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Abstract. The design of application for Computational Grids relies
partly on communication paradigms. In most of the Grid experiments,
message-passing has been the main paradigm either to let several pro-
cesses from a single parallel application to exchange data or to allow
several applications to communicate between each others. In this article,
we advocate the use of a modern approach for programming a Grid. It is
based on the use of distributed objects, namely parallel CORBA objects.
We focus our attention on the handling of distributed data within parallel
CORBA objects. We show some performance results that were obtained
using a NEC Cenju-4 parallel machine connected to a PC cluster.

1 Introduction

With the availability of high-performance networking technologies, it is nowa-
days feasible to couple several computing resources together to offer a new kind
of computing infrastructure that is called a Computational Grid [4]. Such system
can be made of a set of heterogeneous computing resources that are intercon-
nected together through multi-gigabit networks. Software infrastructures, such
as Globus [3] or Legion [6], provide a set of basic services to support the execution
of distributed and parallel programs. One of the problem that arises immediate-
ly is how to program such a computational Grid and what is the most suitable
communication model for Grid-enabled applications ? It is very tempting to ex-
tend existing message-passing libraries so that they can be used for distributed
programming. We believe that this approach cannot be seen as a viable solution
for the future of Grid Computing. Instead, we advocate an approach that al-
lows the combination of communication paradigms for parallel and distributed
programming. This approach, called PaCO, is based on an extension to a well
known and mature distributed object technology, namely CORBA.

2 Communication within a Computational Grid

There exist two main approaches to communicate within a computational grid.
The first approach is to allow the execution of a parallel code over heteroge-
neous machines taking benefit of the available computing resources. Research
works have recently lead to extend existing message passing libraries to be able
to exchange data between heterogeneous computing resources, such as MPICH-G
[5], PACX [1] or PLUS [11]. A parallel code, based on one of these communi-
cation libraries, can be executed on a Grid with some minor modifications. We
think that such approach is relevant since the purpose of these Grid-enabled



communication libraries is to allow parallel programming at a larger scale. Such
libraries can also be used to connect several parallel codes together to perfor-
m coupled simulations. It constitutes the second approach. The objective is to
solve new kind of problems that were not affordable due to the lack of comput-
ing resources. The aggregating of computing resources may allow the simulation,
in a shorter time frame, of complex manufactured products for which different
physical behaviors have to be taken into account (structural mechanics, com-
putational fluid dynamics, electromagnetism, noise analysis, etc...). Moreover,
distributed execution of simulation codes are nowadays imposed by the way the
industrial companies work together to design manufactured products. It requires
that each company, participating to the design of a manufactured product, to
contribute to the simulation of the whole product by providing access to its own
simulation tools. However, a company is often reluctant to give both its simula-
tions tools and the necessary simulation data to other companies (that may act
as competitors later on). Therefore, there is a strong need to have part of the
simulation of the whole product performed on their own computing resources to
avoid the exchange of confidential data (i.e. the model of the object to be simu-
lated). Thus, there is a clear need to have a mechanism to let simulation codes
to communicate together. However, such mechanism requires that it is capable
of both transferring data and control efficiently between codes.

We think that message-passing is not suitable to connect several parallel
codes together. Indeed, message-passing was mainly designed for parallel pro-
gramming and not for distributed programming; it is mainly to transfer data
but not the control. As for instance, if one code would like to call a particular
function into another code, this latter has to be modified in such a way that a
message type is associated to this particular function. Such modification requires
a deep understanding of the code. Moreover, entry points in a code are not really
exposed to potential users that would like to include such code into its appli-
cation. Communication paradigms, such as RPC or distributed objects, offer a
much more attractive solution since the transfer of control is implemented by
remote invocation that is as simple as calling a function or a method. However,
they are not suitable for parallel programming due to their higher communica-
tion cost. It is thus clearly difficult to have a single communication paradigm for
the programming of computational grids. We advocate an approach, like others
[8], that consists in merging several communication paradigms in a coherent way
so that they fit the requirements mentioned previously.

