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Abstract: Computer graphics has some of the most compute-intensive applications. Sort-last ren-

dering is a method of parallelizing such applications; speci�cally, the primitives (e.g.

triangles) that describe a scene are �rst allocated to a set of renderers, and the rendered

images are then composited (i.e. combined) to give the �nal image. There are six such

techniques, based on centralized, pipeline, tree, hypercube, mesh and bus architectures.

Naturally, one would like to compare these techniques, but standard performance mea-

sures for graphics (throughput, latency and frametime) are too dependent on hardware

and software to o�er a meaningful comparison.

This paper presents a comparison based on active pixels, i.e. pixels that are covered

by at least one primitive. Active pixels o�er a uniform way of accounting for the time,

space and bandwidth costs in sort-last rendering, giving complexity measures that are

independent of hardware and software. Since graphics architectures usually operate on

full frames (including inactive pixels), these measures can be viewed as lower bounds.

The comparison highlights the strengths of each technique. For example, the tree

has minimum work, binary-swap (hypercube) has minimum composition latency, di-

rect pixel forwarding (mesh) has minimum bandwidth latency, and snooping (bus) has

minimum bandwidth volume; binary-swap's bandwidth and composition latencies de-

crease, whereas the bandwidth volumes for direct pixel forwarding and snooping are

constant, when the number of renderers increase; etc.

The analysis uses an object-based (instead of an image-based) model that matches

the rendering techniques, and provides closed-form approximations for the complexity

measures. The accuracy for three of these approximations is evaluated by comparison

to previous measurements.

0

p015.ps: A Comparison of Pixel Complexity in Composition Technique..., DO NOT DISTRIBUTE!!!



A Comparison of Pixel Complexity in Composition Techniques for Sort-Last Rendering

1 Introduction

Computer graphics has an insatiable demand for computing power. (E.g. Pixar uses hun-

dreds of multi-processor machines to produce animated movies.) To satisfy this demand, much

work was done on parallel rendering architectures. The �rst attempts focused on image-parallel

techniques, in which each renderer in a collection is assigned a region of screen space; the �nal image

is obtained by collecting the regions (subimages) from the renderers and tiling them together.

More recently, there was a burst of activity on object-parallel architectures [8, 11, 13, 25, 33,

41, 42, 44], in which the objects that constitute a scene are partitioned and each partition assigned

to a renderer. The renderers' images are then composited to form the �nal image; Molnar et al.

described this as sort-last [32]. There is already a handful of sort-last architectures in research

laboratories and on the market.

The object-parallel architectures are based on �ve di�erent schemes | pipeline [33, 38, 42,

46], tree [17, 27, 30, 36, 37, 43, 44, 45], hypercube (binary-swap [20, 28, 29, 40]), mesh (direct pixel

forwarding [24]) and bus (snooping [9]) | so a natural question arises: What are their relative

merits? The usual performance measures in computer graphics are throughput (the number of

primitives rendered per second), latency (the time taken to compute a single frame) and frametime

(the time lapse between successive frames) [31]. Such measures are very hardware- and software-

dependent. For example, they depend on the hardware support for the geometric calculations, the

connection topology for the modules, what the graphics primitives are, and whether shading is

done before or after composition.

Hence, it may not be meaningful to compare the techniques with such performance measures,

and an abstract comparison based on complexity measures may be more appropriate. However,

standard complexity measures like number of rounds and messages [23] are also unsatisfactory, since

rounds vary in time and messages vary in size among the algorithms. The complexity comparison

should therefore use a more re�ned and fundamental unit of measure. For parallel graphics algo-

rithms, the natural candidate for a measurement unit is the pixel: We can use pixels to measure

and compare the time, space and bandwidth requirements of these algorithms. Such a uniform

treatment of complexity measures may be unique to graphics.

Cox and Hanrahan have previously used pixels as a measure for object-parallel rendering.

However, their analysis is restricted to bu�er usage and snooping. Moreover, they assume that

pixel depth | i.e. the number of objects that render to a pixel | is independently distributed

over the image. This image-based model is a mismatch for the object-parallel algorithms, and it

contradicts area coherence, i.e. pixel depths are not independent, since each object typically renders

to multiple pixels. The mismatch also requires further assumptions that trivialize their analysis

(e.g. the z-values to be broadcast in the snooping protocol are assumed independent of the ordering

among renderers). Furthermore, they use a generating function as the tool for their analysis. The

function captures the distribution of pixel depth, but does not yield closed-form formulas for the

performance measures, so the technique cannot be used to compare di�erent algorithms.
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Our contributions in this paper are as follows:

(1) We introduce various complexity measures that are de�ned in terms of active pixels | for a

particular image, the active pixels are the ones covered by at least one object. Four such measures

are: total active bandwidth volume B, which measures the bandwidth requirement; active bandwidth

latency LB , which measures the time required for sending the pixels in parallel; active composition

latency LC , which measures the time required for compositing the pixels in parallel; and active

work W , which measures the total computational e�ort. In practice, graphics hardware usually

process a full frame at a time, i.e. including the inactive pixels. By using active pixels, we are thus

measuring lower bounds on the time, space and bandwidth requirements. This is consistent with

(say) communication complexity, which measures the number of bits that must be communicated

for a set of processors to jointly compute a function [35]. Besides, renderers in sort-last architectures

may have a large percentage of inactive pixels [20], so costs may be reduced by storing, computing

and sending only active pixels | Molnar et al. called this SL-sparse, and such techniques have

been implemented in research prototypes [14, 19] and commercial products [15, 16],

(2) We analyze and compare the complexity of the �ve existing parallel composition techniques. The

results are summarized in Table 1, together with those for centralized composition. They show the

relative strengths (and weaknesses) of these techniques, thus answering the question posed above

(in the third paragraph). In particular, the tree has minimum work W , binary-swap (hypercube)

has minimum active composition latency LC , direct pixel forwarding (mesh) has minimum active

bandwidth latency LB , and snooping (bus) has minimum active bandwidth volume B.

(3) The complexity analysis assumes objects are randomly distributed to the renderers. We thus

present an object-based alternative to Cox and Hanrahan's image-based model for bu�er usage and

snooping analysis; our analytic model is a better match, and makes their questionable assumptions

(e.g. the pixel depth at any renderer is at most 1) unnecessary.

We begin in Section 2 (Parallel Rendering) by introducing the object model, analyzing

pixel depth at the renderers, and re-examining some issues raised by Cox and Hanrahan [7, 8,

9] about frame bu�er design in sort-last architectures. The analytic technique yields closed-form

approximations for measuring bu�er usage, and we provide a comparison to Cox's data so the

reader can judge the accuracy of these approximations.

Section 3 (Parallel Composition) analyzes and compares the six composition techniques.

We assume the composition operator is commutative and associative, so the results apply to z-

bu�ering (i.e. choosing the pixel with the smallest z-value from among those with the same (x; y)-

coordinates), but not to transparent objects (e.g. in volume rendering). Given the space constraint,

we can only present some derivations for binary-swap and snooping. The comparison brings some

new insights into these algorithms: composition reduces by half the bandwidth requirement B in

binary-swap but has no e�ect in the case of direct pixel forwarding, binary-swap does the same

amount of work W as the balanced tree but the former reduces the active composition volume

exponentially (as the algorithm proceeds), and direct pixel forwarding | like snooping | has total

active bandwidth volume B that does not vary with the number of renderers. We also point out

where our complexity results are supported by empirical observations.
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2 Parallel Rendering

In this section, we introduce the object model and analyze the pixel depth at renderers. The

analysis begins with the images already generated at the renderers. We thus factor out the di�er-

ences in complexity among various scene descriptions, lighting models and rasterization techniques.

We assume the architecture consists of renderers and compositors | each with a frame

bu�er | connected together. Objects are initially allocated to the renderers, each of whom can

render a full image (if necessary). The role of the compositors in Section 3 is to help composite the

renderers' images into the �nal image.

2.1 Objects, Bu�ers and Active Pixels

A pixel may contain color, depth, screen coordinates, object identi�er, coverage, opacity,

surface normals, texture coordinates, etc. [5, 12, 33, 46]. A pixel may also be a subpixel, as in

supersampling [6, 33]. Suppose each frame bu�er (possibly virtual [1, 8]) has S pixels indexed by

a set I, so jIj = S. (Table 2 contains a glossary for the variables we use.)

A scene is a collection of objects; e.g. polygons, triangle strips or CSG primitives [25, 34,

39]. We say an object renders to a pixel if the object | when rendered alone | contributes to the

color of the pixel. Thus, for our purpose, an object O is a mapping O : I ! f0; 1g, where O(i) = 1

if and only if O renders to pixel i. Consider a �xed set of objects O1; : : : ;OJ . The original pixel

depth at pixel i is di =
PJ

j=1Oj(i), i.e. the number of objects that render to i if all J objects are

rendered with a single bu�er.

