
Multithreaded Algorithms for the Fast Fourier Transform

Parimala Thulasiramany, Kevin Theobald, Ashfaq Khokhary and Guang R. Gao

Department of Electrical and Computer Engineering

140 Evans Hall

University of Delaware

Newark, DE 19716

fthulasir,theobald,ggaog@capsl.udel.edu, ashfaq@eecis.udel.edu

yAuthors for correspondence:thulasir@capsl.udel.edu, ashfaq@eecis.udel.edu

1

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

Abstract

In this paper we present �ne-grained multithreaded algorithms for the Fast Fourier

Transform (FFT) problem. The FFT problem has been formulated in two distinct, unique

ways. The �rst approach, the receiver-initiated algorithm, realized the FFT iterations as a

parent-child relationship while fully exploiting the underlying parallelism. The number of

threads is directly proportional to the input size. The second approach, the sender-initiated

algorithm, follows a data-ow model based on the producer-consumer style of programming

and can be adopted to di�erent architectural parameters for achieving high performance.

We implement the proposed algorithms on the EARTH (E�cient Architecture for Running

THreads) platform. For both the algorithms we analytically calculate the number of threads

created in the algorithms and present asymptotic and experimental results in the paper. Our

implementation results show that receiver initiated algorithm performs poorly when number

of processors is small. However, for large number of processors, both the algorithms perform

well, yielding execution times of only 10 msec for an input of 16 K data points on a 64

processor machine, assuming each processor running at 140 MHz clock speed.

2

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

1 Introduction

Traditionally, digital image/signal processing algorithms are computationally intensive because

of the large amount of data involved in the underlying applications. For example, a typical

multispectral image may have a resolution of 8192 � 8192 pixels with 8 bits per pixel and

125 spectral bands, resulting in a spatial data set containing more than 8 Gbytes for each

scene. Similarly, application of inverse scattering techniques to obtain material properties of

the objects in a target image involves solving large sparse system of linear equations where

matrices typically grow as big as 100; 000 � 100; 000. Performing image transform operations

such as FFT, DCT, or Wavelet, in real time on such large data sets requires high performance

computing [Pit93, Gol65, Ung58, Pea68]. This paper investigates multithreaded algorithms and

implementations for Fast Fourier Transform (FFT) on multithreaded computing paradigms.

On parallel machines the image/signal data is partitioned into blocks, the blocks are dis-

tributed to processors, and any non-trivial image operation requires communication among

processors to complete the task. Two types of latencies are normally related to multiprocessor

systems. The latency that occurs due to remote memory access or data transfers is termed

as Communication latency [Hwa93]. The other important latency event is synchronization

latency [Hwa93]. In some algorithms, two events A and B executed on two di�erent processors

may be dependent on one another thereby inhibiting event A to continue until the other event B

that it depends on has occurred. In such situations the processor executing event A would have

to just wait. Less time is wasted if the latency is hidden by allowing the waiting processor to

execute another task. Thus useful work is performed by the waiting processor. There are many

techniques at the software and hardware levels (such as superscalar, superpipelined, VLIW,

prefetching) [Hen96, Sto80] to hide or tolerate such latencies. But the most general technique

is multithreading. Multithreading tries to overlap computation with communication by means

of threads (a thread is a set of instructions executed sequentially) thereby tolerating latencies.

The FFT problem has been studied extensively on images [Pra93, Cho93, Jam93] which

can be characterized as a 2D matrix with some data points. In general the 2D-FFT algorithm

can be realized by performing the 1D-FFT on every row of a matrix, transpose the resulting

matrix and perform the 1D-FFT on every column. The 1D-FFT problem is vitally important

in solving the 2D-FFT problem and so in this paper as a �rst step we concentrate on developing

e�cient implementation of the 1D-FFT algorithm on a multithreaded architecture. The FFT

on an input of N data points requires (N/2) log2(N/2) complex multiplication operations which

take most of the computation time for large data sets. Therefore, parallel processing becomes

highly necessary to solve the problem. The FFT problem has been studied on various parallel

machines. It can be well parallelized using shu�e exchange network [Ang92, Bur92, Sto71]

. Other parallel implementations have been performed on linear arrays [Tho83], hypercubes

[Ang90, Ang92], and mesh architectures [Cyp89, Kam87]. Sohn et. al. [Soh97] has studied the

FFT problem on EM-X multithreaded architecture. Given N points (N is a power of 2) and P

processors, N/P points are partitioned and distributed to each of the processors. The iterative

FFT algorithm is implemented on each processor by creating h threads in each processor to

1

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

handle N/P points. Each thread operates on (N/Ph) points. It is claimed that on the EM-X

architecture, 2 to 3 threads perform the best overlap with communication. Matteo Frigo and

Steven Johnson [Fri99] have developed a set of library C functions called codelets to compute

the DFT for arbitrary image size and real or complex numbers. A compiler called gen�t has

been developed that takes the input N at compile time and generates a set of optimized codelets

to calculate the DFT for N points. At runtime, they use a dynamic programming algorithm

to determine the best set of codelets to execute. The algorithm is portable and adaptable

on various architectures. A multithreaded version of the Cooley-Tukey DFT algorithm using

the divide and conquer approach has also been developed using the multithreaded language

Cilk [Lei99].

Due to imbalance in computation and communication in an FFT algorithm on parallel

platforms, it makes it an ideal candidate for multithreaded platforms. In this paper, we study

the FFT problem on non-preemptive multithreaded architectures. We develop two di�erent

dataow style algorithms for the FFT problem.

The �rst algorithm is a �ne grained algorithm referred to as the receiver-initiated algorithm.

In this scheme a parent-child relationship is established between threads, while fully exploiting

the underlying parallelism in the application. The number of threads is directly proportional to

the input size. The second algorithm, called the sender-initiated algorithm, is a coarse-grained

algorithm, where the number of threads can be set to be equal to the number of processors.

This algorithm models the FFT problem as the producer consumer problem. This algorithm

can be adopted to di�erent architectural parameters for achieving high performance.