The remainder of this paper is structured as follows. Section 2 discusses com-
munication issues for Computational Grids. Section 3 gives an overview of the
parallel CORBA object concept. Section 4 describes data redistribution within
a parallel CORBA object. Section 5 provides some experimental results. Finally,
we conclude in section 6 by laying the grounds for future enhancement.

3 Overview of parallel CORBA object

CORBA is a specification from the OMG (Object Management Group) to sup-
port distributed object-oriented applications. CORBA acts as a middleware that



provides a set of services allowing the distribution of objects among a set of com-
puting resources connected to a common network. Transparent remote method
invocations are handled by an Object Request Broker (ORB) which provides a
communication infrastructure independent of the underlying network. An object
interface is specified using the Interface Definition Language (IDL). An IDL file
contains a list of operations for a given object that can be invoked remotely. An
IDL compiler is in charge of generating a stub for the client side and a skeleton
at the server side. A stub is simply a proxy object that behaves as the object
implementation at the server side. Its role is to deliver requests to the server.
Similarly, the skeleton is an object that accepts requests from the ORB and
delivers them to the object implementation. The concept of parallel CORBA

linterface[*:2*n] MatrixOperations (
const long SIZE=100; Cluster of PCs
typedef double Vector([SIZE];

Parallel CORBA object

typedef double Matrix[SIZE] [SIZE]; d
MPI Communication layer ] K

i| void multiply(in dist[BLOCK][*] Matrix &, |i {

in vector B,
out dist[BLOCK] Vector C); $

Machine A ;| void skallin dist[BLOCK] Vector C, Object | [Object | [Object Object
out csum double skal); impl impl impl impl

SPMD. SPMD SPMD SPMD

code code code code

Client

sgel. 3| Sk@el. 5| Sk@el. | SI(;I. |
~ i [Feoa] [Feoa] [Feon]  [Feoa] /
: LT T T T

¥ ¥ ¥ v

[ CORBA ORB |

Fig. 1. Encapsulation of MPI-based parallel codes into CORBA objects.

object! is simply a collection of identical CORBA objects as shown in figure 1.
It aims at encapsulating a MPI code into CORBA objects so that a MPI code
can be fully integrated into a CORBA-based application. Our goal is to hide as
much as possible of the problems that appear when dealing with coarse-grain
parallelism on a distributed memory parallel architecture like a cluster of PCs.
However, this is done without entailing a lost of performance when communi-
cating with the MPI code. First of all, the calling of an operation by a client
will result in the execution of the associated method by all objects belonging
to the collection at the server side. Execution of parallel objects is based on
the SPMD execution model. This parallel activation is done transparently by
our system. Data distribution between the objects belonging to a collection is
entirely handled by the system. However, to let the system to carry out paral-
lel execution and data distribution between the objects of the collection, some
specifications have to be added to the component interface. A parallel object
interface is thus described by an extended version of IDL, called Extended-IDL
as shown in figure 1. It is a set of new keywords (in bold in the figure), added to
the IDL syntax?, to specify the number of objects in the collection, the shape of
the virtual node array where objects of the collection will be mapped on, the da-
ta distribution modes associated with parameters and the collective operations
applied to parameters of scalar types.

