
An-Chow Lai and Babak Falsafi
School of Electrical & Computer Engineering

Purdue University
1285 EE Building

West Lafayette, IN 47907
impetus@ecn.purdue.edu

http://www.ece.purdue.edu/~impetus

Comparing the Effectiveness of Fine-Grain Memory Caching against
Page Migration/Replication in Reducing Traffic in DSM Clusters

Abstract

In this paper, we compare and contrast two techniques to improve capacity/conflict miss traffic in CC-NUMA DSM
clusters. Page migration/replication optimizes read-write accesses to a page used by a single processor by migrat-
ing the page to that processor and replicates all read-shared pages in the sharers’ local memories. R-NUMA opti-
mizes read-write accesses to any page by allowing a processor to cache that page in its main memory. Page
migration/replication requires less hardware complexity as compared to R-NUMA, but has limited applicability
and incurs much higher overheads even with tuned hardware/software support.

In this paper, we compare and contrast page migration/replication and R-NUMA on simulated clusters of symmet-
ric multiprocessors executing shared-memory applications. Our results show that: (1) both page migration/replica-
tion and R-NUMA significantly improve the system performance over ‘‘first-touch’’ migration in many
applications, (2) page migration/replication has limited opportunity and can not eliminate all the capacity/conflict
misses even with fast hardware support and unlimited amount of memory, (3) R-NUMA always performs best
given a page cache large enough to fit an application’s primary working set and subsumes page migration/replica-
tion, (4) R-NUMA benefits more from hardware support to accelerate page operations than page migration/replica-
tion, and (5) integrating page migration/replication into R-NUMA to help reduce the hardware cost requires
sophisticated mechanisms and policies to select candidates for page migration/replication.

1  Introduction

Clusters of symmetric multiprocessors (or SMPs) have emerged as the architecture of choice for building

medium- to large-scale parallel servers. To preserve software compatibility and portability with respect to SMPs,

designers often connect a cluster of SMPs using a high-bandwidth/low-latency switch-based network and a

directory-based distributed shared-memory (DSM) protocol. DSM provides a shared global address space over

SMPs’ physically distributed memory. Despite a compatible programming interface, performance tuning appli-

cations on DSMs is often difficult because remote shared-memory accesses inherently take up to ten to a hundred

times longer than local memory accesses.

To reduce remote memory traffic, most DSM clusters use a Cache-Coherent Non-Uniform Memory Access

(CC-NUMA) architecture to cache remote data in both processor caches and specialized cluster caches on every

node and exploit memory access locality [11,14]. Recent designs for aggressive remote caching propose incorpo-

rating dedicated cluster caches into the DSM hardware to cache remote data [14,21]. Unfortunately, while remote

caching in CC-NUMA substantially removes accesses to remote memory in most workloads, many scientific and

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



2

commercial applications still exhibit high capacity/conflict misses in the cache hierarchy and result in significant

remote memory traffic [12,1].

To address this problem, recent DSMs [6,10] incorporate a number of techniques to reduce capacity/conflict

traffic in CC-NUMA. One approach to reduce capacity/conflict memory traffic in CC-NUMA is to use kernel-

based page migration/replication to improve data locality on every node [24,10]. Page migration/replication

dynamically monitors the system-wide memory access frequency to a shared page and either migrates the page

to the memory of the page’s most frequent user, or replicates the page in all the sharers’ main memory when the

page is mostly read-shared. Migrating/replicating a page on a node converts remote memory accesses to local

accesses on that node, thereby reducing remote traffic.

Page migration/replication, however, only reduces traffic for read-write memory pages that are primarily

accessed by a single DSM node for a long period of time or read-shared memory pages. As such, page migration/

replication does not benefit memory pages that are actively shared by multiple DSM nodes and incur high capac-

ity/conflict misses in CC-NUMA. Moreover, page migration/replication requires global coordination among the

DSM nodes to inform a page’s sharers that either the home node location (in the case of migration) or access pro-

tection (in the case of replication) for the page is changing. Such operations take over tens of microseconds even

in systems with hardware support for page invalidation and movement — e.g., SGI Origin2000 [10] — signifi-

cantly limiting the applicability of page migration/replication and diminishing the opportunity to reduce traffic.

Alternatively, other DSMs incorporate aggressive hardware-intensive techniques to implement fine-grain

(remote) memory caching [8,4,5,16] — e.g., Sun WildFire [6]. These designs are based on integrating the base

CC-NUMA protocol with Simple COMA [7], enabling a processor to store coherent remote memory blocks in

main memory pages. Because main memory provides a much large repository for remote caching, these designs

potentially eliminate the capacity/conflict traffic in DSM while obviating the need for cluster caches in the DSM

hardware. One such proposal for fine-grain memory caching is Reactive NUMA (R-NUMA) [5] in which hard-

ware on every node monitors the capacity/conflict activity for remote data and dynamically selects between the

CC-NUMA and S-COMA protocols on a per-page basis. By placing data that often incur capacity/conflict misses

in CC-NUMA in main memory, R-NUMA significantly reduces remote traffic.

R-NUMA only requires local coordination because every node selects and implements a caching policy for a

page independent of the others. R-NUMA incurs much lower overheads moving pages than page migration/rep-

lication because it only requires flushing a single page, shooting down TLBs on a single node, and retrieving only

the necessary set of remote blocks on the page. R-NUMA’s ability for page caching, however, is limited because

practical implementations limit remote caching to only a fraction of main memory due to the extra fine-grain tag

hardware overhead to implement cache block-level coherence. Sparse memory access patterns also limit R-

NUMA’s performance due to page fragmentation which significantly increases demand on main memory page

allocation and incurs high overhead.

This paper compares and contrasts fine-grain memory caching and page migration/replication as a technique

to reduce capacity/conflict memory traffic in CC-NUMA. In this paper, we focus on reducing capacity/conflict

traffic on data pages in single parallel applications. Page migration/replication has been shown to be quite effec-

tive for multiprogrammed workloads and instruction pages [17,18]. We evaluate the effectiveness of page migra-

tion/replication and R-NUMA in reducing capacity/conflict traffic in DSM clusters by executing shared-memory

applications on simulated systems. Our results indicate that:

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



3

1. Both page migration/replication and R-NUMA substantially improve the system performance over ‘‘first-
touch’’ migration in many applications.