The platform used to study our experiments is EARTH- E�cient Architecture for Running

THreads [Hum96, The99]-which is a �ne-grained, non-preemptive, dataow architecture. We

de�ne a �ne-grained multithreaded paradigm as the one that has abundant number of threads,

assumed balanced work load across processor, and cost of switching between threads is min-

imal [The99]. We present analytical and experimental results for both the algorithms. Our

implementation results show that receiver initiated algorithm performs poorly when number of

processors is small. However, for large number of processors, both the algorithms perform well,

yielding execution times of only 10 msec for an input of 16 K data points on a 64 processor

machine, assuming each processor running at 140 MHz clock speed.

The rest of the paper is organized as follows: Section 2 presents the multithreaded algo-

rithms. Analytical results are presented in Section 3. The experimental framework of the

EARTH model is given in Section 4. Performance results of the algorithms are presented in

Section 5. Our observations and conclusions are presented in Section 6.

2 Fine-Grained Multithreading Algorithm

The FFT problem may be solved recursively or iteratively. In general, iterative version of

the FFT algorithm is more suitable for distributed memory parallel machines [Kum94, Akl89,

Cor90, Lei92]. In the following we present two dataow style algorithms for the FFT problem.

2

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

Figure 1: The Buttery Operation

These algorithms di�er from each other in terms of dataow style and in number and size of

threads employed.

2.1 Receiver-Initiated Algorithm

The receiver-initiated algorithm is a �ne-grain multithreaded algorithm.

Let us assume we have N (N=2m) data elements and P (P=2p) processors. The data is block

partitioned into N/P data points and is distributed to P processors. Each point or data element

is a complex number. Initially, each processor performs the buttery (�gure(1)) computation

for its local data points in a single thread. A buttery computation can be described as follows:

a and b are points or complex numbers.The upper part of the buttery operation computes the

summation of a and b with a twiddle factor w while the lower part computes the di�erence. At

each iteration for N/P data points, N/2P summations and N/2P di�erences are performed in

each processor.

In general, it is known [Kum94] that an FFT with blocked data distribution of N elements on

P processors requires communication for logP iterations and terminates at logN iterations. At

the end of the logN� logP th iteration, the latest computed values for N=P data points exist in

each processor. Therefore during the �rst logN � logP iterations, a sequential FFT algorithm

can be used inside each processor. At this point, the processors switch to the multithreaded

phase of the algorithm described below.

Conceptually, the multithreaded phase starts from the output. Conisder the N output data

points at the end of the logNth iteration. The buttery computation for any data point in this

iteration requires two data points from the previous iteration (Figure(1)).

Therefore, considering the dataow style, each processor, for each of its N/P local data

points, sends out two threads: one to itself and another to the destination processor holding

the other data point. The set of parameters of a thread is comprised of a function name,

destination processor id., and iteration number. These threads are sent to obtain the data

values computed at the previous iteration. At a particular iteration i the processors upon

receiving these threads send out two more threads with iteration number i-1. This process

continues until the logPth iteration is reached. At this point, the latest locally computed data

element is transferred to the corresponding requester. When the requester receives the two data

elements, the buttery operation is performed.

3

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

x

x

x

x

x

x

x

 2

 5

7

4

1

3

x y
0

y

y

y

y

y

y

y

0

4

2

6

1

5

3

7

w0
8

w0
8

w0

w0
8

8

w

w

w

w

0

0

8

8

8

8

w

w

w

ww

0

2

2

3

8

8

8

8
2

1

P

P

P

0

1

2

3

log(P) = 2 stages (P = 4)

Non-Local Computations

log(N)-log(P) stages
Local Computations

P

6

iteration 2iteration 1iteration 0 iteration 3

Figure 2: The Cooley-Tukey [Coo77] signal ow graph (N=8)

Note that the buttery computation is performed only after the two data values has arrived

for the two threads sent out. The thread computing the buttery computation is therefore

synchronized by two signals. The arrival of these signals acknowledges the arrival of the two

data elements computed at the previous iteration.

The above algorithm can be illustrated with an example. Consider Figure(2) with (N =

8) data elements and (P = 4) processors. Each processor has 2 elements. P0 has x0,x4, P1:

x2,x6, P2: x1,x5 and P3: x3,x7. The �rst logN � logP iterations are performed locally by

each processor. And therefore the computed values of the buttery operation for each data

element is available at the end of the logN � logP iterations. The processors then switch to

the multithreaded version of the algorithm.

Let us consider one particular data element y7 at logNth iteration, that is at iteration 3

(refer to Figures(2) and (3). The receiver initiated approach starts from y7 and proceeds

4

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

o
7833

5811

y

o

7

x = (x - w x) - w (x - w x)
6 0 8 4 8 2 8 6

x = (x - w x) - w (x - w x)
7 1 8 5 8 3 8 7

w

w

o 2 o 8

 8

o 2 o

w

2

2

x = x - w x
 4 0 8 4

o

x = x - w x 6 2 8 6

 8

7 1 8 5 8 3 8 77 1 8 5 8 3 8 77 1 8 5 8 3 8 7

o

x = x - w x

2

x = x - w x

Figure 3: One pass of the ow graph

backwards for logP = 2 iterations.

P3 which holds y7 sends out two threads: its mate processor P1 and itself, P3, for the

computed data elements x6 and x7 at iteration 2. Therefore, P3 has to receive two signals,

one each from P1 and P3. Of course, at iteration 2, x6 and x7 have not yet been computed.

Therefore, consider the actions of processor P1 at iteration 2. This involves: Processor P1 upon

receiving and executing the thread from P3 sends out two more threads to P0 and P1 for data

elements at iteration 1. At iteration 1, the latest locally computed data values exist and P0 and

P1 transfer x4 (x0 � w
0
8x4) and x6 (x2 � w

0
8x6) respectively to processor P1 which requested

these data at iteration 2. At this point P1 computes the buttery operation and sends the

result back to P3 which requested it at iteration 2. Now P3 has received one signal and one

data element. Similarly the same type of communication is performed to receive the second

signal. When the 2 signals arrive at P3 the buttery operation is performed and y7 is computed.

