
Competitive Home Model Algorithms for Load

Balancing in a Computing Cluster

Ron Lavi� and Amnon Barak

The Hebrew University of Jerusalemy

Abstract

Most implementations of a Computing Cluster (CC) use greedy-based heuristics to perform

load balancing. This is in contrast to the theoretical knowledge about the performance of on-line

load balancing algorithms. In this paper we de�ne the home model in order to better reect

the architecture of a CC in a theoretical model. We develop several on-line algorithms for load

balancing in this model. Our algorithms achieve better competitive ratios and perform less

reassignments than the algorithms for the unrelated machines model, which is the best model

known so far to describe clusters with complex characteristics, e.g. due to complex I/O patterns.

We also present empirical analysis of the performance of the new algorithms, showing that they

perform consistently better than existing load balancing methods, especially in a dynamic and

changing environment.

1 Introduction

A Computing Cluster (CC) is becoming a popular and powerful platform for various types of

computation. A typical CC is composed of several heterogeneous machines connected by a high

speed communication network, thus providing a cost-e�ective computation platform. In order to

achieve good performance on such a platform there is a need to balance the load among the cluster

machines. Most implementations of a CC use greedy-based heuristics for job assignments and

reassignments. This is in contrast to the theoretical knowledge about the performance of on-line

load balancing algorithms, which has developed signi�cantly in the last decade. Results from this

�eld indicate that when the cluster is not homogeneous, e.g. with respect to the machines' speed

and the I/O demands of the jobs, then there are better algorithms than greedy.

Despite of these results, there has not been many research in order to bridge the gap between

theory and practice. One exception is the opportunity cost algorithms that was developed using

a theoretical basis [1, 7]. These works developed a theoretical framework for the management

of several cluster resources as well as I/O and inter process communication overheads, based on

algorithms for the model of unrelated machines. They have also shown, by means of simulations,

that their algorithms outperform greedy-based heuristics in many common cases.

�Corresponding Author
yAuthors' address: Institute of Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;

email: ftron, amnong@cs.huji.ac.il

1

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

In this paper, we develop a theoretical model to better reect the architecture of a CC - the

home model. This new model is intended to better reect a general CC architecture by introducing

the assumption that each job is created on a speci�c machine, its home machine, and it prefers

to be executed on that machine, e.g. because of I/O considerations. This model is motivated by

several realistic cluster architectures. For example, in the MOSIX distributed operating system [5]

processes communicate with the system and with other processes through their homes, and therefore

prefer to execute their. In this case, if the cluster machines are connected by a LAN, the load the

process creates in its home is lower than the load it creates on other machines, since the I/O overhead

is due to the CPU processing of the network protocols [7]. Another example is a computing cluster

composed of several computing centers connected by a Wide Area Network. Since each process

communicates mainly with its originating center it prefers to execute their. In both example, of-

course, the need to migrate some processes to remote nodes exists, in order to balance the load and

the usage of other resources (e.g. memory).

Introducing the home model is needed due to a large gap between two basic theoretical models:

the model in which machines are characterized only by their speeds, called related machines, and

the most general model which assumes no known characterizations of the machines (but achieving

relatively weak worst case bounds), called unrelated machines. The home model is located between

these two models, i.e. it is more restrictive than the unrelated machines model and less restrictive

than the related machines model.

We de�ne the model and develop several theoretical on-line algorithms for load balancing in this

model. Our algorithms achieve better competitive ratios and perform less reassignments than the

algorithms for the unrelated machines model and the opportunity cost algorithms, which rely on

the algorithms for the unrelated machines model. We also show that the greedy algorithm performs

poorly in the home model, from the theoretical point of view.