2. Page migration/replication has limited opportunity and can not eliminate all the capacity/conflict misses even
with fast hardware support and unlimited amount of memory, improving performance by 20% on average
over CC-NUMA; data page replication is applicable and reduces misses substantially in only one out of seven
applications, and page migration is infrequent due to both high read-write sharing degrees and static sharing
behavior of data pages.

3. R-NUMA always performs best given a large enough page cache to fit an application’s primary working set,
subsuming page migration/replication, and improving performance over CC-NUMA by 40%; R-NUMA sim-
ply allocates and places read-write sharing pages into the page cache eliminating the capacity/conflict misses.

4. R-NUMA is much more sensitive to page operation overhead and benefits more from fast support for page
invalidation and movement (e.g., page flushing and TLB shootdowns) than page migration/replication due to
R-NUMA’s much higher frequency of page operations.

5. Integrating page migration/replication into R-NUMA to help reduce the hardware cost requires sophisticated
mechanisms and policies to select candidates for page migration/replication; relocating pages into R-NUMA’s
page cache interferes with accurate readings of miss counters for page migration/replication limiting the lat-
ter’s opportunity to get invoked.

The next section describes the basic CC-NUMA distributed shared-memory machine structure we study in

this paper. Section 3 provides more details of our DSM designs with page migration/replication and fine-grain

memory caching support. Section 4 presents a qualitative analysis of the performance of the various systems we

study in this paper. Section 5 describes the simulation methodology we use to evaluate system performance.

Section 6 presents the results of our simulations. Finally, Section 7 and Section 8 discuss the related works and

conclude the paper respectively.

2  Base CC-NUMA DSM Cluster

Figure 1 illustrates the basic distributed shared-memory cluster organization that we study in this paper.

Sun’s WildFire cluster [6], Fujitsu’s Sinfinity NUMA [19], Data-General’s NUMALiiNE [3], and Sequent’s

STiNG [12] are all examples of such DSM clusters. Each node is a symmetric multiprocessor (SMP) workstation

with four processors connected via a coherent bus to an interleaved memory. A DSM cluster device implements a

directory-based cache coherence protocol to extend the shared-memory abstraction across the nodes. This device

implements the same basic coherence protocol in all systems. For the systems we study, the device differs in the

necessary hardware support for caching and page operations as required by each system (as described below and

in Section 3).

CC-NUMA forms the basis of comparison among the systems we study. Most distributed shared-memory

clusters [19,3,12,11] are CC-NUMA machines. Figure 2 (a) illustrates the anatomy of a DSM cluster device for

these machines machine. The device is equipped with an cluster cache (also known as remote cache [21] or block

cache [14]) that holds recently referenced remote data blocks. To differentiate this cache from the page-granular-

ity caches in Simple COMA (S-COMA) [7] and Reactive NUMA (R-NUMA) [5], we will refer to it as the block

cache. A directory maintains the sharing status of all the blocks residing in the node’s main memory. A hardware

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



4

finite-state machine implementation of the coherence protocol manages accesses to the directory and the block

cache, services messages from the remote nodes, and requests remote data on behalf of the node.

Figure 2 (b) illustrates the flow of events on a remote reference in CC-NUMA. All initial accesses to remote

data result in a (soft) page fault. The node’s operating system software requests and receives the page’s global

mapping consisting of a home node id and a physical page address. The operating system maps the page accord-

ingly, updates the node’s page tables, and resumes the faulting processor. Subsequent references to a mapped

page result in cache block fill requests on the SMP memory bus. The cluster device satisfies the cache fill

requests for remote data out of the block cache by snooping for physical addresses on the memory bus. Upon a

miss in the block cache, the cluster device allocates a block frame in the block cache, replacing and writing back

dirty blocks if necessary, and invokes the coherence protocol to fetch the remote data.

In this paper, we only consider fast and small SRAM-based block caches. Alternatively, some designs incor-

porate large but slow DRAM-based block caches [17,2,21]. The latter reduce the capacity/conflict miss traffic in

CC-NUMA at the cost of increasing the cache look up time and the controller occupancy. To keep the latencies

and occupancies comparable among the block-cache and page-cache based systems in this study, we only con-

sider SRAM-based block caches. A detailed study of the block cache design space is beyond the scope of this

paper and has been dealt with in great detail in a recent paper [14].

Prior research indicates that CC-NUMA’s performance may be very sensitive to the initial data allocation

and placement [9]. As such, in this paper we use a first-touch placement policy in all the systems we study. This

policy is both simple and has been shown to substantially eliminate unnecessary traffic [13]. In this policy, a user-

invoked directive on every node initiates page migration and placement at the start of the parallel phase of the

program. Upon the first request for each page, the home node migrates the page to the requester, assuming the

first requester is likely to prove a frequent requester. This is especially true for some regular scientific applica-

tions that specifically “touch” pages to ensure their proper placement [20].

3  Reducing Capacity/Conflict Traffic in CC-NUMA

We evaluate two techniques to reduce the capacity/conflict traffic in CC-NUMA: (1) page migration/replica-

tion used in SGI Origin 2000 [10], and (2) R-NUMA enabling selective fine-grain caching of remote data in local

memory used in Sun WildFire [6]. In this section, we describe how each technique works and present the

FIGURE 1.  A DSM cluster.

Memory

CPU CPU CPU

Memory Bus

DSM

....

Network

....
.. .. ..

Cluster
Device

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



5

required cluster device hardware support. Section 4 presents a qualitative performance analysis of the two tech-

niques. Section 6 presents simulation results of shared-memory applications comparing the two techniques.

3.1  CC-NUMA+MigRep

Page migration/replication reduces the capacity/conflict traffic in CC-NUMA by migrating a page to the

memory of the page’s most frequent user, and replicating the mostly read-shared pages in sharers’ local memo-

ries. In this paper, we evaluate page migration/replication as a technique to reduce traffic for data pages in the

context of single parallel programs. Page migration/replication has also been shown to be quite effective in

reducing traffic for both code and data pages in multiprogrammed environments of sequential and parallel jobs

[18].