For a given scene, the original pixel depth depends on the viewing transformation. Although

di is not a random variable, we adapt the idea of mean and variance for di, as follows: Let

fm = jfi : di = mgj=S. Since di � J for all i, we have fm = 0 for m > J , so
PJ

m=0 fm = 1. De�ne

average original pixel depth (also called depth complexity [8, 18, 31]) � =
PJ

m=0mfm and variation

in original pixel depth �2 =
PJ

m=0(m��)2fm. Table 3 shows � and � for some scenes, which were

chosen for their variety in the number and size of objects, screen coverage, average original pixel

depth [8] as well as realism [31]. The maximum � in these scenes is about 25 (for Galaxy), but

scenes with � exceeding a hundred are plausible [18].

Consider a collection of bu�ers indexed by a set F , and let Xj = b if and only if Oj is

assigned to bu�er b 2 F . In our analysis, F always refers to a set of renderers or compositors for

which, if the objects are independently and uniformly distributed to the renderers, then X1; : : : ;XJ

are independent and identically distributed random variables. Let Pr(Xj = b) = pb. De�ne the

pixel depth at i in bu�er b, denoted Db(i), as the number of objects, among those assigned to b,

that render to i, i.e. Db(i) =
PJ

j=1Oj(i)�(Xj ; b) where �(a; b) = 1 if a = b and 0 otherwise. Since

Db(i) is de�ned in terms of Xj , it is also a random variable. In fact, it is binomially distributed:

Claim 1 Pr(Db(i) = k) =

�
di

k

�
pkb (1� pb)

di�k :
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Proof

Suppose Or1 ; : : : ;Ordi
are the di objects that are active at i, so Or1(i) = � � � = Ordi

(i) = 1, and

Or(i) = 0 for r 6= r1; : : : ; rdi . ThenDb(i) = �(Xr1 ; b)+� � �+�(Xrdi
; b), where �(Xr1 ; b); : : : ; �(Xrdi

; b)

are independent Bernoulli random variables with Pr(�(Xr ; b) = 1) = Pr(Xr = b) = pb. Therefore

Db(i) is binomially distributed, and the claim follows.

Thus, although the randomization is by distributing each object as a whole, the probability is

as if each original pixel depth di is distributed among the bu�ers; the spatial coherence in the

objects, however, imposes a correlation between Db(i) and Db(i
0) for any i and i0. Fortunately, this

correlation does not a�ect our comparison in Section 3 (which is focused on the �rst moments).

We say pixel i is active in bu�er b if and only if Db(i) > 0. However, during the composition

process, an active pixel in a bu�er becomes inactive in that bu�er once the pixel is sent to another

bu�er. By Claim 1, the probability that pixel i is active in bu�er b is Pr(Db(i) > 0) = 1�(1�pb)di .

2.2 Pixel Depth at Renderers

In the rendering phase, we assume objects are allocated uniformly and independently among

N renderers. This assumption plays two alternative roles: (1) It is a load-balancing scheme, i.e.

the objects are in fact randomly allocated to the renderers. (2) The assumption is a model for

studying deterministic allocation strategies. Cox had shown that applying random allocation and

round-robin allocation to his scenes gave virtually the same results for the average, variance and

range of the performance measures [7].

To examine pixel depth at renderers, index the set of renderers by F = f1; : : : ; Ng. The

density function for pixel depth k at any location i in bu�er b is then given by Claim 1, with

pb = 1=N . We now use the following to truncate various expansions: Given two functions g and h

on real numbers, we say h(x) = �(g(x)) if and only if C1 � limx!0

���h(x)g(x)

��� � C2 for some positive

constants C1 and C2. Thus, the expected fraction of active pixels in a renderer's bu�er is

� =
1

S

X
i2I

(1� (1� 1

N
)di) =

�

N
� �2 + �2 � �

2N2
+�

� 1

N3

�
; (1)

this measures how much of a frame bu�er is actually used. Hence, a small � means renderers can

use fractional bu�ers. Note that the contribution of variation �2 is negative; in this sense, the more

uneven the original pixel depth distribution di, the smaller � becomes (cf. Cox and Hanrahan's

result that uneven depth is worst for z-bu�ering by snooping [9]). The expected fraction of pixels

with pixel depth exceeding 1 is

� =
1

S

X
i2I

Pr(Db(i) > 1) =
�2 + �2 � �

2N2
+�(

1

N3
) ; (2)

this measures usage of the z-bu�er. Again, renderers do not need full-size z-bu�ers if � is small.

