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Abstract

We study the problem of executing parallel programs, in particular Cilk programs, on a collection of
processors of different speeds. We consider a model in which each processor maintains an estimate of
its own speed, where communication between processors has a cost, and where all scheduling must be
online. This problem has been considered previously in the fields of asynchronous parallel computing
and scheduling theory. Our model is a bridge between the assumptions in these fields. We provide a
new more accurate analysis of of an old scheduling algorithm called the maximum utilization scheduler.
Based on this analysis, we generalize this scheduling policy and define the high utilization scheduler. We
next focus on the Cilk platform and introduce a new algorithm for scheduling Cilk multithreaded parallel
programs on heterogeneous processors. This scheduler is inspired by the high utilization scheduler and
is modified to fit in a Cilk context. A crucial aspect of our algorithm is that it keeps the original spirit of
the Cilk scheduler. In fact, when our new algorithm runs on homogeneous processors, it exactly mimics
the dynamics of the original Cilk scheduler.

1 Introduction

In this paper we study the problem of executing parallel programs, in particular Cilk programs, on processors
that run at different and possibly changing speeds. We develop scheduling algorithms that are designed to
run efficiently in a parallel computing environment.

In order to run efficiently, our scheduling algorithms must obey the computational constraints imposed
by the parallel setting. For example, the schedulers should make rapid decisions about how to assign
tasks to processors because otherwise the time to run the scheduler may actually delay the execution of
the parallel program. Furthermore, the scheduling decisions must be made with only partial knowledge of
the actual scheduling problem. This is because both the structure of the parallel program and the speeds of
the processors are only known online, that is, as the computation unfolds. In addition, the entire state of the
system is not automatically visible to any processor; each processor i is only aware of its own local state; in
order to determine the state of another processor j, processor i must explicitly communicate with j and this
communication has a cost. Consequently, a centralized scheduler that repeatedly gathers all the information
about the states of the processors may be too expensive. This paper describes a scheduling algorithm that is
distributed.

We call processors of different speeds heterogeneous, and we call identical processors homogeneous. In
order to obtain efficient algorithms for heterogeneous processors, we must understand the pattern of speed
changes so that we can optimize for the common case. Our algorithms are optimized for the following
setting, which is common in many parallel computing environments.
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1. Most of the time the processor speeds are fairly consistent, and therefore a processor can maintain a
good estimate of its own speed. This estimate naturally is not completely accurate, but most of the
time it will be mostly accurate.

2. Processor speeds may occasionally change dramatically, but these changes are limited. The efficiency
of our scheduler is allowed to degrade gradually as processors become more erratic.

The general problem of executing parallel programs on heterogeneous processors been studied previ-
ously in the fields of asynchronous parallel computing and scheduling theory. However both of these fields
typically assume models that differ dramatically from the parallel setting described above. For example, in
the area of asynchronous parallel computing, the processor speeds are assumed to change arbitrarily and
adversarially. Unfortunately, this worst-case assumption may be too pessimistic and may lead to inefficient
schedules. In the area of scheduling theory, the processor speeds are assumed to remain constant, and the
scheduler is allowed to have global knowledge of the state of the system, a large amount of time to run, and
offline knowledge of the structure of the computation. Based on these assumptions, the system is unrealisti-
cally predictable and the scheduler is unrealistically powerful. The model is this paper is a bridge between
the assumptions of asynchronous parallel computing and those of scheduling theory. We further describe
these fields and then proceed to describe the main results in this paper.

Asynchronous Parallel Computation. Executing parallel programs on heterogeneous processors is stud-
ied intensely in the area of asynchronous parallel computation [16, 15, 29, 28, 24, 5, 3, 2]. In this field, the
goal is to run a parallel program written assuming synchronization barriers, on a collection of asynchronous
processors that do not have a synchronization primitive.

Processors are assumed to be arbitrarily erratic. That is, a processor may initially run so slowly that it is
essentially stopped, change speed abruptly so that it runs extremely (even infinitely) fast, and then stop once
more. Correctness proofs typically assume that processor speeds are determined by an adversary, whose
goal is to prevent the parallel program from executing correctly or efficiently. Because processors may
change speeds to an arbitrary degree, processors are not assumed to have knowledge of their own speed.

