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Abstract

In this paper, we consider the optimal and near-optimal implementation of a class of parallel
algorithms based on the principle of divide-and-conquer. We use a computational model incor-
porating both communication and the associated computational overheads inherent to a divide-
and-conquer methodology. We consider the time-optimal implementation of this class of parallel
algorithms on a generic network topology, and we show that the optimal topology of the inter-
connection network required for such an implementation is readily mappable on a hypercube. We
obtain a recursive analytical expression for the minimum degree of the hypercube, D(n), required
to solve a problem of size n in a time-optimal fashion, and describe some important characteristics
of D(n) as a function of n. Finally, we prove an interesting result that shows how a small constant
deviation from time-optimality may be used to achieve a large O(logn=log logn) reduction in the
degree of the hypercube required to solve a problem of size n. This result quantifies the state-
ment that solving problems in a time-optimal manner can be very expensive in terms of resource
requirements, and that a small compromise in execution time can sometimes yield very favorable
trade-offs. We present an intuitive explanation of this phenomenon and analyze its dependence on
the relationship between the overheads associated with the problem. Besides parallel divide-and-
conquer on hypercube topologies, the principal results presented here have wider applications such
as in the construction of key-based worst-case optimal search trees while minimizing the required
key length.
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1 Introduction

This work focuses on a class of parallel algorithms based on the principle of divide-and-conquer,
used in numerous applications in science, engineering and finance. The divide-and-conquer method-
ology to parallelization is used in a wide array of algorithms including sorting and search algo-
rithms, a variety signal and image processing algorithms, and associative operations on large sets
of data such as those in commercially important applications such as data mining. This technique
of divide-and-conquer is among the few general techniques available for parallel algorithm design,
and is among the most widely used and studied [1–7].

Divide-and-conquer achieves parallelism by recursively partitioning the original problem into
smaller independent instances of the same problem. Examples for which sub-problems are of
fixed size in relation to the original problem include the computation of an N-point DFT and
the multiplication of square matrices. Many problems, however, can be partitioned into arbitrary
sizes such as database searching, associative operation on large data sets, dot products of long
vectors, sorting and searching operations. This flexibility can be exploited to allocate smaller
subtasks to the processors subjected to higher overheads. This strategy as applied to the divide-
and-conquer algorithm has been modeled and analyzed in [8, 9]. At each stage of the divide-and-
conquer recursion, the problem is partitioned into two subproblems. The various algorithmic and
architectural overheads are lumped together into an asymmetric partition overhead, k, attached
to only one partition and a symmetric merging overhead, �, added to both the partitions. These
overheads include the cost of interprocessor communication to collect results, the algorithmic costs
of combining the partial results and the costs associated with converting one or both subproblems to
conform to the exact form of the original problem. In this paper, we use a recursive computational
model that captures these overheads, and therefore, allows an analysis of resource requirements.

The computational model can be summarized by a typical recursion step in which a problem
of size n is partitioned into problems of sizes r and n� r as follows,

T (n) =

8<
:

min
1�r�n�1

[maxfT (r); T (n� r) + kg] + �; n � n0

T0; n < n0,
(1)

where T (n) is the minimal execution time or the time-complexity of Pn, a size n instance of the
problem being solved. Problems smaller than a certain size n0 are solved in a single processor in
constant time T0. The quantity n0 can be thought of as the smallest size for which the partitioning
is advantageous or as a quantity dictated by the problem granularity. The divide-and-conquer
algorithm for these problems is completely defined by specifying the partition sizes at each stage
of the recursion. It may be noted that the optimal partition sizes for any given n is not necessarily
unique. The above recursion has also been analyzed in [10], in the context of search procedures
using lop-sided binary trees.

Consider a simple example of a problem which is modeled by (1). Consider the problem of
adding n numbers on a parallel system. Two processors X1 and X2 may split this problem and
assume the task of adding r and n � r numbers, respectively. Now, if we choose to combine the
results by adding the two sums in processor X1, we would have X2 communicating its result, the
sum of n � r numbers, to X1. This “keep some, send some” technique of allocating divide-and-
conquer tasks to processors is described in detail in [1]. Let the time taken to communicate the
result computed in X2 to X1 be k, and let the time taken to merge this result with that computed in
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X1 be equal to �. One may now see that the computational model described in (1) uses the value of
r that best overlaps computation and communication, and achieves the best possible execution time
given the constraints. This process of splitting the problem into smaller problems in an optimal
fashion can be carried out recursively.

