
On the design of multi-tagged event queues and their e�ects

on Distributed services and Computing�

February 25, 2000

Contents

1 Introduction 1

2 Speci�cations 2

2.1 System Model . 2

2.2 The event service problem . 2

2.3 Assumptions . 3

2.4 Properties . 3

3 Unique Events 3

1 Introduction

Events are an indication of an interesting occurence. Events point to nuggets of information

which are related to the event itself, and help us understand the event completely. When we refer

to an event we refer to the occurence and the information it points to. The information contained

in the event comprises of

� Event type i.e. the occurence.

� Attribute information.

� Control information.

The attribute information comprises of tags which specify the attributes associated with the event

type while the control information speci�es the constraints associated with that event viz. ordering,

stability. Thus say a person needs to sell stock A - the selling is the event, the general information

is his account pro�le while the control information could be a indication that he wants guaranteed

delivery of the event.

Events trigger actions, which in turn can trigger events. The event and the associated actions

taken by any part of the system share the cause-e�ect relationship. Actions are taken based on

the event type and the information contained in the event. The action taken at any node could be

inuenced not only by di�erent causes but by subsequent e�ects too.

This paper, is about events, the organization, retrieval and speci�cation of attributes and con-

straints associated with that event. This paper is also about event queues comprising of the afore-

mentioned events. We attempt to provide a motivation and a solution for how the queues can exist

�Northeast Parallel Architectures Center, Syracuse University, Syracuse NY 13210

1

over the network. Issues pertaining to replication and consistency will also be discussed. Finally

this paper is also about the design of an event service, specifying client and server rules, which

would use these events and the event queues.

2 Speci�cations

We now try to specify our problem. In section 2.1 we present our model of the system in which we

intend to solve the problem. In section 2.2 we formally specify our problem. Sections 2.3 and 2.4

deal with the assumptions that we make in our formalism's and the properties that the system and

it components must conform to during execution.

2.1 System Model

The system comprises of a �nite (possibly unbounded) set of server nodes, which are strongly

connected (via some inter-connection network). Special nodes called client nodes, can be attached

to any of the server nodes in the network. Let C denote the set of client nodes present in the

system. The nodes, servers and clients, communicate by sending events through the network. This

communication is asynchronous i.e. there is no bound on communication delays. Also the events

can be lost or delayed. A server node execution comprises of a sequence of actions, each action

corresponding to the execution of a step as de�ned by the automaton associated with the server

node. We denote the action of a node sending an event e as send(e). At the receiving end the

action of consuming an event e is deliver(e). Server nodes relay the events to the client nodes, we

denote this action relay(e).

The failures we are presently looking into are node failures (client and server nodes) and link

failures. The server node failures have crash-failure semantics and could be one of the following:

(a) Crash - A faulty node stops prematurely and does nothing from that point on.

(b) Send Omission - A faulty node stops prematurely, or intermittently omits to send messages

it was supposed to send, or both.

(c) Receive Omission - A faulty node stops prematurely, or intermittently omits messages sent to

it, or both.

(d) General Omission - A faulty node is subject to send and receive omission failures.

Link Failures are of two types:

(a) Crash - A faulty link stops transporting messages. Before stopping however it behaves cor-

rectly.

(b) Omission - A faulty link intermittently omits transporting messages sent through it.

2.2 The event service problem

Client nodes can issue and deliver events. Any arbitrary event e contains implicit or explict in-

formation regarding the client nodes which should deliver the event. We denote by Le � C this

destination list of client nodes associated with an event e. The dessimination of events can be

one-to-one or one-to-many. Also, the client nodes can have intermittent connection semantics and

can roam around the network, attaching itself to possibly di�erent server nodes during a speci�c

execution trace of the system.

For an execution � of the system, we denote by E� the set of all events that were issued by

the client nodes. Let Ei

�
� E� be the set of events ei

�
that should be relayed by the network and

2

delivered by client node ci in the execution �. During an execution trace � client node ci can

join and leave the system. Node ci could recover from failures which were listed in Section 2.1.

Besides this, as mentioned earlier client nodes can roam (a combination of leave from an existing

location and join at another location) over the network. A combination of join-leave, join-crash,

recover-leave and recover-crash constitutes an incarnation of ci within execution trace �. We refer

to these di�erent incarnations, x 2 X = 1; 2; 3:::, of ci in execution trace � as ci(x; �).

The problem pertains to ensuring the delivery of all the events in E
i

�
during � irrespective of

node failures and location transcience of the client node ci across ci(x; �). In more formal terms if

node ci has n incarnations in execution � then

nX

x=1

ci(x; �):deliveredEvents = E
i

�
:

All delivered events ei
�
2 E

i

�
must ofcourse satisfy the causal constraints that exist between them

prior to delivery.