Figure 3 (a) illustrates the cluster device for a CC-NUMA with page migration/replication hardware support

(CC-NUMA+MigRep). Page migration/replication slightly differs from the base CC-NUMA system in that it

includes page reference monitoring hardware, i.e. per-page per-node miss rate counters to detect candidates for

page migration/replication.

Figure 3 (b) illustrates the flow of events for page migration/replication both on the home node and on the

cachers. Upon receiving a request for a cache fill from a remote node, the home node increments the appropriate

page miss counter and checks if a page replication or migration is necessary. The hardware compares the miss

counters against a preset threshold to decide if a page operation is necessary. In the case of replication, if the

write miss counters are zero and the read miss counters from the requesting node are greater than the threshold, a

page replication is invoked. In the case of migration, if the requester’s miss counters are greater than the home’s

by at least the threshold value, a page migration is invoked. The miss counters are reset periodically at a preset

interval.

Upon a page replication/migration, the hardware invokes a soft trap and the operating system begins to

migrate or replicate the page. A request for a replicated page copy at home simply results in a reply with the

appropriate data. A write protection fault to a replicated page by a cacher results in a request at the home node to

switch the page back to a read-write page. Both page migration/replication and requests to switch a page to a

FIGURE 2. Remote caching in CC-NUMA: (a) a CC-NUMA cluster device, and (b) action
sequence on a remote miss.

(a)

Remote
Reference

pa
ge

 fa
ult

Cache

1. Request data
2. Flush block frame

miss

MEMORY BUS

Bl
oc

k

D
ire

ct
or

y

Pr
ot

oc
ol

FS
M

DATA Suspend
Processor

Physical
Address

Access Block

cache fill

NETWORK

C
ac

he
Request global

mapping

Map a remote
page

(b)

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



6

read-write mode invoke a soft trap the home node’s operating system to perform a page invalidation and data

gathering operation.

Page gathering requires locking the page mapper, gathering the page from all the sharers, setting the poison

bits [10] for all the blocks on the page (to allow lazy TLB invalidation), moving the page to the new home, and

shooting down the home TLB. Upon receiving a page flush request, the DSM hardware invalidates and flushes all

the cache blocks for the page. In systems with no hardware support for a page flush and lazy TLB invalidation,

flushing a page incurs much higher overheads because the message arrival first invokes a software trap for the

kernel takes over the job of flushing the blocks, and shooting down the TLB [18]. Once the page is flushed, the

kernel on the home node will unlock the page mapper, move the page to a new home in the case of migration, and

resume all cachers waiting for the page operation to complete. Much like page flushing, page copying can be

accelerated using hardware [10]. In this paper, we study the system’s performance sensitivity to page migration/

replication’s speed.

Upon a page fault at the cachers, the kernel checks if the fault is an unmapped page or a protection fault. If it

is an unmapped page fault to a replicated page, the kernel simply requests a page copy from the home node. Oth-

erwise, the page is mapped as in CC-NUMA. Upon a protection fault, the kernel requests the home node to

switch the page back to a read-write cached page.

(a)

MEMORY BUS
Bl

oc
k

D
ire

ct
or

y

Pr
ot

oc
ol

FS
M

DATA Suspend
Processor

Physical
Address

NETWORK

C
ac

he

DATA
MigRep Counters

(b)

Request Data

Reply data

Replicate page?

Gather page

Migrate page?

noyes

yes

1. Interrupt OS

3. Set poison bits

Home

Remote
Referencepa

ge
 fa

ult

Cache

1. Request data
2. Flush block frame

miss

Access Block

cache fill
Write to a

replicated page?

Is page replicated?

Request switch
to R/W page

Request copy

yes

yes

Flush Done

What kind of
page op?

FIGURE 3. CC-NUMA+MigRep: (a) a CC-NUMA+MigRep cluster device, (b) sequence of
actions at home and at cacher.

Resume all cachers

Move page
to new home

Migrate

Replicate/Switch to R/W page

Cacher

Request global
mapping

Map a remote
page

no

no

Request Page Flush

1. Flush blocks
2. Unmap page
3. Send flush done

2. Send page flush request

Page op pending?

no

yes

wait

Rrequest
Switch to R/W

Request
R/O copy

Reply data

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



7

3.2  R-NUMA

Reactive NUMA (R-NUMA) [5] is a hybrid DSM architecture which adaptively switches the per-page cach-

ing policy between CC-NUMA and Simple COMA (S-COMA) [7]. S-COMA enables the system to allocate

main memory page frames to place remote data while managing coherence and sharing at cache block granular-

ity. S-COMA allows a DSM to take advantage of the large capacity of a node’s main memory to store remote

data. S-COMA, however, significantly increases the hardware complexity as compared to CC-NUMA by requir-

ing: (1) fine-grain block sharing tags to enforce coherence for cached data in main memory, and (2) hardware to

translate local main memory addresses to a global shared address to locate the home node when references miss

in the memory cache. R-NUMA, however, obviates the need to implement a block cache in the cluster device

[5,14].

Figure 4 (a) illustrates the cluster device for R-NUMA machines. R-NUMA includes the base CC-NUMA

DSM hardware, the S-COMA fine-grain tags and reverse translation table, and page miss rate counters. Figure 4

(b) illustrates the flow of events for caching remote data in R-NUMA. The operating system initially maps the

page CC-NUMA. R-NUMA captures the behavior of program by using a per-page per-node refetch counter to

count the number of times the hardware fetches a block recently cached but replaced due to capacity/conflict traf-

fic in the block cache. When the counter exceeds a pre-defined threshold, the requesting processor generates an

interrupt to the operating system to remap the CC-NUMA page into a local S-COMA page so that future misses

to the page can be satisfied in the processor’s local memory. Since the remapping is a local page operation, it

Are there free
page frames?

