
Interacting Agents for Local Search
Deborah K. Weisser

dweisser@cs.cmu.edu

Abstract

Optimization problems are prevalent in many application domains, including circuit layout, load balancing,
and job scheduling. Many of these problems are NP-hard, and algorithms for finding exact solutions
take exponential time. Approximation algorithms have been developed to find near-optimal solutions in
polynomial time. One class of general approximation algorithms is local search, which explores the space
of solutions by moving from one state to another according to some neighborhood structure. Local search
tends to find good solutions but is generally slow. Its inherent problem is that it searches only locally for a
solution that is globally optimal.

We attempt to overcome this shortcoming by using a more global approach to explore many parts of the
state space in a controlled way simultaneously by using cooperating agents. The multiple agents may be run
on different processors on a parallel machine, or they may be run serially, where agents take turns making
moves. Each agent performs a local search algorithm using its own copy of the state space. Periodically the
agents interact, and better states are distributed among the agents. In a parallel setting, communication is
asynchronous, and efficiency is quite high.

We apply our techniques to two optimization problems: TSP and graph bisection. Our algorithm
consistently finds good solutions on many instances of these problems.

1 Introduction

Since optimization problems are NP-hard, solving even small instances directly may take an inordinate
amount of time. Approximation schemes, such as local search, are frequently used to find near-optimal
solutions in a polynomial amount of time. When the problem size becomes large, even local search takes a
long time to find an acceptable solution.

In this paper, we present a multi-agent method for performing local search. In our approach, each agent
can be thought of as a processor. Indeed, we have implemented our technique as a parallel program using
virtual processors, i.e. as a set of threads that may be run on one or more physical processors. The algorithm
can be applied to any local search technique on any optimization problem.

The algorithm works by running multiple copies of the problem independently on different agents.
Periodically, the agents interact (asynchronously), and agents that are not doing well copy states from agents
that are doing better. We have two versions of the program: One in which the number of agents is constant
and one in which the number of agents changes dynamically to minimize the total amount of work performed
across all agents. Our algorithms have been implemented to run serially and in parallel.

Our results are promising in terms of solution quality. We achieve better quality solutions to many TSP
problems than Lin-Kernighan. In terms of solution quality for the problem of graph bisection, our algorithm
generally performs as well or better than spectral methods, Kernighan-Lin and Multi-level Kernighan-Lin.

We discuss previous work related to local search later in this section. In In Section 2, we introduce the
optimization problems that we use as test cases for our algorithm and discuss problem-specific previous
work. We describe our overall algorithm and problem-specific move operators in Section 3. We present ex-
perimental results, including comparisons to other problem-specific approximation algorithms, in Section 4.
We discuss our conclusions in Section 5.

1

1.1 Local Search: Related Work

Local search works by moving from state to state according to some move operator until a stopping
criterion is met (in the realm of optimization problems, states correspond to proposed solutions). Simulated
annealing [12], the Metropolis algorithm [18], tabu search [6] [8], and hill-climbing [24] are several
commonly used local search methods. Simulated annealing always accepts transitions to lower cost states
and accepts transitions to higher cost states probabilistically, where the probability of accepting a move to
a higher cost state decreases over time. The Metropolis algorithm is a variation of simulated annealing in
which the probability of moving to a higher cost state is kept constant. Hill-climbing is another variation in
which only cost-decreasing moves are accepted. Other local search techniques include genetic algorithms
and tabu search [21].

There are many multi-agent approaches to local search. Some involve all the agents working on one
global state [7], while in others each agent has its own copy of the data. Two examples of the latter approach
are the independent runs method [17, 22] and the systolic method [1].

The “Go With The Winners” algorithm of Aldous and Vazirani [2] considers the course of agents (called
particles in their paper) traversing a tree starting from the root. In one phase, the agents move independently
from one level of the tree to the next. At each phase, all agents are at the same level in the tree. Agents that
are at leaf nodes are redistributed among agents at non-leaf nodes. Their algorithm finds deep nodes in the
tree in time polynomial in h, the height of the tree, and �, a measure of the imbalance of the tree. Simulated
annealing can be mapped to “Go with the winners” by considering successive levels in the tree to correspond
to different successively lower temperatures. All agents are at the same level in the tree corresponds to the
agents all performing simulated annealing at the same temperature. Their algorithm does not describe an
actual implementation.