This machinery is useful for mission critical applications, in which a program must run correctly and
steadily, regardless of the erratic behaviors of the individual processors. On the other hand, it may not be
worth paying the overhead that these schemes entail if (1) the application is not mission critical, or (2) if the
processors are not arbitrarily erratic, that is, if they change speeds, but most of the time by too much.

Scheduling on Related Processors. Executing a parallel program on heterogeneous processors is a com-
mon problem in scheduling theory. In this field there is an underlying assumption that processors may have
different speeds but that the speeds do not change. The goal is to schedule a parallel program represented as
a directed acyclic graph (dag) to minimize the makespan, that is, the maximum completion time of the jobs.
Using terminology from scheduling theory, the problem is that of scheduling precedence-constrained tasks
on related processors to minimize the makespan.

Because this problem is NP-hard [30] even when all processors have the same speed, the scheduling
community has concentrated on developing approximation algorithms for the makespan. Early papers in-
troduce 0(

p
p)-approximation algorithms [19, 20], and more recent papers proposeO(log p)-approximation

algorithms [13, 12]. Unfortunately, some common assumptions from scheduling theory often do not apply
to parallel computing, and consequently many scheduling algorithms from this field are not usable in our
setting. For example, many of these scheduling algorithms run offline, that is, after seeing the entire struc-
ture of the parallel program. In addition, the schedulers usually have full knowledge about the state of the
system and have the unlimited ability to apply the scheduling decisions.

Finally the quality of many of the scheduling algorithms are measured using the approximation ratio.
Even in the homogeneous setting, it is known that the approximation ratio may be misleading [10] by a
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factor as large as 2. The approximation ratio is dramatically less reliable when processors are heterogeneous
for several reasons that we describe shortly.

The Heterogeneous Setting. To develop intuition about the heterogeneous setting, consider the natural
class of greedy schedules, in which no processor is allowed to stay idle if there is a task that can be assigned
to it. When processors are homogeneous, all greedy schedules have essentially comparable makespans
(within a factor of 2 of each other). However, when processors are heterogeneous there may be an unbounded
ratio between the makespan of the best greedy schedule and the makespan of the worst greedy schedule. To
obtain a schedule having a good makespan, fast processors should be assigned to longer paths in the dag and
slower processors should be assigned to shorter paths. This assignment process is computationally difficult
because nodes in the dag may belong to many interleaving paths of different lengths.

Thus, for any p homogeneous processors, consider p heterogeneous processors that have the same aver-
age speed. The optimal makespan in the heterogeneous setting may be much smaller than in the homoge-
neous setting. However, practical and computational limitations usually prevent this elusive schedule from
being found. On the other hand, it is easy to encounter a poor schedule, especially when the processors’
speeds can change. This is why users prefer homogeneous processors to heterogeneous ones, even though in
ideal conditions the heterogeneous processors may allow shorter schedulers. Thus, in this paper the objective
of an efficient scheduler is to use its heterogeneous processors as efficiently as if they were homogeneous.

Results. We present the following results.

1. We provide a new analysis of of an old scheduling algorithm called the maximum utilization sched-
uler [19]. In particular, we prove a bound on the makespan and on the number of preemptions. Based
on this analysis, we generalize this scheduling policy and define the high utilization scheduler. We
explain why these scheduling policies have close to optimal makespans on dags that represent most
parallel programs.

The algorithms presented so far are not directly implementable because the schedulers require too
much centralized control. However, they provide insight into how to schedule parallel programs on
heterogeneous systems.

2. We next focus on the Cilk platform and present the main result of the paper. We introduce a new
algorithm for scheduling Cilk multithreaded parallel programs on heterogeneous processors. This
scheduler is inspired by the high utilization scheduler, modified to fit in a Cilk context. A crucial
aspect of our algorithm is that it retains the original spirit of the Cilk scheduler. In fact, when our
new algorithm runs on homogeneous processors, it exactly mimics the dynamics of the original Cilk
scheduler.