! we will use parallel object from now on

2 A more complete description of these extensions is given in [10,12]



4 Data redistribution in a parallel object

Application programmers have to specify, for each operation, parameters that
have to be distributed among the collection and how they are distributed. S-
ince they can define data distribution for a parameter in each parallel object
differently, parameter values need to be redistributed. This problem is made d-
ifficult due to various configurations at both the client and the server side (data
distribution modes, distributed dimension, object collection size or its virtual
shape). It is thus necessary to provide a data redistribution mechanism, as part
of the operation invocation, to facilitate the coupling of several parallel object-
s. Furthermore, while users are responsible for data distribution management
within a parallel object, data redistribution should have to be handled by a run-
time system in order to hide all the operations associated with the invocation of
operations from or to a parallel object.
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Fig. 2. Master/slave approach (a) Through the CORBA ORB (b)

4.1 Design considerations

The most obvious way to perform data redistribution is to use gather and s-
catter operations at the client and the server sides. Figure 2-a illustrates such
a technique for an operation invocation with a in parameter array. Four steps
are required: first, one of the stubs gathers distributed data from the client ob-
jects using the MPI communication layer (1). Then, it invokes one of the server
objects and sends gathered data to it through the CORBA ORB (2). During
the third step, the skeleton of the activated server object receives the data from
the ORB (3). Finally, the skeleton activates the remaining server objects and
scatters data to them using MPI (4). Although this technique is simple to im-
plement, it has some severe drawbacks. The gathering and scattering of data
values associated with distributed parameters do not offer a good scalability
when the number of objects increases. Data transfer between two collections is
serialized through only one object. Furthermore, the gathering of data by one
stub is memory consuming.

To avoid this problem, we need to incorporate both a parallel invocation of
operations and a data redistribution strategy into parallel objects. One possible
approach is to let client objects to send data values of the distributed parameters
to the server objects through the ORB as shown in figure 2-b. In this approach,
each client splits its own data according to the data distribution at the server
side, and sends them to the relevant server objects directly. On the server side,



each object receives pieces of data which it should own from several client ob-
jects. This approach suffers from a higher number of ORB requests compared
to the master/slave approach. Since the ORB is usually much more slower than
message-passing layers, we have to keep the number of requests as low as possi-
ble. Taken into account these remarks, we propose the following technique. Data
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Fig. 3. Data redistribution in the client stub.

redistribution is performed by the client side or the server side before or after the
sending of the request associated with the operation invocation. Figure 3 shows
the case of data redistribution at the client side. Accordingly, all communications
needed for the redistribution are carried out over the high-speed network of the
parallel machines on which the parallel object, acting as the client, is running.
The reason why we incorporated data redistribution into both the client and
server sides is to obtain the maximum performance from the available communi-
cation resources. This allows us to select the most suitable place to perform data
redistribution depending on the performance of the network at the client or the
server side. More precisely, when data redistribution is performed at the client
side, it is handled by the stubs that are aware of the data distribution mode of
both the client and the server. First, all the stubs exchange their own data using
the MPI communication layer to prepare data meeting the distribution mode at
the server object, then each stub sends the redistributed data to the relevant
server object through the ORB. When the data redistribution is performed by
the server, the client has to provide to the server extra information associat-
ed with the distribution of the parameter along with the parameter data values.
Such information includes, for each distributed parameter, the distribution mode
and the distributed dimension; the virtual shape of the objects is also part of
this information. When the skeleton receives such information, it redistributes
the parameter data values to adapt the client data mapping to the server one.

4.2 Implementation

The generation of the stub code is rather complex due to various possibilities at
the client side. As for instance, a client can be either a standard CORBA object
or a parallel object. In the later case, data that have to be sent when invoking
an operation on a parallel object are distributed among the objects of the client
collection. Therefore, one possibility is to perform the data redistribution by the
stub, using a data redistribution library, so that it fits the one at the server
side. Another modification to the stub code concerns the invocation mechanism.
Since the number of objects of the collection at the client side does not often



coincides with the one at the server side, we added a mechanism that associates
an object of the client collection to one of the object of the server collection.
When there is only one object at the client side, the stub generates a request
for each object of the server collection. Similarly, when there is only one object
in the server collection, one object of the client collection is associated with this
single object. As data redistribution has been done by the stub, the skeleton
performs roughly the same work as a standard skeleton. It is worth mentioning
that in this situation, skeletons do not need to communicate between each other
within the server collection.

