
Request Sequencing:

Optimizing Communication for the Grid

Dorian C. Arnold1, Dieter Bachmann2, and Jack Dongarra1;3

1 Department of Computer Science, University of Tennessee, Knoxville, TN 37996

fdarnold, dongarrag@cs.utk.edu
2 Computer Graphics and Vision, Graz University of Technology, In�eldg. 16/E/2,

A-8010 Graz Austria

bachmann@icg.tu-graz.ac.at
3 Mathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN

37831

Abstract. As we research to make the use of Computational Grids

seamless, the allocation of resources in these dynamic environments is

proving to be very unwieldy. In this paper, we introduce, describe and
evaluate a technique we call request sequencing. Request sequencing

groups together requests for Grid services to exploit some common char-

acteristics of these requests and minimize network tra�c. The purpose of
this work is to develop and validate this approach. We show how request

sequencing can a�ect scheduling policies and enable more expedient re-

source allocation methods. We also discuss some of the reasons for our
design, o�er the initial results and discuss issues that remain outstanding

for future research.

1 Introduction

As the number of applications that can bene�t from Grid Computing [1] in-

frastructure increases, there are many critical issues that need to be e�ciently

resolved. Determining which resources provide the quickest, least expensive route

to computational solutions is an active area in this research community. Exam-

ples of e�orts focused on this area are AppLeS[2] and the Network Weather

Service[3].

The vBNS[4] and Myrinet[5] represent two technologies that connect compu-

tational resources at high speeds in settings from local to global area networks.

However, with the speed of processors increasing at a rate much greater than the

speed of networking infrastructure, data transfer continues to bear large over-

head for many applications of high-performance computing. Yet, straightforward

ways for increasing application performance by optimizing communication often

go overlooked. Our research on call sequencing for Grid middleware aims to take

a signi�cant step in this direction.

1.1 Goals

Computer applications generally exhibit two common characteristics: large in-

put data sets and data dependency amongst computational cycles. The goal

of this e�ort is to employ simple, yet highly e�ective, strategies for exploiting

these characteristics. We believe that not enough attention has been given to

examining ways to e�ectively distribute application data amongst the di�erent

components of a Grid. We qualify this last statement by saying that data par-

titioning has been well researched for parallel programming, but in cases where

computational modules execute concurrently with no data exchange, often the

same data is unnecessarily transported multiple times between the same com-

ponents.

1.2 Positioning Our Work

This paper explores the design, implementation and initial results of what we call

request sequencing. This term encompasses both an interface to group a series

of requests and a scheduling technique, viz. one that uses data persistence and

a Direct Acyclic Graph (DAG) representation of computational modules. Our

motivation was to allow users to take advantage of data redundancies within

a sequence of requests and optimize data communications. We developed and

tested our ideas using the NetSolve system described in Sect. 2. Below, we o�er

the relationship of this research to other research that has been or is being done.

Our scheduling work is reminiscent of techniques utilized in schedulers that

execute \batches" of processes on parallel machines. We create task graphs or

DAGs that represent execution dependencies and schedule them for execution [6].

J. Dennis researched data
ow scheduling techniques for Supercomputers[7]; our

work presents a similar idea for Grid environments.

Ninf [8] is a functional metacomputing environment that shares many sim-

ilarities with NetSolve. The project implemented a strategy to increase paral-

lelism[9]. Similar to this work, they group together requests and execute the

modules simultaneously, when possible. Their main focus is on parallel module

execution, and it is not stated whether redundant messages are sent or not. Our

focus is on minimizing network tra�c; our design ensures that no unnecessary

data transfer takes place.

Condor [10] is a high-throughput computing system that manages very large

collections of distributively owned workstations. The Directed Acyclic Graph

Manager[11] (DAGMan) is a meta-scheduler for Condor jobs. Users can submit

batch jobs to the Condor system and use DAGMan to pre-de�ne execution or-

der. Once again, however, the main focus is on parallel execution and not data

transfer. As an extra burden, the data dependency analysis is left to the user.