The ow graph of y7 is shown in �g(3).

In this scheme, a parent-child relationship is established between threads. This parent-child

relationship and the synchronization signals which act as acknowledgment signals allow e�cient

multithreading. It also ensures the correctness of the program without any data race conditions

or corruption of data. Also, there are equal number of threads per processor thereby balancing

the work load. For N

P
data points per processor, 2i N

P
threads are sent out, where i = 1 � � � logP .

The processors execute the buttery computation of each of these threads as per the arrival

of signals and these could be in any order. Therefore, a processor either sends out threads or

performs computations; it never sits idle. The algorithm e�ciently overlaps computation with

5

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

++

x

x

x

x

x

x

x

x

0

1

 2

 3

4

 5

6

7

+

+

+

+

-

-

-

-

+

-

-

+

-

-

+

-

+

-

+

-

+

-

+

+

Figure 4: Signal Flow Graph [Gen66]

communication. It is easy to show that the total number of threads created is 2(P � 1)N and

the number of buttery cmputations performed is N logP . The analytical section will explain

the complexity analysis in more detail.

2.2 Sender-Initiated Approach

In the sender-initiated algorithm, the number of threads is �xed at compile time to be equal

to N

B
, where B is the block size, consisting of contiguous data elements. The N

B
threads are

distributed to each of the processors in a round-robin fashion, thereby balancing the load across

the processors. Each processor performs the FFT computation on its B data points.

In the FFT algorithm, each data point requires a mate data point to compute the buttery

operation. The mate may be located in a di�erent thread in a di�erent processor. In this case, a

thread for each of its points sends the recently computed value to the thread containing its mate

point. The sending and receiving of information requires certain amount of synchronization

between the producing and consuming threads. Also, the mate points change at each iteration

during the execution of the algorithm. However the communication and synchronization is

performed at a block level. That is each thread, computes the values for its B points and uses

a split phase transaction operation to move data to its mate thread. Note that, all the mate

points are located within the same thread which makes sending and receiving easier. This is

6

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

possible due to the contiguous distribution of points in each thread.

As mentioned above, each thread comsumes data from previous iteration and produces

data for next iteration. This producer-consumer function is realized as a second level thread (a

thread within a thread), called �ber. We explain the concept of second-level threads as follows.

The data is produced in a producer thread and using a split-phase transaction operation,

the produced values are delivered to the corresponding consumer thread in another processor.

The consumer thread in the other processor is activated when it receives a synchronization

signal from its mate thread. Note that at each iteration, the threads have to determine the

location of its mate thread and set up the synchronization slots appropriately during runtime.

Therefore, the producer and consumer threads act as second level threads (�bers) within a

threaded function. The synchronization slots act as acknowledgment signals and the second-

level threads comprise a data-ow style of programming.

We illustrate the above producer-consumer approach with an example (Figure 4) (We

have represented the signal ow graph di�erently [Gen66] for easier explanation of the sender-

initiated algorithm). Assume N=8, P=4 and B=2. Then there are N/B = 4 threads. Points

x0, x1 are in thread 0; x2,x3 in thread 1; x4,x5 in thread 2; x6,x7 in thread 3. These threads

are distributed to each of the 4 processors (thread 0 is executed by P0, thread 1 by P1,etc.,). In

Figure 4, all edges going upwards are marked positive (+) and all edges going downwards are

marked negative (-). This indicates that a+bw or a-bw is computed at + and - marked points

respectively. Consider the �rst iteration of the algorithm. The mate points of x0, x1 in thread

0, P0 are x4, x5 and are located in thread 2, P2. Thread 0 computes x0w
n, x1w

n (where n=0

or 1 ... or 3) and sends the computed values to the consuming mate thread (which is in thread

2 of P2). Similarly the consuming thread of thread 0 in P0 receives the computed values (x4w
n,

x5w
n (where n=0 or 1 ... or 3) from the producing thread of thread 2, P2. In the next iteration,

thread 0's mate thread is thread 1. The setting up of synchronization slots between the threads

is performed at the start of the new iteration. Therefore, it is clear that the sender-initiated

approach follows a producer-consumer data ow format while the receiver-initiated approach

follows the parent-child format.

3 Analytical Results

3.1 Receiver-Initiated Algorithm

In this approach, given N points and P processors, the data points are partitioned into block of

size N=P and each block is assigned to one processor. The total number of threads in the system

for the multithreaded (communication/computation) portion of the algorithm is as follows.

Consider a particular point yi at log(P)th iteration. Initially it sends two threads. These

threads at log(P)-1th iteration in turn send two more threads for a total of four threads. This

continues for log(P) iterations. This basically forms a binary tree starting from each data point

yi. That is,

7

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

21 + 22 + :::+ 2log(P) = 21(20 + 21 + :::+ 2log(P�1)) (1)

= 2�
2log(P) � 1

2� 1
(2)

= 2� (2log(P) � 1) (3)

= 2(P � 1)N (4)

= 2NP �N (5)

(6)

The number of threads is 2(P � 1)N and the number of buttery computation for the log P

iterations is logP iterations is logPN . Note that the number of computations has increased

by a factor of 2 compare to N

2
logP . However, the advantage is that computation of the FFT

for each point can be carried independent of the others points.

In the following, we sketch the proof of correctness for the multithreaded phase of the

algorithm. Detailed proof will be available in the full version of the paper.

Proof of Correctness:

Given N points and P processors. There are log(N) iterations in total in the FFT

computation. In the algorithm �rst logN � logP iterations are local computations

performed by each processor on its local data set and logP iterations are non-local

computations. The resulting locally computed values of the buttery operation are

available at the end of the logN � logP iterations. The processors then switch to

the multithreaded phase of the algorithm for log(P) stages. In the following, we

prove that any data point in the �nal iteration is correctly computed.