1. Select a page
2. Flush blocks
3. Unmap page
4. Invalidate TLBs

1. Request data
2. Flush block frame

Remote
Reference

Switch to
S-COMA?

1. Flush blocks

2. Unmap page
3. Invalidate TLBs

yes

CC-NUMA
cache fill

(a)

Map an S-COMA
page

DATA

MEMORY BUS
D

ire
ct

or
y

Pr
ot

oc
ol

FS
M

NETWORK

Inhibit
Memory

Physical
Address

C
ou

nt
er

s
R

ea
ct

ive

Fine-grain
Tags

M
EM

O
RY

(P
ag

e 
C

ac
he

)

2. Request data
1. Inhibit memory

Tr
an

sl
at

io
n

Ta
bl

e

1. Access S-COMA
fine-grain tags

2.Translate LPA to GPA

page fault

S-COMA
cache fill

no

no yes

(b)

FIGURE 4. Remote caching in R-NUMA: (a) an R-NUMA cluster device, and (b) action sequence
on a remote miss.

miss

Suspend
Processor

Request global
mapping

Map a CC-NUMA
page

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



8

does not affect other processors’ decisions. Cache fills for the (S-COMA) page-cache blocks require access to the

S-COMA tags to check for coherence and to translate a local physical address (LPA) to a global physical address

(GPA). If the block is not in the page cache, the cluster device inhibits the fill and requests the corresponding

home node for the remote block.

4  Qualitative Performance Analysis

Both CC-NUMA+MigRep and R-NUMA have their advantages and disadvantages. In this section, we quali-

tatively evaluate the trade-offs between the two systems in terms of the opportunity for reducing capacity/conflict

traffic, and the runtime overheads associated with both selecting a candidate page to perform an operation on

(e.g., move to page cache or migrate) and actually performing the page operation (Table 1).

4.1  Opportunity to Reduce Capacity/Conflict Misses

Page migration/replication’s performance highly depends an application’s sharing characteristics and the

resulting opportunity for reducing remote misses. Page migration works best when a page’s read-write sharing

degree is low but the page miss rate is high. When the sharing degree is low, for example in the case of a single

frequent reader and/or writer, migrating the page eliminates the remote misses to the page and substantially

reduces the traffic. On the other hand, when the sharing degree is high, eliminating the remote misses at one

sharer does not eliminate the remote misses at others and therefore page migration does not benefit pages with

several simultaneous sharers. Page migration also helps pages with dynamically varying list of sharers where the

home node no longer shares the page. For such pages, page migration dynamically reacts to the change in the

sharer’s list and always makes sure that one of the active sharers becomes the home node for the page. Page rep-

lication works best for pages that are read-shared for a long time, and does not benefit pages with high write fre-

quency.

R-NUMA works for all pages with high rate of capacity/conflict misses including pages with high read-write

sharing degree. Because it allows read-write caching of data in any sharer’s local memory, R-NUMA can reduce

the overall number of capacity/conflict misses in the system. The opportunity for reducing capacity/conflict

misses in R-NUMA, however, highly depends on memory pressure on the node [8,5]. R-NUMA can suffer from

the problem of page fragmentation and requires large amount of memory to meet the working sets of applica-

Mechanism
Read-Only

Miss Reduction

Read/Write
Miss Reduction Page Operation

Overhead
Page Operation

FrequencyLow Sharing
Degree

High Sharing
Degree

Page Replication yes no no high low

Page Migration no yes no high low

R-NUMA yes yes yes low much higher

TABLE 1. Capacity/conflict miss reduction opportunity and overhead.

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



9

tions. Practical implementations of R-NUMA [6] also limit the page cache size to reduce hardware complexity

and cost. Therefore, high memory pressure in some applications may result in frequent page deallocation from

the page cache, diminishing the opportunity for reducing capacity/conflict misses.

In the limit, with a large enough page cache, R-NUMA can eliminate all the capacity/conflict traffic in the

system. In contrast, page migration/replication given enough memory can at best eliminate read-write traffic

from one sharer and all the read-only traffic.

4.2  Page Selection/Operation Overhead and Frequency

Page migration/replication at a minimum incurs the high overhead of page invalidation and data gathering.

The latter at a minimum incurs the overhead of taking a soft trap, flushing the page at all cachers, and moving or

copying the page. Such an operation requires global coordination and is slow even in systems with hardware sup-

port for page migration/replication [10], taking tens of thousands of processor cycles. In systems with no hard-

ware support, the operation invokes the kernel on every node to invalidate the pages [17] and immediately shoots

down the TLBs. Moreover, with no support for block copying hardware, the kernel on the home node must send

the page through the DSM board one block at a time. The resulting page migration/replication in systems with no

hardware support, incurs an order of magnitude more overhead [18].

Because page migration/replication incurs the high overhead of page gathering, it requires a long page selec-

tion interval to make accurate decisions about selecting a candidate page for migration/replication. Such a con-

straint significantly limits the frequency at which a page can be migrated/replicated, thereby diminishing the

overall opportunity for miss reduction even in systems with hardware support for page migration/replication.

In contrast, in R-NUMA the decision as to whether to cache remote data using CC-NUMA or S-COMA is an

entirely local one and need not involve other cachers. It only requires flushing a single page, shooting down

TLBs on a single node, and flushing and refetching only the necessary cache blocks. Such a local operation

incurs less overhead, can be overlapped with computation on other processors/nodes, and does not require

sophisticated page copying hardware. However, in the presence of memory pressure in the page cache, R-NUMA

can result in a high page allocation/deallocation frequency, increasing the overall overhead incurred in page oper-

ations.

Application Problem Input Data Set

barnes Barnes-Hut N-body simulation [20] 16K particles

cholesky Blocked sparse Cholesky factorization [20] tk16.O

fmm Fast Multipole N-body simulation [20] 16K particles

lu Blocked dense LU factorization [20] 512x512 matrix, 16x16 blocks

ocean Ocean simulation [20] 130x130 ocean

radix Integer radix sort [20] 1M integers, radix 1024

raytrace 3-D scene rendering using ray-tracing [20] car

TABLE 2. Applications and input parameters.

