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Abstract

Recently, there has been a large amount of interest in parallel programming us-
ing Java. However, efforts exploring the use of Java for parallel programming have
been hindered by lack of a standard Java parallel programming API. To alleviate this
problem, many groups have initiated research designing Java implementations of the
successful Message Passing Interface (MPI). Unfortunately, MPI bindings are currently
only defined for C, Fortran, and C++; as a result, initial Java MPI implementations
have been divergent. This paper represents an effort to establish a consensus on Java
bindings for MPI, and thereby to greatly enhance the viability of parallel programming
using Java.

1 Introduction and background

A basic prerequisite for parallel programming is a good message passing API. Java comes
with various ready-made packages for communication, notably an easy-to-use interface to
BSD sockets, and the Remote Method Invocation (RMI) mechanism. Interesting as these
interfaces are, it is questionable whether parallel programmers will find them especially
convenient. Sockets and remote procedure calls have been around for about as long as
parallel computing has been fashionable, and neither of them has been popular in that
field. Both communication models are optimized for client-server programming, whereas the
parallel computing world is mainly concerned with “symmetric” communication, occurring
in groups of interacting peers.

This symmetric model of communication is captured in the successful Message Passing
Interface (MPI) standard, established a few years ago [5]. MPI directly supports the Single
Program Multiple Data (SPMD) model of parallel computing, wherein a group of processes
cooperate by executing identical program images on local data values. Reliable point-
to-point communication is provided through a shared, group-wide communicator, instead
of socket pairs. MPI allows numerous blocking, non-blocking, buffered or synchronous
communication modes. It also provides a library of true collective operations (broadcast is
the most trivial example). An extended standard, MPI-2 [6], allows for dynamic process
creation and access to memory in remote processes.

The MPI standard document thus far has provided language-independent specification
as well as language-specific (C and Fortran) bindings [5]. While the MPI-2 release of the
standard added a C++ binding [6], no Java binding has been offered or is planned by
the MPI Forum. With the evident success of Java as a programming language, and its
inevitable use in connection with parallel as well as distributed computing, the absence of a
well-designed language-specific binding for message-passing with Java will lead to divergent,



non-portable practices. Therefore, a standard specification is urgently needed to enable the
development of portable Java Grande applications using MPI.

2 Current status

There are several known efforts towards the design of early MPI interfaces for Java with three
fully functional but different Java-MPI implementations — mpiJava, JavaMPI, and MPLJ.
The design of mpiJava is based on the use of native methods to build a wrapper to existing
MPI library (MPICH). A comparable approach has been followed in the development of
JavaMPI, but the JavaMPI wrappers were automatically generated by a special-purpose
code generator. A large subset of MPI is implemented in pure Java within the DOGMA
system for Java-based parallel programming. MPI Software Technology, Inc. have also an-
nounced that there is a commercial effort under way to develop a message-passing framework
and parallel support environment for Java called JMPI [3]. Some of these “proof-of-concept”
implementations have been available for more than a year with successful ports on clusters of
workstations running Solaris, Windows NT, Irix, AIX, HP-UX, MacOS, and Linux, as well
as the IBM SP2, SGI Origin-2000, Fujitsu AP3000, and Hitachi SR2201 parallel platforms.

2.1 The mpiJava wrapper

The mpiJava software implements a Java binding for MPI proposed late in 1997 [1]. That
proposal built on work on Java wrappers for MPI started at NPAC about a year earlier.

The mpiJava API is modeled as closely as practical on the C++ binding defined in the
MPI 2.0 standard, specifically supporting the MPI 1.1 subset of that standard. In some
cases the extra runtime information available in Java objects allows argument lists to be
simplified relative to the C++ binding. In other cases restrictions of Java, especially the
fact that all arguments are passed by value in Java, forces some changes to argument lists.
But in general mpiJava adheres closely to earlier standards.

The implementation of mpiJava is through JNI wrappers to native MPI software. In-
terfacing Java to MPI is not always trivial. We often see low-level conflicts between the
Java runtime and the interrupt mechanisms used in MPI implementations. The situation is
improving as JDK matures, and the mpiJava software now works reliably on top of Solaris
MPI implementations and various shared memory platforms. A port to Windows NT (based
on WMPI) is available, and other ports are in progress.

Other work in progess includes development of demonstrator applications, and Java-
specific extensions such as support for direct communication of serializable objects.

