system bus, PCI, to the host interface. However, it may cause the data load

by DMA on the interface to be slow.

Here, we should discuss some assumptions to make our analysis simple. After the

host has a store instruction, the data on the cache is assumed to be written back into

the memory before the DMA controller tries to move data. It results in ignoring the

cache coherence problem. Also, the host does not have the context switching during

sending data to the host interface and transferring data on the middle of message.

The PCI system bus is assumed to send data in 64 bit wide in a cycle between main

memory and the host interface. Figure 5.1 (b) shows how fast the host processor can
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access cache, main memory, network bu�er (FIFOs). Additionally, in ATM network

the ATM adaptation layer 5 seems to be optimized for real time data service since

there is only one CRC �eld on the trailer of the last cell. Therefore, AAL-5 is assumed

for this analysis.

Since the DMA controller has the information of message segmentation from the

host, the loads go over system bus to the interface. The stores of segmented data into

the network FIFO also are slow since the data must go over the system bus. In this

case, the throughput for a payload is given by the following equation:

Throughput =
48 byte=cell � 8 bit=byte

(6Ls
�p
+ 7Ss

�p
+ 6computation)T�p

=
384

(22 + 22 + 6)(30:3� 10�9)

= 248:50Mbps

The number of instructions is based on the reference [19]. For example, to send

1 payload data (384 bits), 6 slow loads and 6 slow stores are needed through the

64-bit PCI system bus. For the header information, 1 store is approximated since

there is less than 1 fast load for the header information and CRC �eld. The header

information is simply loaded and stored without more clock cycles to look up because

the information is managed on a special place such as cache.

As a result, Figure 5.2 shows the throughputs related to the packet sizes of mes-

sages. Since the bus is fully utilized, there is no high slope on the graph. The above

analysis shows that the burst mode (e.g. DMA) supports data transfer of several

words in signi�cantly fewer cycles than data transfer by the individual loads or stores

such as programmed I/O. With a small amount of pipelining, it is also possible to

overlap the transfer of the payload with the processing of the header.
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5.2.2 Receiving Performance

In this simple interface model, the network interface receives ATM cells from ATM

switch, then splits header and payload parts. As a �rst protocol processing, CRC-8

hardware component checks any errors on the header �elds. If no error exists on the

header part, SONET Linker checks the addresses of the destination and the source.

With correct addresses on the header, payload can be moved to main memory by the

DMA controller. Since the interface board does not have network bu�er memory, the

host performs the reassembly processing with payloads saved on the main memory.

Before any further steps, preassumptions should be considered. The protocol

processing is a loop processing using the reassembly state information. Thus, it is the

best when the host processor keeps the protocol state information of the most recent

reassembly in registers. This technique is called hints [19]. An expected reassembly

header for the next cell can be computed, which is used as a hint. If it matches,

then there is no need to check any additional �elds of cell headers. Thus, the cached

reassembly state information is assumed to be always valid. It is possible when an

ATM cell arrives at a time.

Since the host performs the reassembly processing and DMA transfers data from

network FIFO to the main memory, the reassembly processing must require more clock

cycles of the host on data transfer than the reassembly processing by an on-board

processor. After DMA transfers data into the main memory, the host reassembls the

received payloads into a message. Thus, there are slow loads from network FIFO,

then slow loads into the host (refer Figure (b) of 5.1). On the other hand, if the host

is on idle, then payloads can be reassembed directly by the host without storing to the

memory, which can save clock cycles of processor. In this case, there are slow loads

from network FIFO and slow stores to main memory after reassembly processing by
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the host. Let us evaluate both cases for performance of the simple interface.

The throughput of reassembly by a lightly loaded host for a ATM cell with simple

interface is as follows: The DMA transfers data with 6 loads (7-2-2-2-7-2) for a ATM

cell since the DMA channel has 64 bit bandwidth. The host processor requires 3

(7-2-2) stores for reassembled data since the host has 128 bit bandwidth to main

memory.