Our algorithm can be considered as one practical implementation of the “Go With The Winners”
algorithm. In our implementation, the nodes of the tree are states, and the traversal of agents from one level
to the next is represented by many moves of an agent in the state space.

2 Problem Instances

The problems we consider are graph bisection and TSP. They have both been the focus of much attention,
and each has its own problem-specific approximation algorithms.

2.1 Graph Bisection

The goal of graph bisection is to divide a the nodes N of a graph G = (N;E) into equal-sized sets of nodes
S and S such that the number of edges between each part, or cut size, is minimized.

Graph partitioning arises in a variety of settings. Perhaps the most prevalent is that of partitioning work
for parallel computation. Some typical problems that, when computed in parallel, rely on good partitioning
of data to run efficiently are sparse matrix-vector multiplication, explicit methods for solving PDE’s, and
Gaussian elimination. In addition, some VLSI layout problems can be solved by using a graph partitioning
approach.

In the following paragraphs, we discuss several approaches that have been implemented. We compare
results of our algorithm to many of these in Section 4.

One method that provides provable bounds on inexact bisections was designed by Leighton and Rao [14]
in conjunction with their results on multicommodity max-flow min-cut theorems [13]. Their polynomial-
time algorithm for computing max-flow can be converted to polynomial-time algorithm for computing
approximate min-cut. It works by repeatedly partitioning the graph along an approximate min-cut and
removing the smaller set of nodes until the remaining graph is close to half the size of the original graph.

2

Spectral methods [20] use the second smallest eigenvalue of the Laplacian matrix of a graph to find a
separator. It is a method that finds good solutions in practice, albeit not quickly, and has proven bounds on
its effectiveness for meshes that can be embedded in lower dimensional objects. The bottleneck in Spectral
partitioning is computing �2. It can be done in O(jN3j) time or approximated in roughly O((jEj2) time.
There is no guarantee on solution quality. This method finds good solutions in practice, but it is slow.

Geometric methods [23, 5, 19] use coordinate information to find a line, plane, circle, etc. to partition
nodes of the graph. They work under the assumption that edges tend to lie between nearby vertices. This is
true in the case of meshes, for example. One example of this method is the “random circles” of algorithm [5].
In this algorithm, a vertex separator is found with provable bounds on the partition it produces. Roughly
speaking, the nodes of the graph are projected onto a carefully chosen (d + 1)-dimensional sphere, where
the graph is in d-dimensions. The sphere is bisected by a random plane, which partitions the vertices into
three sets, N1 and N2 on either side of the circle, and Ns on the circle. The sphere can be chosen so that
with high probability jN1j and jN2j � n � d+1

d+2 nodes, and jN
s
j is not too big. While there is not an exact

bound on the running time, except that it is polynomial, it runs quickly in practice. There is no guarantee
on solution quality for general graphs.

The Kernighan-Lin algorithm [11] works as follows: The nodes of graph G are partitioned into equal-
sized sets, red and blue. The goal is to minimize the number of edges between red and blue. A phase
consists of a series of moves. At the beginning of each phase, all nodes in the graph are unmarked. In each
move, an unmarked node a is chosen from red at random. It is exchanged with the best unmarked node b
from blue, i.e. b is chosen from unmarked nodes in blue to minimize the cost of G after exchanging a and
b. Each iteration of Kernighan-Lin takes O(jN j3) time. Feducci and Mathias implemented a version of
Kernighan-Lin in which each iteration takes timeO(jEj). In practice, Kernighan-Lin terminates after 2� 4
rather expensive iterations. It is outperformed in speed and solution quality by multilevel Kernighan-Lin.

Multilevel graph partitioning algorithms work by clustering vertices, performing a partitioning algorithm
on the smaller graph of the vertex clusters. The vertices are clustered by finding maximal matchings of the
edges. Each pair of vertices connected by an edge in the matching is clustered. The partitioning algorithm
is performed on the smaller graph of vertex clusters, and the resulting partition used as an initial partition
for the full graph. This process can be performed recursively on more than two levels. Although it has
no proven bounds, in practice Multilevel Kernighan-Lin algorithms [9, 10] (e.g. the METIS and Chaco
packages) produce very good partitions extremely quickly. The multilevel approach has also been applied
to spectral partitioning [3]. Other partitioning algorithms, including ours, could also be run in a multilevel
fashion.