2.2 Automatic generation of MPI wrappers

In principle, the binding of existing MPI library to Java using JNI amounts to either dy-
namically linking the library to the Java virtual machine, or linking the library to the object
code produced by a stand-alone Java compiler. Complications stem from the fact that Java
data formats are in general different from those of C. Java implementations will have to use
JNI which allows C functions to access Java data and perform format conversion if neces-
sary. Such an interface is fairly convenient for writing new C code to be called from Java,
but is not adequate for linking ezisting native code.

Clearly an additional interface layer must be written in order to bind a legacy library
to Java. A large library like MPI has over a hundred exported functions, therefore it is
preferable to automate the creation of the additional interface layer. The Java-to-C interface
generator (JCI) [7] takes as input a header file containing the C function prototypes of the
native library. It outputs a number of files comprising the additional interface: a file of
C stub-functions; files of Java class and native method declarations; shell scripts for doing
the compilation and linking. The JCI tool generates a C stub-function and a Java native
method declaration for each exported function of the MPI library. Every C stub-function



takes arguments whose types correspond directly to those of the Java native method, and
converts the arguments into the form expected by the C library function.

As the JavaMPI bindings have been generated automatically from the C prototypes of
MPI functions, they are very close to the C binding. However, there is nothing to prevent
from parting with the C—style binding and adopting a Java-style object—oriented approach
by grouping MPI functions into a hierarchy of classes.

2.3 Pure Java implementation of MPI

MPI1J is a completely Java-based implementation of MPI which runs as part of the Dis-
tributed Object Group Metacomputing Architecture (DOGMA) system. MPIJ implements
a large subset of MPI functionality including point-to-point communication (all modes),
intracommunicator operations, groups, user-defined reduction operations. Notable capa-
bilities that are not yet implemented include process topologies, intercommunicators, and
user-defined datatypes (these are arguably needed for legacy code only).

MPIJ communication uses native marshaling of primitive Java types. On Win32 plat-
forms this technique allows MPIJ to achieve communication speeds comparable to, and in
many instances exceeding that, of native MPI implementations. (Java communication speed
would be greatly increased if native marshaling were a core Java function.)

Current MPIJ work involves porting native marshaling to platforms other than Win32,
investigation of standard libraries (e.g. BLAS) for improved performance, and porting to
a completely applet-based version of DOGMA. This forthcoming version of DOGMA will
allow non-technical users to run MPI programs on clusters of workstations without installing
any system code or application code at all.

3 Java-MPI — Draft API Specification

The MPI standard is explicitly object-based. The C and Fortran bindings rely on “opaque
objects” that can be manipulated only by acquiring object handles from constructor func-
tions, and passing the handles to suitable functions in the library. The C++ binding speci-
fied in the MPI-2 standard collects these objects into suitable class hierarchies and defines
most of the library functions as class member functions. The Java-MPI API specification
follows this model, lifting the structure of its class hierarchy directly from the C++ binding.

The immediate infrastructure to be provided builds literally on the MPI-1 infrastructure
offered by the MPI Forum, together with language bindings motivated by the MPI-2 forum’s
C++ bindings. The purpose of that effort is to provide an immediate, ad hoc standardization
for common message passing programs in Java, as well as to provide a basis for conversion
between C, C++, Fortran77, and Java. Eventually, support for aspects of MPI-2 belong
under this category as well, particularly dynamic process management, but not necessarily
all of MPI-2, given its spartan implementation in the non-Java space.

The major classes of Java-MPI are illustrated in Figure 1. The class MPI only has static
members. It acts as a module containing global services, such as initialization of MPI, and
many global constants including the default communicator COMM_WORLD. The most impor-
tant class in the package is the communicator class Comm. All communication functions in
Java-MPI are members of Comm or its subclasses. As usual in MPI, a communicator stands
for a “collective object” logically shared by a group of processors. The processes commu-
nicate, typically by addressing messages to their peers through the common communicator.
Another class that is important for the Java-MPI specification is the Datatype class. This
describes the type of the elements in the message buffers passed to send, receive, and all
other communication functions.
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Figure 1: Principal classes of Java-MPI

3.1 Data types

Opaque objects will be presented as Java objects. This introduces the option of simplifying
the user’s task in managing these objects. MPI destructors can be absorbed into Java object
destructors, which are called automatically by the Java garbage collector. We adopt this
strategy as the general rule. Explicit calls to MPI destructor functions are typically omitted
from the Java user interface. An exception is made for the Comm classes. MPI_.COMM_FREE
is a collective operation, so the user must ensure that calls are made at consistent times by
all processors involved—the call can’t be left to the vagaries of the garbage collector.

