
EÆcient Automatic Simulation of Parallel
Computation on Networks of Workstations

Christos Kaklamanis
�

Danny Krizanc
y

Manuela Montangero
z

Pino Persianox

January 20, 2000

Abstract

Andrews et al. [1, 2] introduced a number of techniques for automatically hiding latency when performing

simulations of networks with unit delay links on networks with arbitrary unequal link delays. In their work,
they assume that processors of the host network are identical in computational power to those of the guest
network being simulated. They further assume that the links of the host are able to pipeline messages, i.e.,

they are able to deliver P packets in time O(P + d) where d is the delay on the link.
In this paper we examine the e�ect of eliminating one or both of these assumptions. In particular, we

provide an eÆcient simulation of a linear array of homogeneous processors with unit link delays on a linear

array of heterogeneous processors with arbitrary link delays and we show that the slowdown achieved by
our simulation is optimal. We also consider the case of simulating a clique of homogeneous processors with
unit link delays on a clique of heterogeneous processors with arbitrary delay reducing the slowdown from the

obvious bound of the maximum link delay to the average of the link delays. For the case of the linear array
we consider both links with and without pipelining. For the clique simulation the links are not assumed to
support pipelining.

The main motivation of our results (as was the case with Andrews et al.) is to mitigate the degradation
of performance when executing parallel programs designed for di�erent architectures on a Network of Work-
stations (NOW). In such a setting it is unlikely that the links provided by the NOW will support pipelining

and it is quite probable the processors will be heterogeneous. Combining our result on clique simulation with
well-known techniques for simulating shared memory PRAMs on distributed memory machines provides an
e�ective automatic compilation of a PRAM algorithm on a NOW.

1 Introduction

In this paper we consider the problem of executing parallel programs designed in one setting (e.g. for a

homogeneous array of processors or PRAM) in an entirely di�erent one (e.g., a Network of Workstations (NOW

for short)). A NOW is a very attractive and widely available distributed system found in university departments,

software houses, etc; even a co-operating subset of the Internet may be thought of as a NOW. In many situations

the workstations remain idle for signi�cant periods of time. By harnessing their computational power when their

owner is not using them (e.g., at night or during weekends), they form a valid alternative to parallel machines

for executing parallel programs.

The main problem we deal with here is to determine the degradation of the performance of the algorithm

introduced by the simulation of one architecture on another. This is a classical problem in the theory of parallel

algorithms and several solutions have already been proposed including the use of redundant computation [4, 6, 7]

and complementary slackness [3, 5, 6, 8, 9, 10, 11, 12]. These have been shown e�ective for hiding queueing and

congestion delays introduced by the links of distributed systems. While these approaches have been adopted

in some special cases with success, they all have an undesirable characteristic: it is always the programmer

�Computer Technology Institute and Dept. of Computer Engineering and Informatics, University of Patras 26500 Rio, Greece
yMathematics Department, Wesleyan University, Middletown CT 06459, USA
zDipartimento di Informatica ed Applicazioni, Universit�a di Salerno, 84081 Baronissi (Salerno), Italy.
xDipartimento di Informatica ed Applicazioni, Universit�a di Salerno, 84081 Baronissi (Salerno), Italy.

1

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

that has to tailor the parallel algorithm to the speci�c distributed architecture on which the algorithm will be

performed and look for an ad hoc simulation.

Automatic latency hiding. Andrews et al. in [1, 2] introduced the possibility of automatically determining

the simulation once the parallel algorithm and the structure of the host network (e.g., a NOW) are known. This

approach is interesting because it moves the problem of adjusting programs for the speci�c parallel architecture

of interest from software developers to compilers or to run-time libraries. In fact, algorithm designers and

software developers can, respectively, design parallel algorithms and develop software for distributed systems

assuming unitary delays on links and identical processors; then, once the characteristics of the NOW on which

to run the software are known, the software is automatically compiled for the current architecture. Moreover,

whenever the underlying NOW changes, with minimal e�ort the code can be recompiled and the same algorithm

can be simulated on a di�erent NOW with no need to rewrite code.