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



10

5  Methodology

To compare practical implementations of CC-NUMA, CC-NUMA+MigRep, R-NUMA, we use the Wiscon-

sin Wind Tunnel II [15] to simulate a distributed shared-memory machine consisting of a network of eight SMP

nodes (Figure 1). Each node is a 4-way multiprocessor with 600 MHz dual-issue processors interconnected by a

100 MHz split-transaction bus. A snoopy MOESI coherence protocol keeps the caches within each node consis-

tent. We assume perfect instruction caches1 but model data caches and their contention at the memory bus accu-

rately. We further assume a point-to-point network with a constant latency of 80 cycles but model contention at

the network interfaces accurately.

Table 2 presents the applications we use in this study and the corresponding input parameters. Barnes,

cholesky, fmm, lu, ocean, radix and raytrace are from the SPLASH-2 [20] benchmark suite.

Table 3 presents the costs of block and page operations in processor cycles for our base system assumptions.

SRAM devices include the block cache, S-COMA fine-grain tags and translation table, R-NUMA reactive

counters, and CC-NUMA+MigRep miss counters. DRAM accesses correspond to accesses to the page cache.

Soft traps include page faults and R-NUMA relocation interrupts. Page allocation/replacement involves taking a

soft trap, invalidating the (local) TLBs, and flushing the blocks back to the home node. The overhead varies

depending on the number of blocks flushed. Page relocation in R-NUMA uses similar mechanisms as page allo-

cation/replacement and incurs the same overheads.

Our application data set sizes are selected to be small enough so as not to require prohibitive simulation

cycles, while being large enough to maintain the intrinsic communication and computation characteristics of the

parallel application. Woo, et al., characterize the behavior of SPLASH-2 applications in terms of working sets

and show that for most of the applications, the data sets provided have a primary working set that fits in an 8-

Kbyte cache [20]. We, therefore, conservatively assume 16-Kbyte (direct-mapped) processor caches to compen-

sate for the small size of the data sets.

To facilitate integrating the node’s SMP protocol (derived from SPARC) with the simple DSM write-invali-

date protocol and to eliminate race conditions when resuming processors waiting for a remote block, we assume

CC-NUMA block caches that maintain inclusion with the node’s processor caches [6]. As such, we simulate

block caches equal in size to the sum of all the processor cache sizes. This assumption helps mitigate any adverse

effects due to the inclusion requirement of read-write blocks. Consequently, a four-processor node will have a

64-Kbyte CC-NUMA block cache. To compensate for the lower cost of DRAM as compared to SRAM, our base

system assumes an S-COMA page cache of 2.4 Mbytes, a factor of 40 larger than our CC-NUMA block cache.

Unless specified otherwise, all experiments assume a lazy TLB shootdown strategy for page migration/repli-

cation using directory poisoning and page copying hardware, characteristic of aggressive systems with hardware/

software support for page migration/replication [10]. Our system provides hardware support for a page flush dur-

ing data gathering, obviating the need for soft traps upon page invalidation. We use page migration/replication

threshold of 800 misses, a reset interval of 32000 misses, and an R-NUMA switching threshold of 32 misses

across all the benchmarks. The threshold values are selected so as to optimize performance over all benchmarks.

1.  The scientific codes we study have low instruction cache miss ratios. This assumption may not hold for all applications.

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



11

To gauge page migration/replication’s best performance, we assume no memory pressure for CC-

NUMA+MigRep in any of the experiments — i.e., our system assumes that a free page in memory is always

available for the purpose of migration/replication.

6  Results

In this section, we present results from our simulation experiments. We first show base system performance

results. Next, we present the performance sensitivity of CC-NUMA+MigRep and R-NUMA to slow hardware/

software support for page operations. Third, we study the impact of long network latency on the performance of

the systems. Finally, we investigate whether page migration/replication can help reduce the hardware require-

ments in R-NUMA. All execution times are normalized against a perfect CC-NUMA — i.e. CC-NUMA with an

infinite block cache — unless specified otherwise.

6.1  Opportunity to Reduce Capacity/Conflict Misses

Figure 5 plots the performance of our base CC-NUMA, a CC-NUMA with page replication (Rep), a CC-

NUMA with page migration (Mig), a CC-NUMA with both page migration/replication (MigRep), R-NUMA,

and an R-NUMA with an infinite page cache (R-NUMA-Inf). All numbers are normalized against perfect CC-

NUMA. Not surprisingly, capacity/conflict traffic significantly impacts execution time in CC-NUMA increasing

execution times to 60% over perfect CC-NUMA.

The figure indicates that data page migration/replication can significantly improve the performance by 20%

on average over CC-NUMA after “first-touch” migration. Page migration/replication, however, suffers from lim-

ited opportunity and fails to eliminate capacity/conflict misses. R-NUMA, however, performs best and improves

execution time in CC-NUMA by 40% on average. R-NUMA only suffers from high page relocation overhead in

two applications, cholesky and radix. In the limit, R-NUMA-Inf is as good as perfect CC-NUMA in two bench-

marks and is close to perfect CC-NUMA in another two benchmarks. The figure also shows that the applications

Operation Cost (processor cycles)

block operations

Network latency

Local miss latency

Round-trip Remote miss latency

80

104

418

page operations

soft traps

TLB shootdown

allocation/replacement or R-NUMA relocation

3000

300

3000∼11500

migration/replication operations

page invalidation and data gathering

page copying

3000~11500

8000~21800

TABLE 3. Base line system assumptions.

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



12

vary in demand for page migration/replication. Five applications benefit from page migration, one application

benefits from page replication, and one application does not need benefit from either.

Table 4 depicts the per-node number of page operations (i.e., page migration/replication in CC-

NUMA+MigRep and page relocation in R-NUMA) in the systems. The table also depicts the breakdown of the

per-node overall number of misses and the number of capacity/conflict misses (in parenthesis) in CC-NUMA,

CC-NUMA+MigRep, and R-NUMA. The table corroborates the results in Figure 5 that page migration/replica-

tion occurs infrequently in many applications and as such does suffers from lack of opportunity to reduce con-

flict/capacity misses. For most of the applications, R-NUMA has more opportunities to reduce the number of

remote misses because it has higher page operation frequency than page migration/replication.