For JNI-based “wrapper” implementations based on the C binding of MPI, one should
ensure that all MPI functions, including the MPI_. .. _free object destructors, are called
before MPI _Finalize is called. Because invocation of Java destructors is under the control
of the garbage collector there is no guarantee that all Java-level finalize methods will
be called before the explicit call to the Java-level MPI.finish. A possible solution is to
maintain a global count of the number of outstanding MPI_. .. _free calls. This is initialized
to 1 by MPI.init and incremented by relevant constructors. All relevant Java finalize
methods and MPI.finish should decrement this counter, and be prepared to call the physical
MPI Finalize function when and only when the count falls to zero.

3.2 Language Binding

Naming Conventions All MPI classes belong to the package mpi. Conventions for cap-
italization, etc, in class and member names generally follow the recommendations of Sun’s
Java code conventions [8]. Class names are in mixed case with the first letter of each inter-
nal word capitalized. Method and ordinary variable names are in mixed case, with the first
letter lowercase. Constant variables are all uppercase with words separated by underscores
(“”). In general these conventions are consistent with the naming conventions of the MPI
2.0 C++ standard. Notable exceptions include the use of lower case for the first letters of
method names, and avoidance of underscore in variable names.

Restrictions on struct derived type. Some options allowed for derived data types in
the C and Fortran binding are deleted in the proposed Java binding. The Java VM does not
incorporate a concept of a global linear address space. Passing physical addresses to data
type definitions is not allowed. The use of the MPI_TYPE_STRUCT datatype constructor



is also restricted in a way that makes it impossible to send mixed basic datatypes in a single
message. Since, however, the set of basic datatypes recognised by MPI is extended to include
serializable Java objects, this should not be a serious restriction in practice.

Multidimensional arrays and offsets. The C and Fortran languages define a straight-
forward mapping (or “sequence association”) between their multidimensional arrays and
equivalent one-dimensional arrays. So in C or Fortran a multidimensional array passed as
a message buffer argument is first interpreted as a one-dimensional array with the same
element type as the original multidimensional array. Offsets in the buffer (such as offsets
occuring in derived data types) are then interpreted in terms of the effective one-dimensional
array (or—equivalent up to a constant factor—in terms of physical memory). In Java the
relationship between multidimensional arrays and one dimensional arrays is different. An
“n-dimensional array” is equivalent to a one-dimensional array of (n — 1)-dimensional ar-
rays. In the proposed Java binding, message buffers are always one-dimensional arrays. The
element type may be an object, which may have array type. Hence multidimensional arrays
can appear as message buffers, but the interpretation is subtly different. In distinction to
the C or Fortran case offsets in multidimensional message buffers are always interpreted as
offsets in the outermost one-dimensional array.

Start of message buffer. C and Fortran both have devices for treating a section of an
array, offset from the beginning of the array, as if it was an array in its own right. Java
doesn’t have any such mechanism. To provide the same flexibility, an offset parameter
is associated with any buffer argument. This defines the position of the first actual buffer
element in the Java array.

Error codes. Unlike the C and Fortran interfaces, the Java interfaces to MPI calls will
not return explicit error codes. Instead, the Java exception mechanism will be used to report
errors as defined in [2].

Multiple return values. A few functions in the MPI interface return multiple values,
even after the error code is eliminated. This is dealt with in the proposed binding in various
ways. Sometimes an MPI function initializes some elements in an array and also returns
a count of the number of elements modified. In Java we typically return an array result,
omitting the count. The count can be obtained subsequently from the length member
of the array. Sometimes an MPI function initializes an object conditionally and returns
a separate flag to say if the operation succeeded. In Java we typically return an object
reference which is null if the operation fails. Occasionally extra internal state is added to
an existing MPI class to hold extra results—for example the Status class has extra state
initialized by functions like Waitany to hold the index value. Rarely none of these methods
work and we resort to defining auxiliary classes to hold multiple results from a particular
function.

Array count arguments. The proposed binding often omits array size arguments, be-
cause they can be picked up within the function by reading the length member of the array
argument. A major exception is for message buffers, where an explicit count is always given.
In the proposed binding, message buffers have explicit offset and count arguments whereas
other kinds of array argument typically do not. Message buffers aside, typical array argu-
ments to MPI functions (e.g., vectors of request structures) are small arrays. If subsections
of these must be passed to an MPI function, the sections can be copied to smaller arrays
at little cost. In contrast message buffers are typically large and copying them is expensive,
so it is worthwhile to pass the extra arguments. Also, if derived data types are being used,
the required value of the count argument is always different to the buffer length.