Andrew et al. concentrated their attention on parallel algorithms for linear arrays, automatically simulating

them with a NOW with an embedded array structure. Their setting is the following: two n processor arrays G,

the guest, and H , the host, are given. G has unit delays on its links while H has arbitrary delays d0; : : : ; dn�1 > 1

on its links and average delay dave. They consider the case in which all processors of the host array have the

same computational power as the guest array processors and as each other, i.e., the processors are homogeneous.

Furthermore, they assume that links of the host can pipeline messages, i.e., a link with delay d can be seen

as a chain of d unitary links connected by gates that can receive and send a message at each instant of time.

With such a link model, at each instant of time a new message can be sent on a link and, after the �rst d

instants of time, the message can be picked up at the other end of the link. Thus P messages can be injected

in P consecutive step into a link, and the last one is received after P + d steps. They distinguish between two

di�erent models: the dataow model and the database model. In the dataow model the computation performed

by a processor p at step t depends only on the results of the computation performed by p and its neighbors at

step t�1. In the database model each processor has its own database and at each computation step a processor

reads its memory and the messages received from its neighbors and possibly updates its database. The size of

the databases makes it infeasible for two processors to exchange databases once the simulation has started and

only updates to the databases may be exchanged. Andrews et al. in [1] showed that in the dataow model a

linear array with arbitrary delay can simulate a linear array with unitary delays with a slowdown of O(
p
dave).

In [2] they show that in the database model a slowdown of O(
p
dave � log3 n) can be achieved.

We believe that the assumptions of homogeneous processors and pipelined links used in [1, 2] are too

restrictive. In general in a NOW there are no constraints on the relative speed of computation of the individual

workstations. Moreover, some amount of pipelining on links may be appropriate in some situations (e.g., where

delay is dominated by processing or queuing delays on multiple physical connections between workstations)

but not in most situations, and in particular in the standard NOW setting of workstations belonging to local

network. In this case, if P messages are sent over a link, we expect it will take time O(P � d) to deliver all of

them.

Summary of results. In this paper we extend the work of [1, 2] by presenting simulations for parallel

algorithms designed for arrays and cliques for the cases in which processors have di�erent speeds and/or the

links do not allow pipelining.

In the �rst part we give a simulation of a computation of a linear array of homogeneous processors connected

by unit-delay links on a linear array of heterogeneous processors connected by links of arbitrary delays in the

dataow model. We also show that the slowdown achieved by our simulation is optimal. We consider both the

case of links that allow pipelining and links that do not allow pipelining. These results are easily extended to

the case where the host network is an arbitrary bounded degree network using the same embedding technique

used in [1, 2].

In the second part, we consider simulations of cliques by cliques in the database model. We do not assume

that links can pipeline messages and we analyse both the cases in which processors are homogeneous and

heterogeneous. In in the �rst case we achieve a slowdown that is proportional to the average link delay. In the

second case, the slowdown is adjusted by a factor related to the computational speed of the host processors.

The results of the second part combined with well-known techniques for simulating shared memory on

distributed memory architectures (see [12] for references) yields an eÆcient automatic method of compiling

2

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

PRAM algorithms on a NOW. By considering PRAMs and allowing compilation to speci�c architectures has

the advantage of completely freeing algorithm designers and software developers from considerations relative to

the topological structure of the underlying network of workstation.

2 Simulating linear arrays

In this section we present our results about the simulation of linear arrays by NOWs with underlying linear

array topology.

2.1 Links with pipelining

In this section we give a simulation and matching lower bound in the dataow model for the case of a hetero-

geneous linear array of processors with links that allow pipelining of messages.