The leading term for � is quadratic in 1=N , so it drops rapidly for small � and �. Cox did observe

that, at N = 8, � < 0:3 and � < 0:15 for most of his scenes. The expected fraction of pixels that
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need not be sent for compositing if renderers do z-bu�ering is

 =
1

S

X
i2I

X
k�2

(k � 1)Pr(Db(i) = k) =
�2 + �2 � �

2N2
+�

� 1

N3

�
: (3)

This measures the savings in bandwidth from z-bu�ering at the renderers. Cox and Hanrahan

noted from their scenes that there was a \discrepancy" between � being small (say, less than 0.05)

and  being large (say, more than 0.20); i.e. although there was little z-bu�ering at the renderers,

a signi�cant amount of tra�c was saved by these z-bu�ers [7]. To a �rst approximation, (2) and

(3) show that  is in fact the same as �. This agrees with one's intuition that, if most of z-bu�ering

involves just two pixels rendered to the same location, then the fraction of z-bu�ering (�) is also

the fraction of tra�c saved (). The \discrepancy" observed by Cox is the contribution from the

higher order terms in �( 1
N3 ) for large pixel depths.

If we drop the �(:) terms, we get closed-form approximations for �, � and . To check their

accuracy, these approximations (bounded with 0 and 1) are plotted in Figures 1 and 2, together

with Cox's measurements. The comparison shows that the approximations are good only when N

is large enough that the curves are decreasing and below 0.3. As illustrated for � in Figure 1, the

accuracy improves if more terms from �(:) are included in the approximations.

3 Parallel Composition

In this section, we compare the six composition techniques and present some derivations for

binary-swap (hypercube) and snooping (bus). We point out where these results are supported by

empirical observations, and also discuss some implications of the results.

The composition of two images is done pixelwise, and we make two assumptions: (1) If two

pixels are composited to give a third pixel, then all three pixels have the same size; this rules out

pixels that have unbounded size, as in A-bu�ers [41, 46] and object bu�ers [2, 42]. (2) The operator

is commutative and associative, so that the order in which pixels are composited does not a�ect

the result; examples of such operators include voxel z-bu�ering and a modi�ed version of Du�'s

composition operator [3, 12, 21, 44], but the most important example is z-bu�ering.

3.1 Rounds and Metrics

Each composition technique can be considered as proceeding in rounds; in each round, pixels

are sent and received by some bu�ers, and the received pixels are composited (either with pixels

already in a bu�er, or with each other).

We use three metrics: active area Ar is the expected number of active pixels in all bu�ers just

after round r, active bandwidth volume Br is the expected number of active pixels sent (and received)

during round r by all compositors, and active composition volume Cr is the expected number of

active pixels processed at any bu�er during round r. Br is summed over all rounds to give total

active bandwidth volume B, and the active bandwidth from one compositor per round is summed

over all rounds to give active bandwidth latency LB; these correspond to Neumann's redistribution
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size and redistribution time [34]. Active composition latency LC is similarly determined by Cr.

Cr is summed over all rounds and compositors to give active work W , which is the expected total

number of active pixels processed over all rounds.

3.2 Centralized, Pipeline and Tree Composition

A straightforward way of compositing the images is to number the renderers and have

renderer r send in round r its pixels to a central compositor. The compositor stores the pixels in

the �rst round, and updates its bu�er in each round by compositing its pixels with those received

in that round. Variations on this technique were used in two commercial architectures [15, 22].

Another way is via a pipeline of compositors. We number the renderers and compositors as

follows: renderers 1 and 2 send their images in round 1 to compositor 1 and, for r = 2; : : : ; N � 1,

compositor r�1 and renderer r+1 send their images in round r to compositor r, so the �nal image

is in compositor N � 1 (see Figure 3).

The natural generalization of a pipeline is a tree. Consider a complete binary tree with

N = 2n renderers as leaves at level 0 and a root at level n. The composition proceeds from leaves

to root as follows: In round r (r = 1; 2; : : : ; n), each compositor at level r receives images from its

two children (see Figure 4).

The �rst-order approximations for the various metrics are listed in Table 1. Their derivation

is straightforward and omitted here. The constant � arises from the fact that, for positive integer

m,
PN

k=1

�
k
N

�m
= N

m+1
+�(1). The bandwidth requirement B for centralized composition is about

the lowest, but the bottleneck causes the technique to scale poorly in latency LC and work W ,

thus motivating the parallel composition techniques. For the tree, the bandwidth and composition

latencies are given by LB = LC = 2
P

i2I
Pn

r=1(1�(1� 1
2r
)di), which can be bounded by 2�(logN)S,

where � = 1�PJ

m=0

�
1
2

�m
fm.

While it is not surprising that the tree's latencies LB and LC (measured along one branch

of the tree) are at worst linear in logN , it is interesting that the total active bandwidth volume B

and active work W are also linear in logN (to a �rst approximation), although they are measured

over the entire tree. Intuitively, both B and W are evenly spread among the logN levels of the

tree, so each round has the same active bandwidth requirement. Molnar has also observed that,

for scanline A-bu�er systems, the bandwidth requirement is balanced [31]. In contrast, pipelining

has all four metrics B, LB, LC and W linear in N .