The contribution put forth by this paper is a thorough understanding of

an approach to optimize data transfer in Grid settings and the empirical data

to justify using this approach. We also o�er discussion of scheduling in this

environment. Section 2 of this paper presents details about NetSolve, which is

our deployment environment. Section 3 describes the design and implementation

of the sequencing interface, the server data persistence and execution scheduling.

Section 4 contains the experimental test cases and the results that validate this

strategy. Finally, Sect. 5 summarizes the work and discusses future research

goals.

2 An Overview of NetSolve

The NetSolve project is being developed at the University of Tennessee and

the Oak Ridge National Laboratory. It provides remote access to computational

resources, both hardware and software. Built upon standard Internet protocols,

like TCP/IP sockets, it is available for all popular variants of the UNIX operating

system, and parts of the system are available for the Microsoft Windows '95, '98

and NT platforms.

Figure 1 shows the infrastructure of the NetSolve system and its relation to

the applications that use it. NetSolve and systems like it are often referred to

as Grid Middleware; this �gure helps to make the reason for this terminology

clearer. The shaded parts of the �gure represent the NetSolve system. It can

be seen that NetSolve acts as a glue layer that brings the application or user

together with the hardware and/or software it needs to complete useful tasks.

UsersApplications

Fault Tolerance
Load Balancing

Server
NS

Server
NS

Client Library
NS

Server
NS

Resource Allocation
Resource Discovery

NS Agent

Fig. 1. Architectural Overview of the NetSolve System

At the top tier, the NetSolve client library is linked in with the user's appli-

cation. The application then makes calls to NetSolve's application programming

interface (API) for speci�c services. Through the API, NetSolve client-users gain

access to aggregate resources without the users needing to know anything about

computer networking or distributed computing. In fact, the user does not even

have to know remote resources are involved.

The NetSolve agent maintains a database of NetSolve servers along with their

capabilities (hardware performance and allocated software) and dynamic usage

statistics. It uses this information to allocate server resources for client requests.

The agent �nds servers that will service requests the quickest, balances the load

amongst its servers and keeps track of failed ones.

The NetSolve server is a daemon process that awaits client requests. The

server can run on single workstations, clusters of workstations, symmetric multi-

processors or machines with massively parallel processors. A key component of

the NetSolve server is a source code generator which parses a NetSolve problem

description �le (PDF). This PDF contains information that allows the NetSolve

system to create new modules and incorporate new functionalities. In essence, the

PDF de�nes a wrapper that NetSolve uses to call functions being incorporated.

For more detailed information on the NetSolve system and its usage, refer to

[12].

3 Sequencing Design and Implementation

As stated in Sect. 1.1, our aim in request sequencing is to decrease network

tra�c and overall request response time. Our design needs to ensure that i) no

unnecessary data is transmitted and ii) all necessary data is transferred. We also

need to cut execution time by executing modules simultaneously when possible.

We do this by performing a detailed analysis of the input and output parameters

of every request in the sequence and producing a DAG that represents the tasks

and their execution dependencies. This DAG is then sent to a server in the

system where it is scheduled for execution.

3.1 The DAG Model

Kwok et al. [6] o�ers a very good description of the DAG:

The DAG is a generic model of a parallel program consisting of a set of

processes (nodes) among which there are dependencies. A node in the

DAG represents a task which in turn is a set of instructions that must

be executed sequentially without preemption on the same processor. A

node has one or more inputs. When all inputs are available, the node is

triggered to execute. The graph also has directed edges representing a

partial order among the tasks. The partial order introduces a precedence-

constrained directed acyclic graph and implies that if n
i
! n

j
, then n

j

is a child which cannot start until its parent n
i
�nishes and sends its

data to n
j
.

3.2 Data Analysis and the DAG

In order to build the DAG or task graph, we need to analyze every input and

output in the sequence of requests. We evaluate two parameters as the same

if they share the same reference. We use the size �elds and reference pointer

of the input parameters to calculate when inputs overlap in the memory space.