We are given an array G of n processors pi, i = 0; : : : ; n� 1. Processor pi, 0 < i < n� 1, can communicate

with its two neighbours pi�1 and pi+1, while processor p0 can communicate only with p1 and pn�1 only with

pn�2. Links between processors have unit delay, i.e., a message sent on a link needs one unit of time to arrive to

its destination. A computation of G, of length T , naturally de�nes a DAG with vertices (x; y), for x = 0; : : : ; n�1
and y = 0; : : : ; T , representing the computation performed by processor px at time step y. The computation

(x; y) depends on the outcome of the computation of px and its neighbours at the previous time step, thus

(x; y)'s incoming edges are: ((x+ 1; y � 1); (x; y)); ((x; y � 1); (x; y)); ((x � 1; y � 1); (x; y)).

Our aim is to simulate a computation on G using a host array H of m � n processors that communicate

through links with delay d > 1. More precisely, di is the delay on the link connecting pi to pi+1. Processors of

H have di�erent computational power. We associate with each processor pi its speed si, meaning that in one

step processor pi can simulate si steps of a processor in G.

A �rst attempt to simulate G with H could be to slow down every processor to the calculation speed of the

slowest in H and to think that every communication requires the maximum delay on H . On the contrary, in

the following, to hide the latency introduced by non unitary delays we take advantage of the fact that some

processors are more powerful than others.

The techniques presented in this section resemble those of [1] used for the case of an array of homogeneous

processors.

2.1.1 The stripe algorithm

Consider the �rst n steps of G's computation. De�ne L as the triangle formed by the pebbles (j; t) of the DAG

such that j � n� t and R as the one formed by pebbles (j; t) such that j � t. The algorithm �rst simulates the

�rst n=2 steps of L, then the �rst n=2 steps of R; in this way every pebble of the �rst n=2 steps are simulated.

In the same way it will simulate the following steps of the computation, n=2 at a time.

Only a portion of array H is used to perform the simulation; w.l.o.g. we suppose we use mI � m processors

in the interval I = fp0; : : : pmI
g � H .

We will use the following notation:

Si =

iX
j=0

sj ; SI =
X
pj2I

sj and Di =

i�1X
j=0

dj :

Let k be the minimum integer such that n �
P

mI�1
j=0

ksj . It is easy to see that k � 1 + n=SI .

To simulate the bottom half of L, we divide it into slanting stripes and each processor pi computes all pebbles

in stripe Ri, which is de�ned in the following way:

Ri = f(j; t) j t = 0; : : : ;minfn=2� 1; kSi�1g and j = maxf0; kSi�1 � tg; : : : ; kSi � 1� tg :

Every stripe is computed row by row in a bottom-up manner and every row is computed from left to right.

Lemma 1 Processor pi (0 � i � mI �1) computes pebble (kSi� t; t) at time step less or equal to k(t+1)+Di.

3

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

Proof. First observe that the computation of processor pi depends on pebbles calculated by pi�1 and possibly,

when k = 1 and si�1 = 1, by pi�2. Then, observe that, if pi did not have to wait for information from its

neighbours, it could compute all the pebbles on a row of its stripe, from (kSi�1 � t; t) to (kSi � t � 1; t), in k

units of time.

The proof is by induction on i. The base case for p0 follows easily by observing that its computation never

needs information from other processors and that p0 needs at most k units of time to compute every row. Thus,

pebble (kS0; 0), the last of row 0, is done at time k;(kS0 � 1; 1), the last of row 1, is done at time 2k and so on.

-n/2,n/2-1)(kS

i(kS -1,0)i-1 ,0)(kS

i-1 -t-1,t-1)(kS
i-1 -t+1,t-1)(kS

i-1 -t,t-1)(kS

i-1 -t,t)(kS

ks i

i (n/2,n/2-1)

t

1 2

L

(0,0)

R

(n-1,0)

n-1

n/2-1

Figure 1: Processor pi computes a stripe of pebbles (j; t) such that kSj�1 + (1� t) � j � kSj � t, every row is

computed left to right and rows are computed in a bottom-up manner. To compute pebble (kSi�1 + (1� t); t)

processor pi needs pebbles (kSi�1 + (2 � t); t � 1), (kSi�1 + (1 � t); t � 1) and (kSi�1 � t; t � 1); the �rst is

calculated by pi itself at previous steps, while the others are computed by pi�1 and, maybe, pi�2.