Concurrent access to arrays. In JNI-based wrapper implementations it may be nec-
essary to impose some non-interference rules for concurrent read and write operations on
arrays. When an array is passed to an MPI method such as a send or receive opera-
tion, the wrapper code will probably extract a pointer to the contents of the array using
a JNI Get...ArrayElements routine. If the garbage collector does not support “pinning”
(temporarily disabling run-time relocation of data for specific arrays—see [4] for more dis-
cussion), the pointer returned by this Get function may be to a temporary copy of the
elements. The copy will be written back to the true Java array when a subsequent call to
Release...ArrayElements is made. If two operations involving the same array are active
concurrently, this copy-back may result in failure to save modifications made by one or more
of the concurrent calls.

Such an implementation may have to enforce a safety rule such as: when several MPI
send or receive (etc) operations are active concurrently, if any one of those operations writes
to a particular array, none of the other operations must read or write any portion of that
array. If the garbage collector supports pinning, this problem does not arise.

4 Example: Point-to-Point Communication

In general the Java binding of point-to-point communication operations will realize the MPI
functions as methods of the Comm class. The basic point-to-point communication operations
are send and receive. Their use is illustrated in the example below.

import mpi.* ;
class Hello {
static public void main(String[] args) {

MPI.init(args) ;

int myrank = MPI.COMM_WORLD.rank() ;
if (myrank == 0) {

char [] message = "Hello, there".toCharArray() ;
MPI.COMM_WORLD.send(message, O, message.length, MPI.CHAR, 1, 99) ;
}
else {

char [] message = new char [20] ;
MPI.COMM_WORLD.recv(message, O, 20, MPI.CHAR, 0, 99) ;
System.out.println("received:" + new String(message) + ":") ;

}

MPI.finish();

Java binding of the MPI operation MPI_ SEND. The data part of the message
consists of a sequence of count values, each of the type indicated by datatype. The actual
argument associated with buf must be an array. The value offset is a subscript in this
array, defining the position of the first item of the message.

void Comm.send(0Object buf, int offset, int count,
Datatype datatype, int dest, int tag)



buf send buffer array

offset initial offset in send buffer

count number of items to send

datatype datatype of each item in send buffer
dest rank of destination

tag message tag

The elements of buf may have primitive type or class type. If the elements are objects,
they must be serializable objects. If the datatype argument represents an MPI basic type,
its value must agree with the element type of buf: the basic MPI datatypes supported, and
their correspondence to Java types, are as follows

MPT datatype Java datatype
MPLBYTE byte
MPI.CHAR char
MPIL.SHORT short
MPI.BOOLEAN | boolean
MPLINT int
MPILONG long
MPLFLOAT float
MPI.DOUBLE double
MPI.OBJECT Object

If the datatype argument represents an MPI derived type, its base type must agree with
the element type of buf. If a data type has MPI.0BJECT as its base type, the objects in the
buffer will be transparently serialized and unserialized inside the communication operations.

The datatype argument is not redundant in Java, because this proposal includes support
for MPI derived types. If it was decided to remove derived types from the API, datatype
arguments could be removed from various functions, and Java runtime inquiries could be
used internally to extract the element type of the buffer, or methods like send could be
overloaded to accept buffers with elements of the 9 basic types. (The disadvantage of the
latter approach is that it leads to a large proliferation in the number of methods. Historically
MPT has eschewed this kind of overloading. Java at least provides runtime mechanisms for
checking type correctness, so the extra security provided by overloading is probably not an
essential requirement.)

5 Open Issues

Derived datatypes. It is unclear whether the Java interface should support MPI derived
data types. A proposal for a Java-compatible subset of derived types is included in this
document, but deleting it could simplify the API significantly.

Probably the most compelling factor in favor of including MPT derived data types in the
binding is the support for legacy MPI applications. For wrapper based implementations
another factor is the relative simplicity with which derived data types can be supported.
Lastly, the possible need to interact with native code that uses derived datatypes is best
supported by including derived datatypes in the Java standard. However, native code
interaction is arguably only a large concern for wrapper-based implementations.

The primary argument against including derived datatypes is that their functionality is
already provided by the standard Java objects, and that their addition only adds unneeded
complexity. Implementers of pure Java MPI systems tend to favor this approach.



