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Abstract

This paper describes a genetic algorithm approach to the parallelization and scheduling of

loop nests. For parallelization, a chromosome-like coding scheme for weighted directed

acyclic graph (DAG) obtained through data dependence analysis is proposed. An evolutionary

strategy integrating merging rules and evolution operations is then derived to optimize

parallelization. The result obtained is a deterministic DAG ignoring possible branches and

dynamic spawning, based on which scheme for the static allocation and reallocation in case of

possible system exception are also investigated. A fair allocation scheme with minimal

execution time is then obtained.
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1. Introduction

Numerous efforts have been dedicated to loop transformations, which is the key to
automatic parallelization of program. Several approaches have been proposed, the most
remarkable among them are unimodular [Banerjee 91] and non-unimodular [Fernandez 95]
transformations, extended hyperplane method [Darte 94], optimal graph partition methods
[Calinescu 97a][Calinescu 97b] and graph transformation method [Liu 93].

The process of loop transformation can be divided into three stages. The first stage is to
gather useful knowledge about the underlying dependences of loop nests. The second stage is
to choose the optimal loop transformations in such a way that the dependences of loop nests
are obeyed and certain predefined goals are arrived. The third stage is to rewrite loop nests.

However, the predefined goals of loop transformation methods [Banerjee 91] [Fernandez
95][Calinescu 97a][Calinescu 97b] are limited to maximal parallelization blocks and minimal
total communication time. And minimal total communication time does not mean minimal
total execution time. Moreover, since optimal partition of graph is a NP-complete problem,
and existing algorithms, for instance, homomorphic transformation [Liu 93], can not reach
optimal results. Hyperplane method aims at minimal execution time but requires that the
distance vectors must be constant. In this paper, we propose a genetic algorithm (GA)
approach to parallelization of loop nests.

Since GA optimization is time-consuming and the cost of dynamic scheduling itself is
high, we attempt to optimize allocation of tasks during parallelization phase and schedule
tasks according to allocation scheme.

This paper is organized as follows: a brief description of constructing data dependence
graph, namely DAG, is given in section 2. Section 3 presents the simple transformation rules.
A chromosome-like coding scheme for DAG and an evolutionary strategy integrating merging
rules and evolution operations are discussed in detail in section 4. Section 5 describes static
allocating at parallelization phase and reallocating at runtime. Experimental results, which are
not limited to loop nests, are given in section 4 and 5. Section 6 presents our concluding
remarks.

2. Data Dependence Analysis

The interdependence of statements can be identified by read and/or write reference to
variables. For statements S1 and S2 referring to the same variable x, if at least one of them
modifies x, a data dependence exists between the two statements, denoted S1δ*S3.
For loop nests, data dependence is analyzed in terms of statement instances. A statement
instance is an execution of statements for a fixed value of the surrounding indexes.

In order to identify potential parallelism available in the loop body, distance vector is used
to represent the data dependence between statement instances. For two statement instances
(not necessarily distinct) S1 and S2 that refer to the same k-dimension array variable A at the
iteration points (i1, i2, ..., in) = (x1, x2, ..., xn) and (i1, i2, ..., in) = (y1, y2, ..., yn), respectively,
where i1, i2, ..., in are loop indexes, the distance vector is (y1 - x1, y2 - x2, ..., yn - xn).

The dependence information can be organized as a DAG comprising nodes and edges
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representing statement instances and data dependence between them respectively.
Consider the loop nest in Figure 1, where the data dependence S(1)δ S(3) exists, a

dependence equation can be derived:
I1 = I2 – 2, where 1<= I1, I2 <=8

The solutions are (I1, I2)=(1,3), (2,4), (3,5), (4,6), (5,7) and (6,8). The pair (1, 3) stands
that S(I1=1) modifies the variable A[1] and S(I2=3) refers to the same variable A[1], so S(I1=1)
and S(I2=3) should be executed in the order of 1�3. So does the pair (3, 5). Moreover, the
pairs (1, 3) and (3, 5) stand that S(I2=3) and S(I1=3) are the same statement instances, so
S(1)S(3)S(5) should be executed on the same processor and the execution order of 1�3�5
must be preserved. We can see that there exist two dependence orders:

1�3�5�7 and 2�4�6�8
Therefore a DAG representing the data dependences is obtained (as shown in Figure 1(b)).