Given an unlimited number of processors with the desired connectivity, the partitioning as
given by (1) can be carried on to completion yielding the optimal execution time. However, on real
systems or in multi-user environments, it is vital to minimize the resource requirements. Denote
by D(n) the degree of the smallest hypercube that can solve a problem of size n in optimal time,
as given by (1). An implementation of an algorithm for a problem of size n on a hypercube
of degree less than D(n) will lead to a sub-optimal execution time. On the other hand, using a
hypercube of degree greater than D(n) will not contribute to improving the execution time. Our
work concentrates on minimizing D(n), the degree of the hypercube required to solve a problem
of size n while preserving an optimal execution time in the presence of the parallel computing
overheads. Note that a degree-d hypercube has 2d processors, and therefore minimizing the degree
of the hypercube greatly reduces the number of processing nodes required to solve the problem.
In a more theoretical sense, it will be apparent from Section 3 that the quantity D(n) is actually
the minimum possible height of a time-optimal binary tree task graph of the parallel divide-and-
conquer algorithm.

Besides parallel divide-and-conquer, the fundamental results presented in this paper have a
variety of other applications. One such example is a dictionary machine supporting key-based
search operations using a partial mapping from keys to data. Keys are typically strings of symbols
over an alphabet of a certain size and are stored in a structure commonly known as the doubly-
chained tree. Solving a problem of size n using parallel divide-and-conquer using the above model
described by (1) is analogous to creating a worst-case time-optimal search tree for a collection of
n records [11]. Minimizing the hypercube degree for a time-optimal solution becomes analogous
to the problem of constructing a worst-case time-optimal tree while minimizing the length of the
key required for the search.

Section 2 describes some definitions and results on the time-optimality of execution as given
by (1). Section 3 obtains the analytical definition of D(n) and presents some fundamental prop-
erties of D(n) as a function of n. Section 4 further investigates some characteristics of D(n) and
proceeds to analyze time-resource trade-offs that can be achieved by deviating from the goal of
time-optimal execution. In this section, we prove that in solving a problem of size n, a small con-
stant deviation from time-optimal execution may allow a large drop of order O(logn=log logn) in
the degree of the hypercube required to solve the problem. Section 4 also gives an intuitive expla-
nation of this result, and makes some observations on the dependence of this large trade-off on the
relationship between the overheads k and �. Section 5 concludes the paper, and suggests several
enhancements to the computational model to accurately capture the behavior of a wider variety of
algorithms and their resource requirements.

2 Properties of the Computational Model

Let the size of a problem, n, be a positive integer. In all of the following, we also assume that the
time complexity, T (n), and the overheads k and � are non-negative integers. This assumption is
without loss of generalization, since the unit of time-complexity can always be defined in such a
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way that k, � and T (n) for all n are always integer quantities.

Definition 1. Denote by Sm, the set of sizes of problems that have the same execution time m as
given by (1). Thus, we have, Sm = fn 2 Z jT (n) = mg. Note that it is possible that Sm = �.

Definition 2. Define �
m

recursively as the largest element of Sm if Sm 6= � and �
m�1 if Sm = �.

The quantity �
m

, therefore, is the size of the largest problem that can be solved optimally within
time m.

It has been shown in [10] that the �
m

’s are related by,

�
m
= �

m�� + �
m���k; m � T (n0): (2)

One may understand Equation (2) intuitively by noting that the size of the largest problem that can
be solved in time m is the sum of the sizes of the largest problem that can be solved in time m� �

(since it will take a recombination overhead of � to combine the results) and the largest problem
that can be solved in time m � �� k (since it will take an additional communication overhead of
k before the two subproblems can be combined).

Since the size of the complexity class, jSmj, is nothing but �
m
� �m�1, we can easily derive

from (2) that the sizes of the complexity classes are also similarly related. The following equation
expresses this recursive relationship.

jSmj = jSm��j+ jSm���kj; m � T (n0): (3)

Definition 3. Denote by Rn, the set of all optimal partition sizes r as given by (1), for a problem
of size n. Thus, Rn = f1 � r � n � 1 jT (n; r) = T (n)g, where T (n; r) = maxfT (r); T (n �
r) + kg+ �.

