[image: image2.png]Insert View Repostory Windows

\
/5= 12 &

ol el el ol el ol el el el el el ol el el el

wer || meen | [on |

Triggers Actions

start

Training Software LLC

CONFIDENTIAL

CoolMedia

Interactive Multimedia Content Development & Deployment System

Version 0.1 (Prototype)

Rev #
Revised By
Major Change
Date

Alex Ho

Overview

1.1 Product Overview

In this section, the general description of the CoolMedia (a.k.a.CBT in its original incarnation) system is described from a product features perspective. CoolMedia’s applicability is not limited to education and training.

The CoolMedia system provides the means to develop interactive and multimedia content for deployment over the web. The system is composed of two components: Development Tool Application and the Delivery Applet. The content developers uses the development tool to create interactive content in a WYSIWYG environment similar to Microsoft Powerpoint. The tools allows developers to assemble images, audio, text, and interactive components into compelling content. The result can be exported in a directory hierarchy that can be directly installed onto a web server like any HTML page. The Delivery Applet then reads this file and plays it back to the user through any Java 1.1 compliant browser.

The following are a list of its features:

· Extensible Composition Style Scripting

· Extensible Interactive Components

· Extensible Resource Management system

· Support for GIF and JPEG images

· Support for Streaming Audio and .AU audio file formats

· “Zero” maintenance deployment directly onto web servers

· Cross platform development environment

· Cross platform deployment through Java 1.1 compliant browsers

· Sprite Animation

· Included and easily extensible visual effects

· Intelligent network utilization for maximum performance on low and high bandwidth environments.

· Data collection and extensible export to CMI compliant and XML systems

· Smart Content capability personalizes the material to different users.

1.2 Architectural Overview

In this section, the architecture overview as well as many of the technical advantages or the system are presented. The following is a list of its many architectural features:

· Component based slide construction allows virtually unlimited extensibility in new content (scripting and visual component) capabilities.

· Extensible onscreen/offscreen customizer capability.

· Resource prefetching

· Multi-threaded execution

· Multi-resolution resources that dynamically switch based on bandwidth

· Extensible data collection interface for export to different formats such as CMI 2.0 and XML

· Generic and extensible resource management API for new data types.

· Extensible visual effects interface for new animated effects such as fades and image manipulation.

The following is the graphical representaion of the system:

[image: image3.wmf]Web Server

Java 1.1

Compliant

Web Browser

Resources

Slides

Cbt.jar

F

ile

E

dit

I

nsert

T

ools

O

ptions

H

elp

V

iew

Courseware Builder

Text Toolbar

700

50

100

150

200

250

300

350

400

450

500

550

600

650

50

100

150

200

250

300

350

400

450

500

550

Slide Properties

Properties

Actions

Next Slides

Target

Action

Parameter

A

E1

Action

Event:

Add

Delete

A

E1

Action

A

E1

Action

Logical Components

Component Box

Interactive

Type:

Description:

Size:

 56KB

Width:

150

Height:

160

Resizable:

Yes

Component View

Development Tool

Deployment Files (directory based)

Network

As illustrated above, the development tool application lets the user assemble the bean components into compelling content. The content is then exported to a directory which can be transferred directly onto existing web servers. The user can then view the content using any Java 1.1 compliant web browser which currently includes all Netscape 4+ and IE 4+ browsers.

2 Architecture

2.1 The Slide

The basic unit of a courseware is a slide. Each slide is very much like a Microsoft Powerpoint slide and is composed of one or more SlideElements. The following is the UML style diagram of the Slide and its related classes:

[image: image4.wmf]Web Browser

Trusted

CMI Applet

Web Server

CMI 2.0 Web Launch

CBT

Slide Blocks

Repository

CBT Launch

Servlect/CGI

Generated

Applet

Parameters

Generated

Applet

Parameters

Slide Block Player

Applet

In the above diagram, all non-concrete classes are in white and all concrete implementations are in green.

Slide: interface

This is the most important class of the whole system. It represents a single unit of presentation material. Each slide has internal states while it is been presented to the user. Once the user leaves the slide, all states associated with that slide is deleted. This is the smallest, self-contained, playable piece of interactive, multimedia content in the CBT system.

The Slide is composed of a number of slide elements. These slide elements are: visible components, non-visible logic components, and script elements. In the prototype, only the visible and script elements are implemented. The non-visible logic components can be extended easily by implementing the SlideElement abstract class.