Algorithms constructing such dependence graph can be found in [Liu 97]. The original loop
nests can be rewritten as Figure 1(c).

We will use weighted DAG through the rest of this paper, where the weight associated
with node stands for computation time of statement instances, and the weight associated with
edge stands for communication time between them.

3. Transformation of DAG

DAG constructed as above can form a parallelization if it is not connected. However, it is
usually connected. Through transformation of DAG, that is, merging nodes and edges, a more
effective DAG can be obtained.

For two DAGs G=(V, E), G'=(V',E'), where V, V' are sets of nodes, and E, E' are sets of
directed edges, and a transformation T transforming G into G', the following definitions and
lemma are taken from [Liu 93]:

Definition 1
T is a homomorphic transformation if T satisfies:
1) Homomorphism if T maps nodes Aj1�...�A jn in G to A'l in G', and if EAA lk ′>∈′′< , ,

there exists
Aip � kA′ , Ajq � 1A′ , such that <Aip, Ajq> ��E. If <Aip, Ajq> � E, then there exists kA′ � 1A′  �

V ′ , such that EAA lk ′>∈′′< ,  or kA′ = 1A′  for the case k=1.

2) Connectivity (A'l is a connected subgraph consists of Aj1�...�A jn, preserving the
topology of G.)

Definition 2
T is a regular transformation if G' is a DAG and data dependence is obeyed.
Lemma
1) A regular transformation can be implemented by a sequence of merging operations.

Every merging operation merges the start node and the end node of a directed edge or a single-
level tree, called Simple Transformation (ST);

2) The effect of ST can be determined by the in-degree of the end node and the out-degree
of the start node, computation time (weight of node) and communication time (weight of
edge).
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3) ST can be classified into the following four types: namely, SISO (Single In-degree and
Single Out-degree), SIMO (Single In-degree and Multiple Out-degree), MISO and MIMO.

According to the Lemma, we have the following ST rules (illustrated in Figure 2):
1) Type-A

Node A can be merged into node B if out-degree of node A and in-degree of node B are one;
2) Type-B

Node Ai (i=1,...,k) can be merged into node B if out-degree of node Ai (i=1,...,k) is one, in-
degree of node B is larger than one and node Ai (i=1,...,k) is parent node of node B;

3) Type-CD
Node A can be copied and merged into children of node A, denoted B1, ..., Bk, if out-degree of
node A is k and in-degree of node B i (i=1, ..., k) is equal to or greater than one.

Now, we can apply these rules to any DAG. However, transformation results of a DAG
depend on the sequence of merging. As shown in Figure 3, different sequences of
transformations may lead to different DAGs whose execution times are different,too. It is a
NP-complete problem to search the minimal-execution-time transformation of DAG, which
can only be reached after exhausting all possible merging sequences. In the following section,
GA approach is adopted to solve such problem.

4. GA Approach to Optimal Transformation

Given a DAG G=(V, E), for the sake of convenient treatment, unique nodes such as Vin

and Vout with zero-weight can be added, which are called source node and destination node, to
G respectively. And edges with zero weight can be added from Vin to all zero in-degree nodes
and from all zero out-degree nodes to Vout.

Definition 3
For v � V, the length of the longest directed path from Vin to v is called the level of v,

denoted Level (v), here by longest we mean the maximal number of edges on the path. We
have the following:

Level (Vin) = 0
Level (Vj) = 1)}({max +i

i
VLevel , here Vi are parent nodes of Vj.

Definition 4
For all the directed paths from Vi to Vj, the path with the largest sum of weights is called

the critical path from Vi to Vj. Here the sum includes both the weights of nodes and edges on a
path.