Let x
log(P)
i

and x

log(P)
j

reperesent the �nal output values of two data points xi and

xj at the end of the log(P)th iteration. To compute the output values by a buttery

operation, requires two data points from logP � 1th iteration. Assume x

log(P)
i

and

x

log(P)
j

require the values of x
log(P)�1
i

and x

log(P)�1
j

at log(P)-1th iteration to compute

x

log(P)�1
i

+wx
log(P)�1
j

and x

log(P)�1
i

-wx
log(P)�1
j

respectively. According to the algorithm

x

log(P)
i

and x

log(P)
j

send two TOKENS to receive x

log(P)�1
i

and x

log(P)�1
j

data points

(each TOKEN is nothing but a threaded function). So, in fact at logP�1th iteration,

x

log(P)�1
i

and x

log(P)�1
j

have received two di�erent TOKENS, one from x

log(P)
i

and

the other from x

log(P)
j

. Notice that these are two di�erent instantiations of of

the TOKENS and have no relationship between them. For each TOKEN received,

two more instantiations of the TOKENS are sent out for previously computed data

values. Therefore, a parent-child relationship is established between the TOKENS.

This process continues for logP iterations at which point, x0
l
, l = 1 � � �N values are

8

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

readily available. This parent-child relationship for any data point can be shown as

a rooted binary tree. We show that the root is correctly computed. This implies

that there is no data race problems and therefore no corruption in data between

TOKENS that do not have a parent-child relationship and also between iterations

of the TOKENS that have this relationship.

Assume that there are N data points, xl, l = 1 � � �N . In the above scenario,

x

log(P)
i

and x

log(P)
j

both require x

log(P)�1
i

and x

log(P)�1
j

. This is true for all data points.

In general, at each iteration, one of the points needed to compute the buttery

compuation is its own data point calculated at the previous iteration.

For the proof, let us only consider the TOKENS traveling from x

log(P)
i

which we

will call the root. Consider the TOKEN received at iteration k for the data point

x
k

i
. As usual the TOKEN sends out two TOKENS, one to x

k�1
i

and the other to

its' mate point for values computed at iteration k-1. A parent-child relationship

is now established between the threee TOKENS. The algorithm stores a counter,

incremented to 2 to indicate that two TOKENS were sent. This serves as an ac-

knowledgement signal. In the next and further iterations, the data points that

received the TOKENS will in turn send out two more TOKENS and increment

its counter by 2. Since each TOKEN is a new threaded function invocation at

each iteration, the counter value assigned belongs to the corresponding threaded

function and therefore it is not shared by TOKENS that are not in a parent-child

relationship. By the process of recursion we notice that the TOKENS travel for

logP iterations and the TOKENS traveling from x

log(P)
i

is a rooted binary tree.

The TOKENS received at the end of the logPth iteration send the resulting val-

ues x
0
i
(i = 1 � � �N) to the parent TOKEN that requested it and also decrement

the corresponding counter by 1. This indicates to the parent TOKEN that an ac-

knowledgement has been received. When the counter value reaches 0, the parent

TOKEN performs the buttery computation. The parent TOKEN in turn sends

the resulting values to its parent and decrements the counter by 1. This process

continues until the root is reached. At which point the computation stops. Notice

that the parent TOKEN will not compute the buttery operation until it has re-

ceived two resulting values from its children. The parent-child relationship allows

the algorithm to avoid data race conditions and computes the data points correctly.

3.2 Sender-Initiated Approach

In this approach, the number of processors dedicated to the system has no baring

to creating the threads. For a given block size, B, and N points there are N/B

threads in the system.

� Case 1: B = N

N=B = 1 thread. A sequential algorithm in this case.

9

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

� Case 2: B < N

N=B = b threads. Given P processors, b=P threads per processor.

� P = b : 1 thread per processor. Therefore, this leads to a very coarse-grained

approach.

� P > b : 1 thread per processor and only b processors will be utilized.

� P < b : b/P threads per processors. threads are distributed to processors in

a round robin fashion.

The number of threads in the algorithm can be adopted to the architectural

features of the target platfom. In the following we only skecth the proof of cor-

rectness.

Proof of Correctness:

We prove that at each iteration, using the split phase trasaction operation,

indeed the correct mate values from the previous iteration are received and used

for the computation before moving to the next iteration and that there are no race

conditions.

The sending and receiving of information requires certain amount of synchro-

nization between producing and consuming threads. At each iteration, the mate

point changes. Therefore the location of the mate has to be determined during

the course of the algorithm. The sender-initiated algorithm is designed such that

the resulting computed values are sent to the mate points in bulks since all the

mate points are located within the same thread. If the mate points are located

within the same processor, then there is no need for synchronization between the

producer and consumer threads. Therefore, assume the mate points are located in

another processor.

Let Ti and Tj be two di�erent threads located in two di�erent processors, Pi and

Pj respectively. Assume, that the points between these two threads form a buttery

computation at a particular iteration k. This implies that Ti and Tj are partners.

At iteration k, each of the points, xl, (l = 0 � � �B) in thread Ti and Tj compute xlw
n,

(n = 0; 1; : : :). This computation is performed by the producer thread or �ber within

thread Tm, (m = iorj). The computed values are now sent to their partner thread.

At iteration k-1, the processor and their threads have determined the location of

their mate thread and set up the proper synchronization mechanisms. Therefore,

at iteration k, the computed values are automatically sent to the location of their

mate threads. That is, Ti sends the results to Tj and vice versa. The data is

transferred and the consumer thread of its partner is signaled. This indicates that

the data has been received and it is the consumer threads' job to perform the

10

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

buttery computation. Data transfer and synchronization are combined into one

atomic operation (split-phase transaction operation). The signaling operation can

be implemented using a 1-bit ag that is allowed to be set by the producer and

reset by the consumer. Therefore, even if the threads are ahead by one iteration

(which is the most that can happen), the producer thread cannot synchronize its

partner consumer thread unless the synchronization ag is reset. The activation

of the consumer thread indicates that the next iteration can begin. At this point,

the synchronization bit is reset, to synchronize with the next set of mate points.

The setting and resetting of the synchronization allows allows proper coordi-

nation between the producer and consumer threads and allows the program to

compute without any data race problems.