Pebble (kSi�1 � t; t) is the �rst one in row t to be calculated by processor pi and it depends on pebbles

(kSi�1 � t� 1; t� 1), (kSi�1 � t; t� 1) and (kSi�1 � t+1; t� 1); the last one has been computed by pi itself at

previous steps, while for the others two cases arise:

ksi�1 > 1 : pi�1 computes the other two pebbles, that, by induction, are ready at time step kt+Di�1 and

will arrive to pi at time step kt+Di�1+di�1 = kt+Di. Thus, pi computes (kSi�1� t; t) at time kt+Di+1=si.

ksi�1 = 1: pi�1 computes (kSi�1 � t; t � 1) and pi�2 computes (kSi�1 � t; t� 1) = (kSi�2 � t; t� 1) that,

by induction, are ready at time steps kt+Di�1 and kt+Di�2, respectively. They will arrive at pi at time step

kt+Di�1 + di�1 = kt+Di�2 + di�2 + di�1 = kt+Di. Thus, pi computes (kSi�1 � t; t) at time kt+Di +1=si.

All the remaining pebbles of row t are computed by pi with no more waiting in k steps. Thus pebble

(kSi � 1� t; t) is computed at time kt+Di + k
P

si

j=1
1=si = k(t+ 1) +Di.

Corollary 1 The bottom half of triangle L can be calculated in k(n=2) +Dm�1 steps.

Proof. The last processor to �nish its computation is pm�1 with pebble (n=2; n=2� 1).

4

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

Theorem 1 The slowdown of the Stripe algorithm is

O

�
min
I

�
1 +

n

SI
+
mIdI

n

��
;

where mI is the number of processors in I, SI =
P

pj2I sj is the total computation power of interval I and

dI =
�PjIj�2

j=0
dj

�
=mI is the average delay on the links between processors in interval I.

Proof. Corollary 1 gives us the time needed to compute L's bottom half; the same time is needed to compute

R's bottom half, while at most Dm�1 steps are suÆcient in order to exchange the necessary information to start

the algorithm again on the next n=2 steps. Thus, the slowdown s associated with n=2 steps of computation, is

upper bounded by

s �
2 (kn=2 +DmI�1) +DmI�1

n=2

= 2k + 6
DmI�1

n

� 2 + 2
n

SI
+ 6

mIDmI�1

mIn

� 2 + 2
n

SI
+ 6

mIdI

n
:

2.1.2 Applications

The previous theorem gives us an upper bound on the slowdown as the minimum over all possible intervals I of

a function of the speed, the number of processors and of the delay of the links connecting them. We now derive

bounds for special cases in two di�erent settings: �rst, processors in the host array all have the same speed and

are more powerful that processors in the guest array; second, processors in the host array need not have the

same speed.

Host with homogeneous processors. If processors in H are homogeneous and their speed is S = Sm=m,

we distinguish the following cases:

1. n �
p
Sdave:

only processor p1 is used to perform the simulation. p1 needs at least one unit of time and at most n=S

units of time to simulate one step of computation of G, thus

s 2 O

1 +

r
dave

S

!
:

2. n >
p
Sdave:

(a) If n � Sm � m � np
Sdave

, then there must exist an interval I � H of processors such that mI =
np

Sdave
and dI � dave. (Suppose that such an interval does not exist and divide array H into n=mI

consecutive intervals ofmI processors each; from the fact that the average delay of every such interval

must be greater than the average delay of the whole array, we can derive a contradiction.) Thus,

SI = mIS = n

r
S

dave

and

s 2 O

1 +

r
dave

S

!
:

5

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

(b) If n � Sm and np
Sdave

> m � 1, the whole array H or a single processor is used to carry out the

simulation and we have that

s 2 O

min

(
n

Sm
+

r
dave

S
;
n

S

)!
:

Thus, slowdown s can be as good as before when Sm 2 O(n), but can be O(n) in very bad situations,

i.e., when the guest array has few (m 2 O(1)) and not very powerful processors (Sm 2 O(1)).