2.2 TSP

In the TSP problem, we are given an instance I = (N; d(i; j)); jN j = n of cities and distances between
them. The objective is to find a permutation of all the cities, T = (t1; t2; : : : ; tn) that minimizes a tour
starting and ending at the first city in T and visits all the cities in the permutation order, i.e. such that
P

n�1
i=1 d(ti; ti+1) + d(tn; t1) is minimized.

This problem has been the object of a great deal of interest and effort. There are approximation
algorithms that perform well in practice, although results have been proven that give upper bounds on
the worst case performance of all approximation algorithms. The Lin-Kernighan algorithm has long been
considered to be the best algorithm for solving TSP. It, along with other TSP move operators, is described in
conjunction with our move operator in Section 3.1.2. We compare results of our algorithm Lin-Kernighan
in Section 4.

3

Local Search Graph Bisection TSP

Input A graph A list of cities and a distance function

State A bisection of nodes into red and blue sets A tour of cities

Move operator Exchange a pair of red and blue nodes Reverse a segment of the tour

Cost Cut size Tour length

Table 1: Our mapping of local search to the optimization problems. The way in which a move is selected is
discussed in Section 3.1.

3 Interacting Agents for Local Search

In this section, we describe our algorithm in some detail. In Section 3.1, we define the move operator
our local search technique uses for state transitions for both of the optimization problems we explore. In
Section 3.2, we present our technique for using a fixed number of agents to explore the state space in the
local search algorithm, and in Section 3.3 we present a variation of the fixed-agent algorithm in which the
number of agents changes dynamically over time.

3.1 Move Operators

Local search uses move operators to move from one state to another. Move operations are problem-specific
and determine the neighborhood structure of the state space for the problem. We can think of local search
as being superimposed upon this neighborhood structure, as local search uses the problem-specific move
operator to generate moves.

Move operators may employ heuristics, random choice, or a combination of the two. Different move
operators for the same problem may differ from each other in how fast they are (e.g. Lin-Kernighan versus
2-OPT for TSP) and how “connected” the state space is (e.g. the longest path between two states, the
probabilities of ever reaching particular states).

Our algorithm requires a quick move operator, or rather it requires that different agents are likely to
quickly diverge from the same state to explore the state space independently. In this section, we examine
specific move operators for each problem and discuss our selection of move operators.

3.1.1 Graph Bisection

We are given a graph G = (N;E), where N is the set of nodes, E is the set of edges, and we let n = jN j

and e = jEj. The nodes are always partitioned into two equal-sized sets, which we denote as red and blue.
One common move operator for graph partitioning is a simple node exchange, where moves are proposed
by selecting one node at random from red and another from blue, and exchanging them.

We now present our move operator. Like Kernighan-Lin, each node is in a proposed move once in
each block of n

2 moves. The requirement that each pair selected be the best possible is relaxed in our move
operator, however. The number of steps for each move is O(1).

We define the frontier of the partition to be the nodes that contain edges that cross the partition. Let Fb

denote the frontier nodes in blue, and let Fr denote the frontier nodes in red. In each move, we alternate,
picking a node at random from F

b
(F

r
) to exchange with a node from red (blue).

We add one more restriction by requiring that a move be attempted for each node once in each block of
n

2 moves attempts. We have found that this requirement significantly improved both the running time and
the quality of the final partition.

Our move operator:

4

Ci+1 Ci

Cn C1

Ci+1 Ci

Cn C1

Cn Ci

Ci+1 C1

1 2 3
Figure 1: The Lin-Kernighan move operator

1. Create sets Fb and Fr

2. Unmark all nodes
3. Repeat until no more moves can be made (n=4 times):

(a) Select an unmarked node n1 2 Fb (if all nodes in Fb are marked, select an unmarked node from
blue).

(b) Select an unmarked node n2 2 red.
(c) Mark n1 and n2.
(d) Proposed move: Exchange n1 and n2

(e) Repeat the first four steps, now selecting nodes from Fr and blue.

3.1.2 TSP

The input to a TSP instance is a graph G = (N;E;D), where N is the set of nodes, E is the set of edges,
and D = (n1 2 N; n2 2 N; distance) is the set of distances between nodes. The goal is to find a minimum
length tour that visits each node exactly once.