2.3 Assumptions

(a) Every event e is unique.

(b) The links connecting the nodes do not create events.

2.4 Properties

(a) A client node can deliver e, only if e was previously issued.

(b) A client node delivers an event e only if that event satis�es the constraints speci�ed in its

control information.

(c) If an event e is to be delivered by client nodes c; c0
2 Le, then if c delivers e then c

0 will deliver

event e.

(d) For two events e and e
0 issued by the same client node c, if a client node delivers e before e0,

then no client node delivers e0 before e.

(e) For two events e and e
0 issued by nodes c and c

0 respectively, if a node delivers e before e0,

then no node delivers e0 before e.

Properties (d) and (e) pertain to the causal precedence relation! between two events e; e0, and

can be stated as follows 8ci 2 Le

T
Le

0 if e! e
0 then e:deliver()! e

0
:deliver(). ! is transitive i.e.

if e! e
0 and e

0
! e

00 then e
0
! e

00.

3 Unique Events

Associated with every event e sent by client nodes in the system is an event-ID, denoted e:id, which

uniquely determines the event e, from any other event e0 in the system. These ID's thus have the

requirement that they be unique in both space and time. Clients in the system are assigned Ids,

ClientID, based on the type of information issued and other factors such as location, application

domain etc. To sum it up client's use pre-assigned Ids while sending events. This reduces the

uniqueness problem, alluded earlier to a point in space. The discussion further down implies that

the problem has been reduced to this point in space.

Associating a timestamp, e:timeStamp, with every event e issued restricts the rate (for uniquely

identi�able events) of events sent by the client to one event per granularity of the clock of the

3

underlying system. Resorting to sending events without a timestamp, but with increasing sequence

numbers, e:sequenceNumber, being assigned to every sent event results in the ability to send events

at a rate independent of the underlying clock. However, such an approach results in the following

drawbacks

a) If the client node issues an in�nite number of events, and also since the sequence numbers are

monotonically increasing, the sequence number assigned to events could get arbitrarily large

i.e. e:sequenceNumber!1.

b) Also, if the client node were to recover from a crash failure it would need to issue events

starting from the sequence number of the last event prior to the failure, since otherwise event

would be deemed a duplicate otherwise.

A combination of timestamp and sequence numbers solves these problems. The timestamp

is calculated the �rst time a client node starts up, and is also calculated after sending a certain

number of events sequenceNumber:MAX . In this case the maximum sending rate is related to

both sequenceNumber:MAX and the granularity of the clock of the underlying system. Thus the

event ID comprises of a tuple of the following named data �elds : e:PubID, e:timeStamp and

e:sequenceNumber. Events issued with di�erent times t1 and t2 indicate which event was issued

earlier, for events with the same timestamp the greater the timestamp the later the event was

issued.

References

[BBT96] Anindya Basu, Bernadette Charron Bost, and Sam Toueg. Solving problems in the

presence of process crashes and lossy links. Technical Report TR 96-1609, Dept. Of

Computer Science, Cornell University, Ithaca, NY-14853, September 1996.

[BCM+99] Gurudutt Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao, Rob Strom,

and Daniel Sturman. An eÆcient multicast protocol for content-based publish-subscribe

systems. In Proceedings of the IEEE International Conference on Distributed Computing

Systems, Austin, Texas, May 1999.

[BF96] Ken Birman and Roy Friedman. Trading consistency for availability in distributed

systems. Technical Report TR96-1579, Dept. Of Computer Science, Cornell University,

Ithaca, NY-14853, April 1996.

[Bir85] Kenneth Birman. Replication and fault tolerance in the isis system. In Proceedings of

the 10th ACM Symposium on Operating Systems Principles, pages 79{86, Orcas Island,

WA USA, 1985.

[Bir93] Kenneth Birman. A response to cheriton and skeen's criticism of causal and totally

ordered communication. Technical Report TR 93-1390, Dept. Of Computer Science,

Cornell University, Ithaca, NY 14853, October 1993.

[BM89] Kenneth Birman and Keith Marzullo. The role of order in distributed programs. Tech-

nical Report TR 89-1001, Dept. Of Computer Science, Cornell University, Ithaca, NY

14853, May 1989.

[GRVB97] Katherine Guo, Robbert Renesse, Werner Vogels, and Ken Birman. Hierarchical mes-

sage stability tracking protocols. Technical Report TR97-1647, Dept. Of Computer

Science, Cornell University, Ithaca, NY 14853, 1997.

[HT94] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and

related problems. Technical Report TR94-1425, Dept. Of Computer Science, Cornell

University, Ithaca, NY-14853, May 1994.

4