After obtaining theoretical algorithms for the home model, we perform empirical analysis of their

performance by means of simulations. Their performance is compared to that of the greedy and

the opportunity cost algorithms, showing that the new algorithms perform consistently better. We

show that the main advantage of our algorithms is their improvement of the the main \weak point"

of the opportunity cost algorithms. The advantage of the opportunity cost algorithms is realized

mainly for jobs with complex characteristics, e.g. jobs that perform I/O to various machines. In

this case it is not possible to assume that the fastest machine in the cluster is the preferred machine

for all jobs, since this depends on their I/O requirements. However, when the environment is closely

related, e.g. all the jobs have small I/O overheads, a greedy approach still performs better than

the opportunity cost approach. The algorithms we develop do not su�er from this drawback. We

show that they are better than the greedy method for related environments and better than the

opportunity cost method for unrelated environments.

2 The Home Model

This section de�nes the home model and describes two competitive algorithms for di�erent variants

of the problem. It is also shown that the popular greedy method performs poorly in this model.

2

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

2.1 Statement of the Problem

The general load-balancing problem is de�ned as follows. We are given n machines and a sequence

of independent jobs that arrive at arbitrary times. A job j is de�ned by its load vector, pj =

(pj(1); pj(2); � � � ; pj(n)), where pj(i) is the load (li) of job j on machine i. When a job arrives it is

assigned immediately to one of the machines, in an on-line manner, thereby increasing the load of

this machine by the corresponding value of its load vector. The goal of the algorithm is to minimize

the maximal load seen in the entire running time of the machines.

A machine model determines a speci�c form for the load vector, e.g. in the identical machines

model all coordinates of the load vector are identical. We de�ne a new machine model, called the

home model, in which each job has a \home" machine which it prefers to be assigned to. More

formally, the load vector of jobs in the home model is de�ned as follows:

pj(i) =

(
p inj i = hj

p outj otherwise;

such that 8j : p inj < p outj .

The only currently known algorithms for this problem are algorithms for the more general model

of unrelated machines. These algorithms have logarithmic competitive ratio [4]. In the following

sections we give on-line algorithms for two variants of the home model, unit and variable loads at

home, with constant competitive ratios. For this purpose, we extend techniques of Azar et al. [2]

regarding load balancing for related machines. In order to reduce the competitive ratio we use a

limited number of job reassignments, i.e. moving a job from one machine to another after it has

started to execute. We note that experience with real systems shows that job reassignments may

be performed with very little overhead, thus achieving a powerful tool for load balancing [5, 6]. Job

reassignments are also used in the theoretical model of temporary jobs on unrelated machines [3].

2.2 Unit Loads at Home

We consider a variant of the home model in which the load vector's form is:

8i; 1 � i � m : pj(i) =

(
1 i = hj

pj otherwise ;

such that 8j : pj > 1. Machine hj is the home machine of job j.

We �rst present an algorithm for permanent jobs (i.e. jobs that never �nish), and then extend

it to handle temporary jobs. A job j is heavier than job j
0 if pj > pj0 (similarly, j

0 is lighter than

j). The optimal o�-line assignment is referred to as Opt and the optimal maximal load is denoted

by OPT .

Algorithm 1 (assignH) Receive �, the estimation of OPT , as a parameter. Upon an arrival of

job j perform the following steps:

1. If lhj < 2� assign j to its home and return \success".

2. Otherwise, if there are non-local jobs assigned to hj denote by j out the heaviest one. If all

jobs are local, denote by j out the lightest one, including j.

3

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

3. If there exists a machine i such that li + pj out < 2� then (re)assign j out to i. If j out 6= j

assign j to its home. If there is no such machine return \fail", otherwise return \success".

Lemma 1 For the set of jobs that assignH decides to assign outside their homes there is an optimal

assignment that assigns all these jobs outside their homes, assuming that � � OPT .

Proof. Assume by contradiction that j out is the �rst job that assignH decides to assign to machine

i 6= hj out and that all the optimal assignments assigned j out to hj out. As a result of step 2, all the

jobs assigned to hj out are local and lhj out
> OPT . Therefore there is some j in that is assigned

home by assignH and outside by Opt. Since pj in � pj out than swapping these jobs will result in

an optimal assignment in which j out assigned home.

