Reduced to the MAX - A Simplified
Resource-Management System for large
Workstation-Pools

Achim Streit!

Paderborn Center for Parallel Computing,
University of Paderborn,
33095 Paderborn, Germany

streitQuni-paderborn.de

Abstract. In this paper, we present a concept for a lean resource-
management system used in heterogeneous pools of workstations. A re-
duced infrastructure in combination with improved scheduling concepts
leads to an easy-to-use, highly-available, fast and effective system. This
is achieved by using a simplified architecture and new scheduling algo-
rithms, mapping the monitored information-data to mathematical func-
tions and merging existing technologies in one product.

1 Introduction

In recent years the number of workstations in educational and economical bran-
ches have increased. Reasons for that are increasing peak performances and
decreasing prices of all sizes of workstations. The grown infrastructure leads to a
variety of different hardware-vendors, operating-systems, CPU speeds and sizes
of memory. In fact older workstations are still fast enough for certain applica-
tions. Generally a user can login to any of the available workstations, but primary
works on a specific one. Generally workstations are used as desktop-computers
and only a few of them as compute servers residing in an air-conditioned room.

Thus an unbalanced usage of the computational power takes place. Some
users are unsatisfied with long execution times of their processes evoked by
other users working on the same workstations. They are unaware that other
workstations are idle at the same time. If they start their processes on different
workstations they spent less time waiting for the end of a process. For example,
two users compile on the same workstation A at the same time. If one compile
process is started on workstation B, both compile processes end faster. This
saves time and therefore costs.

Avoiding this situation an intelligent resource-management system has to
be installed. To achieve a distinct benefit, all available workstations have to
be managed by the system, otherwise only suboptimal improvement is reached.
The management system has to suffice certain restrictions. In general it must be
reliable and fast, by providing only a small amount of overhead for balancing the

processes on different machine instead of leaving all processes on one machine
in unbalanced state.

The necessary software-infrastructure for the resource-management system is
kept very simple to avoid possible errors, unavailability and to decrease develop-
ment costs. Thereby the scheduling module of the system gets more important
in order to achieve better performance. This paper invents a concept for the
development of similar resource-management systems and is seen as a white

paper.

2 Why another resource-management system ?

Recently many research projects connected geographically distributed supercom-
puters to one big virtual supercomputer called metacomputer ([7], [10]). This
optimization took place at the upper end of computing trying to increase the
number of FLOPS (floating operations per second). This is often called HPC
(High Performance Computing). Generally the peak performance was increased
by delivering a high amount of computational power over a short time. Usually
users need computational power over longer periods of time. Therefore the term
HTC (High Throughput Computing) was invented.

Generally it was tried to run applications, with a high demand on computing
power, faster by a shared usage of workstations which were used for everyday
work. As an example Condor ([8], [11]) tries to utilize workstations which are
currently not used by their owners (e.g. during the night or the coffee break).
If the user gets back to the desk and starts to work on the machine, Condor
checkpoints its jobs and tries to run them on other available workstations. If
no other workstation can be found the job is stored in a queue until an idle
machine is found. This concept works fine with batch jobs, but if a user interacts
with a job by e.g. constantly producing keyboard input, it is not acceptable
that a job may reside in a queue waiting for execution. Therefore the resource-
management system guarantees that a job is only checkpointed for migration,
if another workstation is found where the job can be restarted. Furthermore a
job has to be started immediately after submission to the system without any
waiting without any waiting in a queue for an appropriate workstation.

The following aspects represent the main development goals of the new
resource-management system:

— simplicity of the infrastructure: the usage of standard mechanisms prevents
of possible errors, bottlenecks and unexpected development problems.

— information storage based on mathematical functions: the huge amount of
monitored informations of each workstation is stored by using mathematical
functions with adjustable parameters. Newly monitored information values
are used to improve the settings. Reduced complexity of the information
storage system is gained.

— merging of innovations: several innovations were invented by different re-
search projects, like e.g. improved scheduling algorithms and infrastructures,

accounting systems, resource brokerage or the ability of advanced reserva-
tion. The combination of all features leads to a product with outstanding
advantages and thereby a more efficient utilization of available resources.

3 Architecture Elements

Some general elements of the system are described in the following. An infor-
mation retrieval mechanism and a scheduler is necessary to provide the basic
functionality of the resource-management system. Other tools for easier usage,
administration or visualization are described later.

For the information retrieval a master-slave paradigm is used. A Monitor-
Slave runs on every workstation and fetches all necessary information with a
distinction between static and dynamic. Static data needs to be retrieved exactly
once. The hostname and IP-number are two possible static values as well as the
number of processors installed or the total size of physical memory. Generally
these values never change.