4 Experimental Framework

EARTH (E�cient Architecture for Running THreads) [Hum96] is a multithreaded

program execution model targeted to high-performance of parallel and distributed

multiprocessing. The EARTH platform supports latency tolerance by e�cient

exploitation of �ne-grained parallellism available in many applications. In the

EARTH programming model, code is divided into threads that are scheduled

atomically using dataow-like synchronization operations [Hum94, Hum96]. These

\EARTH operations" comprise a rich set of primitives, including remote loads and

stores, synchronization operations, block data transfers, remote function calls and

dynamic load balancing. EARTH operations are initiated by the threads them-

selves. Once a thread is started, it runs to completion, and instructions within it

are executed in sequential order.1 Therefore, a conventional processor can execute

a thread e�ciently, even when the thread is purely sequential. For this reason, it

is possible to obtain single-node performance close to that of a purely sequential

implementation, as shown in our earlier work and recapitulated in [Hum96].

Conceptually, each EARTH node consists of an Execution Unit (EU), which

executes the threads and a Synchronization Unit (SU), which performs the EARTH

operations requested by the threads. The EARTH multiprocessor structure is

shown in Figure(5). The current hardware designs for EARTH use an o�-the-shelf

high-end RISC processor for the EU and custom hardware for the SU [Maq95a,

Maq95b]. However, other implementations are also possible.

In the EARTH programming model, a programmer can express parallelism

by utilizing two form of threads: �rst-level and second-level threads. First-level

threads are declared as threaded functions. When a trreaded function is invoked,

a thread is spawned to execute the function. Note that the caller thread will

1Instructions may be executed out of order, as on a superscalar machine, as long as the semantics of the

sequential ordering are obeyed.

11

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

Figure 5: EARTH Multiprocessor

continue its own execution without waiting for the return of the forked threaded

function.The body of a function can be further partitioned into �bers [The99].

These �bers are referred to as second-level threads. Whenever a user suspects

that an operation may incur unpredictable latencies, the user can choose to use an

EARTH split-phase transaction operation. In a split-phase transaction, data trans-

fer and synchronization are combined into an atomic operation to avoid potential

race conditions in the network. A thread need not block until a synchronization

signal is received when using this operation. It may execute other instructions. A

synchroniztion signal may trigger the spawning of other threads. For example, an

user may decide to put the consumer who will need the result of the long latency

operation in a di�erent �ber. The producer threaded may synchronize the con-

sumer thread when its data is ready. This ensures that a �ber can be executed in

a non-preemtive fashion avoiding any waste of processor resources. The EARTH

runtime system will hide the latency by multithreading as long as the program has

enough parallelism to generate threads or �bers.

Currently, programs running on EARTH are written in EARTH Threaded-C,

which extends the C language with multithreading instructions. It is clean and

powerful enough to be used as a user-level, explicitly parallel programming lan-

guage.

The EARTH �ne-grain multithreading has the following key features or bene�ts

among others. 1) The programming model with both thread and �ber supports,

can be used to express, both naturally and e�ciently, both the parallel control/ow

dependence at desired level and data dependence in programs. 2) split-phase com-

munication/synchronization operations designed for variable and unpredictable la-

tencies. It supports both network syncronization and memory latencies for both

word-wide and block-wide moves. 3) e�cient thread-level dynamic load balancing.

12

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

Applications for which a good task distribution can not be determined statically

at compile time, EARTH provides an instruction in which the programmer can

simply encapsulate a function invocation as a TOKEN. These TOKENs may be

executed by any processor that is idle thereby providing automatic load balanc-

ing. If the programmer chooses to execute a thread at a predetermined processor,

EARTH also provides an instruction in which the programmer can encapsulate a

function invocation as a INVOKE. The processor identi�cation number is provided

in this instruction. 4) non-preemptive threads (called �bers) with ultra-lightweight

context and low thread initiation overhead.

The implementations reported in this paper have been developed using

Threaded C and the performance results have been obtained on the EARTH-

MANNA platform. MANNA (Massively parallel Architecture for Numerical and

Non-numerical Applications) is a multiprocessor platform built by GMD-FIRST.

Each processing node consists of two Intel i86x XP RISC CPUs (similar to the Intel

Paragon), but without the OS "�rewall" to facilitate runtime system research and

experiments. The nodes operate at 50MHZ clock and each node has 32 MB of dy-

namic RAM. A 20-node EARTH-MANNA platform is available at the University

of Delaware.

5 Performance Results

In this section, we discuss the performance results for the algorithms presented in

the previous sections. The algorithms have been implemented in the Threaded-C

language on SEMi (Simulator for EARTH, MANNA and i860).

There are two con�gurations supported by the SEMi simulator. These are

called EARTH-MANNA-D and EARTH-MANNA-S con�gurations. In section 4,

we explained that the EARTH EU and SU emulate the two processors of the

MANNA machine. This is called the dual processor (DUAL) version or EARTH-

MANNA-D. But since most multiprocessors have only one CPU per node, we

also have a single processor (SPN) implementation where only one processor of

the MANNA machine emulates both the EU and SU. With only a single CPU to

execute both the program code and the multithreading support code, it is necessary

to �nd an e�cient way to switch from one to the other. The EARTH operations

are therefore replaced by in-line code in the EU to carry out these operations

rather than sending the requests to the SU. For some simple operations, doing

them in-line in the EU may take less of the EU's time than sending the request to

the SU [The99]. We have experimented with both these con�gurations for both

the sender-initiated and receiver-initiated algorithms.