Host with heterogeneous processors. If processors in H are heterogeneous, with speed si for processor

Pi, let Save = Sm=m be the average speed of processors in H .

If we can �nd an interval I � H such that

SImIdI = n
2 and

dI

SIave

�
dave

Save
;

where SIave = SI=mI is the average power of processors in I , then

s 2 O

1 +

r
dave

Save

!
:

If such an interval does not exist we have the cases:

1. n >
p
dave :

If Sm � m � n=
p
dave, there must exist an interval I � H such that mI = n=

p
dave (thus Sm � n=

p
dave)

and dI � dave. We have that

s 2 O

�p
dave

�
:

The same slowdown can be achieved also if Sm � n=
p
dave > m using the whole H for the simulation.

2. n �
p
dave :

The processor with maximum speed smax is used to perform the simulation. It needs at least one unit of

time and at most n=smax units of time to simulate one step of computation of G. As smax � Sm=m, we

have

s 2 O

�
1 +

p
dave

Save

�
:

2.1.3 A lower bound

In this section we show that the upper bound s � minI O(1 +
n

SI
+ mIdI

n
) is asymptotically tight.

Lemma 2 Pebble (i; n) can not be computed earlier than time step

min
I

maxfn2=2SI ;mIdI=2g:

Proof. Consider any simulation that uses interval I of processors in H . There must exist a subinterval

I
0 = fpj ; : : : ; pj+jI0j�1g � I of consecutive processors such that pj and pjI0j are the two farthest apart processors

that must exchange information during the simulation before pebble (i; n) is computed. Thus, (i; n) cannot be

calculated in less than mI0dI0=2 time steps.

Moreover, in order to compute pebble (i; n) we �rst need to compute every pebble in triangle ((1; 1); (n; 1); (i; n)),

that needs at least n2=2SI0 time steps to be computed.

6

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

Corollary 2 The �rst kn steps of computation can not be simulated in less than

kmin
I

maxfn2=2SI ;mIdI=2g

time steps.

By the previous corollary we can, thus, state the following theorem:

Theorem 2 The slowdown of the best simulation of G by H is

�
�
min
I

f1 + n=SI +mIdI=ng
�
:

2.2 Links without pipelining

We now analyse the case in which links between processors do not have the possibility to pipeline messages; i.e.,

a new message can be sent on a link only when the preceding one has arrived at its destination. We describe

the simulation only in the case of homogeneous processors and we show that the slowdown is upper bounded

by the delay on the links and that the simulation is work eÆcient; i.e. we simulate m steps of computation of

an n-processor unit-delay linear array with a n=d-processor linear array with links of delay d in time O(md).

The case of heterogeneous processors is a straightforward generalisation.

We are given a guest array G of n processors pi; i = 0; : : : ; n� 1, with unit delays on links, that computes

a DAG D
0 = f(x; y) j x � n � 1 and 0 � y � m;m � ng and a host array H of p � n processors with delay

d > 1 on links (w.l.o.g. we suppose n is a multiple of d+1). We also assume tht the links of H do not support

pipelining.

DAG D
0 can be computed by H in a work-eÆcient way using n=(d+ 1) processors and with a slowdown of

O(d) in the following way. The dag D0 is divided into n=(d + 1) vertical stripes Stk each d + 1 pebbles wide.

More precisely, the computation goes as follows:

� set Stk = f(x; y) j 0 � y � m; k(d+ 1) � x < (k + 1)(d+ 1)g, k = 0; : : : ; n=(d+ 1);

� set left(k; r) = (k(d+1); r) and right(k; r) = (k(d+1)+d; r) for every 0 � r � m and every 0 � k � n=d+1;

� processor pk computes stripe Stk row by row in a bottom-up manner. Pebbles in row r are computed in
the following order:

left(k; r); right(k; r); (k(d+ 1)+1; r); (k(d+ 1) + 2; r); : : :

(k(d+ 1) + d� 1; r) if kmod2 = 0
right(k; r); left(k; r); (k(d+ 1) + 1; r); (k(d+ 1) + 2; r); : : :

(k(d+ 1) + d� 1; r) if kmod2 = 1

� All processors start computation at t = 0.