1.1 Definitions and Notation

There are p processors labeled 1; : : : ; p where processor i has speed �i steps/time. For the sake of conve-
nience, we assume that �1 � �2 � : : : � �p. In much of the paper we assume that the processor speeds do
not change. Let �tot steps/time be the total computing power of all of the processors, that is, � tot =

Pp
i=1 �i:

Let �ave steps/time be the average speed of the processors, that is, � ave = �tot=p:

A directed acyclic graph (dag) G = (V;E) describes the structure of a parallel program. The nodes of
the dag represent tasks that the processors must complete, and the edges represent dependencies between
the tasks. Thus, if there is an edge (u; v) 2 E, then v cannot be executed until after u completes. In this
case, we say that u is a parent of v. Tasks are grouped into larger segments of code called threads; a thread
is a length path in the dag.
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A series parallel dag G = (V;E) is a directed acyclic graph with two distinguished vertices, a source
s and a sink t. The family of series parallel graphs are described using the following grammar. A series
parallel dag G = (V;E) is one of the following: (1) A single edge extending from s to t, that is, V = fs; tg
and E = f(s; t)g. (2) Two series parallel graphs G1 and G2 composed in parallel. The sources s1 and s2 of
G1 and G2 respectively are merged into a single source s and the sinks t 1 and t2 of G1 and G2 are merged
into a single sink t. (3) Two series parallel graphs G 1 and G2 composed in series. The sink t1 of G1 and the
source s2 of G2 are merged into a single node.

Cilk parallel programs are modeled by fully strict dags. A fully strict dag is series parallel, all of the
nodes in the dag have outdegree at most 2, and there is one node with indegree 0 and one node with outdegree
0. The root thread is a path extending from the first node in the dag to the last node. A node in the root
thread with outdegree 2 spawns another thread, which continues until it joins the root thread once more.
This thread may spawn child threads, which may in turn spawn child threads.

Let W1 represent the total work, that is the total number of nodes in the dag G. Let W1 represent the
critical path length of the graph, that is, the number of nodes in the longest chain in G. Consider a modified
dag G0 in which all nodes that do not have indegree � 2 or outdegree � 2 are removed. Let S 1 represent
the total number of edges in G 0 in the dag, and let S1 be the critical path in G0. Let Tp represent the time to
execute G on p processors. A task or thread is ready if all of its predecessors in G have been executed.

We say that a thread is preempted if it is interrupted and later resumed, possibly on a different processor.
We say that there is a migration whenever the state of the system is moved from one processor to a different
processor. Thus, there may be a migration if a previously idle processor begins executing a thread because
the processor may have obtained the thread from another processor. There is not a migration if a processor
finished executing a thread and then executes a successor thread in the dag. Thus, there may be a migration
without a preemption, or a preemption without a migration. All migrations entail an additional cost, which
we take into account.

We say that an event E occurs with high probability (w.h.p.) if for any c > 0 there exists a proper choice
of constants such that Pr fEg � 1� n�c.

1.2 Related Work

Graham [17, 18] proved that a list schedule is a (2� 1=p)-approximation to the optimal makespan, and this
result holds for any greedy schedule. (In a list schedule, the jobs have fixed priorities and the processors
execute the ready tasks in the system with the highest priorities.) This results derives from the following
theorem:

Theorem 1 ([17, 18, 11]) A greedy schedule (or list schedule) has makespan

Tp �
W1

p
+

�
p� 1

p

�
W1:

Jaffe [19] shows that the following preemptive scheduling policy, called a maximum utilization schedule
is a O(

p
p)-approximation algorithm. At all times, maintain the following invariant: if there are i, i < p,

ready threads, assign these threads to the i fastest processors. Note that threads may be preempted; that is,
in the middle of the execution of a thread, a faster processor may take up the responsibility for executing the
thread. Jaffe [20] then showed that the following nonpreemptive is also a O(

p
p)-approximation algorithm

for the makespan. Consider the following two schedules and select the one having the better makespan:
(1) assign all jobs to the fastest processor, and (2) assign all jobs greedily to processors having speed faster
than half the average. More recently, Chudak and Shmoys [13] obtained a O(log p)-approximation by using
a linear programming relaxation to decide at which speed each task should run. Chekuri and Bender [12]
developed a combinatorial approximation algorithm having the same asymptotic approximation ratio.
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Cilk Scheduler. Cilk is a parallel system with a scheduler that has provable performance guarantees. The
Cilk scheduling algorithm is entirely distributed and uses the idea of work stealing. Namely, if a processor
is idle, it randomly chooses another processor, checks if the processor has extra work, and if so, steals some.
The work is stolen in a way that avoids a large increase in memory usage or in running time. The Cilk
scheduler works as follows. Each processor maintains a double-ended queue, which is called a ready deque.
Threads can be inserted and removed from either end of the ready deque. If a processor has no local work
to do, it begins work stealing. Each processor i operates as follows:

CILK SCHEDULER

1. The processor chooses a victim processor j uniformly at random.

2. If the victim j’s ready deque is empty, processor i attempts to steal again.

3. Otherwise, it steals the thread T from the top of the deque and begins executing it. The processor begins
working on thread T until one of three situations:

(a) Thread T spawns a thread T 0. In this case, the processor puts T on the bottom of the ready deque
and starts work on thread T 0.

(b) The thread T returns or terminates. If the deque is not empty, the processor begins working on the
bottom thread. If the deque is empty, it tries to steal and execute thread T ’s parent. Otherwise, if
the parent is busy, the processor attempts to work steal.

(c) The thread reaches a synchronization point. In this case, the processor attempts to work steal. (Note
that the deque is empty.)

Thus, the processor uses its own ready deque as a stack but other processor’s deques as queues.

2 High Utilization Schedules

We now provide a new analysis of the maximum utilization scheduling policy. This scheduler maintains
the following invariant. During each time interval in which there are exactly i ready tasks, for each i < p,
the fastest i processors execute these tasks. If there are i � p ready threads, then all of the processors
work. Beyond this basic restriction, any processor may execute any task. Note that in order to maintain this
invariant, the scheduling policy must allow preemptions.

The maximum utilization scheduling policy is a O(
p
p)-approximation algorithm and there are other

scheduling algorithms that have comparable approximation ratios and that do not even require preemptions.
As a result, the maximum utilization strategy has languished in relative obscurity. However, many of the
other scheduling strategies suffer from the following drawbacks: either (1) they are too complicated to be
implemented efficiently, or (2) they produce schedules that are qualitatively unsatisfactory.

The maximum utilization schedule has a straightforward generalization, which we call a high utilization
schedule. In this scheduler we relax the invariant so that: at all times: if there are i, i < p, ready threads,
the fastest idle processor is at most � times faster than the slowest busy processor. Thus, when � = 1, we
obtain a maximum utilization schedule. This makespan of a high utilization schedule may be inferior to the
makespan of a maximum utilization schedule, but may have the advantage of fewer preemptions.

We will demonstrate two advantages of high utilization schedules: (1) in the common case in parallel
computing, high utilization schedules are almost optimal, and (2) they convey a straightforward message to
practitioners, run your parallel program on the fastest processors that you can find, and this may be all the
optimization that is required. On actual system such as the Cilk platform, the unembellished high utilization
schedule may be too complicated to implement. However, the straightforward concept of using the fastest
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processors that you can find can be generalized so that it is practical. Thus, high utilization strategies are
important because of the guidance that they give in actual situations.

Theorem 2 Any maximum utilization schedule has makespan

Tp �
W1

p �ave
+

 
�2

�1
+
�3

�2
+ : : :+

�p

�p�1

!
W1

p �ave
�

W1

p �ave
+

�
p� 1

p

�
W1

�ave
:

Proof: We introduce an accounting tool. We postulate p � 1 disjoint shadow threads ST 2; ST3; : : :STp.
Each shadow thread is an imaginary chain of tasks. When a processor i is unable to do any work on an
actual thread, we say that the processor begins working on its shadow thread ST i.