NetSolve supports many object1 types, including matrices, vectors and scalars; a

decision was made to only check matrices and vectors for reoccurences. This was

based on our belief that these are the only objects that tend to be large enough

for the overhead of the analysis to pay dividends. We do, however, check all

1 We use the term object to refer to a composition of native data types, as in a matrix
object of native integers

inputs for execution dependencies (e.g. a scalar integer dependency may a�ect

the execution graph.) This analysis yields a DAG. The graph is acyclic because

looping control structures are not allowed within the sequence, and therefore, a

node can never be its own descendant.

3.3 The Interface

In addition to the original function used for request submittal, two functions are

implemented; their purpose is to mark the beginning and end of a sequence of

requests. begin sequence() takes no arguments and returns nothing; it noti�es

the system to begin the data analysis. end sequence() marks the end of the

sequence; at this point, the sequence of collected requests is sent to a server(s)

to be scheduled for execution. As an enhancement, this function also takes a

variable number of arguments describing which output parameters NOT to re-

turn. This means that if the intermediate results are not necessary for any local

computations, they need not be returned. This is a part of the API as it is the

user who should determine which results are mandatory and which are useless.

Figure 2 illustrates what a sequencing call might look like. Two points to note in

this example: i)for all requests, only the last parameter is an output, and ii)the

user is instructing the system not to return the intermediate results of command1

and command2.

 ...
 begin_sequence();
 submit_request("command1", A, B, C);
 submit_request("command2", A, C, D);
 submit_request("command3", D, E, F);
 end_sequence(C, D);
 ...

Fig. 2. Sample C Code Using Request Sequencing Constructs

For the system to be well-behaved, we must impose certain software restric-

tions upon the user. Our �rst restriction is that no control structure that may

change the execution path is allowed within a sequence. We impose this restric-

tion because the conditional clause of this control structure may be dependent

upon the result of a prior request in the sequence, and since the requests are not

scheduled for execution until the end of the sequence, the results will probably

not be what the programmer expects.

The other restriction is that statements that would change the value of any

input parameter of any component of the sequence are forbidden within the

sequence (with the exception of calls to the API itself that the system can

track.) This is because during the data analysis, only references to the data are

stored. So if changed, the data transferred at the end of the sequence will not

be the same as the data that was present when the request was originally made.

We contemplated saving the entire data, rather than just the references, but this

directly con
icts with one of our premises { that the data sets are large; multiple

copies of these data are not desirable.

3.4 Execution Scheduling at the Server

Once the entire DAG is constructed, it is transferred to a NetSolve computa-

tional server. [6] o�ers a taxonomy of di�erent graph scheduling algorithms in

multi-processor environments. These algorithms take into account both node-

computation and inter-node communication costs. In this �rst version of request

sequencing, the NetSolve agent uses a larger granularity and decides which server

should execute the entire sequence. We execute a node if all its inputs are avail-

able and there are no con
icts with its output parameters. The reason for this

is that currently the only mode of execution we support is on a single NetSolve

server { though, that server may be a symmetric multi-processor (SMP). We

discuss our plans for expanding this model in Sect. 5.

For data partitioning, we transfer the union of the input parameter sets to

the selected server host. This makes input for all nodes, except those which

are intermediate output from prior nodes, available for the execution of the

sequence. When we move to a multi-server execution mode for the sequence, we

must enhance our data staging technique, and this is also discussed in Sect. 5.

Our execution scheduling algorithm, Fig. 3 is similar to that used in the

computational steering system, SCIRun[13]. In essence, we execute all nodes

with no dependencies, updating the dependency list as nodes complete, and

then check for further nodes to execute. We keep doing this until all nodes have

executed:

while(problems left to execute){
 execute all problems that have no dependencies;
 wait for at least one problem to finish;
 update dependencies;
}

Fig. 3. Pseudo Code for Scheduling Algorithm

3.5 Discussion

Figures 4 and 5 show the reduced network activity between client and server

during execution of the sequence in Fig. 2. In the �rst case, input A is sent to

the server twice, and output C and D are unnecessarily sent back to the client as

intermediate output and then to the server once again as input. In the latter case,

these unnecessary transfers are removed. (These diagrams show three potentially

di�erent servers, but our current implementation sees this as three instances of

the same server.) Our hypothesis is that this reduction in data tra�c will yield

enough performance improvements to make sequencing worthwhile.