3.3 Binary-swap: Composition with a Hypercube

One disadvantage of the tree is that, as the rounds proceed, fewer and fewer compositors

are involved. The active work can be more evenly spread out by a technique Ma et al. called

binary-swap. (It is also called recursive halving in the context of the global combine operation [4].)

For this technique, there are N = 2n renderers (which also act as compositors), and each renderer's

bu�er is partitioned into 2n disjoint regions. For example, if n = 3, each bu�er may be divided by

scanlines into 8 regions R000; R001; � � � ; R111, as illustrated in Figure 5.
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We index the bu�ers by binary strings of length n, so F = fb1b2 � � � bn : bi 2 f0; 1gg and

there are N = jF j = 2n bu�ers. Each bu�er is partitioned into 2n disjoint regions Rb, b 2 F ,

so I =
S
b2F Rb and Rb \ Rb0 = ; for b 6= b0. These regions may be of di�erent sizes (i.e.

jRbj 6= jRb0 j for b 6= b0). We adopt the usual meaning of the character `�' in pattern matching.

Thus, for n = 3, R01� = R010 [ R011 and R101� = R101. Also, 0 = 1 and 1 = 0. The algorithm

has n rounds | in round r, bu�er b1b2 � � � bn+1�r � � � bn sends pixels in R
bnbn�1��� bn+1�r�

to bu�er

b1b2 � � � bn+1�r � � � bn; and receives pixels in Rbnbn�1��� bn+1�r� from bu�er b1b2 � � � bn+1�r � � � bn. One
can view the 2n bu�ers as located at the vertices of a virtual hypercube of dimension n; in round r,

every renderer exchanges one half of its image with its neighbor along the r-th axis, and composites

the half it has left with the half it receives. After the n-th round, each renderer holds a fraction

(1=2n) of the �nal image, to be tiled together. This is illustrated in Figure 6.

Just after round r, the active pixels in bu�er b1b2 � � � bn are in regions Rbnbn�1��� bn+1�r�, and

pixels have been collected (directly or indirectly via another bu�er) from renderers b1b2 � � � bn�r�.
By Claim 1, the expected number of active pixels is

X
i2Rbnbn�1��� bn+1�r�

Pr(Db1b2��� bn�r�(i) > 0) =
X

i2Rbnbn�1��� bn+1�r�

�
1� �1� 1

2n�r

�di�
; (4)

so the active area just after round r is

Ar =
X

b1;���;bn

X
i2Rbnbn�1��� bn+1�r�

�
1��1� 1

2n�r

�di�
= 2n�r

X
i2I

�
1��1� 1

2n�r

�di�
for r = 1; � � � ; n�1:

(5)

This is the same as for a balanced tree. By (4), the expected number of active pixels sent by bu�er

b1b2 � � � bn is
P

i2R
bnbn�1��� bn+1�r�

�
1� �1� 1

2n+1�r

�di�
, so the active bandwidth volume is

Br =
X

b1;���;bn

X
i2R

bnbn�1��� bn+1�r�

�
1� �1� 1

2n+1�r

�di�
=

1

2
Ar�1 for r = 1; � � � ; n: (6)

Here, Br is half that of the balanced tree. To estimate the number of active pixels sent by each

bu�er, we average Br over all bu�ers to give

Br

N
=

Ar�1

2N
=

2n�r

2N

� �

2n�r
+�

�� 1

2n�r
�2��

S =
�

2N
S +�

� 1

22n�r
�
: (7)

Therefore, each round of pixel swapping is about twice as fast when the N is doubled | a desirable

property for scalability that was empirically observed by Li et al. [26]. The latency in each round is

partly determined by the composition of active pixels received by each bu�er with those remaining

(i.e. unsent) in the bu�er. But what is received in a round is also what is sent in that round,

and the latter together with the remaining pixels make up the active area in the previous round.

Therefore, the active composition volume is

Cr =
1

2n
Ar�1 =

1

2r�1

X
i2I

�
1� �1� 1

2n+1�r

�di�
for r = 1; � � � ; n: (8)
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This is exponentially (1=2r) smaller than that for a balanced tree. Ar, Br and Cr are then aggre-

gated to give B, LB, LC and W .