Definition 5
The critical path from Vin to Vout is called the critical path of the DAG.
Definition 6
The sum of all weights of a critical path from Vin to V is called the earliest completion

time of node V, denoted Te(V). Also we have the following:
Te(Vin) = cost(Vin)
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Te(Vj) = )(cos)}(cos)({max jijie
i

VtEtRVT +⋅+ , where cost(Vj) stands for weight of Vj and

cost(Eij) stands for weight of Eij, Vi is parent nodes of Vj, and R is the ratio of computation
time and communication time.

Definition 7
The sum of weights of the critical path of DAG G is called the earliest completion time of

G, denoted Te(G). Te(G) is the lower bound of the execution cost of G.

Definition 8
For DAG G=(V,E),

Tl(G)  =

is called the last completion time of G, denoted T1(G).
T1(G) is the maximal execution time of a program executed in sequential order in the case

only one physical processor is available. For a DAG G and its transformation results G1,G2,...,
Gn obtained by applying ST rules, we can choose the one with the least Te(G). We may
identify the one with the least T1(G) if there are more than one DAGs with the same Te(G).
Here Te(G) and T1(G) are object function.

We now introduce the chromosome-like coding scheme. First, we arrange all edges <Vi,
Vj> in G by the level (Vi), level(Vj ) in ascending order. One bit is assigned to each directed
edge, a binary vector (chromosome) with length of |E| is obtained. The merging of two nodes,
Vi and Vj, is accomplished by setting the bit corresponds to <Vi, Vj> to zero.

Definition 9
The set of edges that will be changed when applying one ST rule to G is called basic

merging edge set (BME set). The elements of the BME set are arranged according to the
significance (from the most significant to the least) of bits in a binary vector.

The BME sets of ST rules are listed in the following:
1) Type–A

The bit corresponds the edge <a,b> is zero, {<a,b>} is a BME set.
00 ==+= eabab ccccc ��

2) Type–B
The bits correspond to the edges e1=<a1,b>, e2=<a2,b>, e3=<c,a1> and e4=<d,a2> are zero.
The bits corresponds to the edges e5=<c,b> and e6=<d,b> remains
unchanged,.{<a1,b>,<a2,b>,<c,a1>,<d,a2>,<c,b>,<d,b>}is a BME set.

0;0;;; 2146635521 ==+=+=++= eeeeeeeeaabb cccccccccccc

3) Type-CD
The bits correspond to the edges ei=<a, bi> (i=1,...,k) are zero. {<a,bi>(i=1,...,k)}is a BME
set.

010 =⋅⋅==+= aeibiabi ckicccc ���

An edge may belong to two distinct basic transformation edges sets. BME sets are first
applied to initialization process of GA and then to crossover and mutation operations. When

∑
∈∈

∗+
EeVv

etRvt
,

))(cos)((cos
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ST rules are applied to DAG G, BME sets of G are treated as a whole. Especially when
crossover operation is concerned, transformation requires that crossover operation should not
treat edges in BME sets differently. Assume that C1 and C2 are two chromosomes participating
in crossover operation, we have the following crossover rules:

Rule 1. B is one of the BME sets of C1 and C2, then crossover operation is not allowed to
divide B into two non-null sets;

Rule 2. If an crossover operation divides C1 into two parts, and the corresponding node
sets are V1 and V2, for any v � V1 and v � V2, then only one of the following holds:

i) v has only been changed in C1;
ii) v has only been changed in C2;
iii) v has never been changed.

For DAG G, we summarize our parallelization algorithm, with Te(G) and T1(G) as object
function, Pc as crossover probability, Pm as mutation probability, and Pop_Size as population
size, as follows:

Step 1 Generate BME sets of original dependence graph. Randomly choose several BME
sets (not interleaving) to exercise transformation on G. Then a binary vector (chromosome) is
obtained, and added into initial Population; generate a Population with size Pop_Size;

Step 2 Repeat from step 3 through step 6 until termination conditions are satisfied;
Step 3 Calculate the object function (i.e. Te(Ci), Tl(Ci)) value of each chromosome in

Population; and then calculate fitness function value of each chromosome with

)(/)( ieei CTTCF =  where eT  is mean value of )( ie CT ; record the fittest chromosome in

history;
Step 4 Choose chromosomes with size Pop_Size from Population to form a new

population according to their fitness;
Step 5 Apply crossover operation on the new Population, subject to the crossover rules;
Step 6 Apply mutation operation to exercise transformation with newly generated BME

sets;
Step 7 Calculate object function value and fitness function value of each chromosome in

the last Population; choose the fittest chromosome in history.
The DAG obtained is deterministic. Moreover, branch structure is discussed in this paper.