Lemma 2 If � � OPT then assignH never returns \fail".

Proof. Assume that assignH failed when reassigning j out. According to Lemma 1, Opt assigned

j out outside, thus pj out � OPT � �. Since assignH failed, 8i : li + pj out(i) > 2� and thus

8i : li > � � OPT � l
�

i . Denote by In; Out the set of jobs that assignH assigned in/outside their

homes, respectively, and by In
�
; Out

� the appropriate sets of Opt. Therefore:X
j2Out

pj +
X
j2In

1 =
X
i

li >

X
i

l
�

i =
X

j2Out�

pj +
X

j2In�

1 ;

as both left and right equalities derive from the fact that the summation is over all jobs, but the

summation order is di�erent. Since Out [In = Out
�
[In

� and 8j : pj > 1 there must be some

j 2 Out such that j =2 Out
�, which is a contradiction to Lemma 1.

It is easy to verify that assignH never creates load that exceeds 2�, and that assignH performs

at most one reassignment whenever a new job arrives, thus performing no more the n reassignments

during the entire running time (i.e. in average, each job is reassigned once).

In order to estimate the optimal load, we use the doubling technique described in [2]. Briey, we

start with a very low estimate of OPT , which is doubled each time the algorithm fails. After such

a failure the algorithm ignores the load caused by jobs assigned before the failure. This technique

increases the competitive ratio by a factor of 4 [2]. Thus we conclude:

Theorem 1 Algorithm assignH is 8 competitive with respect to load and performs at most n reas-

signments in the entire running time.

In order to handle temporary jobs with unknown durations, we include a method for job de-

partures. As usual in the load balancing framework, we assume that job durations are �xed, e.g.

independent of the machines' loads (thus the set of running jobs of the o�-line and of (any) on-line

algorithm are identical). Upon a departure of job j, if j was assigned to its home, the new method

reassigns back home the heaviest job that is assigned outside and that its home is hj .

Theorem 2 Algorithm assignH for temporary jobs is 8 competitive with respect to load and per-

forms at most 2n reassignments.

Proof. We prove that Lemma 1 holds if referring to the set of active jobs by induction on the

sequence of job arrivals and departures. Upon an arrival the original proof holds. Upon a departure,

after reassigning the heaviest job back home there exists that the home is overloaded and the

heaviest jobs are assigned home, thus it is possible to show contradiction similar to the way used

in Lemma 1. Lemma 2 holds since it relies only on Lemma 1. Since job arrivals and departures

cause at most one reassignment, the algorithm performs at most 2n job reassignments.

4

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

2.3 Variable Loads At Home

We examine a di�erent version of the \home" model, which di�ers from the previous one by the

jobs' load vector form, de�ned by:

pj(i) =

(
pj i = hj

x � pj otherwise ;

for some (globally) �xed constant x > 1.

The insertion method for this case follows the same principle of minimizing the sum of weights

of non-local jobs while keeping the machines not too overloaded. Since the home loads are di�erent,

it is not possible to simply replace a job with a heavier one. The method is, therefore, as follows:

Algorithm 2 (assignHv) Upon an arrival of job j, �rst consider assigning j to its home. If the

resulting load exceeds 2�, perform the following steps:

1. Reassign (one by one, in any order) non-local jobs until the sum of their weights � pj (or all

of them) to other machines, maintaining the loads below 2�. \Fail" if this is not possible.

Assign j to hj if (now) possible.

2. Otherwise, if j is the lightest between all local job assign j to another machine as before,

returning \fail" or \success" accordingly.

3. Otherwise, assume that the local jobs are ordered, i.e. 8i : pi � pi+1 and let k minfljpl <

pj ;
Pl

i=1 pi � pjg. If lhj �
Pk

i=1 pi + pj < � then decrease k by one. Reassign jobs 1 : : :k

(one by one) to other machines and job j to its home or return \fail" if this is not possible

without exceeding 2�.