13

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000
Number of Processors vs. Multithreaded Execution time on EARTH−SPN

Number of Processors

M
ul

tit
hr

ea
de

d
E

xe
cu

tio
n

T
im

e(
m

se
c)

N=210

N=212

N=214

N=215

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000
Number of Processors vs. Multithreading Execution time

Number of Processors

M
ul

tit
hr

ea
di

ng
 E

xe
cu

tio
n

 T
im

e(
m

se
c)

N=210

N=212

N=214

N=215

(a) SPN (b) DUAL

Figure 6: Receiver-Initiated Algorithm: Scalability w.r.t machine size for the log(P) stages

5.1 Receiver-Initiated Approach

In the receiver-initiated algorithm, we partition N input points into N=P contiguous

points and distribute them to each of the processors. The �rst logN�logP iterations

are local computations and the last logP iterations require remote communication

realized as a multithreaded phase in this algorithm. In Figure(6), we show the

performance of the the mutithreaded phase of the algorithm only.

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

5

10

15

20

25

30

35
Problem Size vs. Multithreading Execution time on P = 64

Problem SizeProblem

M
ul

tit
hr

ea
di

ng
 E

xe
cu

tio
n

E
la

ps
ed

 T
im

e(
m

se
c)

EARTH−DUAL
EARTH−SPN

Figure 7: Receiver-Initiated Algorithm: Scalability w.r.t problem size for log(P) stages with P

= 64

Note that in Figure(7), on a 64 processor machine using various problem sizes,

14

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Number of Processors vs. Execution time

Number of Processors

T
ot

al
 E

la
ps

ed
 T

im
e(

m
se

c)

N=2exp(10)
N = 2exp(12)
N=2exp(14)
N=2exp(15)

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Number of Processors vs. Execution time

Number of Processors

T
ot

al
 E

la
ps

ed
 T

im
e(

m
se

c)

N=210

N=212

N=214

N=215

(a) SPN (b) DUAL

Figure 8: Receiver-Initiated Algorithm: Scalability w.r.t machine size with varying problem

machine size (Total Elapsed Time)

the remote communication in the algorithm does not degrade the performance of

the algorithm. For P = 64, N = 215, the number of threads in the system is 2 � 215 �

(64 � 1). This is quite a large number of threads in the system. However, we can

observe from Figure(7) a near linear speedup. Multithreading has safely guarded

against any performance degradation by appropriately overlapping computation

with communication. The latencies (synchronization and remote memory access)

are e�ciently hidden.

Figure(8) shows the scalability results with varying problem size. The total

elapsed execution time of the whole FFT algorithm is depicted in these �gures on

EARTH-SPN and EARTH-DUAL. This includes both log(N)-log(P) local compu-

tations and log(P) remote computation/communication (multithreading) portion

of the algorithm.

In the receiver-initiated approach 2N(P � 1) threads are generated. For N = 215,

P = 64, there are 2 � 63 � 215 threads and for P=2, there are 2 � 1 � 215 threads. For

small values of P the number of threads to be handled is relatively large and that

is the reason for the poor perfromance of the algorithm for such small values of P .

Comparing the performance on SPN and DUAL con�gurations, we observe that

if we ood the system with enough parallel threads the performance results of the

multithreading implementation as the number of processors increases produces

considerable di�erence in the execution time. One implication is that as long as

there are enough parallel threads in the system, the processors are never idle.

The scalability results with respect to varying problem size on the processors

are depicted in Figure(9).

15

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

100

200

300

400

500

600

700
Problem Size vs. Execution time

Problem Size

T
ot

al
 E

la
ps

ed
 T

im
e(

m
se

c)

P = 8
P = 16
P= 32
P = 64

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0

100

200

300

400

500

600

700

800

900
Number of Processors vs. Execution time

Number of Processors

T
ot

al
 E

la
ps

ed
 T

im
e(

m
se

c)

P = 8
P = 16
P = 32
P = 64

(a) SPN (b) DUAL

Figure 9: Receiver-Initiated Algorithm: Scalability w.r.t problem size with varying machine

size (Total Elapsed Time)

For logN � logP iterations, each processor performs the local FFT algorithm

on its local data set. This is a very sequential algorithm. At the end of this

iteration the processors switch to the multithreaded portion of the algorithm for

logP iterations. We see that there is a near-linear speedup for varynig problem size

on di�erent processors. And the execution decreases as the number of processors

increases. Overall observation is that if there are enough parallel threads and

there is a way of overlapping computation with communication then �ne-grained

multithreading is very e�ective as seen in the above �gures.

We observe that in the above �gures, the SPN con�guration performs better

than the DUAL con�guration. In the SPN version there is a single processor that

performs both the task of the EU and SU. That is, it handles the network commu-

nication/synchronization and computation aspect of the algorithm. However, this

does not seem to degrade the performance of the algorithm and also its perfor-

mance is better than the DUAL con�guration which has two processors to perform

the tasks of EU and SU. The EU performs all the EARTH operations e�ciently

without the need to send to the SU like in the dual processor which creates an

overhead and wastes CPU time unnecessarily.

5.2 Sender-Initiated Approach

Figure(10) shows the scalability results as the input problem size increases for

both the DUAL and SPN con�gurations. The number of points per thread is 16

(B = 16). Therefore for N = 212 there are 256 threads and for N = 216, there are

4096 threads in the system. The EARTH-SPN version performs better than the

EARTH-DUAL version for small number of processors, especially. However, for

16

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000
of Processors vs FFT Execution Time with Block Size = 16

Number of Processors

FF
T

 E
xe

cu
tio

n
T

im
e

(m
se

c)
N=212

N=214

N=216

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200
 # of Processors vs FFT Execution Time with Block Size = 16

Number of Processors

FF
T

 E
xe

cu
tio

n
T

im
e

(m
se

c)

N = 212

N = 214

N = 216

(a) SPN (b) DUAL

Figure 10: Sender-Initiated Algorithm:Scalability w.r.t to machine size with varying problem

size and �xed block size

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120
of Processors vs FFT Execution Time with Input Size = 212

Number of Processors

E
xe

cu
tio

n
T

im
e

(m
se

c)

Block Size = 4
Block Size = 16
Block Size = 256

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120
of Processors vs FFT Execution Time with Input Size = 212

Number of Processors

FF
T

 E
xe

cu
tio

n
T

im
e

(m
se

c)

Block Size = 4
Block Size = 16
Block Size = 256

(a) SPN (b) DUAL

Figure 11: Sender-Initiated Algorithm:Scalability w.r.t to machine size with varying block size

and �xed problem size

large number of processors, we observe that the execution time in both cases is very

minimal for all problem sizes. We see that the proper overlap of communication

and computation has produced better results even with one processor performing

both tasks. In the DUAL version, the overhead involved in sending messages to SU

by EU creates a bottleneck every time the EU needs to communicate remotely, as

mentioned earlier in the receiver-initiated approach. This, therefore, is the reason

for poor performance for very small number of processors in the DUAL version as

in the case of receiver-initiated approach.