The visible component or ConcreteSlideElement are slide elements that have a graphical representation. In the prototype, all ConcreteSlideElements are of the type TBeanSlideElement. TBean slide element is a wrapper class for the extensible component (TBean) architecture. This allows developers to extend the type of visual components available by developing according to the TBean specifications (See the next chapter). Currently, all visual components are TBeans including text, image, audio, buttons, and hot regions. TBean is a extension on the Java Beans architecture. For more information

Each slide contains a script which is executed when the slide is loaded. The script is represented by the SlideScriptModel interface. The script handles all aspects of preprogrammed behavior such as display/undisplaying components, programmed responses to certain events, and data collection actions. The script can be extended by extending either the MultiScriptElement or Action abstract classes. A MultiScriptElement is simple one or more script steps that can be executed. An action is a single script step.

SlideModel: implementation

This is the implementation of the Slide in the prototype. It is a simple container that holds the script and the slide elements. It can be serialized and deserialized.

SlideScriptModel: interface

The SlideScriptModel is the data model that represents the script for a single slide. The script models are based on trigger event/action model. It consists of a series of triggers which occurred based on events generated by other slide elements in the slide. Each trigger has a list of script elements that should be executed.

DefaultScriptModel: implementation

The DefaultScriptModel is the default implementation of the SlideScriptModel in the prototype. It can be serialized and deserialized. It uses a simple hashtable to store the triggers and script elements.

SlideElement: abstract class

This is the base class for all components that belong to a slide. It contains contexts provides global knowledge about the environment in which the SlideElement exists. The contexts are set upon creation of a SlideElement or right after deserialization of the Slide and SlideScriptModel.

All SlideElement’s also have standard characterisitics such as onscreen/offscreen customizers, creation behavior, and serialization capabilities.

ConcreteSlideElement: abstract class

This represents a visible components of the slide that can be display on the user’s screen. These components include images, text, buttons, etc. It has the getView() method which returns a non-null java.awt.Component.

TBeanSlideElement: implementation

This is the only implementation of the ConcreteSlideElement in the prototype. It wraps a TBean (Training Bean) with custom visual and logical properties. It is through the TBean architecture that developers can extend the existing visual feature set.

SlideScriptElement: abstract class

The SlideScriptElement is the base class for a scripting element that belongs to the SlideScriptModel. It contains contextual information about the script model that each element belongs to. Sometimes, this context is needed to perform certain scripting functionalities.

Action: abstract class

An Action class is a script element that can be directly executed through the execute() method. It is through this abstract class that developers can extend the scripting capabilities.

SlideDisplayAction/SlideUndisplayAction/JumpSlideAction/DataCollectorAction: implementations

These classes are the concrete implementation of the Action abstract class. Each action performs a specific function such as rendering a ConcreteSlideElement, undisplaying a ConcreteSlideElement, … The developer can extend the Action by creating a subclass that perform custom actions in the execute() method.

MultiScriptElement: abstract class

This class is a subclass of SlideScriptElement and represents a aggregate group of script elements. It contains iterator functions for going through all of the script elements.

SimpleActionSequence: implementation

This is the only concrete implementation of the MultiScriptElement in the prototype. It contains a sequential list of Actions and executes them in sequence when the execute() method is invoked.

2.2 The Slide Contexts

There are several context objects in the system. They are: SlideExecutionContext, SlideEditingContext, CBTContext, and ResourceContext.

The SlideExecutionContext are given to each SlideElement immediately after they are created. It allows SlideElement’s to access global information such as which slide they are contained in, what is the current display engine, and what is the current event bus. It can the use and affect the enviornment.

The SlideEditingContext is a subclass interface of the SlideExecutionContext. It adds a few more capabilities such as allowing elements to be edited in an editor. The CBT development tool creates an implementation of this interface and gives it to all SlideElements immediately after they are created.

The CBTContext is a feature set that is available to all parts of the system. It includes the data collector, the system features set (display web page, …), and a few other capabilities that are useful.

The ResourceContext allows system components to access network resources such as audio, image, video(not imlemented in the prototype) and any other user defined resource types.

The following is a UML style diagram illustrating the relationships between the contexts and the Slide objects:

[image: image5.wmf]abstract SlideElement

abstract SlideScriptElement

abstract ConcreteSlideElement

TBeanSlideElement

abstract Action

<<Interface>>

Slide

SlideModel

<<interface>>

SlideScriptModel

DefaultScriptModel

implementation

implementation

1

*

*

abstract MultiScriptElement

SimpleActionSequence

SlideDisplayAction

SlideUndisplayAction

DataCollectorAction

JumpSlideAction

Visual Component Extensions

Component BasedScripting Extensions

Trigger

They will be discussed in more detail in later sections.

2.3 Slide and SlideElement Serialization Issues

· All slide elements must be serializable. They must have a fixed serializationVersionUID and should handle version differences internally.