By the above definition, if p 2 Rn, we can say that, T (n�p) � m���k, and T (p) � m��.
These two conditions imply that n� p � �

m���k, and p � �
m��. We can now derive the limits on

p as n� �
m���k � p � �

m��. This result can be formally stated as follows.

Rn = fr 2 Z jn� �
m���k � r � �

m��g; n � n0; (4)

A close inspection of the recursive equation (1) reveals that if T (n) = m for some problem
size n, m is such that it can be expressed as m = T (n0) + i(k + �) + j�, for some i; j � 0. For
very large m, it is possible to say that m is of the form T (n0) + ig where g = gcd(k; �), and i is
some positive integer. This result can be more formally expressed as follows.

Sm 6= � i� gj(m� T (n0)); form� T (n0) (5)

It is shown in [10] that �
m

is of the order of am, where 1=a is the largest real root of x�+k+x� = 1.
Now, if Sm 6= �, we know that jSmj = �

m
� �m�1 > 0, and the order of jSmj can be given by,

jSmj = �(am); (6)

It is also shown in [10] that the time-complexity T (n) of a size n problem as given by (1) is
O(logn), that is,

T (n) = O(logn): (7)
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Note that the results on time-optimality in this section may be applied to determining a parti-
tioning algorithm not just on hypercube topologies but on all systems where the communication
cost between any two processors is not dependent upon or only slightly dependent upon exactly
which processors are communicating. Examples of such systems include many real systems based
on both direct and indirect networks where the topology-dependent hardware latency through the
network is a small fraction of the overall latency between any two processors.

3 Hypercube Degree Requirement

Consider a computational binary tree task graph as shown in Figure 1. A typical task graph of
recursive partitioning has a tree topology as shown in this figure. Note that this topology is not
necessarily a complete binary tree. Each leaf of this tree represents a subtask computation while
the intermediate nodes represent the computations corresponding to the merging of the subtask
results. By our mapping strategy, when two processors work on two different parts of the same
problem, the results of these subproblems are combined in one of these two processors rather than
in a third processor, as discussed in [1]. It is obvious that this serves the objective of minimizing
communication and maximizing processor utilization. Without loss of generality, we choose to
evaluate a parent node and its left child in the same processor. Thus, computation tasks represented
by N1, N2, N4 and N8 in Figure 1 are all assigned to the same processor.

The resulting connections between processors that is required to implement such a computa-
tional tree with dilation 1, form a binomial tree topology, discussed in [1]. By the task-numbering
scheme used in this work as shown in the computational tree of Figure 1, level of a task in the
tree is the position of the leftmost 1 in the binary representation of its label. Thus, N1 is on level
0, while N12 is on level 3. One can see that a 3-level computational tree maps onto a hypercube
of degree 3 perfectly with dilation 1, as shown in Figure 1. In general, if a processor i of the hy-
percube is assigned to a task in level l of the tree, then the child tasks of this task are assigned to
processors i and j, where i and j differ in the l-th bit. Thus, a binomial tree resulting from a level-L
computational tree graph maps on to a degree-L hypercube perfectly. Note that in the mapping of
an algorithm to a topology, a processor may perform computations corresponding to many tasks at
different levels of the tree. It is also obvious from this discussion that D(n), the minimum degree
of a hypercube required to solve a problem Pn in optimal time is the same as the minimum possible
number of levels in a time-optimal computational tree of problem Pn.

Let a problem of size n, Pn, be divided into two problems Pr and Pn�r. The number of levels in
a tree corresponding to Pn is exactly one more than the larger of the number of levels corresponding
to the sub-problems Pr and Pn�r. Our objective is to preserve time-optimality while minimizing
D(n). Therefore we search withinRn for that partition size which would yield the least number of
levels in the tree. Recall that Rn is the set of all partition sizes r that yield the minimal execution
time of Pn as given by (1). The minimum degree of the hypercube required to solve a problem of
size n optimally, is therefore given by,

D(n) = 1 + min
r2Rn

[maxfD(r); D(n� r)g]: (8)

The degree of the hypercube required to solve problems of size smaller than n0 is obviously
equal to 0, since they are optimally solved in a single processing node. This gives the initial
condition for the recursion (8).
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We now discuss some properties of D(n) as a function of n. It is proved in [4] that D(n) as
expressed by (8) can be easily evaluated at n = �

m
, by the following expression.