17

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

Figure(11) shows the scalability results as the number of points per thread is

increased on a �xed size, N = 212. For B = 256, the number of threads in the system

is N/B = 212/ 28=16 threads. We observe after 16 processors , there is no change

in the execution time. The maximum number of processors that will be kept busy

using a round-robin load balancing fashion is 16 since there are only 16 threads

in the system. There is not enough parallelism (threads) in the system to balance

load on all processors. Beyond 16 processors, the others are idle. This is the reason

for the stationary execution time after 16 processors for B = 256. However, for B

= 4 (1024 threads) and B = 16 (256 threads), there are enough parallelism to keep

all processors busy. Therefore, we see a gradual decrease in the execution time as

the number of processors increases. The best result is obtained when there are 16

threads and 16 processors. This leads to a coarse-grained implementation with one

thread in each processor. If there is more than one thread in the processor (e.g.

1024/64 = 16 threads/processor), each processor executes a thread to completion

before switching to its next thread. There are B points in a thread. So each

thread executes the FFT algorithm sequentially on its B points, then uses a split

phase transaction to send the produced results to the consumer thread. It is

after this split phase transaction operation that the processor switches to the next

thread. This is the reason that the execution time for 32 processors on a block

size of 4 is slightly more than that of block size 16. If we compare both SPN and

DUAL versions, the SPN version does better and the same reasoning as explained

previously holds.

0 10 20 30 40 50 60 70
200

250

300

350

400

450

500

550
Number of Processors vs FFT Execution Time with Block Size = 16, Input = 64

Number of Processors

F
F

T
 E

xe
cu

tio
n

T
im

e
(u

se
c)

Figure 12: Sender-Iniitaited Algorithm:Scalability w.r.t machine size with block

size=16,problem size=64

Figure(12) shows the result for N = 64, B = 16. The number of threads in this

case is N/B = 4. For up to 4 processors, there is a linear decrease in the execution

18

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

time . But, starting from 8 processors, we see that there is no change in the

execution time. The reason behind this is that there are not enough threads in the

system for all the processors to be fully utilized. The four threads are distributed

in a round-robin fashion to the �rst four processors. The other processors sit

idle. This obviously indicates that one has to choose the appropriate block size

to provide enough threads in the system for full load balancing of the processors.

Note that in the sender-initiated approach, the number of threads is not directly

proportional to the number of threads and therefore poor scalability.

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000
Number of Processors vs. Execution time on N=214

Number of Processors

E
xe

cu
tio

n
T

im
e(

m
se

c)

Sender−Initiated Approach (Block Size = P)
Receiver−Initiated Approach

Figure 13: Comparison between the sender-initiated and receiver-initiated approaches

Figure(13) shows the scalability results between the two approaches on an input

of size 214. The comparison is between the total elapsed time in both cases. For the

sender-initiated approach, the block size (B) is set equal to the number of proces-

sors (P) (i.e., B = P). In the �gure, it is clear that for small number of processors,

the sender-initiated approach performs better. We examine this as follows: For the

sender-initiated approach, the number of threads in the system is N/B = 214/16

= 210 regardless of the number of processors. In the receiver-initiated approach,

the number of threads is 2(P-1)N. For P =2, there are 2(1)214=215 threads. There

are too many threads in the system for only two processors to handle. Therefore,

the execution time is higher for the receiver-initiated algorithm. However, for P =

64, there are 2(63)214 threads which is a lot more threads than the sender-initiated

approach. The execution time, however, is approximately the same for both cases.

This is because there is enough parallelism in the system and enough processors

to handle the large number of threads, in the receiver initiated approach. To

summarize, multithreading is very e�ective if there are enough parallel threads

and enough processors to handle the load generated in the system. The absolute

speedup of the algorithms for 64 processors is approximately 70%.

19

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

6 Conclusions

In this paper, we have presented two multithreaded algorithms for the FFT prob-

lem: receiver-initiated and sender-initiated. In the receiver-initiated approach

the multithreaded version of the algorithm due to its �ne-grain communica-

tion/computation ratio produced superb results for large number of processors.

This algorithm extracts full parallelism in the FFT computation while allowing

redundancy. We saw a near linear speedup as the number of processors increases,

even when there are large number of threads in the system. In the sender-initiated

approach the number of threads in the system is �xed at runtime and can be inde-

pendent of the number of processors. We observed that the best result is obtained

when there is one thread per processor which produces a coarse-grained implemen-

tation. Our implementation results show that receiver initiated algorithm performs

poorly when number of processors is small. However, for large number of proces-

sors, both the algorithms perform well, yielding execution times of only 10 msec for

an input of 16 K data points on a 64 processor machine, assuming each processor

running at 140 MHz clock speed. Overall, the sender initiated algorithms gave the

best performance for smaller machine sizes, while for large machine sizes both the

algorithms performed equally well.

References

[Akl89] Akl S.G. The Design and Analysis of Parallel Algorithms. Prentice Hall,

Englewood Cli�s, New Jersey, 1989.

[Ang90] Angelopoulos G. and Pitas I. Parallel implementation of 2-d �t algo-

rithms on a hypercube. In Proc. Parallel Computing Action, Workshop

ISPRA, Dec. 1990.

[Ang92] Angelopoulos G., Ligdas P. and Pitas I. Two-dimensional �t algorithms

on parallel machines. In Transputing for Numerical and Neural Network

Application, G.I. Reijns, editor, IOS Press, 1992.