The exponential reduction in Cr from that for a tree is evident from Table 1: while W for

binary-swap is the same as that for a balanced tree, the active composition latencies LB and LC

for binary-swap actually decrease with N . Among the six techniques, only binary-swap and direct

pixel forwarding (Section 3.4) have decreasing active latencies as more renderers are used. In fact,

as N increases, the active latencies would decrease to 0; this seems too good to be true. Indeed,

there are two caveats: �rst, active latencies do not include overheads (which are never zero) and

second, LB implicitly assumes all bu�ers can communicate in parallel for each round. If binary-

swap is executed over a mesh, say, tra�c contention among the bu�ers becomes unavoidable, and

can cause latencies to increase with N , as was the case in Lee et al.'s experiment [24].

How much bandwidth is saved by composition? Since each renderer starts with �S=N active

pixels (1), if these are sent in all logN rounds without composition, the total active bandwidth

volume would be �(logN)S. It follows that, to a �rst approximation, composition reduces the

bandwidth requirement B by half. (Composition similarly halves B for the tree.)

3.4 Direct Pixel Forwarding: Composition with a Mesh

Many parallel architectures use a two-dimensional mesh to connect the processors (e.g.

the Intel Delta and Fujitsu AP1000), and Lee et al. have proposed some SL-sparse composition

schemes for such machines [24]. One of them, called Direct Pixel Forwarding, is similar to hypercube

composition, in that the renderers exchange pixels �rst along one axis of the mesh, then along the

other axis; this is faster than two of their other schemes.

The architecture consists of renderers-cum-compositors arranged in an nrow � ncol mesh.

We index the bu�ers by their mesh coordinates, so F = f(i; j) : 0 � i < nrow; 0 � j < ncolg
and there are N = jF j = nrowncol bu�ers. Each bu�er is partitioned into nrowncol disjoint regions

Rb, b 2 F , as illustrated in Figure 7. As before, we adopt the usual meaning for `�'; for example,

R(i;�) =
S
j R(i;j). There are n = (nrow � 1) + (ncol � 1) rounds. The composition has two phases:

For round r in Phase 1, r = 1; : : : ; nrow � 1 (index addition/subtraction is modulo nrow),

bu�er (i; j) sends pixels in region R(i+r;�) to bu�er (i+ r; j); and

for round (nrow� 1)+ r in Phase 2, r = 1; : : : ; ncol� 1 (index addition/subtraction is modulo ncol),

bu�er (i; j) sends pixels in region R(i;j+r) to bu�er (i; j + r).

This is illustrated in Figure 8 for a 3� 4 mesh.

An analysis shows that, although (to a �rst approximation) active bandwidth volume Br

is constant for each round within a phase, and the number of rounds increases with the number

of renderers N , the total active bandwidth volume B is approximately constant with respect to

N (see Table 1). This is an advantage for scalability over composition with a pipeline, tree or

hypercube. (Interestingly, composition does not save much bandwidth | if every active pixel is

sent in each of the two phases without composition, the total active bandwidth volume would be

2�S approximately, like B in Table 1. This is unlike the reduction by half for the hypercube, and

is because there are only 2 phases for the 2D mesh but logN rounds for the hypercube.)
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But a bigger advantage is in active bandwidth latency LB, which decreases with 1=N , so this

latency is halved when N is doubled. Among the six techniques, this is the best performance for

LB. Like binary-swap, direct pixel forwarding has an active composition latency LC that decreases

with N : If nrow and ncol are of order
p
N , then LC decreases with 1=

p
N , which is not as fast as

the (logN)=N decrease for binary-swap. Similarly, the active work W increases with
p
N , which

is slower than the pipeline, but still faster than the balanced tree and the hypercube.

3.5 Z-bu�ering by Snooping

The composition techniques discussed so far are applicable to any operator that is commuta-

tive and associative, i.e. they do not exploit any special feature of z-bu�ering. One such feature is

that, if multiple objects render to the same pixel, then only one of them determines its color. This

fact was used by Cox and Hanrahan to reduce bandwidth requirement with a technique similar to

cache coherence by snooping in tightly-coupled systems [9].

As in the case of pipelining, the renderers are ordered 1; 2; : : : ; N , with another z-bu�er in

a compositor labeled N + 1. In round 1, renderer 1 broadcasts all its active pixels, say, on a bus

shared by all bu�ers (see Figure 9). Bu�er N + 1 stores these pixels while, for b = 2; : : : ; N , each

z-bu�er b in a renderer listens to the broadcast; for each active pixel i in bu�er b, if pixel i is

also in the broadcast and the latter has smaller depth than the former, then the former is deleted

from bu�er b. This deletion distinguishes z-bu�ering from other composition operators that may

conceivably use snooping. Subsequently, in round r, bu�er r broadcasts its undeleted active pixels;

bu�er N +1 stores any pixel that is new or hides one of its active pixels, while bu�ers r+1; � � � ; N
discard hidden pixels as described. When bu�er N �nishes broadcasting, bu�er N + 1 has the

composited image. We �rst prove the following:

Claim 2 The expected number of pixels broadcast in round r of z-bu�ering by snooping is

X
i2I

1

r

�
1� �1� r

N

�di�
for r = 1; : : : ; N; where 1� �1� N

N

�0 def
= 0:

Proof

Let <i be the total order (by depth) on all the objects that render to pixel i (i.e. Oj(i) = 1), and

de�ne zi on f1; : : : ; Jg by

zi(j) =

�1 if Oj(i) = 0
k if Oj(i) = 1 and there are exactly k � 1 Oj0 such that Oj0 <i Oj .

Thus, for di 6= 0, z�1
i : f1; : : : ; dig ! f1; : : : ; Jg is well-de�ned.

Let the bu�ers be numbered 1; : : : ; N , according to their broadcast order. For di = 0, the probability

is 0 that any bu�er must broadcast for pixel i. For di 6= 0, the probability that bu�er r must
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broadcast for pixel i is

Pr(X
z
�1

i
(1)

= r) +

diX
k=2

Pr(X
z
�1

i
(k)

= r and X
z
�1

i
(h)

> r for h = 1; : : : ; k � 1)

=
1

N
+

diX
k=2

Pr(X
z
�1

i
(k)

= r)

k�1Y
h=1

Pr(X
z
�1

i
(h)

> r) since X1; : : : ;XJ are independent

=
1

N
+

diX
k=2

1

N

�
1� r

N

�k�1

=
1

N
+

1

N

�
1� r

N

�1� �1� r
N

�di�1

1� �1� r
N

�

:

Therefore, for any i, the probability that bu�er r must broadcast for that pixel is 1
r

�
1� �1� r

N

�di�
:

The claim follows.

Now, just after round r, the z-bu�ered result of the images in renderers 1; : : : ; r will be in

bu�er N +1. The other active pixels are in bu�ers r+1; : : : ; N , who (by symmetry) have the same

expected number of active pixels left. This number is what renderer r + 1 will broadcast in round

r + 1. By Claim 2, we therefore have active area

Ar =
X
i2I

�
1� �1� r

N

�di�
+ (N � r)

X
i2I

1

r + 1

�
1� �1� r + 1

N

�di�
for r = 1; : : : ; N � 1: (9)

(AN = S(1� f0).) Claim 2 gives directly

Br =
1

r

X
i2I

�
1� �1� r

N

�di�
for r = 1; : : : ; N: (10)

Hence, Br decreases as r increases, unlike the case of pipelining. In each round, bu�er N + 1 has

(on average) at least as many active pixels as any other bu�er. Since, in round r, each of bu�ers

r + 1; : : : ; N + 1 must process the received pixels as well as their local active pixels, bu�er N + 1

determines the active composition volume, thus:

Cr =
X
i2I

�
1� �1� r � 1

N

�di�
+

1

r

X
i2I

�
1� �1� r

N

�di�
for r = 1; : : : ; N: (11)

Here, Cr increases with r, but this increase is slowed down by the decrease in Br (second summa-

tion). Ar, Br and Cr are then aggregated to give B, LB , LC and W in Table 1.

In particular, the expression �S = S
P

mHmfm for B is similar to the one obtained by

Cox and Hanrahan, which was S
P

mHmpm, where pm was the probability that pixel depth was

m in their model. (Cox's measurements showed that B was indeed roughly constant for large

N .) Their approximation was based on three assumptions: (1) the pixel depth at any renderer

was at most 1, (2) the z-values of the objects that render to a given pixel were randomly and

independently distributed, and (3) the z-values to be broadcast were independent of the order of

the renderers that must broadcast them. These assumptions, while astute, are hard to justify, may

be violated (as in the case of Zinnia [9]), and trivialize the analysis. We have thus shown that, if

one uses an object-based analytic technique instead, then their questionable assumptions are, in

fact, unnecessary.
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total active active active
bandwidth bandwidth composition active
volume B latency LB latency LC work W

Centralized �S �S �NS �NS

Composition

Pipeline �NS �NS �NS �NS

Balanced �(logN)S < 2�(logN)S < 2�(logN)S �(logN)S
Tree

Binary-Swap �

2
(logN)S �

2
logN
N

S � logN
N

S �(logN)S
(Hypercube)

Direct Pixel 2�S 2�
N
S <

�
�

2
+ �
�

1p
N
S <

�
�

2
+ �
�p

NS

Forwarding (Mesh)

Snooping �S �S �NS (2� � �)NS

(Bus)

� = 1�PJ

m=0(
1
2
)mfm

� =
PJ

m=0Hmfm where Hm = 1 + 1
2
+ � � � + 1

m
(H0 = 1), Hm � logm for large m

� =
PJ

m=0
m

m+1
fm

Table 1 A comparison of the pixel complexity in six composition techniques.