D(�
m
) = d(m� T (n0) + 1)=�e; m � T (n0): (9)

If two problems have the same optimal time complexity, the larger problem would require a
hypercube of a larger degree than that of the smaller problem. In other words, D(n) is a mono-
tonically increasing function of n within each complexity class. This intuitively obvious result is
formally expressed as follows.

D(n1) � D(n2) if n1; n2 2 Sm and n1 � n2: (10)

Definition 4. Denote by �(m; d), the size of the largest problem that can be optimally solved
within time-complexity m on a hypercube of degree d or less.

Note that the problem of size �(m; d) does not necessarily have a time complexity m. It is
shown in [4] that,

�(m; l) = �(m� �; l � 1) + �(m� �� k; l � 1); m � T (n0): (11)

This recursion (11) is used in the next section to derive results on some interesting trade-offs
between system size and time-optimality.

4 Time-Resource Trade-offs

A typical plot of D(n) as a function of n, shown in Figure 2, reveals an interesting and somewhat
counter-intuitive feature which has important practical implications. One can see that the value
of D(n) frequently drops as n increases beyond one of the � points on the graph. It is therefore
possible to time-optimally solve problems of size larger than size �

m
but with a smaller hypercube

than that required for an optimal solution of a problem of size �
m

. In this section, we attempt to
study this property of D(n) as a function of n.

Since D(�
m
+ 1) is typically less than D(�

m
), a time-optimal execution of a size �

m
+ 1

problem would typically require a smaller hypercube than a problem of size �
m

. Thus, even while
executing a size �

m
problem, it might be worthwhile to add a dummy element and solve it as a size

�
m
+1 problem. In fact, all problems in the complexity class Sm that require a hypercube of degree

greater than D(�
m
+1) can be solved on a smaller hypercube of degree D(�

m
+1) as problems of

size �
m
+ 1 by adding an appropriate number of dummy elements. In this section, we show that

the reduction in the degree of the hypercube, and therefore the number of processors required is
substantial in comparison to the sacrifice in time-complexity that such a procedure incurs.

Definition 5. Denote by U(m) the quantity D(�
m
) � D(�

m
+ 1). Thus, U(m) represents the

possible reduction in the degree of the hypercube when executing a problem of size �
m

as a problem
of size �

m
+ 1.

Definition 6. Define �
m

as the smallest problem that needs at least time m for a time-optimal
solution. When Sm 6= �, �

m
= minSm.
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Definition 7. Let #m = D(�
m
) � D(�

m
). Thus, #m is the difference between the degrees of the

hypercubes required for the largest and smallest problems belonging to the complexity class Sm.
For mathematical convenience, let #m = 0 when Sm = �.

Note from (9) that D(�
m
) as a function of m increases only in step sizes of 1 and therefore,

U(m � 1) � #m � U(m � 1) + 1. Clearly, O(#m) = O(U(m)) and therefore, an investigation
into the order of U(m) leads us to a study of #m. The following lemma proves that #i� is a
monotonically increasing function of i.

Lemma 1. #m � #m��, for all m.

Proof. The proof is by induction. It is easily seen from (9) that D(�
T (n0)

) = 1 and by the definition
of D(n) and n0, D(�

T (n0)
) = D(n0) = 1. Thus, #m = 0 for all m � T (n0).

Assume that the statement of the lemma is true for m � t. Consider m = t + 1. If St+1

is an empty set, then St+1�� is also an empty set according to (3), satisfying the lemma with
#m = #m�� = 0. If St+1 is non-empty, let us assume that #t+1�� = p, i.e.,

D(�
t+1��)�D(�

t+1��) = p: (12)

It is required to prove that #t+1 � p. Let t0 be the smallest m such that t + 1 � m = i� for
some non-negative integer i and #m = p. By definition of t0 and the induction assumption (12),
#t0�� < p, that is, D(�

t0��)�D(�
t0��) � p � 1. However, from (9), D(�

t0
) = 1 +D(�

t0��) and
therefore,

D(�
t0��) � D(�

t0
)� p = D(�

t0
): (13)

Consider a problem of size n = �
t0

, with partition sizes r and n � r corresponding to a time-
optimal solution on a system of degree D(n). Since T (n) = t0, by the expression for Rn given in
(4), time-optimality requires,

r � �
t0��: (14)

Simultaneously, using only the optimal size topology requires that, D(r) � D(n)�1 = D(�
t0
)�1.