Another possibility is to perform data redistribution by the skeleton instead
of the stub. In that case, the modification of the stub code generation is very
simple. Each object of the client collection sends the data it owns to another
object of the server collection. Before sending this data, the stub includes, for
each parameter, data distribution information at the client side. It can then
call a data redistribution library providing both the client and the server data
distribution mode. Once redistribution is performed, the skeleton invokes the
implementation method as a standard skeleton. If the parameter has an inout
or out attribute, the skeleton builds the reply where it puts distributed data
values following data distribution information sent by the client. It uses again
the data redistribution library. This approach has the drawback of adding extra
information (data distribution information) to the data sent by the client to the
server. Moreover, such technique cannot be used when a sequential object has
to invoke a method implemented by a parallel object. In such case, the client
has to set up a request for each object of the server collection and thus has to
distribute the data to each object of the collection.

To avoid implementing a new data redistribution library, we decided to adapt
our stub and skeleton code generation process in such a way that we can exploit
existing libraries. These libraries were developed for the High Performance For-
tran (HPF) compilation system such as the NEC HPF/SC[7] and the GMD
Adaptor system[2]. These two systems support all patterns of data redistribu-
tion in the scope of the HPF-1.1 specification. Since our extension for describing
data distribution can be seen as a subset of HPF-1.1, all data redistribution
patterns are covered. However, there are some limitations in our current imple-
mentation due to the difference of execution model between HPF and a parallel
object. These data redistribution libraries are intended to be used within stand
alone parallel program in which the number of processes is constant. However,
we want to use these libraries to reorganize data when two parallel objects com-
municate. Such parallel programs may run on different number of processors and
therefore we may have to redistribute data between two parallel objects that run
on different number of processors. Moreover, such libraries were intended to be
used with Fortran programs whereas we are using C++. Therefore, using these
libraries requires extra memory copy operations to map C++ arrays to Fortran
arrays.
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Fig. 4. Experimental environment.

5 Experimental results

We performed several experiments using two platforms (Figure 4); namely, the
NEC distributed-memory parallel computer Cenju-4[9] and a PC cluster. The
Cenju-4 has 16 PEs (processing elements) connected via a multistage intercon-
nection network as well as a 100 Mb/s Ethernet network. Each PE consists of
a 200MHz VR10000 RISC microprocessor. The PC cluster is a set of PCs con-
nected to a 100 Mb/s Ethernet network. Each PC is equipped with two 450MHz
Pentium IIT processors running Linux. ORB communications between the PEs
of the Cenju-4 and the PCs of the PC cluster can go either through the Cenju-4
host machine using a 100 Mb/s network or through a 1Gb/s network. For the
experiment, we used the DALIB redistribution library [2]. The MPI commu-
nication layer was implemented on the multistage interconnection network on
the Cenju-4 and on the fast Ethernet network on the PC cluster. In order to
illustrate the effectiveness of our approach, we experimented a simple code; a
parallel client issues a single invocation operation to a parallel server with a two
dimensional distributed array parameter (long) with a in attribute. Distribution
of the matrix at the client side follows a [BLOCK] [*] distribution mode whereas
at the server side the matrix to be distributed using a [*] [BLOCK] distribution
mode.

5.1 Comparison with the master/slave approach

In this experiment, we ran both a parallel client and a parallel server on the PC
cluster to compare the performance of the master/slave approach with that of
our approach. Results presented in Figure 5 make it evident that our approach
provides a scalable solution as compared with the master/slave approach. The
other point we can observe is that a distinct difference between the performance
of the client side redistribution and that of the server side redistribution cannot
be seen. This result tells us the overhead of sending extra data in case of the
server side redistribution is insignificant with our experimental environment.