Lemma 3 Let Out; Out� be the set of jobs assigned outside their homes by assignHv and Opt,

respectively. Then it exists that: X
j2Out

pj �

X
j2Out�

pj :

Proof. Suppose that an arrival of job j causes reassignment(s) of local job(s). Observe that all jobs

assigned to hj are local and that lhj > OPT . Let W be the weight of all local jobs already assigned

outside by assignHv. The weight of all local jobs exceeds OPT by at least W + pj . Therefore, if

assignHv assigns j outside the lemma holds. If assignHv reassigns the �rst k�1 lighter jobs outside

the lemma holds since
Pk�1

i=1 pi < pj . If job k is reassigned too, the weight of all local jobs exceeds

OPT by at least W +
Pk

i=1 pi, as veri�ed in step 3.

Lemma 4 If job j is assigned outside its home by assignHv then x � pj � OPT .

Proof. Examine the arrival of job j
0 that caused j to be assigned outside (possibly j = j

0). Let

In be the set of local jobs in hj . Since lhj > OPT , Opt must assign jobs with weight at least pj0

outside from the set of jobs In [fj0g. If assignHv assigned j
0 outside, Opt must assign outside j0

or a heavier job since there is no set of lighter jobs with weight � pj0 . Assume assignHv assigned

jobs 1 : : :k outside. If Opt assigned j
0 home then it must have assigned outside all the jobs 1 : : :k,

or some of them and a heavier job, which implies the lemma. Otherwise Opt assigned j
0 outside

and 8 1 � i � k; pi < pj .

5

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

Lemma 5 If � � OPT then assignHv never fails.

Proof. Assume by contradiction that assignHv fails to assign job j, which implies that 8i : li >

OPT (using also Lemma 4). As in Lemma 2, we conclude:

x �

X
j2Out

pj +
X
j2In

pj =
X
i

li >

X
i

l
�

i = x �

X
j2Out�

pj +
X

j2In�

pj ;

and therefore
P

j2Out pj >
P

j2Out� pj , which contradicts Lemma 3.

In order to give an upper bound for the amount of reassignments made by assignHv, we use the

measure of restart cost, de�ned by Westbrook [8]. Briey, it is assumed there that every job j

has an associated restart cost rj = c �pj for a �xed constant c. Let S =
P

j rj, then every algorithm

must incur a restart cost of at least S due to the initial assignment of all jobs. It is easy to verify

that upon every arrival of job j assignHv reassigns jobs with total weight < 2 � pj . Thus, the total

reassignment cost < S +
P

j 2 � rj = 3S. By using the doubling technique to estimate OPT we

conclude:

Theorem 3 AssignHv for permanent jobs with variable loads is 8-competitive with respect to load

and incurs a total reassignment cost of at most 3S.

The method of handling temporary jobs is similar to that described for assignH. Suppose that

job j has departed. AssignHv reassigns back home some jobs that are assigned outside, one by one,

starting from the heaviest one, verifying that the home load does not exceed 2�, until the weight

of the reassigned jobs is at least pj (or until there are no candidate jobs). Observe that jobs that

are heavier than job j can not be reassigned without overloading the home machine. Therefore,

the total weight of jobs reassigned is at most 2 � pj . We conclude:

Theorem 4 AssignHv for temporary jobs with variable loads is 8-competitive. It incurs a total

reassignment cost of at most 5S.

2.4 Related Machines in the Home Model

In order to re�ne the model to include a speed si to machine i (but still preferring the home

machine), the general form of the load vector of job j is:

pj(i) =

(
p inj i = hj

p outj=si otherwise ;

such that 8i; j : p inj < p outj=si.