Consider any time interval in which processor i is idle and thus working on its shadow thread ST i. Since
not all processors have actual work, we are assured that progress is being made on the critical path at the
rate of the slowest working processor. That is, since only faster processors 1 : : : i� 1 may be working on
the computation, the critical path is advancing at a rate of at least � i�1 steps/time.

Because the critical path has length W1, processor i can work on STi for �i=�i�1W1 time units.
Processor 1 is never idle. Therefore the total amount of work the processors dedicate to actual and shadow
threads is at most W1 + (�2=�1 + �3=�2 + : : :+ �p=�p�1)W1: Because the processors operate at �tot
steps/time we obtain the desired bound.

Note that from the Theorem 2, we obtain Theorem 1 as a corollary. The makespan can be marginally
improved by more strategically placing processors on threads. Namely, put the i-th fastest processor on
the i-th longest critical path. This policy guarantees that the critical path always progresses at least at the
average speed of the working processors.

Claim 3 Suppose that the maximum utilization strategy additionally maintains the invariant that the i-th
fastest processor executes the thread that is i-th farthest from the end of the dag. This amounts to putting
the fastest processor on the critical path. Then the computation has makespan.

Tp �
W1

p �ave
+

"
�2

�1
+

2 �3

�1 + �2
+

3 �4

�1 + �2 + �3
+ : : :+

(p� 1) �p

�1 + �2 + : : :+ �p�1

#
W1

p �ave
:

Unfortunately, this gain in makespan seems small in comparison to the potentially infinite number of addi-
tional preemptions that this policy entails.

The proof of Theorem 2 extends to prove the following theorem that provides a bound on the makespan
of a high utilization schedule.

Theorem 4 Any high utilization schedule has makespan

Tp �
W1

p �ave
+

�
p� 1

p

�
�W1

�ave

We now provide a bound on the number of migrations in a high utilization schedule. of the execution
from another

Theorem 5 Consider a high or maximum utilization schedule of an arbitrary dag. If there are a total of S 1

threads, then there are at most 2S1 migrations.

The proof appears in the appendix. Thus, if there is a bound M on the time to migrate, then we have
a bound on the increase in makespan from Theorem 6 when migrations have a cost, namely 2MS 1=p. The
quantityM may include the cost to send the system state from one processor to another or even may include
the cost to restart a thread from some previous checkpoint. One could balance the parameters M and � to
optimize the makespan, e.g., only preempt and migrate if there is a substantial gain.
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Performance in the Common Case. Even though the high utilization schedule is a O(
p
p) approximation

algorithm for general dags, on dags that represent most parallel programs, the algorithm has a substantially
better performance. In most parallel programs W1=p � W1 [10]. An interpretation of this inequality is
that the parallel program has enough inherent parallelism to justify the use of p processors. Observe that in
Theorems 2 and 4, W1=�tot is a lower bound on the makespan, and when � > 1 is sufficiently close to 1, this
quality dwarfs �W1=�ave. Therefore, even though the high utilization schedule is a O(

p
p) approximation

for general dags, in the case of dags representing typical parallel programs, it is almost optimal. This is not
true of the nonpreemptive O(

p
p) approximation algorithm.

3 An Enhanced Cilk Scheduler

Direct implementation of the the scheduling policies in the previous section are impractical because they
rely on global control. However, the general design principle of high utilization is critical, and we apply this
concept in Cilk scheduling. In this section we describe an enhanced Cilk scheduler that runs correctly and
robustly even when processors have different speeds. Moreover, when the processors run at similar speeds,
our new schedule behaves identically to the standard Cilk scheduler. Thus, an important feature of our
scheduler is that it is extremely similar to the original scheduler at a small cost in algorithmic complexity.

In this algorithm there are two kinds of migrations: (1) steals and (2) muggings. In a steal, a processor
does not interrupt a thread. Instead, a processor begins working on a thread at the top of another processor’s
ready deque. In a mugging, there is no work on another processor’s ready deque, and so the processor
“mugs” a slower processor and takes the thread that the slower processor was working on.