(N;S; �; J; fm are de�ned in Table 2;

LC and W for direct pixel forwarding are stated for a square mesh.)
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I index set for pixels

S number of pixels in a frame bu�er, S = jIj
O object, O : I ! f0; 1g
J number of objects

di original pixel depth at pixel i

fm fraction of pixels with original pixel depth m, fm = jfi : di = mgj=S
� average original pixel depth, � =

PJ

m=0mfm

�2 variation in original pixel depth, �2 =
PJ

m=0(m� �)2fm

F index set for frame bu�ers

N number of renderers

Xj random variable for bu�er to which Oj is assigned

pb probability that Oj is assigned to (renderer or compositor) bu�er b, pb = Pr(Xj = b)

Db(i) pixel depth at i in bu�er b, Db(i) =
PJ

j=1Oj(i)�(Xj ; b)

� expected fraction of active pixels in a renderer's bu�er

� expected fraction of pixels in a renderer's bu�er with pixel depth exceeding 1

 expected fraction of pixels that need not be sent for compositing if renderers do z-bu�ering

Ar active area just after round r

Br active bandwidth volume during round r

Cr active composition volume during round r

B total active bandwidth volume

C active composition latency

W active work

Table 2 Glossary

Bike Cube Zinnia Roses Wash Brooks Galaxy Rad

� 2.41 8.12 0.53 4.88 3.14 3.40 24.59 1.12
� 1.99 7.63 1.22 6.07 3.18 5.24 34.82 1.03

(a) Cox and Hanrahan's scenes.

Space Poliovirus Lobby House Earth Pipes

� 2.60 18.38 5.58 7.98 4.51 6.66
� 2.45 14.25 4.09 9.04 4.32 7.54

(b) Molnar's scenes.

Note: Objects are de�ned di�erently for di�erent scenes and by di�erent rendering systems.

Table 3 Average and variation in original pixel depth for some scenes.
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(a) Bike (� = 2:41; � = 1:99)
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(d) Roses (� = 4:88; � = 6:07)
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(e) Wash (� = 3:14; � = 3:18)
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1.0

0

+

+
+
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Figure 1 Comparison of closed-form approximations for � to Cox's measurements.

� is the expected fraction of active pixels in a renderer's bu�er.
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(a) Bike (� = 2:41; � = 1:99)
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(b) Cube (� = 8:12; � = 7:63)
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(c) Galaxy (� = 24:59; � = 34:82)
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(d) Roses (� = 4:88; � = 6:07)
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(e) Wash (� = 3:14; � = 3:18)
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x
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Figure 2 Comparison of closed-form approximations for � and  to Cox's measurements.

� is the expected fraction of pixels with pixel depth exceeding 1;  is the expected

fraction of pixels that need not be sent for compositing if renderers do z-bu�ering.
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compositor

        1

.   .   .

compositor

        2

compositor

    N-1

full

image

renderer

      1

renderer

      2

renderer

      3

renderer

      N

.   .   .

Figure 3 Composition in a pipeline.

round 1

final

image

round 3

round 2

Figure 4 Composition in a balanced tree.
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R011

R100

R101

R110
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Figure 5 A frame bu�er divided by scanlines into 8 regions for binary-swap.
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Figure 6 Binary swap for 3-dimensional hypercube.

R(0;0) R(0;1) R(0;2) R(0;3)

R(1;0) R(1;1) R(1;2) R(1;3)

R(2;0) R(2;1) R(2;2) R(2;3)

Figure 7 A frame bu�er divided into 12 regions for direct pixel forwarding.
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buffer (2,j)

column  j column  j

retained

sent

inactive

round  1 round  2

buffer (0,j)

buffer (1,j)

Phase 1 Each column of bu�ers executes above rounds.

Result: each bu�er has one row of active regions left.

buffer (i,3)

row  i

row  i

row  i

round 3

round 4

round 5

buffer (i,0) buffer (i,1) buffer (i,2)

Phase 2 Active regions in each row of bu�ers execute above rounds.

Result: each bu�er has one active region.

Figure 8 The two phases in direct pixel forwarding for a 3� 4 mesh.

compositor

.   .   .

bus

renderer 1 renderer 2 renderer N

Arrows indicate the directions of pixel tra�c during composition.

Figure 9 Composition by snooping on a bus.
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