Although there are a lot of page replications in barnes and cholesky, many of them are not on the execution’s

critical path and some of them are incorrect decisions. In contrast, fmm, ocean, and radix do not require page rep-

lication at all. In barnes, when only page migration is used, the performance gets worse because page migration

unnecessarily migrates some of the read-only pages (Figure 5). However, adding page replication to page migra-

tion helps identify and remove the pages to be replicated so that page migration selects the appropriate pages and

reduces capacity/conflict traffic. Radix and raytrace exhibit the same positive collaboration between page migra-

tion and page replication but the overall effect on execution time is smaller. In cholesky and fmm, performance of

page migration/replication comes directly from page migration through improving data locality. Low reuse of

migrated/replicated pages limits the performance improvement in cholesky and raytrace. Lu does not benefit

from page migration but exhibits high benefits from page replication due to a read phase of reading the matrix to

be factorized before the start of computation in each iteration. In ocean and radix, there are only a few candidates

for page migration/replication.

R-NUMA virtually eliminates the capacity/conflict misses in all applications except for cholesky, radix, and

raytrace. Cholesky and radix are kernels and as such do not exhibit reuse of the pages relocated into R-NUMA’s

page cache. Every relocation, however, requires refetching the flushed blocks which incurs a large number of

misses in these applications. R-NMUMA’s performance in radix also suffers slightly from limited page cache

capacity as shown by the improvement in performance from R-NUMA-Inf. Early relocation (i.e., through

FIGURE 5. Base performance comparison for CC-NUMA, CC-NUMA+MigRep, and R-NUMA.

CC-NUMA

barnes cholesky fmm lu ocean radix raytrace
0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

R-NUMA-InfRep R-NUMAMig MigRep

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



13

smaller threshold values) would significantly help these applications. In raytrace, the capacity/conflict misses

remaining in R-NUMA are not on the execution’s critical path and as such do not affect execution time.

6.2  Sensitivity to Page Operation Overhead

Conventional page migration/replication proposals relied on kernel-based solutions with no hardware/soft-

ware for page operations. Recent studies indicate that commodity operating systems are not tuned for page

migration/replication incurring prohibitively high overheads [24]. In this section, we present results evaluating

the impact of slow page operations on the performance of page migration/replication and R-NUMA.

We assume an increase of ten-fold in page operation overheads as compared to the base systems (Table 3).

Our slow system (as compared to the fast base system) assumes 50 µs (or 30000 cycles) for soft traps, 5 µs (or

3000 cycles) for TLB shootdown, and an additional page copying overhead of 10 µs (or 6000 cycles) per page. A

larger page operation overhead also requires larger threshold values to prevent page operation frequency to

increase to prohibitive levels resulting in page thrashing. Our slow systems use a threshold value of 1200 misses

for CC-NUMA+MigRep and 64 misses for R-NUMA respectively.

Figure 6 compares the performance of CC-NUMA+MigRep and R-NUMA for systems with fast and slow

page operations. These execution times are normalized against the perfect CC-NUMA. Our results indicate that

on average page migration/replication is less sensitive to page operation overhead than R-NUMA. This result fol-

lows from Table 4, which indicates that our applications exhibit much lower page migration/replication fre-

quency in CC-NUMA+MigRep than page relocation in R-NUMA. Although R-NUMA’s per-page overhead is

lower, the overall overhead is higher in applications that incur a high page relocation frequency. When relocation

overhead falls on the execution’s critical path — as in cholesky and radix — R-NUMA’s performance relative to

CC-NUMA+MigRep decreases. Radix incurs replacements in the page cache due to the cache’s limited capacity

and radix’s large primary working set of pages and therefore exhibits a large performance degradation due to

high page relocation overhead.

Benchmarks

Number of Page Operations
Number of Overall Misses

(Capactiy/Conflict Misses) in x1000

Migration  Replication
Page Cache
Relocation

CC-NUMA CC-NUMA+MigRep R-NUMA

barnes 9 133 19 1210 (1171) 159 (120) 39 (0)

cholesky 75 430 777 262 (169) 175 (82) 180 (88)

fmm 54 6 156 267 (221) 214 (168) 54 (8)

lu 135 167 417 1331 (1287) 376 (332) 73 (29)

ocean 37 0 201 300 (209) 267 (176) 104 (13)

radix 1 0 1714 157 (111) 153 (107) 100 (75)

raytrace 5 283 1059 597 (446) 257 (106) 213 (72)

TABLE 4. Number of per-node page operations and remote misses in CC-NUMA, CC-
NUMA+MigRep, and R-NUMA.

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



14

In barnes and fmm, neither systems are sensitive to page operation overhead due to the low frequency of page

operations. Page operations are not on raytrace’s critical path of execution and therefore do not affect perfor-

mance much. In lu, page replication is susceptible to high overhead due to both replication and subsequent write

faults to the replicated pages.

6.3  Sensitivity to Network Latency

Unlike DSMs with highly-customized memory systems like SGI Origin2000 [10], DSM clusters such as

Sequent NUMAQ [12] often have a relatively large ratio of remote-to-local miss time. Techniques to reduce

remote memory accesses can be more effective in DSMs with longer remote miss latencies. In this section, we

evaluate the effect of longer remote miss latencies on CC-NUMA+MigRep’s and R-NUMA’s performance by

varying the network latency.

Figure 7 illustrates the performance the systems for remote-to-local memory access latency ratio of 16, i.e.,

four times larger than our base system. The numbers are normalized with respect to perfect CC-NUMA. Not sur-

prisingly, CC-NUMA’s performance is highly sensitive to a larger network latency due to the large number of

capacity/conflict misses. CC-NUMA’s execution time on average increases to 126% (from 60% in the base sys-

tem in Section 6.1) over perfect CC-NUMA. Application execution times on CC-NUMA+MigRep are less sensi-

tive and on average increase to 72% over perfect CC-NUMA (as compared to 41% in the base system). R-

NUMA incurs the least number of misses and exhibits an average execution time that is slightly over 25% as

compared to perfect CC-NUMA (from 20% in the base system).