Simulation result is shown in Figure 4, where a complex DAG is taken as example.

5. Static Allocation Based on DAG

We naturally extend our approach to the static allocation of DAG obtained previously
aiming at minimal total time of parallel execution and fair allocation. The two goals can be
judged according to weights of nodes and edges, and allocation scheme. At the same time,
robustness is also a factor under consideration. When an exception occurs, scheduler
responses and generates reallocation scheme from the exception point.

The most recent DAG-based scheduling algorithm can be found in [Blelloch 99], in which
dynamic DAG is also considered. As with their work, we have the following definitions:

Definition 12
A schedule of a DAG is a sequence of Si, i=1, 2, ..., k, steps, where each step comprises a
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set of nodes such that each node appears only once and a node can not be scheduled unless all
its parents have been scheduled.

Definition 13
A greedy schedule is such a schedule that every step comprises all ready nodes (tasks).
One step corresponds to one level of DAG from the definition of greedy schedule. The

algorithm of greedy schedule is the same to the one that calculates the level of nodes. Here we
use step(Vi) to represent the step of node Vi in greedy schedule.

Here, we propose an allocation algorithm. First, the algorithm divides nodes into several
sequential sets according to greedy schedule algorithm. And then, GA approach is adopted to
optimize allocation scheme.

We begin with encoding nodes of DAG with a structure vector. Every element represents
a node (task) and has two items, i.e. PROCESSOR_ID and PRIORITY. The PROCESSOR_ID
item represents the processor this task is allocated to. And the PRIORITY item represents the
priority this task owns. The priority is relative to other tasks allocated to the same processor in
the same step. Obviously, tasks allocated to the same processors should have different
PRIORITY, which leads to

Rule 1: For two distinct elements x, y of Chromosome, x<>y must be obeyed, i.e.,
x.PROCESSOR_ID= y.PROCESSOR_ID and x.PRIORITY=y.PRIORITY can not be satisfied
at the same time;

Object function consists of three parts:
1 Computation time of tasks;
2 Communication time between tasks if any; it can be ignored if the two tasks are

allocated to the same processors;
3 Fairness degree.

Here, Ti stands for load on processor i, T stands for average load, and n is the number of
available processors.

We use fairness degree factor, denoted B, to represent the importance of fairness degree.
The greater B is, the more important fairness degree is. When B is zero, the optimization
algorithm considers only minimum execution time.

For computation time of tasks, we have the following:
Te(Vin) = cost(Vin)

Te(Vj) = )(cos)}(),(cos)({max jkeijie
i

VtVTEtRVT +⋅+ , where cost(V) stands for weight of

V and cost(Eij) stands for weight of Eij, Vi is parent node of Vj, and R is the ratio of
computation time and communication time, and cost(Eij) is ignored if nodes Vi, Vj are
allocated to the same processor, and Te(Vk) is considered if nodes Vk, Vj are allocated to the
same processor and Vk, Vj are in the same step and Vk is completed just before Vj.

Assume that there are certain processors, denoted P, with probability Pf fails in some step
due to unexpected events. Consider robust static allocation. To do so, we randomly choose one
step, denoted Si, where fault appears, and define:

Rule 2: PPROCESSORxijSx j ∉≥∈∀ .:)(

nTTDEF
n

i
i /)(

1

2∑
=

−=
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Consider the static allocation scheme under such conditions. We calculate the value of
object function as follows:

Step 1 Calculate execution time of every processor according to static allocation scheme
and choose the largest value as the minimum execution time, denoted T;

Step 2 Calculate fairness degree, denoted DEF;
Step 3 The results of T+B*DEF are the value of object function.