Many move operators work by taking a “slice” of consecutive cities out of a tour and reinserting it
somewhere else. One example of this type of move operator is 2-opt, which works by selecting two nodes
at random, n1 and n2, and reversing the slice of the tour beginning and ending with n1 and n2. The 3-opt
move operator is similar, but it chooses three nodes, n1; n2, and n3, takes the slice surrounded by n1 and n2,
and inserts it after n3.

A very effective algorithm for solving TSP is Lin-Kernighan [16]. Lin-Kernighan finds good solutions
to TSP problems, usually in 2-4 O(n2

) time iterations. Each iteration of the Lin-Kernighan algorithm is
a series of carefully chosen 2-opt moves. At the beginning of an iteration, one city is designated as the
starting point. All moves in an iteration involve reversing a segment that ends at the last city in the tour (See
Figure 1.) Each city has a neighbor list of it k closest neighbor cities. This list is used in selecting where to
break the tour.

Our algorithm relies on a move operator that can be performed quickly so that agents starting at the
same state can quickly move to different areas of the state space. We experimented with 2-opt, 3-opt, and
some variations, and did not observe any difference in solution quality for a fixed number of moves. We
chose to use 2-opt because it is the fastest.

3.2 The Fixed-Agent Algorithm

In this section, we describe our fixed-agent algorithm in detail. In this algorithm, a fixed number of agents
are simultaneously executing separate copies of the problem, where we choose the number of agents to be
powers of 2. This section addresses the interaction between the agents.

In our exploration of multi-agent techniques for local search, we sought a two-way balance between
allowing the agents to explore the state space independently and propagating good states to multiple agents.

5

Toward that goal, our method is asynchronous, and each agent works independently on its own copy of the
problem. Agents periodically interact, and “good” states are copied to other agents. The “grain size” of
the algorithm, in this case the number of moves each agent makes before propagating its best state, can be
adjusted to suit the problem.

3.2.1 Parameters for Multi-Agent Approach

In addition to the number of agents, a multi-agent algorithm has other parameters that control the interaction
between agents.

� neighborhood size: Each agent as a set neighbors, neighborhood size agents which are chosen at
random.

� step size: Every agent communicates its best state information with its neighborhood size neighbors
after each completion of step size move attempts.

The neighborhood size reflects the degree of the underlying communication network between agents. If
the neighborhood size is large, then a “good” state will quickly be copied by all the agents. The tradeoff is
that with a large number of neighbors, a single agent with a very good state will spend a lot of time copying
it to other agents.

If we set neighborhood size to be logk, where k is the number of agents, the expected amount of time
for the best state to reach all the agents is less than (loglog k

2

k

2 + 2) � step size:

Let g be the lowest cost state among all the agents. We want to determine the number of moves required
for g to be distributed to all k agents.
The number of moves required for g to reach the first k

2 agents:

prob[neighbor of a processor with g does not yet have g] >
1
2

) E[number of neighbors to receive g for the first time for each agent sending g] >
logk

2

) E[number of moves for �
k

2
agents to receive g] < log log k

2

k

2

The number of moves required for g to reach the last k

2 agents:

At least
k

2
agents distribute g to at most

1
2

agents

) (using a coupon-collector argument) E[number of moves to reach all agents] � 2

) E[number of moves to distribute g] � 2 �
k

2
logk = k logk

Thus E[total number of moves to distribute g to k agents] < (log log k
2

k

2 + 2) � s.

There is a similar tradeoff with step size. As step size becomes large, the algorithm approaches a set
of independent runs, and only one agent ends up contributing to finding the best solution. If step size is
small, the algorithm may lose some of the value of multiple agents, since the agents will often be working
on related states. The setting of step size is completely problem dependent, however.
The internal variables of each agent:

� Input problem
� Current state and its cost
� Best state encountered so far by this agent (Its cost is local best cost. Cost of previous best state is

old local best cost.)