From (13), this translates to

D(r) < D(�
t0��) and D(n� r) < D(�

t0��): (15)

From (14) and (15), and since D(n) is a monotonically increasing function of n within a complex-
ity class, r < �

t0��. This implies that n � r > �
t0
� �

t0��. From the definition of �’s, we have
n�r > �

t0
�jSt0 j+1��

t0��+ jSt0��j�1. From (2) and (3), one gets n�r > �
t0���k�jSt0���kj,

i.e., n� r � �
t0���k. However, from (4), n� r � �

t0���k and therefore,

T (n� r) = t0 � �� k: (16)

Since �
t0���k is the smallest element in the complexity class St0���k, D(�

t0���k) � D(n � r).
Therefore, using (15),

D(�
t0���k) � D(�

t0
)� 1: (17)

Now, from (9),
D(�

t0���k) = D(�
t0
)� d(�+ k � z)=�e: (18)
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where z = (t0 � T (n0))mod�. Using (17) and (18), one gets,

#t0���k � D(�
t0
)� d(�+ k � z)=�e �D(�

t0
) + 1

This implies,
#t0���k � p� d(k � z)=�e: (19)

By definition, t0 � t + 1. Since � and k are non-zero, t + 1 � � � k < t and therefore, applying
the induction assumption and using (19), we get,

#t+1���k � #t0���k � p� d(k � z)=�e

Using (9), we get,

D(�
t+1���k) � D(�

t+1���k)� p + d(k � z)=�e = D(�
t���k)� p

From (12), we get,
D(�

t+1���k) � D(�
t+1��): (20)

Now, consider a problem of size n0 = �
t+1�� + �

t+1���k. Clearly, n0 = �
t+1�� � jSt+1��j + 1 �

�
t+1���k + jSt+1���kj � 1. Therefore, from (2) and (3),

n0 = �
t+1 � jSt+1j+ 2: (21)

We know from (12) that St+1�� is non-empty. From (16), we know that St0���k is non-empty
and by definition of t0, t + 1 � t0 = i� for some integer i. Therefore, using (3), St+1���k is also
non-empty. Clearly now, again from (3), jSt+1��j + jSt+1���kj = jSt+1j � 2 and therefore, from
(21), n0 2 St+1. For the problem of size n0, let us now choose partition sizes r 0 and n0 � r0 as
�
t+1�� and �

t+1���k, respectively. It is easily seen that these partition sizes satisfy the conditions
of time-optimality as required by (1). Therefore, from (8),

D(n0) � 1 + maxfD(�
t+1��); D(�

t+1���k)g: (22)

From (20) and (22),
D(n0) � 1 +D(�

t+1��)

Thus, there exists n0 2 St+1, such that D(�
t+1)�D(n0) = D(�

t+1��)+1�D(n0) � D(�
t+1��)�

D(�
t+1��) which equals p as defined in (12). From (10), D(�

t+1) � D(n0) and therefore, #t+1 �
p.

We now proceed with the analysis of the trade-offs using a scheme of classification that eases
our study. An obvious convenience is achieved when we group together all problem sizes that
have the same optimal time-complexity and also require the same degree hypercube for an optimal
solution.

Definition 8. Denote by Q(m; i), the set of all values of n for which T (n) = m and D(n) =
D(�

m
)� i.

Clearly, for Sm = �, Q(m; i) = � for all i. Also, since D(n) is a monotonically increasing
function of n within each complexity class, Q(m; i) = � for i > D(�

m
) � D(�

m
). Of course,

Q(m; i) = � for i < 0 as well. The following lemma expresses a recursive relationship between
the sizes of these classes and subsequently leads to determining the order of #m.
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Lemma 2. For i < #m�� and z = (m� T (n0))mod�,

jQ(m; i)j = jQ(m� �; i)j+ jQ(m� �� k; i� d(k � z)=�e)j: (23)

Proof. Since D(n) is a monotonically increasing function of n within complexity classes, we have
for all m and i < #m,

jQ(m; i)j = �(m;D(�
m
)� i)� �(m;D(�

m
)� i� 1): (24)