Of more importance are dynamic values, which describe the recent perfor-
mance of the monitored workstation. Possible values are the current percentage
of CPU and memory usage, the amount of free harddisk-space, the available
network bandwidth, or the number of processes or logged-on users. A major
problem of dynamic information values is their actuality. If the monitored val-
ues are up to date at every time, the interval for monitoring the information is
infinitesimal small. A high amount of processor usage of the monitor-slave comes
along with that, but the monitor-slave itself shouldn’t effect the performance of
the workstation noticeable. The solution is a bigger time-out between to updates
of monitored information values.

On the other side of the information retrieval process the monitor-master
represents a bottleneck. At a specific number of monitor-slaves and size of the
monitoring interval, the monitor-master can not handle all received data. The
available network bandwidth is a problem as well as the speed of information
processing. Therefore one solution is the decentralization of the monitor-master.
Specific groups of monitor-slaves transmit their data to monitor-masters dis-
tributed on different workstations. The easiest way to realize a distribution is
the usage of OS-dependent monitor-masters (see figure 1). A further distribution
is done by the OS-revision or the number of processors, if needed.

The monitor master itself has to store the information values, so they can be
used later by the scheduler and other tools. One possible way is to store all infor-
mation in a classic database or in separate files, but this leads to a huge amount
of data to put in storage. To store the information with mathematical methods
is a more convenient way. Either the use of statistical methods to analyze the
data is possible as well as a fixed mathematical function with a variety of param-
eters. New information values are then used to readjust the already computed
parameters to make them more exact. A further benefit is the predictability of
performance for the future with a specific probability. This knowledge can be
used by the scheduler to optimize the decisions. Possible day/night behaviour is

L v
GUl GUI |
E '\':.\:'\-\- B _.:_-T_:-""II

[E Aodolniw
X ¥
e il ponl of
Linux Solarin
WWirkatalcn Wiirkatalens Wasaabom -

Fig. 1. resource-management architecture

detected and used for a better utilization of the hole system (e.g. running batch
process at night).

The scheduler bases its decisions on the stored informations from the mon-
itoring system. A detailed description of the functionality of the scheduler is
given later (see Section 4). The job-start is realized by using standard UNIX
commands for remote job starting (e.g. RSH). Therefore it is necessary that
users can access all available workstations. A global user management and file-
system is necessary, but this is common in most cases (e.g. by using NFS). To
provide security other standard applications like SSH can be used instead (Note:
this may influence the available network bandwidth). It is implied that the sys-
tem is only used for internal usage and thereby certain security-mechanisms are
provided automatically, like the usage of firewalls and gateways, which is com-
mon in most future operational areas. The advantage of using standard UNIX
applications is the simplicity and the aspect, that no further development is
necessary (ready-to-use).

If only batch jobs are used, which retrieve their input from files and also
write their output to files, no more mechanisms are necessary. In the case that
jobs with user I/O are used, mechanisms are used to redirect this I/O to the
user. Generally the user works in front of a computer with a graphical user
interface and therefore uses processes with a GUI. The easiest way of redirecting
graphical I/0 is the usage of the UNIX-shell variable DISPLAY, which has to
be set appropriately. The non-graphical output of processes can be redirected to
log-files which then can be viewed by the user at anytime. A different approach is
the usage of X-Terminals for the text-based I/O. Common to all is the necessity
of local X-Servers running on the users desktop computer.

Another important aspect is the description of resources which should be
managed by the system. For easier administration of the system, a resource
description language is used. Different solutions have been developed so far ([1]),

but for more standardization XML ([5]) is chosen. Thereby new defined tags are
used to describe workstations of different manner. Tags come with attributes
which are then used to represent certain workstations. An example could look
like the following;:

<SUN hostname="oscar'" IP="91.235.83.207" 0S="Solaris 7" />

The resource description language can also be used for specifying some static
information values like speed indices. Thereby it is made possible to classify
available workstations by the computational power of the processors.

4 Scheduling

The structure of the resource-management system should be invented in a way,
that different scheduling algorithms can be used. Therefore a scheduler interface
makes it possible to use new and different scheduling modules. This makes it
easier to develop and test new scheduling algorithms adjusted to specific ob-
jectives of the workstations-owner. Due to the fact that the effectiveness of the
system is directly depending on the algorithm and efficiency of the scheduler,
the scheduler is the most important part of the hole system.

One exemplary approach for developing an efficient scheduler is the use of
an objective function. Static information values like the available network band-
width and latency are used, as well as speed indices for classifying the worksta-
tions. Dynamic information values like the CPU and memory usage are seen as
the basics for using an objective function.

The single steps of the scheduling process are:

1. process submission: The user specifies on with sort of workstations the pro-
cess should run (e.g. SUN workstation with OS-revision 5.6, or all worksta-
tions with a speed-index more than z). Furthermore starting parameters can
be specified which are used by the process.