6

0

1000

2000

3000

4000

5000

6000

7000

0 200 400 600 800 1000 1200 1400

to
ta

l u
pd

at
es

 o
n

on
e

pr
oc

es
so

r

tens of thousands of moves

Updates for TSP on ATT532

0

50000

100000

150000

200000

250000

300000

350000

0 200 400 600 800 1000 1200 1400

be
st

 c
os

t

tens of thousands of moves

Cost for TSP on ATT532

Figure 2: Total updates versus number of moves on
a tsp problem

Figure 3: Best cost versus number of moves on a
tsp problem

� nbr best cost, cost of best state of a neighboring agent
� best nbr id, id of agent that owns state with cost nbr best cost

Each agent performs the following algorithm:

1. Repeat step size times:

(a) Propose (and perhaps accept) a move.
(b) (Performed every time)

If nbr best cost < �� local best cost (nbr best cost has been updated by another agent that has
found a state that is better by at least a factor of �, where the parameter � � 1) then copy state
of the agent that sent nbr best cost.

2. Update nbr best cost and best nbr id of neighbors (communication phase).

Note that the algorithm is asynchronous and that transmission of states takes place only on demand.
Figures 2 and 3, show the total number of updates between agents and the best cost found so far versus

the total number of moves. The number of updates increases at a constant rate until the cost levels off, at
which point, both the cost and the number of updates level off rather suddenly. We only show a small tail
here. To find the best states it can, our algorithm is typically run for many more moves, and the running
time is dominated by the tail, where agents are clustered at a few states until the next breakthrough.

Notice that since step size is the number of move attempts between best cost communications, as the
algorithm progresses, the number of accepted moves between best cost communications decreases since the
rate of move acceptances decreases. This is desirable because in the beginning, all the agents are making
progress and exploring different parts of the state space, whereas at the end, just one accepted move could
start a breakthrough.

3.3 The Dynamic Multi-Agent Algorithm

In our goal to minimize the total amount of work performed, as opposed to the total amount of time taken
when running on a parallel machine, we have designed an algorithm that uses varying numbers of agents
at different points in the execution. By dynamically increasing and reducing the number of agents, we can
reduce the total amount of work performed across all the agents for very good solutions. Although we have
found the very best solutions using a fixed number of agents, the dynamic agent algorithm finds very good
solutions after a relatively small number of moves.

7

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

0 200 400 600 800 1000120014001600180020002200

co
st

thousands of moves

dynamic number of agents in phases

1 agent
2 agents
4 agents
8 agents

Figure 4: Dynamic algorithm with 1, 2, 4, and 8 agents, where each set of agents starts phase i with the best
state across all sets of agents from phase i� 1.

Figure 4 shows a somewhat idealized example of the dynamic-agent algorithm. The execution is divided
into phases. Four different sets of agents (of 1, 2, 4, and 8 agents) work independently within each phase,
i.e. the agents within a set may communicate with each other, but sets of agents do not share information.
At the end of each phase, the best state found among all the sets (where “best” is defined as the state with
the lowest cost) is copied to each set. We compare and results of the two dynamic multi-agent algorithms
and the n agent algorithm in Section 4.

4 Experimental Results

We now present the results of our program. Our algorithm was implemented in C and run on SPARC
stations, using up to 128 agents. All the results in this chapter describe runs on a single processor. We ran
each instance of our program several times with different random seeds and report the average cost.

In discussing different variations of our algorithm, using a fixed number of agents versus a dynamic
number of agents, we use graphs to present our data. The x-axis is the total number of moves summed up
over all agents, and the y-axis is the solution cost. In the graphs for the fixed-agent version, we plot one line
for each set of p agents.

We use the number of moves as a measure of the amount of work done in an attempt to generalize our
results. This measure is slightly biased in favor of more agents because it disregards the time required to
copy states between agents.

We compare our results with those of other methods in Section 4.1. We then present data where the
number of agents is fixed versus self-adjusting in Section 4.2. We discuss our parallel implementation in
Section 4.3.

In all cases, the local search technique we use is simulated annealing.

4.1 Comparison With Other Methods

In this section, we compare our best results with those of other algorithms. We obtained all our results by
running in “production mode” i.e. we ran our program on each problem instance only three times and report
the average cost.

8

Graph Nodes Edges Best other Our algorithm

*AIRFOIL1 4253 12289 81 (GS) 81
**AIRFOIL2 4720 27444 147 (MKLm) 129
**AIRFOIL3 15606 45878 158 (G) 140
*BCSPWR05 443 590 10 (GS) 10
*BCSPWR09 1723 2394 9 (GS) 9
BCSPWR10 5300 8271 30 (MKLc, GS) 69
**BCSSTK14 1806 30824 781 (GS) 778
*BCSSTK15 3948 56934 1474 (MKLc) 1474
*EPPSTEIN 547 1566 40 (MKLc, MKLm) 40
*PARC 1240 3355 21 (MKLc, GS) 21
*TAPIR 1024 2846 23 (MKLc, GS) 23

Table 2: A comparison of our algorithm on graph partitioning with other methods. GS = Geometric Spectral,
MKLc = Chaco Multilevel Kernighan-Lin, MKLm = Metis Multilevel Kernighan-Lin, G = geometric. * =
tie best result, ** = beat best result. The cost is the number of edges that cross the partition.