We now present static allocation algorithm as follows:
Step 1 Randomly generate a structure vector (chromosome), and add it into initial

Population if it is subject to the two rules; generate a Population with size Pop_Size;
Step 2 Repeat from step 3 through step 6 until termination conditions are satisfied;
Step 3 Calculate the object function value of each chromosome; and then calculate fitness

function value of each chromosome with )(/)( ieei CTTCF =  where eT  is mean value of

)( ie CT ; keep record of the fittest chromosome in history;

Step 4 Choose Pop_Size chromosomes from Population according to their fitness; the
new Population consists of these Pop_Size chromosomes;

Step 5 Apply crossover operation on Population;
Step 6 Apply mutation operation on Population;
Step 7 Calculate object function value and fitness function value of each chromosomes in

the last Population; choose the fittest chromosome in history.
The static allocation scheme can be generated during parallelization phase. Scheduler can

allocate tasks step by step according to this scheme at runtime. The earliest completed task in
one step will trigger Scheduler to allocate new tasks onto processors and set reasonable
priority on tasks. If any exception event occurs, Scheduler generates new allocation scheme.
To do so, the information about completed tasks and running tasks on each processor need to
be recorded. We use completed set and waiting set to keep record of such information. Here
completed set refers to the tasks that have been completed on this processor, and waiting set
refers to the tasks that are waiting for being scheduled on this processor.

When an exception event occurs, Scheduler cancels all waiting tasks and the tasks on the
processor on which fault occurs, and recalculates the value of object function as follows:

Step 1 Calculate the execution time of every processor according to allocation scheme and
choose the largest value as the minimum execution time, denoted T, not including tasks in
completed set;

Step 2 Calculate fairness degree, denoted DEF;
Step 3 The results of T+B*DEF are the value of object function.
Then Scheduler recreate static allocation scheme according to the algorithm described

above.
Simulation result is shown in Figure 5. Special techniques [Huang 99] are adopted to

accelerate the convergence of allocation algorithm.

6. Conclusion
We have presented our approach towards parallelization and scheduling of loop nest.

Simulation experiments show that the scheme described in this paper can be applied to
optimize deterministic DAG-based problems
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For i = 1 to 8 do
S A[i] = g(A[i-2]);

(a)

For i=1 to 8 step 2 do
A[i]=g(A[i-2]);

For i=2 to 8 step 2 do
A[i]=g(A[i-2]);

(c)

3
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1 2

(b)

A

A,B
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(a) Type A

B

C D

A1A2B

C DA1 A1

(b) Type B

Figure. 1: Dependence graph and transformation of loop nests

(a)    (b) (c)
Figure. 3: Example of different merging sequences. (a) original dependence graph; its cost is
47; (b) merge nodes a, b into nodes c, d respectively (by Type-A); its cost is 42; (c) merge
nodes c and d into node e (by Type-B); its cost is 36;

(c) Type CD
Figure 2: Fundamental Merging Rules
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<0,7> 2 <3,7> 3 <5,10> 3 <7,12> 4
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<2,6> 3 <4,5> 3 <6,10> 2 <8,13> 3

<2,7> 3 <4,7> 2 <6,11> 3

task priority processor_ID Te

0 7367 2 12

1 21062 1 11

2 28978 2 21

3 22058 0 20

4 25529 3 17

5 3034 3 31

6 1169 2 33.2

7 22967 0 32.3

8 21207 3 43

9 9054 2 49.5

10 1021 0 45.4

11 15302 0 58.4

12 14194 2 58.5

13 16861 3 59

task 0 1 2 3 4

5 6 7 8

9 10 11 12 13

12 11 17

14

9 20

11 8 12

15 10 1613 9

(a)
Figure 5. Convergence of algorithm; (a) DAG-based
task flow graph; (b) allocation scheme where R=1.17,
B=13, Pf=0.1, Pc=0.7, Pm=0.1, Pop_Size=100, number
of processors is 4 and assume processor 1 will be down
at step 1 (Pm increases to 0.7 linearly). Result: 60.97. (b)

(a) (b)
Figure 4: Convergence of algorithm; (a) original dependence graph; (b) result:
chromosome=0001110000101, Te=142; Pc=0.75, Pf=0.02, Pop_Size=100, R=1.
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