2. subset composing: The scheduler uses the named restrictions from the first
phase two sort out all workstations which can not fulfill the demands of the
process specified by the user (e.g. type of operating system). Generally the
quantity of eligible workstation is reduced here significantly.

3. objective value computing: At this point the scheduler uses the objective
function to compute an objective value for every workstation from the subset.

4. decision phase: The workstation with the smallest objective value is picked.

After a decision is made, the scheduler starts the process with all necessary
startup-parameters on the chosen workstation by using standard mechanisms.

It can be thought of other scheduling principles. By gathering more infor-
mation about the running processes on every workstation in conjunction with
the owner of the process, mechanisms can be used to foresee the possible exe-
cution time and demands of a process. This is used in the scheduling algorithm
to produce more effective solutions. Another way of foresight is done, if the user
specifies an estimated execution time of the process.

The use of a centralized scheduler implies the risk of possible bottlenecks,
because the scheduler can run in a time-out due to a network error or an overload.
Two solutions are possible to prevent this situation. At first a back-up (slave-
)scheduler is used, which works in parallel to the master-scheduler. The slave-
scheduler regularly checks if the master-scheduler is still running and comes to
correct decisions in time. If not the slave-scheduler becomes the master-scheduler
and resumes the scheduling. The old master-scheduler then is restarted possibly
on a different workstation and used as the slave-scheduler in the future. This
mechanism of two independent schedulers constitutes redundancy. For a faultless
scheduling-process it is necessary that both scheduling processes run on different
workstations to eliminate hardware errors. Another back-up scheduler increases
the amount of safety and availability.

A second approach is the usage of a decentralized scheduling system. As it was
done with the partitioning of the database subjected to the operating system an
similar partitioning is done with the scheduler. One scheduler for each operating
system (see figure 1). In conjunction with the information databases the risk of
bottlenecks is reduced. The big advantage of OS-dependent partitioning is, that
a specific process can only be executed on the operating system it was compiled
for. The user has to specify the OS at the submision, which substantially reduces
the amount of necessary computations in the scheduler.

5 Features

A graphical user interface is provided for easier access to the system. The GUI
is independent, of any operation-system, so users can start processes from any
available computer. Java 2 (2], [3], [4]) can provide the necessary functionality
and is established in the branch of OS-independent graphical user interfaces.
The major feature of the GUI is the submission of a process-command to the
resource-management system. Therefore the user specifies the process-name and
certain command-line parameters like it is done in a standard UNIX-shell. Fur-
thermore the user decides which operating system is needed to run the process.
A list of all available operating systems is provided by the GUIL Another list
shows all available workstations in case the user wants to start the process on
a specific workstation. Although then the scheduler isn’t needed anymore, this
option is provided for flexibility. The list of workstations include static and dy-
namic information values for every workstation like hostname, IP-address, size
of memory, type of operating system, number of processors, logged-in users, pro-
cesses, or usage of CPU and memory. Various filters and different orders are used
for a more convenient presentation of all informations. The command for start-
ing a job is submitted as a regular string to the resource-management-system.
A conversion in special data-structures like an Abstract Job Object ([9]) is not
necessary.

Basic OS-commands like 1s, mkdir or cp are used via X-Terminal. In this case
only the X-Terminal is scheduled to an appropriate workstation and all further
processes are started from inside this X-Terminal.

As described earlier the infrastructure of the resource-management system
should be implemented as easy as possible to prevent possible errors and to
ensure reliability /availability, safety /security and redundancy especially at pos-
sible bottlenecks. A step towards an easier extensibility of the system can be
guaranteed by providing a set of API’s. As already mentioned a scheduler API
is used for the development of other schedulers to provide a standard interface
to the resource-management system, for retrieving informations from the sys-
tem and for starting a process on a specific workstation. A second API is used
for providing graphical user interface elements which can be integrated in other
applications.

For a better utilization of all available workstations it is sometimes necessary
to migrate jobs from on workstation to another. The core dump mechanism is
used for that. After a process is interrupted the core dump can be transferred
to another workstation where it is restarted. This implies that the operating
systems on both workstations is the same. A migration from one workstation
with e.g. Intel-Linux to a Sun-Solaris workstation cannot work due to e.g. in-
compatible byte ordering. The scheduler decides, if the costs of a migration are
less than the possible benefit ([12]). Migrations are prevented, if the scheduler
is capable to foresee possible conflict. The migration of a batch process with no
user I/0 is quite easy to achieve. However a process with possibly graphical user
I/O makes a migration more complicated, because the I/O has to be redirected.
Additionally the user can declare some processes as "not movable” if desired.