In barnes, cholesky, lu, and raytrace, CC-NUMA+MigRep significantly reduces the number of remote

misses on the execution’s critical path resulting in a commensurate reduction in communication time. R-NUMA

virtually eliminates the remote misses in all these applications except for cholesky and performs best. In cholesky,

R-NUMA simply relocates pages that are subsequently not used and therefore incurs the longer relocation over-

head with the longer network latency. CC-NUMA+MigRep is least effective in ocean, radix, and fmm, and there-

fore the large number of misses directly increases the execution time with an increase in network latency in these

barnes cholesky fmm lu ocean radix raytrace
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

MigRep-Fast R-NUMA-SlowMigRep-Slow R-NUMA-Fast

FIGURE 6. Performance comprison of CC-NUMA+MigRep and R-NUMA for systems with fast
and slow page operation support.

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



15

applications. R-NUMA’s performance shows slight sensitivity to a longer network latency in ocean and radix due

to the high page relocation frequency and the resulting block fetch/refetches in these applications.

6.4  R-NUMA+MigRep

The results in Section 6.1 indicate that R-NUMA given an infinite page cache can eliminate all capacity/con-

flict traffic. R-NUMA’s DSM hardware overhead — i.e., translation table, fine-grain tags, and counters — and

cost, however, is a function of the page cache size. Current implementations of R-NUMA (e.g., Sun WildFire

[6]), limit the hardware support to a small fraction of memory and provide only a “cache” of miss counters as

opposed to per-page counters for all of memory.

In this section, we evaluate whether page migration/replication can be used to reduce the required page cache

size and thereby design cost in R-NUMA. We present preliminary results on a system that integrates page migra-

tion/replication with R-NUMA, called R-NUMA+MigRep. The key to the integration is to design page migra-

tion/replication policies that can co-exist with R-NUMA’s page relocation. The fundamental problem with the

integration is that early relocation in R-NUMA prevents accurate page migration/replication because it reduces

the capacity/conflict traffic and thereby impacts the CC-NUMA+MigRep’s miss counters. Our system attempts

to mitigates this problem by allowing page migration/replication to be invoked on every page for an initial preset

time interval and delaying page relocation in R-NUMA. In this study, we allow R-NUMA relocation only after

the first 32000 misses to a page.

Figure 8 depicts R-NUMA-MigRep’s performance. The figure compares the performance of our base R-

NUMA (with a 2.4 Mbytes page cache) with an R-NUMA-1/2 with half the page cache size, namely 1.2 Mbytes.

The figure also plots R-NUMA-1/2+MigRep, adding page migration/replication to R-NUMA-1/2. All numbers

are normalized against a perfect CC-NUMA. The figure indicates that R-NUMA-1/2’s performance is not sensi-

tive to MigRep. In barnes, fmm, and raytrace, R-NUMA-1/2 performs quite well and can not benefit much from

further improvement. In raytrace, the extra delay in invoking page relocation slightly increases execution time

for R-NUMA-1/2+MigRep as compared to R-NUMA-1/2. In cholesky and lu, page migration/replication hap-

pens throughout the application and page relocation in R-NUMA impacts the miss counters preventing page

FIGURE 7. Performance comparison of CC-NUMA, CC-NUMA+MigRep, and R-NUMA for
remote miss latencies four times larger than the base system.

barnes cholesky fmm lu ocean radix raytrace
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

CC-NUMA R-NUMAMigRep

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



16

migration/replication from getting invoked in R-NUMA-1/2+MigRep. Ocean and radix do not benefit from

either page migration or replication and therefore R-NUMA-1/2+MigRep performs as well as R-NUMA-1/2.

These results indicate that integrating page relocation with page migration/replication requires more sophisti-

cated mechanisms and policies that can identify candidates for page migration/replication for pages that are relo-

cated to page caches.

7  Related Works

Verghese et al., [18], studied kernel-based page migration/replication in the context of both tightly-coupled

CC-NUMA systems with low remote-to-local access ratios (around 3~5) and loosely-coupled systems with high

remote-to-local access ratios (around 10~20). They studied both single parallel programs and multiprogrammed

workloads with sequential and parallel applications. They evaluated page migration/replication for machines

with no hardware or software support for page migration/replication and measured high overheads of around 400

µs for such operations. They suggest optimizations for stock SMP operating systems to reduce the overhead.

Soundararajan et el., [17] evaluated the flexibility of Stanford FLASH in implementing various remote cach-

ing strategies and optimizations including kernel-based page migration/replication using a large software remote

cache in main memory. Their results are fundamentally different from ours in many respects. First, we only eval-

uate all-hardware protocol implementations with minimal coherence and memory access overhead. Second, we

use selective fine-grain memory caching in hardware using R-NUMA and evaluate the required memory

resources. They implement a software remote cache in memory using FLASH’s memory miss handlers. Finally,

as in a previous study [18], they only evaluate machines with no hardware support for page migration/replication.

We also evaluate aggressive implementations with hardware counters and page invalidation and data gathering

hardware support.

Falsafi and Wood first proposed and evaluated R-NUMA [5]. Moga and Dubois [14] studied remote caching

in detail and carefully evaluated the design space for building block caches and R-NUMA. Hagersten and Koster

evaluated remote caching in the Sun WildFire [6] which implements a variation of R-NUMA. S3mp [16],

ASCOMA [8], and PRISM [4], also implement a hybrid of CC-NUMA and S-COMA. S3mp only allows stati-

cally selecting the caching policy for every page. ASCOMA implements selective fine-grain caching as in R-

FIGURE 8. Performance achieved by R-NUMA+MigRep.

barnes cholesky fmm lu ocean radix raytrace
0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

CC-NUMA MigRep R-NUMA-1/2 R-NUMA-1/2+MigRep R-NUMA

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



17

NUMA but always allocates S-COMA pages first. PRISM implements a software policy to switch between S-

COMA and CC-NUMA but not vice versa. None of the above systems evaluated selective fine-grain memory

caching as in R-NUMA with aggressive page migration/replication support to reduce capacity/conflict traffic.