[Bur92] Burkhardt H., Lang. B., and Noelle M. Aspects of parallel image pro-

cessing algorithms and architectures. In In H. Burkhardt, Y. Neuvo and

J.C. Simon, editors, From Poxels to Features II, pages 65{84, 1992.

[Cho93] Cho-Chin Lin, V.K. Prasanna, and A.A Khokhar. Scalable parallel ex-

traction of linear features on mp-2. InWorkshop on Computer Architec-

tures for Machine Perception, pages 352{361, New Orleans, Louisiana,

1993. IEEE Computer Society Press.

[Coc67] Cochran W.T and Cooley J.W et.al. What is the fast Fourier transform?

IEEE Transactions on Audio and Electroacoustics, 15:45{55, 1967.

20

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

[Coo77] Cooley J.W. and Lewis P.A. and Welch P.D. The Fast Fourier transform

and its application to time series analysis. Wiley, New York, 1977. In

statistical Methods for Digital Computers.

[Cor90] Cormen T.H, Leiserson C.L. and Rivest R.L. Introduction to Algorithms.

The MIT Press, 1990.

[Cyp89] Cypher R. and Sanz J.L.C. SIMD architectures and algorithms for image

processing and computer vision. In IEEE Trans. Acoustics, Speech and

Signal Processing, volume 37(12), pages 2158{2174, Dec. 1989.

[Fri99] Frigo M. and Steven. Fftw. In http://theory.lcs.mit.edu/ �tw, 1999.

[Gen66] Gentleman W.M and Sande G. Fast Fourier transforms for fun and

pro�t. In Proc. 1966 Fall Joint Computer Conference AFIPS 29, pages

563{578, 1966.

[Gol65] Golay M.J.E. Apparatus for counting bi-nucleate lymphocytes in blood.

In US Patent, 3214574, 1965.

[Hen96] Hennesey J.L. and Patterson D.A. Computer Architecture: A quan-

titative Approach, Second Edition. Morgan Kaufmann,Inc., San Fran-

cisco,CA, 1996.

[Hum94] Hum H.H.J, Maquelin O., Theobald K.B., Tian X. and Gao G.R. Build-

ing multithreaded architectures with o�-the-shelf microporcessors. In

Proc. of the 8th Intl. Parallel Processing Symp., pages 288{294, Canc�un,

Mexico, Apr. 1994. IEEE Comp. Soc.

[Hum96] Hum H.H.J. et. al. A study of the earth-manna multithreaded system.

In Intl. J. of Parallel Programming, volume 24(4), pages 319{347, Aug.

1996.

[Hwa93] Hwang K. . Advanced Computer Architecture: Parallelism,Scalability,

Programmability. McGraw-Hill,Inc., New York,NY, 1993.

[Jam93] Jamieson L.H, Delp E.J et.al. A library based program development en-

vironment for parallel image processing. In Scalable Parallel Library

Conference, pages 187{194, Mississippi State University, Mississippi,

1993.

[Kam87] Kamin R.A. and Adams G.B. Fast fourier transform algorithm design

and tradeo�s on the cm-2. In Proc. Workshop Comput. Arch. Pat. Anal.

Mach. Intell., pages 184{191, Oct. 1987.

[Kum94] Kumar V. and Grama A. et. al. Parallel Computing: Design and Anal-

ysis of Algorithms. Benjamin-Cummings Publishing Company, 1994.

21

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

[Lei92] Leighton F.T. Introduction to Parallel Algorithms and Architectures.

Morgan Kaufmann, San Mateo, California, 1992.

[Lei99] Leiserson C. Cilk. In http://supertech.lcs.mit.edu/cilk, 1999.

[Loa92] Loan C.L. Computational frameworks for the fast fourier transform.

SIAM Journal, Frontiers in Applied Mathematics, 1992.

[Maq95a] Maquelin O. Load balancing and resource management in the adam

machine. In Advanced Topics in Dataow Computing and Multithreading

(G. R. Gao , Lubomir Bic, and Jean-Luc Gaudiot, eds), pages 307{323.

IEEE Comp. Sci. Press, 1995.

[Maq95b] Maquelin O. et. al. Costs and bene�ts of multithreading with o�-the-

shelf risc processors. In Proc. of the First Intl. EURO-PAR Conf., pages

117{128, Stockholm, Sweden, Aug. 1995. Springer-Verlag.

[Opp83] Oppenheim A.V. and Willsky A.S. Signals and Systems. Prentice Hall,

Englewood Cli�s, New Jersey, 1983.

[Pea68] Pease M.C. An adaptation of the fast Fourier transform for parallel

processing. Journal of the ACM, 15:252{264, 1968.

[Pit93] Pitas I. Parallel Algorithms for Digital Image Processing, Computer

Vision and Neural Networks. John Wiley and Sons, New York, NY,

1993.

[Pra93] Prasanna V.K, Cho-Li Wang and Khokhar A.A. Low level vision process-

ing on connection machine cm-5. In Workshop on Computer Architec-

tures for Machine Perception, pages 117{126, New Orleans, Louisiana,

1993. IEEE Computer Society Press.

[Soh97] Sohn A., Kodama Y., et.al. Fine-Grain Multithreading with the EM-X.

In Ninth ACM Symposium on Parallel Algorithms and Architectures,

pages 189{198, Newport, Rhode Island, June 1997.

[Sto71] Stone H.S. Parallel processing with the perfect shu�e. In IEEE Trans.

Computers, C-20, pages 153{161, 1971.

[Sto80] Stone H.S, editor. Introduction to Computer Architecture. Science Re-

search Associates, Chicago, 1980.

[The99] Theobald K.B. EARTH: An E�cient Architecture for Running Threads,

1999.

[Tho83] Thompson C.D. Fourier transforms in VLSI. IEEE Transactions on

Computers, 32:1047{1057, 1983.

22

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

[Ung58] Unger H. A computer oriented toward special problems. In Proc. IRE,

volume 46, pages 1744{1750, 1958.

23

p051.ps: Multithreaded Algorithms for Fast Fourier Transform, DO NOT DISTRIBUTE!!!