We now prove that every processors has at its disposal all the pebbles needed to carry out its computation

and that the computation of H has a slowdown of O(d). We start by de�ning t(x; y) as the time by which

pebble (x; y) is computed, and by prev(x; y) as the number of pebbles that are computed before pebble (x; y)

by the same processor. We have that

Lemma 3 For every 0 � r � m; t(x; r) = prev(x; r) + 1.

Proof. The claim clearly holds for r = 0. Suppose it holds for �xed r � 0. If we prove that, for every k, the

claim holds for right(k; r + 1) and left(k; r + 1) then it holds also for the remaining pebbles in row r + 1. In

fact, once pk has computed right(k; r + 1) and left(k; r + 1), then it can compute the other pebbles in row r

of its stripe one at each step with no more waiting. We prove the claim only for right(k; r + 1); the proof for

left(k; r + 1) is analogous.

Notice that

t(right(k; r + 1)) = maxft(right(k; r)) + d+ 1; t(left(k � 1; r)) + d+ 1g;

that is, pk can compute right(k; r + 1) when it has computed all the pebbles of the previous row and when

left(k � 1; r), computed by pk�1, has arrived.

7

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

right(k-1,r-1)

r

St k

left(k,r)

right(k,r)

left(k+1,r-1)

Figure 2: Processor pk, k = 0; : : : n=(d+1), computes a vertical stripe of width d+1 pebbles, from (k(d+1); 0)

to ((k + 1)(d+ 1); 0). left(k; r) is the leftmost pebble of row r in stripe Stk, while right(k; r) is the rightmost

of the same row and same stripe.

Using the inductive hypothesis we have

t(right(k; r)) + d+ 1 = prev(right(k; r)) + 1 + d+ 1 = prev(right(k; r + 1)) + 1:

As, for every r 2 [0;m] and for every k 2 [0; n=d + 1), prev(left(k; r)) = prev(right(k + 1; r)), using the

inductive hypothesis

t(left(k � 1; r)) + d+ 1 = prev(left(k � 1; r)) + 1 + d+ 1

= prev(right(k; r)) + d+ 1 + 1

= prev(right(k; r + 1)) + 1:

In conclusion:

t(right(k; r + 1)) = prev(right(k; r + 1)) + 1

Corollary 3 The computation of stripe Stk is �nished by time t = m(d+ 1).

Proof. For every k, (k(d+1)+d�1;m) is the last pebble to be computed in stripe Stk and, because of Lemma

(3), t(k(d+ 1) + d� 1;m) = prev(k(d + 1) + d� 1;m) + 1 = jSkj = m(d+ 1).

Theorem 3 The simulation above is work-eÆcient.

Proof. We use n=(d+ 1) processors to simulate m steps of computation of n processors in m(d+ 1) time.

3 Simulating cliques

In this section we present an automatic method for simulating in the database model (see [2]) homogeneous

processor cliques with unit delay links, on both homogeneous and heterogeneous cliques of processors with

arbitrary delays on links that disallow pipelining. In the database model, each processor p has a potentially

large local database that may be accessed only by p at each step of computation. Before the simulation starts

it is possible to assign the databases of the guest machine to the processors of the host machine. However, the

size of the database makes it infeasible for two processors to exchange databases once the simulation has started

and only updates of the database can be passed.

8

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

These results have straightforward implications for simulating PRAM algorithms on an arbitrary NOW. A

shared-memory PRAM is an abstract model of parallelism which consists of n processors and a global shared

memory of size M . Each processor has its own local control and its own local memory. During each step of

a shared-memory PRAM computation, each processor is allowed to access any location of the global shared

memory and to perform some computation according to its local control and its local memory. Here we consider

a variation of the shared-memory PRAM model called the distributed-memory PRAM (also called a distributed

memory machine or DMM). Here, the memory of sizeM is distributed evenly among the n processors with each

processor receiving a block of memory of M=n locations. In the distributed memory PRAM, each processor has