Client Server1
result C

command1(A, B)

Client Server2

command1(A, C)

result D

Client Server3

command1(D, E)

result F

Fig. 4. Client-Server Data Flow With-

out Request Sequencing

Client

Client

result F

sequence(A, B, E)

intermediate
result C + input A

intermediate
result D + input E

Server3

Server2

Server1

Fig. 5. Client-Server Data Flow With

Request Sequencing

4 Applications and Initial Results

In this section, we discuss the applications that we used to test our request

sequencing infrastructure. They are from the remote sensing/image processing

domain, and as it turns out, it was the nature of some of these applications that

led us to investigate request sequencing. The size of images that are analyzed can

become very large and easily extend into the gigabyte range. It is also common

in many image processing applications to execute a series of operations on an

image, usually one transformation after another.

All the experiments were executed from NetSolve clients connected to a

switched 10/100Mbit ethernet and crossing a 155Mbit ATM switch that is di-

rectly connected to the NetSolve servers. The NetSolve server was a SGI Power

Challenge with eight R10000 processors. Graphed results are the averages of four

independent sets of runs.

For the experiments, we varied the network bandwidth by using the Nist-

Net [14] interface on a Linux router. A network performance testing tool, TTCP [15],

which is able to generate TCP (and UDP) tra�c on IP based networks, was used

to obtain a correction curve for the values set by NistNet.

4.1 Linear Sequence: Principle Component Analysis

Multispectral or multidimensional remote sensing data can be represented by

constructing a vector space using one axis per dimension. By calculating the

covariance matrix [16], the axes are transformed into an uncorrelated system.

This transformation is called Principle Component Analysis (PCA) [17].

In remote sensing, the PCA is used to reduce the number of channels for input

images by moving the information towards the �rst bands. The application used

for testing a linear sequence opens a 10MB image, performs a PCA and stores

the transformed result. The structure is shown in Fig. 6.

open Image

convert format

pca

convert format

Fig. 6. Principal Component Analysis

cluster cluster

combine

open image

Fig. 7. Multimodal Image Clustering

Fig. 8 shows how the total response time (from request initiation to availabil-

ity of results) varies with the bandwidth. It con�rms our beliefs: with sequencing

in place, there is a signi�cant reduction in execution time of the PCA applica-

tion. Similar results can be expected for applications that exhibit similar levels

of parameter sharing, and in fact, our examples are not contrived, but represent

realistic applications that scientists have used to support their research.

4.2 Parallel Sequence: Clustering

To handle multisource/multimodal satellite images or to improve clustering ac-

curacy, several classi�cation steps are performed, and their results are combined

by a fusion module. Such a module can consist either of a simple pixel selection

approach based on severity ratings or of a knowledge based combination mod-

ule [17]. For our tests a pixel based approach has been chosen using an image

size on the order of 1MB. This process is illustrated in Fig. 7.

Fig. 9 graphs the variation of response time with bandwidth for this parallel

sequence. The shape is similar to that of the PCA application. Again, request

sequencing yields decreases in execution time.

These preliminary results provide much encouragement for our continued

investigation of request sequencing. Discussed more in the next section, parallel

sequencing has the potential to be a very useful methodology in the area of Grid

and metacomputing.

00:00

05:00

10:00

15:00

20:00

25:00

30:00

0 100 200 300 400 500 600 700

T
im

e
in

 m
in

ut
es

Bandwidth in kByte/s

no sequencing
sequencing

Fig. 8. PCA Sequence Executed on an SGI workstation

00:00

02:00

04:00

06:00

08:00

10:00

0 100 200 300 400 500 600 700

T
im

e
in

 m
in

ut
es

Bandwidth in KByte/s

no sequencing
sequencing

Fig. 9. Clustering Sequence Executed on Two Processors of an SGI workstation.

5 Conclusion and Future Work

In this paper, we have presented a general technique to reduce network tra�c

when executing several requests to a Grid Computing system. Our approach is

to build a DAG whose structure exhibits the dependencies amongst the requests.