Let #m�� = p. Let t0 be the smallest t such that m � t = j� for some non-negative integer j
and #t = p. As in the proof of Lemma 1, we would have St0���k non-empty and #t0���k �

p� d(k � z)=�e, where z = (t0 � T (n0))mod�. Therefore, from Lemma 1, we get,

#m���k � p� d(k � z)=�e

Thus, for i < p� d(k � z)=�e, using (24), one gets,

jQ(m� �� k; i)j = �(m� �� k;D(�
m���k)� i)

��(m;D(�
m���k)� i� 1):

(25)

Recalling that p = #m��, replacing i by i� d(k � z)=�e, and using (25) along with (9), one gets,
for i < #m��,

jQ(m� �� k; i� d(k � z)=�e)j = �(m� �� k;D(�
m��)� i)

��(m� �� k;D(�
m��)� i� 1):

(26)

From Lemma 1, #m�� � #m and therefore, applying (24) for all i < #m��, one gets,

jQ(m; i)j = �(m;D(�
m
)� i)� �(m;D(�

m
)� i� 1): (27)

jQ(m� �; i)j = �(m� �;D(�
m��)� i)� �(m;D(�

m��)� i� 1): (28)

Using the above two equations along with (26) and (11), the lemma is proved.

Theorem 1. U(m) is of order 
(m=logm).

Proof. In proving this theorem, recall from (9) that D(�
m
) increases in steps of size no more than

1. Therefore, U(m� 1) � #m � U(m� 1) + 1 and thus, it suffices to prove that #m is of the said
order.

The proof is by determining the rate at which the quantities jSmj and jQ(m; i)j change with
increasing m, since #m is nothing but the number of non-empty subsetsQ(m; i) of the set Sm.

From (5), we know that for large m, Sm is non-empty if and only if (m� T (n0)) is an integer
multiple of g = gcd(k; �). Since we are interested in the asymptotic order of #m, we shall assume
thatm is large. Consequently, if Sm is non-empty, it may be assumed that for finite positive integers
i, Sm�ig is also non-empty. Now, depending upon the value of j for which (m� T (n0))mod� =
(j� + jk)mod�, all possible non-empty complexity classes can be grouped under �=g different
classes.

Let is = d(k+1)=�e� 1, the smallest possible value of i below which jQ(m; i)j is necessarily
equal to jQ(m � �; i)j as determined by Lemma 2. Now, jQ(m; i)j = � for i < 0 and therefore,
for i < is, Lemma 2 gives,

jQ(m; i)j = jQ(m� �; i)j: (29)
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Consider i = is and m corresponding to j = 0. Note that when j = 0, (m�T (n0))mod� = 0
since (j�+ jk)mod� = 0. For such m, the term jQ(m��� k; is�d(k� z)=�e)j is 0 using (29)
since z = 0 and is � dk=�e < is. Thus, using Lemma 2, for m corresponding to j = 0 and i = is,

jQ(m; i)j = jQ(m� �; i)j: (30)

Consider now j = 1 and again, i = is. Now, in the term jQ(m � � � k; is � d(k � z)=�e)j,
is � d(k � z)=�e � is and m � � � k corresponds to j = 0. From (30), this is a constant for
all m corresponding to j = 0 and therefore, from Lemma 2, jQ(m; is)j is a linearly increasing
function of m for m corresponding to j = 1. By similar reasoning, jQ(m; is)j increases as m2 for
m corresponding to j = 2. The maximum possible value of j is �=g � 1 and therefore, jQ(m; is)j
for any m can at most increase as m(�=g)�1.

Consider now, i = is+1 and j = 0. As before, since is+1�d(k�z)=�e � is, the term jQ(m�

�� k; is � d(k � z)=�e)j increases at most as m(�=g)�1 and therefore, from Lemma 2, jQ(m; is)j
increases at most as m�=g. By similar arguments as before, jQ(m; is + 1)j for any m increases at
most as m(2�=g)�1. In general, jQ(m; i)j for any m and i � is is of order O(m(i�is+1)(�=g)�1). Of
course, as given by (29), jQ(m; i)j is O(1) for i < is.