We describe a general method to integrate the previous algorithms for the home model with

the already known algorithms for related machines. We maintain two virtual sets of machines. The

�rst set is associated to an algorithm H, which is the part of the home algorithm that includes only

the decision mechanism whether to assign a job to its home or outside. The second set is associated

to an algorithm for related machines, R, which assigns the jobs that H decided to move out of their

homes. H and R operate independently (not considering the load created by the other). H may also

retrieve a job from R in a case of job departure. Recall that assignH(v) never creates a load due

to home jobs of more than 2 �OPT , that
P

j2Out pj <
P

j2Out� pj , and that 8j 2 Out, either Opt

6

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

assigned j outside or it assigned a heavier job outside instead. Thus, R can assign all jobs in Out

creating a load no more than c �OPT , where c is the competitive ratio of R. Westbrook [8] describes

an appropriate algorithm for temporary jobs with c = 2 + � which incurs O(S) reassignment cost.

We get:

Theorem 5 For related machines in the home model there is a (12+ �)-competitive algorithm with

O(S) reassignment cost for unit loads, and a (16+�)-competitive algorithm with O(S) reassignment

cost for variable loads.

2.5 The Greedy algorithm

The intuitive greedy algorithm assigns a new arriving job j to machine i so that the resulting load,

li+pj(i), is minimized. This algorithm is 2-competitive for identical machines, �(logn)-competitive

for related machines, and �(n)-competitive for unrelated machines [2]. We use the method of [2] to

show that their lower bound for unrelated machines is suitable for the home model with unit loads.

It is interesting to examine how \di�cult" the home model is by examining the competitiveness of

the greedy algorithm in this model.

Lemma 6 Greedy is
(n)-competitive in the home model with unit loads.

Proof. For a group of 1 : : :n machines, consider the following 0 : : :n� 1 job arrivals:

h0 = 1; p0 = 1 + �; 8j > 0 : hj = j; pj = j +
1

j
�

Recall that the home loads of all jobs are 1. The greedy algorithm assigns job #0 to its home

(machine #1), job #1 to machine #2 (since the resulting load in its home, machine #1, is 2 and

the resulting load in machine #2 is 1 + � < 2), job #2 to machine #3 , and so on. The last job is

assigned to machine #n for a resulting load of (n � 1) + 1

n�1
� = O(n). The optimal assignment

assigns each job to its home except for job #0 which is assigned to machine #n, thus the optimal

load is 1 + �.

3 Performance Evaluation

This section presents an empirical performance analysis of several algorithms in the home model,

based on realistic scenarios, by means of simulations.

The scenario for each simulated execution is created randomly, by some distribution function.

The machines speeds are uniformly distributed between 1 and 2. The jobs' total required CPU time

and arrival time are exponentially distributed with mean 2n and 8=n, respectively, where n is the

cluster size. Each job performs �xed amount of work, which is more realistic than the theoretical

assumption of �xed duration. The results are averaged over 100 executions, and are normalized

with respect to one of the examined algorithms.

3.1 Heuristic Improvements to AssignH

We consider several heuristics to improve average case performance. One \weak point" of AssignH

is the need to evaluate �. A possible heuristic is to perform a more gradual increase of � instead

7

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

of doubling it after a failure. Another heuristic is to consider all previously arrived jobs after an

increase. When considering all jobs, a third heuristic is to �t back home some of the jobs that were

assigned outside, since � was increased. A possible drawback that should be regarded is the e�ect

of these heuristics on the number of reassignments.

AssignH fails when all nodes are too overloaded, i.e. their loads exceed c � �, where c = 2.

We note that if the maximal pj(i) (over all i; j) is known (denote it by MAXP) than we could

set c = 1 +MAXP=� by adjusting Lemma 2. Since we can not assume preliminary knowledge of

MAXP, we examine a heuristic that estimates the value of MAXP in an adaptive manner.

We also consider the e�ect of assigning jobs outside their homes in a greedy manner, as opposed

to the method described in Section 2.4.