ENHANCED CILK SCHEDULER

1. Processor i chooses a victim processor j uniformly at random.

2. If the victim j’s deque is not empty, it steals the thread T from the top of the deque.

3. If the victim j’s deque is empty, but the victim is working on a thread T and its speed is � times slower
than processor i, then i mugs j, that is, i interrupts j and takes the thread T .

4. If processor i has located a thread T , i works on T until one of four situations:

(a) Thread T spawns a thread T 0. In this case, the processor puts T on the bottom of the ready deque
and starts work on thread T 0.

(b) The thread T returns or terminates. If the deque is not empty, the processor begins working on the
bottom thread. If the deque is empty, it tries to steal and execute thread T ’s parent. Otherwise, if
the parent is busy, the processor attempts to work steal.

(c) The thread reaches a synchronization point. In this case, the processor attempts to work steal. (Note
that the deque is empty.)

(d) Processor i is mugged and the thread T is migrated to another processor. In this case, processor i
attempts to work steal.

5. Otherwise, there is a failed steal attempt; processor i tries to steal again.

Thus, if all processors operate at speeds within an � factor of each other, then there are no muggings and
the scheduler behaves like the standard Cilk scheduler. The parameter � can be tuned to optimize system
performance.
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Design Assumptions. We make the following additional assumptions: (1) Each processor steals at a rate
proportional to its speed. (2) Steals and steal attempts are completed in an amount of time that is propor-
tional to the speed of the processor doing the stealing/mugging. It is important that the steal responses do
not depend on the speed of the victim processor because otherwise the slowest processor can delay the en-
tire system.1 There are several ways to ensure this design principle. For example, if there are at most two
magnitudes of difference between the fastest and slowest processor speeds, then the times for steal attempts,
muggings, and steals can be calculated accordingly. We could also require some mechanism for communi-
cating steal attempts, such as a shared memory, that allows one processor to look directly into the deques of
other processors.

3.1 Analysis

We now analyze the running time of the Enhanced Cilk Scheduler. We prove the following performance
guarantee.

Theorem 6 W.h.p., the execution time Tp of the enhanced Cilk Scheduler is bounded as follows.

Tp �
W1

p �ave
+ O

�
W1

�ave

�
:

We use an accounting argument to prove Theorem 6. Observe that at all times a processor is either (1)
executing an instruction, or (2) attempting to steal (and perhaps actually stealing or mugging). For simplicity
of analysis, we assume that each of these operations requires one unit of work. (In fact, executing an
instruction is likely to be much faster and so in our analysis we can group multiple instructions together.)

We postulate two buckets that we use for accounting, a work bucket and a steal bucket. Each time a
processor completes a unit of work on the dag it puts one dollar into the work bucket; each time a processor
completes a steal attempt (successful or not) it puts one dollar into the steal bucket. (This approach was
used in the original paper of [10] and in much of the subsequent work on Cilk.) There are � tot dollars that
enter the buckets per unit of time. Therefore, if at the end of the computation, there are a total of D dollars
in both buckets, then the computation ran in time D=� tot.

Computing the number of dollars in the work bucket is straightforward, because each time the processor
completes one unit of work, it puts a dollar in the work bucket.

Observation 1 At the end of the computation there are a total of exactly W 1 dollars in the work bucket.

We now use a potential-function argument to prove a bound on the number of dollars in the steal bucket.
This argument is an extension of the result in [1, 7] and begins with some definitions.

Definitions For any (nonroot) node v, suppose that node u is the last of v’s parents to be executed. Then
we say that the execution of node u enables node v. Node u is called the designated parent of v and edge
(u; v) is called the enabling edge. The graph composed of all the enabling edges is called the enabling tree.
The node that is being executed at time t by processor i is called the assigned node of processor i. We
assign weights to all of the nodes, so that we can use these weights in a potential function argument. Let
d(u) denote the depth of node u in the dag. Each node u has weight w(u) = W1 � d(u).