A feature which is not very common nowadays is advanced reservation. It
allows users to reserve certain workstations for specific time-slots in the future.
During these time-slots the users can switch the workstations in a sort of single-
user mode, if desired. With this the user can block the workstation from other
users. From the scheduler side of view this specific workstation is not usable for
a definite time. This mechanism is a major availability problem, e.g. if a user
blocks most of the workstations and other user can’t work with them. In this
case it is thought of limited advanced reservation for normal users by limiting
the number of reserved workstations or the reserved time.

A full blown advanced reservation mechanism is used only for maintenance
work. The time where the maintenance should take place is reserved by the
system-administrator and the resource-management system guarantees that no
user-processes are running on the specified workstations at that time which pre-
vents dissatisfied users.

In conjunction with the advanced reservation system, an accounting system
should be integrated. This allows external users to use the system. Furthermore
different departments e.g. of a company can sell computing time to other de-
partments. Therefore a better return of investment (ROI) can be achieved. In
this case it is necessary that the scheduling algorithm supports accounting.

Am automatic process start mechanism is developed in similar to the UNIX
cron/at commands. This gives the user the ability to start processes at cer-
tain times of the day, e.g. during night, in order to achieve better performance.
Processes with high demand of computational power, e.g. simulations, can run

during the night without interfering the daytime work of normal users. Therefore
a better utilization of the workstation especially at night can be reached.

A separate tool for administration purposes is used e.g. to observe all avail-
able workstations and to produce usage-statistics ([6]). In fact these statis-
tics might be used by some scheduling algorithms to provide an more optimal
scheduling, if specific workstations are less utilized. The administration tool is
also used to ease the work of the system-administrator by providing e.g. an easier
way of logging-in, process-killing or rebooting single machines.

As an optional part the same GUI which is used to start processes on work-
stations is used to start parallel applications on supercomputers. Therefore in-
terfaces to common supercomputer management software is provided. One may
think of CCS ([6]) or UNICORE ([9]).

6 Conclusion

This paper presents a concept for a future resource-management system which
leads to an effective usage of available workstations for the everyday work. The
simplicity of the infrastructure prevents of useless overhead produced by the
resource-management system and gains more effectiveness of all available re-
sources. Mathematical functions for information storage and the merging of in-
novative ideas in various parts of existing resource-management system are the
key elements of the presented concept.

References

1. M. Brune, J. Gehring, A. Keller, and A. Reinefeld. RSD - resource and service
description. In Proc. of the Intern. Conf. on High-Performance Computing Systems
HP(CS 98, Edmonton, Canada. Springer-Verlag, 1998.

2. M. Campione, A. Huml, and K. Walrath. The Java Tutorial Continued: The Rest
of the JDK. http://java.sun.com.

3. M. Campione and K. Walrath. The Java Tutorial Second Edition: Object-Oriented
Programming for the Internet. http://java.sun.com.

4. M. Campione and K. Walrath. The JFC Swing Tutorial: A Guide to Constructing
GUIs. http://java.sun.com.

5. D. Connolly. Extensible Markup Language (XML). http://www.w3c.org/xml.

6. A. Keller and A. Reinefeld. CCS resource management in networked HPC systems.
In Proceedings of 7" Heterogeneous Computing Workshop HCW’98 at IPPS, Or-
lando Florida, pages 44-56. IEEE Comp. Society Press, 1998.

7. G. Lindahl, A. Grimshaw, A. Ferrari, and K. Holcomb. Metacomputing - what’s in
it for me? Technical report, University of Virginia, Computer Science Department,
1998.

8. M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations.
In Proceedings of the 8" Intl Conf. on Distributed Computing Systems, pages 104—
111, 1988.

9. M. Romberg. The UNICORE Architecture: Seamless Access to Distributed Re-
sources. In Proceedings of the 8" IEEE International Symposium on High Perfor-
mance Distributed Computing,, pages 287-293, 1999.

10.

11.

12.

L. Smarr and C. Catlett. Metacomputing. Communications of the ACM, 35(6):44—
52, June 1992.

The Condor Team. Condor Version 6.1.9 Manual. http://www.cs.wisc.edu/condor,
November 1999.

G. D. van Albada, J. Clinckemaillie, A. H. L. Emmen, J. Gehring, O. Heinz,
F. van der Linden, B. J. Overeinder, A. Reinefeld, and P. M. A. Sloot. Dynamite
- blasting obstacles to parallel cluster computing. In P. M. A. Sloot, M. Bubak,
A. G. Hoekstra, and L. O. Hertzberger, editors, High-Performance Computing and
Networking (HPCN Europe ’99), Amsterdam, The Netherlands, number 1593 in
Lecture Notes in Computer Science, pages 300-310, Berlin, April 1999. Springer-
Verlag.