Overloaded communication operations. It has been suggested that many of the com-
munication operations should be overloaded to provide simplified variants that omit ar-
guments such as offset, count (possibly datatype). This suggestion is not included in
the current proposal, but it could be added later if there is general support. The primary
argument in favor of this approach is that it simplifies user code. For instance,

MPI.COMM_WORLD.send(message, 0, message.length, MPI.CHAR, 1, 99);
becomes
MPI.COMM_WORLD.send(message, MPI.CHAR, 1, 99);

The obvious counter-argument is that it significantly increases the total number of meth-
ods in the API.

A possible compromise is to provide overloaded versions only of specific common func-
tions such as point-to-point communication functions. The counter-argument to this is that
it is inconsistent.

Multidimensional arrays. It has been suggested that some specific support for mul-
tidimensional arrays may be desirable. In the current proposal, communicating multidi-
mensional arrays depends either on sending arrays one row at a time or on Java object
serialization, both of which might be a performance bottleneck. For instance, MPIJ sends a
200x200 array of doubles over Fast Ethernet three times faster when multidimensional array
support is included than when individual rows are sent.

A plausible position is to wait and see what happens in Java regarding multidimensional
arrays and efficient object serialization before complicating this API.

User defined operations. It has been suggested that the specification of user defined
operations be modified. The current design is modeled after a procedural approach where
users define functions and cannot simply define a new operation class. So, in the current
proposal users create a UserDefinedOperation and use this to create an Op. This results
in the creation of a class (UserDefinedOperation) which is not really necessary.

An alternative design for user defined operations would be to simply have users define
subclasses of Op which would have a method named something like userMethod or call.
This design would also eliminate the overhead of a method invocation.

Error handling. The manner in which MPI errors are handled in Java is largely still an
undefined issue. What has been clearly defined is that, as mentioned previously, the Java
exception mechanism is used to replace error codes. However, the exact format of these
exceptions is undefined.

One possibility is that all MPI exceptions be derived from two classes: MPIException and
MPIRuntimeException. Subclasses of MPIException would represent errors that the user
would be required to catch whereas subclasses of MPTRuntimeException would represent
uncommon or unusual errors. Also, it has been proposed that certain MPI exceptions carry
subexceptions when the cause for the MPI exception is another exception.

The use of user defined and predefined error handlers is still an open question. These
could still serve a purpose in addition to the exception mechanism mentioned earlier. For
instance, the predefined error handler MPI. ERRORS_ARE_FATAL could call MPI.abort
while the predefined error handler MPI. ERRORS_RETURN would allow the user control
over when MPI.abort was called.

Profiling interface. A profiling interface for Java MPI has not yet been defined. A
possible general design approach is for profiling class and method names to exactly match
those of the non-profiling classes and methods. Implementors would then place the compiled
binary files in different locations. As Java linking is always dynamic, this would allow users



to enable or disable profiling simply selecting the appropriate codebase (e.g. by changing
the CLASSPATH).

6 Future Work

e Standard Java-MPI API Specification

e Java-MPI wrapper publicly available on the Web

o Intelligent generator of wrappers to legacy MPI libraries
e Pure Java MPI implementation

o Test suite

e Java-MPI Benchmarks

e MPI-2

The present effort’s purpose is to offer a first principles study of how to present MPI-like
services to Java programs, in an upward compatible fashion. The purposes are twofold:
performance and portability. For performance, we seek to take advantage of what has been
learned since MPI-1 and MPI-2 were finalized, or which were ignored in MPI standardiza-
tion for various reasons. The study will, for instance, draw on the body of knowledge just
recently completed within the MPI/RT Forum, which strives to enhance both real-time and
performance of message passing programs. From MPI/RT, we will at least glean design
hints concerning channel abstractions, and the more direct use of object-oriented design for
message passing than was done in MPI-1 or MPI-2 (despite existence of C++ bindings).
Additionally, a fundamental look at data marshaling and unmarshaling in the Java con-
text will be undertaken, and preference for Java-natural mechanisms and policies will be
attempted. Along the lines of portability, a detachment from legacy implementations of
Java over existing native methods will be emphasized, while also considering the possibility
of layering the messaging middleware over standard transports and other Java-compliant
middleware (such as CORBA). In a sense, the middleware developed at this level should
offer a choice of a performance or generality emphasis, while always supporting portability.
A policy/opportunity to support aspects of real-time and fault detection/fault-aware pro-
grams will be studied and standardized insofar as possible, again drawing on the concepts
learned in the MPI/RT activity, and also drawing on experience from distributed computing
real-time activities. The validity of this type of messaging middleware in the embedded and
real-time Java application spaces will also be considered.
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