direct access to its own memory and to every other processor but it has only indirect access to other processors'

memory. Moreover, at each time step, each memory block can be accessed by at most one processor. Using

well-known techniques related to random hashing, a shared-memory PRAM can be simulated by a distributed-

memory PRAM with a slowdown of O(logn) with high probability (see [12] for references). By seeing the

guest clique as a distributed memory PRAM and the host clique to a NOW with the weight di;j of edge (i; j)

representing the delay of the minimum-delay path in the NOW from vertex processor pi to processor pj , we can

get a method for automatically compiling PRAM algorithms for NOWs.

3.1 Homogeneous processors

In this section, we are given an n-vertex weighted host clique C and we use it to simulate an n-vertex unit

delay clique. We show that the slowdown is proportional to the average of the delays of the links represented

by weights.

Given a weighted clique C = (V;E), with n vertices and weight de on edge e 2 E we de�ne the subgraph

H = (V;E0) such that:

E
0 = fe 2 E such that de � daveg

where dave is the average weight on Cn's edges. A node is said to be alive if it has degree at least n=2 in H ;

otherwise it is dead.

The simulation works in the following way: distribute the databases of the guest processors equally among

the alive nodes in H ; use both alive and dead nodes in H for message passing; have each alive node perform all

the computation related to its assigned processors.

Lemma 4 Any two alive nodes are either adjacent or share a common (dead or alive) neighbor in H.

Proof. Suppose by contradiction that there exist two nodes u1 and u2 that are not adjacent and such that

the intersection of their neighbor sets V1 and V2 is empty. As both u1 and u2 are alive, jV1j; jV2j � n=2. Thus,

jV1 [V2j � n, but this is a contradiction since u1 62 V2, u2 62 V1.

Lemma 5 The alive nodes are a constant fraction of n.

Proof. The maximum number of eliminated edges is
�
n

2

�
=2, thus the maximum number of dead nodes is

2
�
n

2

�
=2n = (n� 1)=2. Therefore at least n� (n� 1)=2 > n=2 are alive.

Theorem 4 An n-vertex clique with links without pipelining and with average delay dave can simulate an n-

vertex clique with a slowdown O(dave).

Proof. Since the number of alive nodes is a constant fraction of the total number of nodes, it is possible to

assign guest processors (along with their local database) to host processors so that each host is responsible for

a constant number of processors. As the distance between every pair of alive nodes is at most 2 and the delay

of every used link is at most dave, the time spent for communicating at each step is at most O(dave).

It is easy to see that in a NOW in which all links have the same delay d = O(n) no simulation can achieve

a slowdown smaller than d; therefore our simulation is asymptotically optimal. Conversely, if d =
(n), the

trivial simulation that assigns work only to one processor of the NOW achieves a slowdown of O(n).

3.2 Heterogeneous Processors

In this section we briey discuss how to extend the simulation of the previous section to the case in which

the host network is a clique of m heterogeneous processors. The basic idea is to expand a vertex of the clique

9

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

corresponding to a processor with computing power s into a clique of s processors connected among themselves

with links of delay 0 and then use the simulation with O(dave) slowdown of the previous section using this new

graph as host.

As before, the host consists of processors p0; � � � ; pm�1 and is represented by a complete graph C = (V;E)

on m vertices that has weights on the vertices and on the nodes. The weight di;j of edge (i; j) represents the

delay on the edge (i; j) and weight si of node i represents the speed of processor pi. We denote with SI , for

I � f0; � � �m� 1g, the sum of the speeds of the processors of I and by S the sum of the speeds of all processors.

Weight si of node i represents the speed of processor pi. We assume that weights on both edges and nodes are

integers and that S � n.

We start by de�ning a graph G
0 with unweighted nodes; on this graph we will perform the simulation

presented in the previous section. We then observe that C can simulate G0 without any additional slowdown.