Now, by definition,

jSmj =
#mX
i=0

jQ(m; i)j: (31)

Therefore, using (6), with 1=a being the largest real root of x�+k + x� = 1, asymptotically,

am =
#mX
i=0

jQ(m; i)j �

#mX
i=is

(m(i�is+1)(�=g)�1) (32)

=
#m�is+1X

i=1

(mi(�=g)�1) (33)

= m(�=g)(#m�is+1)�1: (34)

Simplifying am � m(�=g)(#m�is+1)�1 asymptotically, one gets #m � m=logm. That is, #m =

(m=logm).

From (7), we know that T (n) is of order O(logn). Thus, the order of the reduction in the
degree of the hypercube required when such a trade-off can be used for a problem of size n is
O(logn=log logn). This large decrease in the degree of the hypercube required forces an increase
in the execution time equal to the difference in the complexities of the adjacent complexity classes.
From (5), this difference is exactly equal to g for problems larger than a certain size. Recall that
g is a quantity equal to or smaller than even � and k, and that � is just the computational cost
of a single merging step and k is just the cost of a single communication step. Thus, with a
small constant increase in the execution time, one can achieve a large decrease in the size of the
hypercube required.

This surprising trade-off can also be understood by noting that, for a given problem, the rate
of decrease in the execution time reduces as the size of the topology used to solve the problem
increases beyond a certain point. Increasing the degree of the hypercube to something larger than
D(n), by definition, does not help improve the execution time. Thus, the rate of decrease in the
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execution time really becomes small as it reaches the point where there is no more of a reduction
in execution time with an increase in the size of the hypercube. Thus, at this point, a small sacrifice
in the execution time easily leads to a large reduction in the degree of the hypercube required.

Figure 3 shows the behavior of the quantity #m plotted only for m such that (m � T (n0)) is
an integer multiple of �. A simple constant complexity behavior is assumed for n < n0 and the
two cases considered differ only in the value of �. Figure 3 confirms the statement of equation
(34) that the rate of increase of #m with respect to m is also dependent on the quantity �=g. The
smaller this quantity, the higher is the rate of increase of #m. Figure 3 and Equation (34) highlight
an apparently unexpected behavior of U(m)—a very small increase or decrease in the overheads
� or k can significantly change the value of g, and therefore the possible time-resource trade-offs.
However, recall that at asymptotic values, i.e., for large m, adjacent complexity classes differ in
their complexities by g and therefore, when g is large, a larger sacrifice in the time-complexity is
incurred. This larger increase in the time leads to a larger decrease in the degree of the hypercube
required. The dependence of #m on the overheads � and k as shown by Figure 3 is therefore
predictably consistent with intuition.

5 Conclusion and Future Work

In this work, we have considered the problem of minimizing the degree of the hypercube required
to solve the problem in optimal time using the parallel divide-and-conquer technique. Based on
a mathematical computational model, we have obtained a recursive analytical expression for the
minimum degree D(n) of a hypercube topology needed to solve a problem of size n in optimal
time. We have obtained several properties of D(n) as a function of n. Recall that D(n) is actually
a property (height or the number of levels) of the optimal computational tree and therefore, the
results presented here need not be seen as specific to the hypercube topology. For example, the
quantity D(n) can also be interpreted as the minimum length of keys required to create a worst-
case time-optimal key-based search tree where the search at level-i of the tree uses the i-th symbol
in the key.

Finally we show that it may be possible to achieve some very attractive trade-offs between the
size of the hypercube required and the execution time. In particular, we have shown that, with a
small constant sacrifice in time-optimality, it may be possible to reduce the degree of the hypercube
required for a problem of size n by an amount of the order of O(logn=log logn). This constant
sacrifice in time is equal to � which is just the cost in execution time of a single merging step in
the divide-and-conquer recursion.

The discussion in this paper considers only the size of the hypercube required to solve a prob-
lem optimally, but not on how one might execute a problem optimally given a hypercube of a
certain size. Investigating this latter harder problem requires knowledge of the sequential time-
complexity of the problem, i.e., a complete characterization of the execution time of the problem
on a single processor, as a function of the problem size. Incorporating this into the computational
model of (1), and solving the recursive equations for partition sizes is a matter for future research.

Some divide-and-conquer algorithms have non-constant overheads associated with communi-
cation or merging steps. For example, in merge sorting, the merging overhead � is not a constant
but a logarithmic function of n, the problem size. A study of such algorithms will require modifi-
cations to the computational model used in this paper.
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