Throughput =
48Bytes

(6Ls
�p
+ 3Ss

�p
+ 12 computation)Tup

=
384

(22 + 11 + 12)30:3� 10�9

= 281:63 Mbps

However, the throughput of the reassembly processing by a heavy loaded host for

a ATM cell with simple interface is as follows:

Throughput =
48Bytes

(6Ls
�p
+ 3Ls

�p
+ 3Ss

�p
+ 12 computation)Tup

=
384

(22 + 11 + 11 + 12)30:3� 10�9

= 226:31 Mbps

Hence, Figure 5.3 shows the throughputs given by the packet sizes. From this

�gure, the real throughputs can be expected to be better than the throughputs with

heavy loaded host and less than the throughputs with lightly loaded host.
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5.3 Performance Analysis of Intelligent Interface

A processor on the host-network interface can perform the SAR processing more

eÆciently than the host processor since it is dedicated only to this task and has low-

latency, high-bandwidth access to the network interface. Especially, the rate of data

transfers between the host and network bu�er memory is expected to be very high

since the network bu�er is a kind of cache in the host system. This can be proved by

comparing throughputs as in the following.

5.3.1 Event Analysis

This section unveils the full design of the intelligent interface and the performance

of its components for the Alpha 21164 microprocessor [32] from Digital Equipment

Cooperation, with IDT's synchronous pipelined burst dual-port SRAM IDT709279

as a network bu�er. The detail event description of the host processor can be from

[79] which has the same operations for the processing of the host processor.

The 21164 partitions physical address, PA[39:5], into an index �eld and a tag

�eld. The 21164 presents PA[25:4] and PA[38:20] as an index address and a tag �eld

address, respectively to the external L2 cache interface. Each cache block would

contain status bits for the valid, shared, and dirty status bits along with a part or all

of PA[30:20].

In this memory system hierarchy, external L2 cache consists of 1 MBytes and a

network bu�er of 1 MBytes. The block size must be the same for both internal and

external. Thus,

cache size = 1 MBytes = 224

cache block size = 32 Byte block = 28
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the number of blocks =
224

28
= 216

Each of the L2 cache and network bu�er has 216 32-byte blocks. Therefore, the

40-bit physical block address is divided into an 18-bit tag and a 16-bit index:

40� 16� 5 for block offset� 1 for interleaving = 18 bits:

The most signi�cant bit is used to distinguish data for network bu�er from data for

external L2 cache. For example, the capacity of physical address is roughly 33MB

(32MB Main Mem+1MB for MSG BUF ) or more, even though the size of physical

main memory is 32 MB.

The L2 cache reads the tag from that index and if it matches, the cache returns

the critical 32 bytes in the �rst 2 clock cycles (internal L2) or 3 clock cycles (external

L2 or network bu�er) and the next block in 1 clock cycle after the �rst 3 clock cycles

since the cache uses pipelined burst mode. At the same time, a request is made for

the next sequential 32-byte block, which is loaded into the instruction prefetch bu�er

in the next 1 clock cycle with pipelined burst mode.

Speci�c instructions from the network are found in the network bu�er completely.

If not, processing will be stalled until the instruction comes from the network. How-

ever, if the instruction except network speci�c instructions is not found in the L2

cache or the network bu�er, the translated physical address is sent to main memory.

When the Alpha 21164 reads miss command and then enters the main memory logic,

the memory controller generates the appropriate address signals for the memory ar-

ray. The memory controller then waits for the memory access delay before instructing

the bus interface to accept the memory data.

Now that the processor needs to process data to send into network, it adds some

overhead bits in Convergence-Sublayer of AAL. Thus, we suppose that the instruction
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is a load data from cache or even from main memory. The instruction will send the

page frame of its data address to the data TLB (DTLB) at the same time as the index

from the page o�set is sent to the data L1 cache. The 64-entry, fully associative, dual-

ported data translation bu�er (DTLB) stores recently used data stream page table

entries. In the worst case, the page is not in main memory, and the operating system

gets the page from disk storage. Since millions of instructions could execute during

a page fault, the operating system will swap in another process if there is something

waiting to run.