Name Size Optimal Lin-Kernighan Our algorithm

lin318 318 42029 42586 42097
att532 532 27686 27944 27867
fl3795 3795 28772 30871 29308
fnl4461 4461 182566 184582 192545
pcb442 442 50778 51187 50985
pr2392 2392 378032 384120 393868
pcb3038 3038 137694 139374 146292

Table 3: A comparison of our algorithm on TSP to Lin-Kernighan. The cost is the length of the shortest
tour.

Table 2 is a comparison of results of our algorithm on graph partitioning problems to the best result
among: spectral (S), geometric random circles (G), multilevel Kernighan-Lin (MKL), and spectral geometric
(GS). For the multilevel Kernighan-Lin data, we used both the Metis and the Chaco packages. Both of the
multilevel Kernighan-Lin programs run significantly faster than the others, including ours.

Table 3 contains a comparison of our algorithm to Lin-Kernighan for TSP. They were comparable in
running time.

4.2 Fixed Versus Dynamic Number of Agents

In this section we present graphs of problems run using both a fixed number of agents, as well as changing
the number of agents over time dynamically. For each set of n agents, we plot the cost after a certain number
of moves. Figure 5 has graph bisection results, and Figure 6 has results for TSP. The x-axis is the total
number of moves (attempted and perhaps performed) summed over all agents. The y-axis is the cost. We
plot lines for sets of 2; 4; 8; 16; 32; 64, and 128 agents. We also plot a line for the dynamic-agent algorithm,
which we discuss in the next section.

In both Figure 5 and Figure 6, the pattern is similar: Earlier in the execution, the versions with fewer
agents have the lowest costs, but by then end, the versions with more agents find states with lower costs.
The dynamic-agent algorithm quickly finds states of good cost. In case of TSP, the fixed-agent versions
with fewer agents always outperforms the dynamic-agent algorithm in the end, albeit not by much.

9

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800

co
st

millions of moves

Graph bisection, fixed and dynamic agents, AIRFOIL1

dynamic agents
1 agent

2 agents
4 agents
8 agents

16 agents
32 agents
64 agents

128 agents

28000

30000

32000

34000

36000

0 200 400 600 800 1000 1200

co
st

millions of moves

TSP, fixed and dynamic agents, on ATT532

dynamic agents
1 agent

2 agents
4 agents
8 agents

16 agents
32 agents
64 agents

128 agents

Figure 5: graph bisection Figure 6: tsp

The dynamic-agent algorithm has an advantage over the fixed-agent algorithm in that one need not know
the optimal number of agents to use in advance. As the results show, the dynamic-agent algorithm adjusts
itself to suit the problem to get almost the same behavior of the best choice for a fixed agent algorithm, and
sometimes it even does better.

4.3 The Parallel Implementation

In this section we discuss our parallel implementation and the implications of performance measurements.
We implemented a parallel version of our algorithm in the obvious way: each agent is mapped to a processor.
One copy of the input problem is shared by all the processors (each processor could have its own copy of the
input, but that may become less practical when the input size is large). Each processor stores its own state
information. We implemented our algorithm in Split-C [4] using Active Messages [25] on the Thinking
Machines CM-5 [15]. We show results for our implementation on TSP and graph partitioning.

The two usual ways that parallel programs lose efficiency are from communication overhead or from
synchronization due to lack of parallelism or load imbalance. Because our implementation is asynchronous
and there is a single agent running on each processor, the only significant source of parallelism overhead
could be from communication. There are two circumstances under which communication occurs:

� After a processor has proposed step size moves, it shares its best state information (the cost and
processor id only, not the actual state) with its neighborhood size neighbors, and

� After each move, a processor checks to see if nbr best cost is less than local best cost. If so, it copies
the entire state from best nbr id.