8  Conclusions

In this paper, we compared and contrasted two techniques to improve capacity/conflict miss traffic in a con-

ventional CC-NUMA system. Page migration/replication optimizes read-write accesses to a page used by a sin-

gle processor by migrating the page to that processor and replicates all read-shared pages in the sharers’ local

memories. R-NUMA optimizes read-write accesses to any page by allowing a processor to cache that page in its

main memory. Page migration/replication requires less hardware complexity as compared to R-NUMA, but has

limited applicability and incurs much higher overheads even with tuned hardware/software support.

We evaluated the effectiveness of page migration/replication and R-NUMA in reducing capacity/conflict

traffic in DSM clusters by executing shared-memory applications on simulated systems. Our results indicated

that: (1) both page migration/replication and R-NUMA substantially improve the system performance over

‘‘first-touch’’ migration in many applications, (2) page migration/replication has limited opportunity and can not

eliminate all the capacity/conflict misses even with fast hardware support and unlimited amount of memory, (3)

R-NUMA always performs best given a page cache large enough to fit an application’s primary working set and

subsumes page migration/replication, (4) R-NUMA benefits more from hardware support to accelerate page operations

than page migration/replication, and (5) integrating page migration/replication into R-NUMA to help reduce the

hardware cost requires sophisticated mechanisms and policies to select candidates for page migration/replication.

References

[1] Luiz Andre Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory system characterization of commer-
cial workloads. In Proceedings of the 25th Annual International Symposium on Computer Architecture, pages 3–14,
June 1998.

[2] Tony M. Brewer. A highly scalable system using up to 128 PA-RISC processors. In Digest of Papers, COMP-
CON’95, pages 133–144, March 1995.

[3] R. Clark and K. Alnes. An SCI interconnect chipset and adapter. In Symposium Record, Hot Interconnects IV, Au-
gust 1996.

[4] Kattamuri Ekanadham, Beng-Hong Lim, Pratap Pattanaik, and Marc Snir. Prism: An integrated architecture for scal-
able shared memory. In Proceedings of the Fourth IEEE Symposium on High-Performance Computer Architecture,
February 1998.

[5] Babak Falsafi and David A. Wood. Reactive NUMA: A design for unifying S-COMA and CC-NUMA. In Proceed-
ings of the 24th Annual International Symposium on Computer Architecture, pages 229–240, June 1997.

[6] Erik Hagersten and Michael Koster. WildFire: A scalable path for SMPs. In Proceedings of the Fifth IEEE Sympo-
sium on High-Performance Computer Architecture, pages 172–181, February 1999.

[7] Erik Hagersten, Ashley Saulsbury, and Anders Landin. Simple COMA node implementations. In Proceedings of the
27th Hawaii International Conference on System Sciences, January 1994.

[8] Chen-Chi Kuo, John Carter, Ravindra Kuramkote, and Mark Swanson. Ascoma: An adaptive hybrid shared memory
architecture. In Proceedings of the 1998 International Conference on Parallel Processing, August 1998.

[9] Rick LaRowe and Carla Ellis. Experimental comparison of memory management policies for numa multiprcessors.
ACM Transactions on Computer Systems, 9(4):319–363, November 1991.

[10] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA highly scalable server. In Proceedings of the 24th

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!



18

Annual International Symposium on Computer Architecture, May 1997.
[11] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, Mark

Horowitz, and Monica Lam. The stanford DASH multiprocessor. IEEE Computer, 25(3):63–79, March 1992.
[12] Tom Lovett and Russel Clapp. STiNG: A CC-NUMA compute system for the commercial marketplace. In Proceed-

ings of the 23rd Annual International Symposium on Computer Architecture, May 1996.
[13] Michael Marchetti, Leonidas Kontothanassis, Ricardo Bianchini, and Michael L. Scott. Using simple page place-

ment policies to reduce the cost of cache fills in coherent shared-memory systems. In Proceedings of the Nineth In-
ternational Parallel Processing Symposium, April 1995.

[14] Adrian Moga and Michel Dubois. The effectiveness of SRAM network caches in clustered DSMs. In Proceedings
of the Fourth IEEE Symposium on High-Performance Computer Architecture, pages 103–112, February 1998.

[15] Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike Litzkow, Steve Huss-Lederman, Mark D. Hill,
James R. Larus, and David A. Wood. Wisconsin Wind Tunnel II: A fast and portable parallel architecture simulator.
IEEE Concurrency, 2000. To appear.

[16] A. Nowatzyk, M. Monger, M. Parkin, E. Kelly, M. Borwne, G. Aybay, and D. Lee. S3.mp: A multiprocessor in a
matchbox. In Proc. PASA, 1993.

[17] Vijayaraghavan Soundararajan, Mark Heinrich, Ben Verghese, Kourosh Gharachorloo, Anoop Gupta, and John
Hennessy. Flexible use of memory for replication/migration in cache-coherent DSM multiprocessors. In Proceed-
ings of the 25th Annual International Symposium on Computer Architecture, pages 342–355, June 1998.

[18] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating system support for improving data
locality on cc-numa compute servers. In Proceedings of the Seventh International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS VII), pages 279–289, October 1996.

[19] Wolf-Dietrich Weber, Stephen Gold, Pat Helland, Takeshi Shimizu Thomas Wicki, and Winfried Wilcke. The Mer-
cury interconnect architecture: A cost-effective infrastructure for high-performance servers. In Proceedings of the
24th Annual International Symposium on Computer Architecture, May 1997.

[20] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2 pro-
grams: Characterization and methodological considerations. In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture, pages 24–36, July 1995.

[21] Zheng Zhang and Josep Torrellas. Reducing remote conflict misses: Numa with remote cache versus coma. In Pro-
ceedings of the Third IEEE Symposium on High-Performance Computer Architecture, pages 272–281, February
1997.

p055.ps: Comparing the Effectiveness of Fine-Grain Memory Caching ..., DO NOT DISTRIBUTE!!!