Assuming that the valid page table entry is in the data TLB, the cache tag and

the physical page frame can be compared with a match, which is sending the desired

16 Bytes from the 32-Byte block to the CPU. If the data is not found in the data

cache, Dcache, (a miss), then the address, target register number, and formatting

information are entered in the miss address �le. The miss address �le performs a

load-merging function. When a load miss occurs, each entry of the miss address �le

is checked to see whether it contains a load miss that addresses the same data cache

block. If it does, and certain merging rules are satis�ed, then the new load miss is

merged with an existing entry of the miss address �le. If it does not, the miss goes

to the L2 cache, which proceeds exactly like an instruction miss.

It is time to store the data to the proper space in the network bu�er. That

instruction is a store. The page frame portion of the data address is again sent to the

data TLB and the data cache, which checks protection violations as well as translates

the address. The physical address is then sent to the data cache. Since the data

cache uses write through, the store data are simultaneously sent to the write bu�er

and the data cache. The data address of this store is checked for a match, and at

the same time the data from the previous write hit are written to the cache because
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the processor pipelines write hit steps. If the address check was a hit, then the data

from this store are placed in the write pipeline bu�er. On a miss, the data are just

sent to the write bu�er since the data cache does not allocate on a write miss. While

data for an L2 cache block or a main memory block may have write-hit, data for a

block in the network bu�er will not have write-hit since the valid bit is masked after

receiving acknowledgment from the receiver.

The write bu�er takes over now. It has six 32-Byte entries, each of which holds

the data from one or more store instructions that access the same 32-Byte block in

memory or in network bu�er until the data is written into the internal L2 cache. The

write bu�er provides a �nite, high-bandwidth resource on receiving a store data to

minimize the number of CPU stall cycles. If the bu�er is full, then the CPU must

stall until a block is written to the network bu�er. If the write bu�er is not full, the

CPU continues and the address of the word is presented to the write bu�er.

All writes are eventually passed on to the network bu�er. Even though the network

bu�er uses write back, it can pipeline writes because writing data are sequential: a

�rst full 32-Byte block write takes 3 clock cycle to check the address and 4 clock

cycles to write the data (2 times writing of 16 Bytes). However, the next data will

take 1 clock cycle to check the address and 2 clock cycles to write the data. Since

CS-PDU (Convergence Sublayer of AAL Protocol Data Unit) is much bigger than a

block size and the latter overrules the former, storing the block to the network bu�er

is assumed to have latter clock cycles, that is, to take 3 clock cycles. In this case, the

network bu�er marks the block as dirty in status and control ags.

On the other hand, the 21164 processor has instructions to poll a control message

area of the network bu�er to receive data from the network. If there are some data

to be received in the network bu�er, the 21164 processor gives a load instruction to
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the network bu�er, extracting the header and trailer parts from CS-PDU's, then it

gives a store instruction to store data into main memory.

Almost all events have the same clock cycles as in the case of transmitting data

into the network except writing data to internal L2 cache and to main memory. A

full 32-Byte block write to internal L2 cache takes 1 clock cycle to check the address

and 2 clock cycles to write the data.

If the access to the L2 cache is a miss, the victim block is checked to see whether

it is dirty; if so, the victim block is placed in the victim bu�er to get out of the way

of new data as before in instruction. If the new data is a full block, then the data is

simply written and marked dirty. If the new data is a partial, a partial block write

results in an access to main memory since the L2 cache policy is to allocate on a write

miss.

5.3.2 Network Bu�er EÆciency

The event analysis for the cell processing is discussed in the above section. The model

includes an Alpha 21164 micro processor, the second level cache, and the network

bu�er. An ATM-network-adaptor control processor can read and write data in the

network bu�er as a local memory. Thus, the network bu�er is used to transfer data

for control commands of SAR (Segmentation and Reassembly) processing as well as

data for cell payloads.

Transmitting Performance

The mapping from a variable-size message, CS-PDU, to a sequence of �xed-length

ATM cells is called segmentation. CS-PDU (Protocol Data Unit for Convergence

Sublayer of ATM Adaptation Layer) is usually much bigger than an ATM cell. As
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mentioned in the previous chapter, the AAL-5 protocol will be used for this perfor-

mance evaluation. To evaluate the performance of a cell in transmitting side, only

48 bytes are assumed to be stored to the network bu�er from the host even though

the transmitting host sends CS-PDU to the network bu�er in one or a few times. In

segmentation, slightly more complicated operations are needed at the beginning of

message and at the end of message because there are some initialization commands.