Our measurements indicate that the communication overhead in our implementation is very low inde-
pendent of the problem being solved. For example, in Figure 7, which shows the percentage of time spent
in communication in the ATT532 instance of the TSP problem, the overhead is extremely small, less than
:2%.

Although these traditional sources of parallelism overhead are low in our implementation, there is
potentially a more subtle source of inefficiency, since parallel agents may be wasting time searching
uninteresting portions of the state space. Our experience is quite the opposite, i.e. that having multiple
agents working mostly independently is such a good idea that it is useful on both a single processor and
multiple processors. Figure 8 shows a near-perfect speedup for the ATT532 instance of TSP.

Figure 9 demonstrates the vagaries of reporting speedup in a meaningful way for the BCSSTK14 instance
of graph bisection. We plot the number of agents versus the number of moves to reach four different cutoff
costs for an example problem. The communication overhead is so low that the number of moves is almost
directly proportional to the running time. Although it appears that performance degrades when we use 64

10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35

co
m

m
un

ic
at

io
n

tim
e/

(t
ot

al
 ti

m
e

*
10

0)

processors

percent of time spent in communication

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

sp
ee

du
p

processors

Speedup

Figure 7: Percent of time spent in communication
in the ATT532 instance of TSP.

Figure 8: Speedup for the ATT532 instance of TSP.

10000

100000

1e+06

1e+07

2 4 8 16 32 64

M
ov

es

Processors

Cost 810
Cost 815
Cost 820
Cost 825

Figure 9: Agents versus number of moves per agent with different cutoff costs for the BCSSTK14 instance
of graph bisection.

11

agents, we obtain a final partition with 64 agents that cannot be found using fewer agents. If we chose a
lower cutoff cost, the running time would be lowest with 64 agents, but when the cutoff cost goes much
below 810, the two-agent run never terminates. In general, as the number of agents increases, the quality of
the final partition also increases.

5 Conclusions

In this paper we presented a new multi-agent algorithm for local search on optimization problems, which
arise in many settings, including circuit layout, load balancing on parallel machines, and job scheduling. We
attempt to improve upon local search by using cooperating agents to explore the state space more globally.
The agents work independently on separate copies of the problem. Periodically the agents interact, and
better states (states with lower cost) are distributed among the agents. Our algorithm can be used on any
local search technique on any optimization problem.

Parameters to our algorithm include number of moves between interactions among agents, the degree of
virtual parallelism, and the topology of the neighborhood structure of the agents, and termination criteria.
We explore the parameter space extensively. We have found settings for these parameters that allow agents
to explore different areas of the state space yet communicate frequently enough that time spent in fruitless
sections of the state space is limited.

Each of the three problems we examined - TSP, graph bisection, and a VLSI layout problem - has
associated move operators (e.g. 2-opt for TSP, random node exchange for graph bisection). We explored
many move operators and selected those which performed well in terms of solution quality.

We measure the cost of running our algorithm by the total number of moves performed across all agents.
We have implemented two versions of our algorithm and compared their performance in terms of solution
quality and number of moves, one in which the number of agents remains fixed throughout the execution
of the algorithm, and one in which the number of agents changes dynamically. Although both perform
reliably well, there are situations in which one version is preferred to another, which we discuss in Section 4.
The fixed-agent algorithm is probably the best choice if minimizing the number of moves is not a priority
and if there is at least some idea of the optimal number of agents. The dynamic-agent algorithm has the
advantage that it adjusts the number of agents to suit the problem, obtaining behavior very similar to the
fixed-agent algorithm, and sometimes outperforming it. In addition, the dynamic-agent version tends to find
good solutions consistently more quickly than the fixed-agent version.

In a parallel setting, each agent is a separate processor. The input data can either be shared or stored
locally. Communication is asynchronous, and efficiency is high. The percentage of time spent in commu-
nication is less than :2%.

In fact, this algorithm grew out of a parallel implementation of local search. The super-linear speedup
of that implementation implied that the sequential algorithm could be improved upon, perhaps by exploring
the state space more globally. Some degree of independent search is valuable, but there are many practical
issues which had to be resolved to determine how much independence was useful.

References

[1] E. H. L. Aarts and J.H.M. Korst. Boltzmann machines as a model for parallel annealing. In Algorithmica,
vol.6(3):437–65, 1991.