5.2 Redistribution at the client versus the server

We measured the performance of a single operation invocation similar to what
have be done to compare the master/slave approach with the parallel object



one. However, this time we mapped the client onto the PC cluster and the
server onto the Cenju-4. Data redistribution is performed either by the stub
(using the MPI layer with the Ethernet network of the PC Cluster) or by the
skeleton (using the MPI layer with the multistage network of the Cenju-4 parallel
system). Results are presented in Figures 6. They were obtained by using either
the 100 Mbit/s or the 1 Gbit/s Ethernet network. The time associated with
the ORB communication, the memory copy and the data redistribution in the
invocation are measured separately. ORB communication time corresponds to

Matrix 1000x1000 Matrix 2000x2000

2500 o 9000
8000 _—

A —
2000 ‘,/‘\—Qﬁ. £ 7000 2

\ > 6000

1500 T E 5000

~— 5 4000

T & 3000 ——A- =
500 — £ 2000 =
1000

Elapsed Time (ms)
N
5
3
8

Number of Objects Number of Objects

—— approach in the skeleton —e— Master/slave approach —=— Redistribution in the skeleton

in the stub

Redistribution in the stub
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the invocation time without redistribution and memory copy. We cannot see a
significant difference in the two test cases (data redistribution within the stub or
the skeleton). However, as compared with the results measured within the PC
cluster, the ORB communication time between the Cenju-4 and the PC cluster
is slow. In addition, when using the 100 Mbit/s Ethernet network, it does not
provide a good speedup when number of objects increases. This is because, as
shown in Figure 4, all the ORB communications between the PEs in the Cenju-4
and the PCs in the PC cluster have to go through the Cenju-4 host computer.
If the PEs are connected to the network directly (using the 1 Gbit/s Ethernet
network), the performance and the speedup ratio is improved.

To handle both distributed data and the information about its distribution
mode, we introduced a new data structure, called darray [12], based on the
CORBA sequence data structure. Unlike an array, data in the darray is stored
non-continuously into the memory if the darray realizes an array which has more
than two dimensions in the same way as the sequence. Therefore, two memory
copy operations are required in the redistribution process, that is, copying data
from darray structure to a Fortran array before redistribution and copying re-
distributed data from the Fortran array to darray structure after redistribution.
Moreover, since the difference of memory mapping scheme between C++ and
Fortran arrays forces this memory copy by element, its overhead increases. The
results clearly show that this memory copy causes serious overhead. In addition,
we see from the figure that the parallel machines provide quite different result-
s due mainly to the performance of the processors and the memory hierarchy
that equippe each computing node. Consequently, as the Cenju-4 suffered from
overhead of the memory copy, the PC cluster achieves better performance of the
invocation in total, even if the Cenju-4 provides good performance for the data
redistribution.
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Redistribution time is the communication time for exchanging data to per-
form the redistribution using the MPI interface. Experiments shows that the
time of redistribution on the Cenju-4 is up to 9 times faster than that on the
PC cluster. However, as compared with the overhead of the memory copy, this
performance difference gives less impact to the total time of the invocation.

6 Conclusion and future works

This paper discusses the implementation of data redistribution within a parallel
CORBA object. We implemented a capability of performing data redistribution
within parallel object in both a stub and a skeleton. This allows programmers to
obtain the maximum performance under their distributed computing environ-
ment. In our current implementation, the selection is performed at compile time
by specifying Extended-IDL compiler options. This means that programmers are
responsible for deciding which side should perform redistribution. Although it is
important to provide means to control data redistribution to the programmers,
it is usually difficult for them to know which side provides better performance.
This is because they have to take into account a lot of factors related to char-



acteristics of data redistribution and their underlying computing environment
(communication network, memory hierarchy and processor). In addition, the fact
that such factors can vary at run-time due to the network contention makes this
problem much harder. In order to relieve programmers from the pains of making
such decision, as well as to provide the maximum performance automatically, we
are developing a run-time service system to manage static and dynamic system
information during the execution of parallel objects. This information will be
used do decide at runtime the best place to carry out data redistribution.
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