To make simple situation, we assumed only the continuation of message, thus each

cell is fully loaded with data.

The protocol processing time is very dependent on the application program since

every application program has di�erent memory accessing method. In the worst case,

the host will load all data from main memory. Since the memory bus transfers data

of 16 Bytes per load, it will take 3 slow loads for 48 Bytes of data. It is assumed to

have 7-2-2 cycles in processor cycle unit. To store 48 bytes into the network bu�er,

the host needs 3 stores since data bus passes data in 16 bytes per store. It will take 5

clock cycles (1 address and 3 data stores such as 3-1-1) by the pipelined data storing

of 48 bytes into the network bu�er.

As a future work, the cache memory controller can be modi�ed. In this analysis,

the data kept in main memory are supposed to be transferred into the network bu�er

memory by the programmed I/O in which the host controls each transfer. However, it

is possible for a host processor to give an instruction to the cache controller. The new

extended instruction has the start address and the length of intended data. Thus, with

only one instruction from the host processor, the intended data can be transferred

to the network bu�er without further host's works. It seems to be a direct memory

access scheme but adopted to the cache memory, not to the main memory. It might

be called a direct cache access (DCA) scheme.
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In the network adaptor, the control processor, MC88110, has a 64-bit pipelined

burst mode (3-1-1-1-1-1-1-1) data bus with back-to-back cycles (eight 64-bit access).

For example, it requires 6 clock cycles (1 for address translation and 5 for data,

3-1-1-1) to load a 32-byte data block. Thus, the control processor takes 8 (3-1-1-

1-1-1) clock cycles for the data load of 48 bytes in the pipelined burst mode. The

network-adaptor control processor adds SAR-header bits, SAR-trailer bits, and ATM

header bits. The control processor takes 8 fast loads, 9 (8 for payloads and 1 for

header) stores, 5 arithmetic instructions and 1 branch instruction ([19]) for SAR-

PDU processing (computations of start address and o�sets from information about

the message given by host) and CRC bits. The 8 stores are fast stores in this design

since cells are stored into the local memory and even in pipelined from the network

bu�er into SONET interface.

This breakdown is used to predict the throughput for two con�gurations: one with

pipelined burst dual-port network bu�er, and the other in conventional system bus

to transfer 48 byte data.

In case of the cache-based host-network interface:

Throughput =
48 byte=cell � 8 bit=byte

(3Ls
�p
+ 3S

f

�P
)T�P + (6L

f

�C
+ 7S

f

�C
+ 6 computation)T�C

=
384

(11 + 5)(30:3� 10�9) + (8 + 9 + 6)(25� 10�9)

= 362:33Mbps

In contrast to this cache-based network adaptor, the conventional network adaptor

loads control information �rst, then loads and stores directly cell payload into cell

FIFO, [19]. There are 1 load for control information, 6 loads and 7 stores for data

transfer. These 6 slow loads take 7-2-2-2 and 7-2 clock cycles for data transfer which

is a 64-bit wide. There are 7 stores that are 6 for data and 1 for header. The
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conventional network adaptor has the following throughput equation:

Throughput =
48 byte=cell � 8 bit=byte

(Ls
�p
+ Ss

�p
)T�p + (6Ls

�c
+ 7S

f

�C
+ 6computation)T�C

=
384

(7 + 7)(30:3� 10�9) + (22 + 9 + 6)(25� 10�9)

= 284:61Mbps

The throughputs will be compared in terms of variable-sized CS-PDUs for trans-

mitting procedure.

Figure 5.4 shows the comparisons for segmentations of the cache-based and the

conventional.

Receiving Performance

When the network adaptor receives any ATM cell from the ATM network switch, it

splits header bytes from the ATM cell, checking CRC, and if no error is detected then

the adaptor-control processor stores the payload to the network bu�er. The SAR

layer performs the reassembly of ATM cells into the original large data (CS-PDUs)

of the higher layers at the receiving unit.