[2] D. Aldous and U. Vazirani. "Go with the winners" algorithms. In Proceedings, 35th Annual Symposium on
Foundations of Computer Science (Cat. No.94CH35717), pages 492–501, IEEE, 1994. AN4859059.

[3] Barnard and Simon. A fast multilevel implementation of recursive spectral bisection for partitioningunstructured
problems. In Proceedings of the 6th SIAM Conference on Parallel Processing for Scientific Computing, 1993.

12

[4] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von .Eicken, and K. Yelick. Parallel
Programming in Split-C., In Supercomputing ’93, pages 262–273, Portland Oregon, November 1993.

[5] J. Gilbert, G. Miller, and S. Teng. Geometric mesh partitioning: implementation and experiments. In Proceedings
of the Ninth International Parallel Processing Symposium (Cat. No.95TH8052), pages 418–27, IEEE, 1995.

[6] F. Glover. Future paths for integer programming and links to artificial intelligence. In Computers and Operation
Research, 13/5, pages 533–549, 1986.

[7] D. R. Greening. Parallel simulated annealing techniques. In Physica D, pages 293–306, June 1990.

[8] P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem. RUTCOR Research Report,
pages 43–87, 1987.

[9] B. Hendrickson and R. Leland. The Chaco user’s guide, Version 1.0. Technical Report SAND93-2339, Sandia
National Laboratories, 1993.

[10] G. Karypis and V. Kumar. Multilevel graph partitioning schemes. In Proceedings of the 1995 International
Conference on Parallel Processing, pages 113–122, 1995.

[11] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. In Bell Systems Technical
Journal, vol.49:291–307, 1970.

[12] P. J. M. van (Peter J. M.) Laarhoven and E. H. L. Aarts. Simulated annealing : theory and applications.
Mathematics and its applications, Kluwer Academic, 1989.

[13] T. Leighton and S. Rao. An Approximate Max-Flow Min-Cut Theorem for Uniform Multicommodity Flow
Problems with Applications to Approximation Algorithms. In Proceedings of the 29th Annual Symposium on
Foundations of Computer Science, pages 422–431, IEEE Computer Society Press, October 1988.

[14] T. Leighton and S. Rao. Multicommodity Max-Flow Min-Cut Theorems and their Use in Designing Approxima-
tion Algorithms. November 1996.

[15] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis,
B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong, S. Yang, and R. Zak. The Network Architecture of
the CM-5. In Symposium on Parallel and Distributed Algorithms ’92, pages 272–285, June 1992.

[16] S. Lin and B. Kernighan. An Effective Heuristic Algorithm for the Travelling Salesman Problem. In Operations
Research, vol.21:498–516, 1973.

[17] M. Luby and W. Ertel. Optimal parallelization of Las Vegas algorithms. In STACS 94. 11th Annual Symposium
on Theoretical Aspects of Computer Science Proceedings, pages 463–74. Springer-Verlag, 1994.

[18] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equations of state calculations
by fast computing machines. In Journal of Chemical Physics, 21:1087–1091, 1953.

[19] G. Miller, S. Teng, W. Thurston, and S. Vavasis. Automatic mesh partitioning. In Graph Theory and Sparse
Matrix Computation. Springer-Verlag, 1993.

[20] A. Pothen, H. Simon, and K. P. Liou. Partitioning sparse matrices with eigenvectors of graphs. In SIAM Journal
on Matrix Analysis and Applications, vol.11:430–452, 1990.

[21] Colin R. Reeves. Modern heuristic techniques for combinatorial problems. Halsted Press, 1993.

[22] R. Shonkwiler, F. Ghannadian, and C.O. Alford. Parallel simulated annealing for the n-queen problem. In
Proceedings of Seventh International Parallel Processing Symposium (Cat. No.93TH0513-2), pages 690–4,
IEEE, 1993.

[23] R. E. Tarjan and R. Lipton. A separator theorem for planar graphs. In SIAM Journal of Applied Math, vol.36:177–
189, 1979.

[24] C. A. Tovey. Hill climbing with multiple local optima. In SIAM Journal on Algebraic and Discrete Methods,
6(3):384–393, 1985.

[25] T. von Eicken, D. Culler, S. Golstein, and K. Schauser. Active Messages: a Mechanism for Integrated Communi-
cation and Computation. In Proc. of the 19th Int’l Symposium on Computer Architecture, Gold Coast, Australia,
May 1992.

13