Now supplied with these definitions, we describe the Structural Lemma of the deques. This lemma
guarantees that for any deque at all times during the execution if the work stealing algorithm, the designated
parents of the nodes in the deque lie on the root-to-leaf path in the enabling tree.

1If the steal attempts run at the speed of the victim processor then the work-stealing approach may not have guaranteed good
performance. This is because the root thread of the computation may reside on a processor that is entirely stopped, and the
computation cannot proceed.
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Lemma 7 ([1, 7]) Let k be the number of (ready) nodes in a given deque at any time t, and let v 1; v2; : : : ; vk
denote these nodes ordered from bottom to top. Let v 0 be the assigned node. In addition, for i = 1 : : :k,
let ui be the designated parent of v i. Then for i = 1 : : :k, node ui is an ancestor of ui�1 in the enabling
tree. Moreover, although it may be that u0 = u1, for i = 2 : : :k, ui�1 6= ui. Thus, the weights of the nodes
increase from bottom to top, that is, w(v 0) � w(v1) < w(v2) < : : : < w(wk).

We now present the potential function that we will use [1, 7]. Let R t be the set of ready nodes at time
t. Each node is either in some deque or assigned to and executed on some processor. For each ready node
v 2 Rt, we define its potential �t(v) as

�t(v) =

(
32�w(v)�1 if v is assigned;
32�w(v) otherwise.

We let �t(i) denote the sum of the potentials of the nodes on processor i at time t. We let � t =
Pp

i=0�t(i)

be the value of the potential function at time t. Thus, the initial potential is 3 2�W1 because the root node has
depth 0 and is initially unassigned. The final potential is 0 because all nodes have been completed.

Observation 2 For any processor at time t during the execution of the scheduling algorithm, the potential
of the topmost nodes in the deques contributes at least 3=4 of the potential associated with the processors
that have nonempty deques.

We now divide the computation into phases, which are defined inductively by when steal attempts occur.
The first phase begins at time t = 0, the start of the computation, and it ends after (� + 2)p steal attempts
have occurred. The i-th phase begins at the end of the (i � 1)-th phase and completes, as before, after
(� + 2)p additional steal attempts have been made.

Theorem 8 There is at least a constant probability that within each phase, the potential drops by at least a
constant factor. Therefore, there are at most O(logn) phases, both expected and with high probability.

Proof: At any time t we partition the potential � t = Dt + St + Ft into 3 disjoint components. The com-
ponent Dt is associated with processors whose deque contains nodes. The rest of the potential is associated
with processors that have empty deques, but which may have assigned nodes. We divide this remaining
potential into components associated with processors we define as slow and fast respectively. A processor
i is called slow in phase `, if during phase `, the processor does not have time to finish executing the node
that it was working on when the phase began. A processor i is called fast otherwise.

We first consider the potential Dt associated with the set of processors whose deques are not empty.
Recall that at least 3=4-th of the potential from nodes in the deques is exposed at the top of the deques.
Consequently, because there are (2 + �) steal attempts in any phase, the probability that there is no steal
attempt in a deque is at most e�(2+�). When the node at the top of the deque is stolen, the potential of this
node decreases by a factor of 2=3 because the node is now assigned to a processor.

Let value Q be the sum of the potentials of the nodes at the top of the deques. Then the expected value
of the remaining potential of these nodes after the phase ends is at most e�(2+�)Q+ (1� e�(2+�)) 2Q=3.
Therefore, by the Markov inequality, there is at least a constant probability that the potential associated with
these nodes decreases by at least a constant factor. Consequently, by Corollary 2, with at least a constant
probability the potential associated with all the nodes in those deques decreases by at least a constant factor.