The information payload for each ATM cell contains the AAL-speci�c information

such as the information �eld length and the sequence number that must be passed

between peer AAL entities. This information is stored in the AAL layer protocol

processing, not in the header of each cell.

The protocol processing can be improved by using the technique which keeps the

protocol state information of the most recent reassembly in registers. It is called

hints [19]. After processing each cell, an expected SAR header for the next cell can

be computed, which is used as a hint. If it matches, then there is no need to check
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Figure 5.4: Throughput of transmitting procedure with variable CS-PDU sizes
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any additional �elds.

With this technique, the best case occurs when the cached reassembly state in-

formation is always valid where only single ATM cell arrives at a time. In this case,

reassembly processing requires the following: Alternatively, the reassembly process-

ing of the intelligent interface does not need the bandwidth of the system bus for the

slow loads in which the conventional architecture needs because the host processor

can access directly to the reassembly bu�er (dual-port SRAM) as cache access (fast

loads). By the back-to-back cycling of data transfer, 6 fast loads (3-1-1-1-1-1) and 6

stores (3-1-1-1-1-1) are required for 48 Bytes of a ATM cell payload. Therefore, the

throughput for a ATM cell is as follows:

Throughput =
48Bytes

(6L
f

�c + 6S
f

�c + 12 computation)TuC

=
384

(8 + 8 + 12)25� 10�9

= 548:57 Mbps

On the other hand, the reassembly on the conventional architecture requires the

data transfer from the network bu�er to the main memory. Moreover, the best case

is with data transfers of fully pipelined, that is, 3 loads and 3 stores consecutively

(for detail description, see previous section, transmitting performance).

Throughput =
48Bytes

(3Ls
�p
+ 3S

f
�p)T�p + (6L

f
�c + 6S

f
�c + 12 comp)TuC

=
384

(11 + 5)30:3� 10�9 + (8 + 8 + 12)25� 10�9

= 324:11 Mbps

The performance comparisons are in Figure 5.6.
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5.4 Summary

In this chapter, we have analyzed latencies of data transfers between a host and

host-network interfaces designed by our taxonomy and shown their e�ective transfer

rates under di�erent host-network interfaces. We have analyzed performances of a

simple interface and an intelligent interface, and compared those with performance

of a conventional host-network interface.

In the simple interface, the segmentation processing has been performed by the

host processor. It caused the system bus to be the bottleneck of data transfer. In

segmentation, the host must have been interrupted much less because DMA trans-

ferred data directly into network FIFO with burst mode. However, in reassembly,

the DMA transferred data to the memory through the system bus without transport

layer CRC checking. If there are errors which can not be cured, the data might cause

the system component to be wasted.

In the intelligent interface, the network bu�er seems to be a cache. It saves time to

transfer data from the host because the host can access cache in fast access mode. The

segmented data, therefore, can be sent to the network bu�er memory without pre-

computation of start addresses and o�sets which are usually used on conventional

host interfaces. In reassembly processing, cache-based interface does not use the

system bus and data moves in fast access mode to the host. The performance has

supported the functionality of cache-based interface for real-time application support,

low latency, multiprotocol support, and so on.

In designing host-network interfaces, we have focused on reducing overheads of un-

necessary protocol processing and parallelizing procedures as possible. As supposed,

using taxonomy on design of host-network interface saves time to develop and deploy

for the special purpose.
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Chapter 6

Conclusion

6.1 Summary and Conclusion

The recent advances in high-speed network technologies have made parallel and dis-

tributed computing over a Network of Workstations (NOW) an attractive and cost-

e�ective computing environment.

However, the performance of parallel and distributed applications running on

NOW resources su�ers from high latency and low throughput even when the net-

work speed is in Megabit or Gegabit per second range.

The main reasons for the low performance are contributed to the design of the

host-network interface and the software mechanisms which are used to transmit data

from the host to the network and vice versa.