Let G0 = (V 0
; E

0) be the edge-weighted clique de�ned as follows:

� V
0 = fvi;j j 0 � i � n� 1; 0 � j � si � 1g (thus jV 0j = S);

� weight d(vi;j ; vl;k) on edge (vi;j ; vl;k) is de�ned in the following way:

d(vi;j ; vl;k) =

�
0 if i = l

di;l otherwise

G
0 can perform the simulation described in the previous section achieving slowdown s

0

s
0 2 O

�P
e2E0 d(e)

jsE0j

�
= O

 P
n�1
i;j=0 i6=j di;jsisj

S(S � 1)

!
:

Now, C simulates G0 in the following way: every processor pi, i = 0; : : : ; n � 1, performs the computation of

all processors in Vi = fvi;j 2 V
0 j 0 � j � si � 1g with constant slowdown. Therefore the slowdown of the

simulation of the host network by C is O(s0).

4 Open problems

In this paper we presented simulations of linear arrays on linear arrays and of cliques on cliques. For example,

our simulation of a clique by a clique guarantees a slowdown proportional to the average host link delay. Besides

designing simulations between other pairs of important DAGs, it would be interesting to design algorithms that

map guest processors on host processors so to guarantee optimal simulation. Alternatively, one could give

evidence of the hardness of the problem and present approximate algorithms.

References

[1] M. Andrews, T. Leighton, P.T. Metaxas, L. Zhang. Automatic Method for Hiding Latency in High Bandwidth Networks. In

Proc. of the ACM Symposium on Theory of Computing, 1996.

[2] M. Andrews, T. Leighton, P.T. Metaxas, L. Zhang. Improved Methods for Hiding Latency in High Bandwidth Networks. In

Proc. of the 8th annual ACM Symposium on Parallel Algorithms and Architectures, pages 52-61.

[3] Y. Aumann, M. Ben-Or. Computing with Faulty Arrays. In Proc. of the 24th Annual ACM Symposium on Theory of Com-

puting, pp. 162- 169, 1992.

[4] R. Cole, B. Maggs, R. Sitaraman. Multi-scale Self-simulation: a Technique for Recon�guring Arrays with Faults. In Proc. of
the 25th Annual ACM Symposium on Theory of Computing, pp.561-572, 1993.

[5] C. Kaklamanis, A.R. Karlin, F.T. Leighton, V. Milenkovic, P. Raghavan, S. Rao, C. Thomborson, A. Tsantilas. Asymptotically

Tight Bounds for Computing with Faulty Array of Processors. In Proc of the 31st Annual Symposium on Foundation of
Computer Science, pp. 285-296, 1990.

[6] R. Koch, T. Leighton, B. Maggs, S. Rao, A. Rosenberg. Work-Preserving Emulations of Fixed-Connection Networks. In Proc.

of the 21st Annual ACM Symposium on Theory of Computing, pp.227-240, 1990.

10

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

[7] T. Leighton, B. Maggs, R. Sitaraman. On the Fault Tolerance of Some Popular Bounded Degree Networks. In Proc. of the

33rd Annual Symposium on Foundation of Computer Science, pp.542-552, 1992.

[8] C.E. Leiserson, S. Rao, S. Toledo. EÆcient Out-of-Core Algorithms for Linear Relaxation Using Blocking Covers. In Proc.

of the 34th Annual Symposium on Foundation of Computer Science, pp. 704-713, 1993.

[9] M.O. Rabin. EÆcient dispersal of Information for Security, Load Balancing and Faults Tolerance. Journal of the ACM,

36(2), pp. 335- 348, 1989.

[10] L.G. Valiant. Bulk-synchronous Parallel Computers. Technical Report TR-08-89, Center of Research in Computing Technology,
Harvard University, 1989.

[11] L.G. Valiant. A Bridging Model for Parallel Computation. Communication of the ACM, 33(8), pp. 103-111, 1990.

[12] L.G. Valiant. General Purpose Parallel Architectures in Handbook of Theoretical Computer Science, J. van Leeuwen (editor).

Elsevier, Amsterdam, 1990.

11

p045.ps: Efficient Automatic Simulation of Parallel Computation on..., DO NOT DISTRIBUTE!!!