This DAG is then scheduled for execution on a server. Our initial experiments

with request sequencing are prominsing and show that we are able to signi�cantly

reduce execution time of our client application. As a �nal thought, we o�er

Fig. 10 which shows that even at its worst, request sequencing improves execution

time by a factor of about 1.5. Though we have not proven this result, it is

our belief that in most cases, sequencing should at least perform as well as no

sequencing at all. (We plan to show this in future work.)

0

1

2

3

4

5

0 100 200 300 400 500 600 700

S
pe

ed
up

Bandwidth in kByte/s

Clustering speedup
PCA speedup

Fig. 10. Reduction in Execution Time due to Request Sequencing

Section 3.5 mentions that the sequences are currently restricted to execution

on a single server. The next logical progression is to allow di�erent components

of the sequence to execute on di�erent hosts. The implications are that no single

server needs to possess all the software capabilities for the sequence. This also

means that the modules will truly be able to execute in parallel even when

no parallel machine is present. Scheduling techniques as discussed by [6] will be

evaluated, and we will incorporate factors like computational and communication

costs to better approximate optimal solutions. It makes little sense to execute

the components of a sequence on various servers without taking data locality

into account. Tools like the Internet Backplane Protocol[18] and Global Access

to Secondary Storage[19] will be leveraged to provide all servers with convenient

access to the necessary data.

References

1. I. Foster and C. Kesselman, editors. The Grid, Blueprint for a New computing

Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.
2. F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-Level

Scheduling on Distributed Heterogeneous Networks. In Proc. of Supercomput-

ing'96, Pittsburgh, PA, November 1996.
3. R. Wolski. Dynamically Forecasting Network Performance Using the Network

Weather Service. Technical Report TR-CS96-494, U.C. San Diego, October 1996.
4. J. Jamison and R. Wilder. vBNS: The Internet Fast Lane for Research and Edu-

cation. IEEE Communications Magazine, 35(1):60{63, January 1997.
5. N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, and W. Su.

Myrinet: A Gigabit per Second Local Area Network. IEEE-Micro, 15:29{36, Febru-
ary 1995.

6. Y. Kwok and I. Ahmad. Benchmarking and Comparison of the Task Graph

Scheduling Algorithms. Journal of Parallel and Distributed Computing, 59(3):381{
422, December 1999.

7. J. Dennis. Data Flow Supercomputers. IEEE Computer, 13(11):48{56, November

1980.
8. S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf : Network

based Information Library for Globally High Performance Computing. In Proc.

of Parallel Object-Oriented Methods and Applications (POOMA), Santa Fe, CA,

1996.
9. H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M. Sato, and S. Sekiguchi. Uti-

lizing the MetaServer Architecture in the Ninf Global Computing System. In Proc.

of High Performance Computing and Networking, Amsterdam, The Netherlands,
1998.

10. M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. In

Proc. of the 8th International Conference of Distributed Computing Systems, San
Jose, CA, pages 104{111, June 1988.

11. Madison Condor Team, University of Wisconsin. Condor Version 6.1.8 Manual,

1999.
12. H. Casanova and J. Dongarra. NetSolve's Network Enabled Server: Examples and

Applications. IEEE Computational Science & Engineering, 5(3):57{67, September

1998.
13. S. Parker, D Weinstein, and C. Johnson. Modern Software Tools in Scienti�c

Computing, pages 1{40. Birkhauser Press, 1997.
14. S. Parker and C. Schmechel. RFC 2398: Some testing tools for TCP implementors,

August 1998.
15. Chesapeake Network Solutions. Network Performance Testing with TTCP. Chesa-

peake Online: The Network Monitor, 3(1), 1997.
16. R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley, 1993.
17. J. A. Richards. Remote Sensing Digital Image Analysis. Springer, 2nd edition,

1993.
18. J. Plank, M. Beck, Elwasif W., , T. Moore, Swany M., and R. Wolski. IBP { The

Internet Backplane Protocol: Storage in the Network. In NetStore '99: Network

Storage Symposium, Seatle, WA, October 1999.
19. J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A Data Move-

ment and Access Service for Wide Area Computing Systems. In Sixth Workshop

on I/O in Parallel and Distributed Systems, Atlanta, GA, May 1999.