Policy Max. Load Reassignments

1 Original (assignH) 1.0 1.0

2 Orig. with � increase of +1 1.05 0.98

3 Considering previous jobs 1.06 1.58

4 Policy 3 with � increase of *1.4 0.94 2.3

5 P. 3 with � increase of +1 0.85 2.78

6 P. 5 with c = 1 +MAXP=� 0.84 3.0

7 P. 5 and moving back home after � increased 0.85 2.81

8 P. 5 and assigning outside jobs with greedy 0.85 2.34

9 A combination of policies 5,6,8 0.84 2.67

Table 1: The performance of several heuristics

Table 1 compares the performance of these heuristics by simulations in the unit loads model,

assuming a cluster of 16 machines. As can be seen from the table, considering previously assigned

jobs after � is increased combined with a � increase of +1 reduces the maximal load by an average

of 15%. Re�ning c helps a bit more, and assigning outside jobs with greedy reduces the number of

reassignments (and does not increase the maximal load). We note that the original policy performed

an average of one reassignment for every nine jobs. Results from real clusters [5, 6] show that

process migration is not expensive, thus indicating that the tradeo� of performance improvement

and more reassignments is worth while. Policy 9 shows the performance of the heuristics that are

implemented in the rest of this section.

3.2 Performance Measurements

This section compares the performance of three on-line algorithms: greedy, opportunity cost (o.c.)

and assignH(v).

Figure 1 presents the maximal load of the three policies for di�erent (average) communication

overheads. For each graph point, the x-axis presents the mean value of an exponential distribution.

If the communication overhead of some job is x then the load of the job on a \non-home" machine

is (1 + x) � l, where l is its home load. For variable loads, l is exponentially distributed with mean

1:0. The cluster size is 32.

From the �gure it can be seen that assignH(v) are consistently better than the o.c. algorithm

8

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.1 0.2 0.3 0.4 0.5

M
a
x
.
L

o
a
d

Communication overhead

Greedy
Opportunity cost
AssignH

(a) Unit loads

0.8

0.9

1

1.1

1.2

1.3

1.4

0 0.1 0.2 0.3 0.4 0.5

M
a
x

.
L

o
a
d

Communication overhead

Greedy
Opportunity cost
AssignH

(b) Variable loads

Figure 1: Communication overhead vs. Max. load

in both models. For unit loads the maximal load of assignH is lower by about 8%-10%, and for

variable loads the load reduction is larger, by about 12%-14%. It can also be seen that the perfor-

mance gap between assignH(v) and greedy increases along with the communication overhead. For

example, the maximal load of assignH is lower by about 25% than that of greedy for a communi-

cation overhead of 0:5 for unit loads. In general, it can be seen that assignHv introduces a higher

performance improvement. We note that assignH(v) are consistently better than greedy, even for

small communication overheads. This is in contrast to the o.c. algorithm, which performs better

than greedy only for large communication overheads.

Next we examine the case where the set of home machines is a subset of the cluster, i.e. only

a subset of the cluster machines are homes for some jobs. The communication overhead here

is exponentially distributed with mean 2:0. The cluster size is 32, while the size of the home

machines subset ranges from 1 to 32. We note that as the homes subset is smaller, the machines

are \more" related, and when there is only one possible home, the machines are exactly related.

Thus, it is expected that greedy will perform better than o.c. for small homes subsets, and vice

versa. Figure 2 presents the simulation results for this case. The results show that assignH(v) are

consistently better than the other two policies for all homes subset sizes. More speci�cally, for small

home subsets, assignH is better than o.c. by 20%, and for large home subsets, assignH is better

than greedy by 40%. It is also evident that the advantage of our algorithms is more signi�cant in

the variable loads model, by about 5%.

The simulation results demonstrates two advantages of assignH(v). First, they reduce the

maximal load, compared with the o.c. algorithm by about 10%-15%. They also reduce the maximal

load of the greedy algorithm by as much as 40%. Second, they have a consistent behaviour in a

9

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 4 8 16 24 32

M
a
x
.
L

o
a
d

Home set size

Greedy
Opportunity cost
AssignH

(a) Unit loads

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 4 8 16 24 32

M
a
x
.
L

o
a
d

Home set size

Greedy
Opportunity cost
AssignH

(b) Variable loads

Figure 2: Homes subset size vs. Max. load

dynamic and changing environment, while the other two algorithms �t well only to a speci�c

environment. This advantage exists both when the dynamic nature is due to the set of home

machines and when it is due to various communication overheads. While greedy is better than o.c.

for small communication overheads and/or small home set sizes, and vice versa for respectively

large values, assignH(v) are better from both these algorithms for all such cases.