We now examine the component Ft of the potential, that is, the potential associated with fast processors
having empty deques at the start of phase `. For any such processor i, the completion of i’s assigned node
causes the potential to decrease by at least a constant factor because i’s original assigned node will be
completed.
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Finally, we examine the component St of the potential, that is, the potential associated with slow pro-
cessors having empty deques at the start of phase `. In order to reduce the potential of a slow processor i
that contributes to St, another processor j must (1) choose to mug processor i, and (2) complete one node of
the thread that it obtained from processor i. In order to mug i, processor j must be more than � times faster
than processor i. How many steal attempts are there in phase ` that satisfy these conditions? Any processor
that makes � + 2 steal attempts in the phase must be more than � times faster than processor i, which does
not even finish executing one node. Consequently, in (� + 2)p steal attempts, there will be at least p steal
attempts that satisfy all of these conditions. Therefore, the probability that any given slow processor is not
mugged is at most 1=e. Let value Q0 be the sum of the potential of the nodes being executed by the slow
processors. Then the expected value of the remaining potential of these nodes after the phase ends is at
most Q0=e. Therefore, by the Markov inequality, there is at least a constant probability that the potential
associated with these nodes decreases by at least a constant factor.

By considering all three cases, we conclude that there is at least a constant probability that the total
potential decreases by at least a constant factor. Therefore, by applying Chernoff Bounds, we conclude
that after at most O(W1) phases the potential has decreased until it is zero, both expected and with high
probability.

From Lemma 8, we conclude that there are at mostO(�W1p) steal attempts and consequentlyO(�W1p)

dollars in the steal bucket. Therefore, the running time of the algorithm is W 1=(p�ave) + O(�W1�ave),
which concludes the proof of Theorem 6.

Finally, we end this section by observing that it is not even necessary in the previous argument to define
a particular value of �. That is, the argument works if processor i mugs another processor j as long as
�i > �j . The advantage of introducing �, is that it reduces the number of migrations.

4 Changing Speeds and Discussion

So far we have assumed that the processor speeds are fixed. Our algorithms also run correctly when the
speeds change, but possibly at an additional cost. To understand why, first reconsider high utilization sched-
ules. Even when speeds change, the high utilization requirement can still be maintained through additional
migrations. The same holds for the high utilization scheduler. The value of � can be chosen to smooth out
the schedule so that small fluctuations in processor speeds do not lead to as many additional migrations.

The same advantages apply to our enhanced Cilk scheduler. Our scheduler uses no global control, and in
its place only brief interactions between pairs of processors. Processors do not even have to store information
about the speeds of the other processors, which might quickly become out of date. Consequently, this
algorithm easily adapts to changing speeds. As speeds are modified, there may be additional steal attempts
and muggings. As before, the value of � can be chosen to remove unnecessary muggings. Thus, the
performance of the scheduling algorithm degrades gracefully as the speeds become more erratic.
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Appendix

Proof of Theorem 5 We divide the computation into phases, S1; S1 � 1; : : : ; 2; 1, where in phase � the
computation has � (incomplete) threads. Within a phase, a computation has no migrations at all. A phase
begins when the number of active threads (e.g., threads currently being executed by processors) changes.

Assume without loss of generality (w.l.o.g.) that at most one thread completes at any time. (If two
threads complete simultaneously, we break the tie arbitrarily.) There are two cases for the dynamics of the
schedule when a thread completes. (1) When a thread T� completes, no new threads active become active.
Then the slowest currently-active processor k migrates to the idle pool, and the processor j on T � migrates
to k’s thread. (If we are lucky, the slowest currently-active processor k is already on thread T�.) (2) When
a thread T� completes, x new threads become active. Then x� 1 processors migrate from the idle pool to a
new active thread and one processor migrates from the completed thread T� to a new active thread.

Proof of Lemma 7 The proof is by induction on times in which the structure of the deque changes, as
in [1, 7]. There are five possible ways that the deque may change: (S) The top node of the deque is stolen;
(E0) The assigned node enables 0 children; (E1) The assigned node enables 1 children; (E2) The assigned
node enables 2 children; (M) The processor is mugged and the assigned node is moved to a faster processor.

The first four cases are described and analyzed in the proof in [1, 7]. However, the case of muggings is
unique to the heterogeneous setting. This case can be integrated into the correctness proof using arguments
similar to those used in the cases of (S) and (E0).
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