In this dissertation, we have reviewed host-network interface designs and propose a

hierarchical taxonomy to characterize and described the architectures of host network

interface. The taxonomy consists of two levels of characterization: Architectural level

and protocol level.
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In the architectural level, we have described the main components used to imple-

ment any host-network interface and how they interact with each other to perform

the host-network interface functions. The host CPU unit is to execute instructions

of the user application and to transform data. Main memory unit is an intelligent

storage device that passes data to and from the host CPU. Cache unit consists of

a small fast memory that acts as a bu�er between the main memory and the host

CPU. Network bu�er unit is a staging and speed-matching area for data in transmit

between the host and the network. Protocol processor unit manages packet process-

ing and various bookkeeping functions associated the protocol. And the switch unit

provides connectivity between other functional units in one way of programmed I/O,

DMA, burst transfer, or register accessing.

In the protocol level, we have discussed how the software functions (data copying,

packetization, error handling, ow control, routing) are mapped into the main host-

network-interface components identi�ed at the architecture level.

We have also provided several examples that show how our taxonomy can ac-

curately describe the architectures of host-network interface and characterize the

performance limitations of any host-network interface design as well.

Simple host-network interface design is exible for protocol implementation, re-

duced implementation complexity, minimal hardware components, and data transfer

between main memory and FIFOs by direct memory access. However, the host is

likely to be overloaded by the protocol processing since the simple interface does not

have on-board processor.

The intelligent interface supports very high-speed and low-latency ATM networks.

To make a good cost-performance eÆciency, components are already developed or

used in common. Above all, the intelligent interface supports no copying of data

134



in main memory. Data moves from user space of main memory to the transmitting

FIFO through dual-ported cache memory working as a network bu�er memory. Since

dual-ported pipelined and burst mode SRAM is used for cache and network bu�er

memory, it can support faster data transfer than data transfer using DMA. It results

in supporting real-time applications better.

We have analyzed the performance of the proposed intelligent host-network inter-

face. On data transmitting, the message bu�er has di�erent performance throughput

whether the data is in cache or not. When the data is not in cache, the interface

has improved performance throughput only with small-size messages. For large-size

message, cache adds more overhead on writing back least recently used data into

the main memory than for small-size message. It reduces the performance through-

put. When data is in cache, the protocol processor can access directly without data

copying. It causes a leap of performance improvement. On receiving data from the

network, after the protocol processor executes the intended protocol processing, the

host can access directly data through the network bu�er. It saves the overhead given

on data copying by the I/O bus. Thus, the user applications which require low level

of communication latency can get a real advantage of high-speed network.

6.2 Future Work

Under the proposed taxonomic system, the organization of an eÆcient host-network

interface heavily depends on the external constraints placed on the host-network

interface such as the nature of the buses and memory system on the host, the ap-

plication programming interface used for communication, and the placement of the
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checksum in the packet. That is, for the same host-network interface in the architec-

tural level, the minimum number of data transfers across the bus can di�er depending

on the protocol-processing constraints. This relationship also suggests a number of

unexplored possible architectures that might be fruitful places to look for new and in-

novative designs. We envision some key directions for future extension of the research

presented in this thesis.

For the taxonomic system, the protocol implementation level can be extended to

include application programming interface (API). The overhead of operating system

a�ects API implementations and causes the whole communication network environ-

ment to slow down, even though the network interface has low latency and the host

processes applications with high computing power. Thus, the API should be treated

as one important functional unit in protocol implementation level of the taxonomic

system to analyze more accurately host-network interfaces. One example is Jaguar

which is a Java API to improve performance of communication and I/O methods in

Java programming.

The fundamental issues in designing balanced machine are to provide the ability

to overlap communication and computation and to reduce communication overhead.

Thus, there can be some extension for the design of host-network interface.

The transport protocol can be extended to the TCP/IP implementation. Since

the TCP/IP suite was developed long time ago, it has been advanced to support

high-speed communication applications with multithreads, shared memory user space

processing, and so on.

Therefore, our taxonomy has great potential to be applicable to development

of optimal network environment by estimating the exact system's requirement and

136



parallelizing desings of hardware and software simultaneously, which comes from de-

scriptive and hierarchical features of our taxonomy.
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