4 Conclusions

This paper presents the home model for load balancing in a Computing Cluster (CC). This model is

a variant of the load balancing theoretical framework. This model �ts more accurately to a typical

cluster architecture, where the nodes are connected by a LAN, and when the main resources are

CPU and I/O. We present on-line algorithms with constant competitive ratios, thus improving

the O(logn) competitive ratio of the opportunity cost approach. Our algorithms also perform less

reassignments than the opportunity cost approach (for temporary jobs). It is also shown that the

greedy method performs poorly in this method. We also present a performance evaluation, by means

of simulations, comparing the new algorithms to the greedy and the opportunity cost algorithms.

The results show that the new algorithms are consistently better than previous approaches. Their

behaviour is consistent in a dynamic and changing environment, while the other two algorithms �t

well only to a speci�c environment. This advantage exists both when the dynamic nature is due to

the set of home machines and when it is due to various communication overheads.

Further research about the home model may be performed in several directions. A more the-

oretical understanding of the home model is desired, especially regarding some lower bounds of

10

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

the competitiveness of algorithms for this model. Another interesting theoretical direction may

be to expand the de�nition of the model, aiming to reect more complex cluster structures. For

example, a model in which a job has several homes with di�erent preferences. Regarding all the

machines in the cluster as homes with di�erent preferences is actually very close to the unrelated

machines model. Finally, it is interesting to extend the model to the direction of a Wide Area

Cluster Computing. This setting is di�erent since outside loads are lower than local loads because

of network latency, although it seems natural to use similar algorithms to the ones described here.

Acknowledgments

We wish to thank Yossi Azar and Arie Keren for helpful discussions. Ron Lavi also thanks Noam

Nisan for his moral encouragement.

References

[1] Y. Amir, B. Awerbuch, A. Barak, R.S. Borgstrom, and A. Keren. An opportunity cost approach

for job assignment and reassignment in a scalable computing cluster. In Proc. 1998 International

Conference on Parallel and Distributed Computing and Systems (PDCS'98), pages 639{645,

October 1998.

[2] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual circuits with

applications to load balancing and machine scheduling. Journal of the ACM, 44(3):486{504,

1997.

[3] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts. Competitive routing of virtual circuits with

unknown duration. In Proc. 5th ACM-SIAM Symposium on Discrete Algorithms (SODA'94),

pages 321{327, 1994.

[4] Y. Azar. On-line load balancing. In A. Fiat and G. Woeginger, editors, Online Algorithms: The

State of Art, Lecture Notes in Computer Science. Springer-Verlag, 1998.

[5] A. Barak and O. La'adan. The MOSIX multicomputer operating system for high performance

cluster computing. Journal of Future Generation Computer Systems, 13(4{5):361{372, 1998.

http://www.mosix.cs.huji.ac.il.

[6] A. Barak, O. La'adan, and A. Shiloh. Scalable cluster computing with mosix for linux. In Proc.

5-th Annual Linux Expo, pages 95{100, May 1999. http://www.mosix.cs.huji.ac.il.

[7] A. Keren. On-line Assignment of Processes in a Scalable Computing Cluster. PhD thesis,

Institute of Computer Science, The Hebrew University of Jeruslaem, Israel, 1998.

[8] J. Westbrook. Load balancing for response time. In 3rd Annual European Symposium on

Algorithms (ESA'95), 1995.

11

p030.ps: Competitive Home Model Algorithms for Load Balancing in a..., DO NOT DISTRIBUTE!!!