3 TBean: Extensible Component Architecture

3.1 Overview

The TBean component architecture is an extension upon the Java Beans architecture. It adds certain extra functional specifications to accommodate the lack in several areas of the Java Bean specifications. The main additional “feature set” are:

· Onscreen and offscreen customizers

· More extensible form of generator/listener event generation suited toward composition style development.

· Additional network optimization functionality.

Please see the TBean and TBean Library Development specification for more details about the specification.

3.2 Adding New TBeans

In the prototype, TBeans have to added manually to the system. The following steps must be observed:

· Add the new TBean and its related classes into the project

· Edit the SlideEditorToolBox class and add the new tbean to the toolbar.
Please see existing examples in the SlideEditorToolBox on how to accomplish this.

After these two steps, the new TBean should be ready to use in the development environment. For deployment you must also add the new TBean and related classes to the jar file.

3.3 Multi-JDK Deployment

To be as extensible as possible and to support future Java 2 platforms, the TBean deployment architecture is fairly unique. When developing components for the CBT system, two “deployment” TBean’s maybe developed for each TBean. This is to accommodate the difference in features between the Java 2 and Java 1.1 platforms.

To accomplish this, the development environment is in Java 2 so all Java 2 features are available. The Java 2 version of the TBean can be added to the development tool project. The Java 1.1 version of the TBean can be added to the deployment project.

There are some conventions and limitations that must be observed in order for the serialization and deserialization to work. The following is a list:

· DO NOT implement Serializable. Use Externalizable instead.

· ALWAYS fix the serialVersionUID to some value for all version of the TBean so that the serialization file is usable across different bean versions.

· ALWAYS use the MVC model of development and do not extend any Java 2 specific or Swing class from the TBean itself. The getView() method in TBean allows you to return different views depending on the execution environment.

· DO NOT use ObjectOutputStream.defaultWriteObject()

· DO NOT use super.writeObject() if the super class is a built-in Java Class
The super class may not be compatible across different JDK. (Especially Swing classes)

4 Slide Players

4.1 Overview

The SlidePlayer is the interface that specifies the capability of the “engine” playing the Slide instances. The following is a UML style diagram of the relationship between Slide and SlidePlayers:

[image: image6.wmf]abstract SlideElement

<<interface>>

SlideExecutionContext

<<interface>>

SlideEditingContext

*

1

Slide

ScriptExecutionEngine

SlideDisplayEngine

PlayerEventBus

ResourceContext

CBTContext

*

1

1

1

1

1

1

DefaultExecutionContext

editElement(slideElement)

getSlideElementTypes(type)

SlidePlayer: interface

This is the main interface that represents an engine that is capable of playing the Slide. Is is composed of several components, namely: EventBus, SlideDisplayEngine, ScriptExecutionEngine.

SlideDisplayEngine: interface

The display engine can renders all ConcreteSlideElements. It includes functions to display/undisplay these elements. This is the display portion of the deployment applet and the editor application.

ScriptExecutionEngine: interface

This component is responsible for executing the SlideScriptModel.

EventBus: interface

This component is the event bus on which slide elements publish their events. Subscribers on the event bus can then receive events depending on if it is an event that they want. The TBeanSlideElement is an EventBusPublisher and converts all TBeanEvents from the TBean’s into EventBusEvents. These events are then received by Triggers which in turn cause certain script elements to be executed.

DefaultSlidePlayer: implementation

This is the implementation of the SlidePlayer in the prototype. It uses a DefaultExecutionEngine and a SimpleEventBus. Please see later description for more information on these 2 components. The DefaultSlidePlayer is capable of playing only a single slide at a time. In the above diagram, its SlideDisplayEngine has a diagonal pattern because the DefaultSlidePlayer takes in a SlideDisplayEngine object in its constructor. It does not create one itself.

DefaultExecutionEngine: implementation

This is a multi-threaded implementation of the ScriptExecutionEngine. It wraps triggers inside a EventBusSubscriber object and executes the slide elements when the triggers are satisfied. It is used both in the deployment applet as well as the editor application.

SimpleEventBus: implementation

This is the bare minimum event bus. All events generated by the event bus publishers will be broadcast to all EventBusSubscribers. It is used both in the deployment applet as well as the editor application

LayeredSlideDisplayEngine: abstract class

This is a special case of the display engine. This display engine defines methods for display multiple slides stacked simultaneously on the screen. This feature allows multiple layers of slide to be displayed much like the Photoshop layers. The Template slide uses this mechanism to display a common background across multiple slides.

LayeredSlidePlayerEngine: abstract class

This is a special case of the SlidePlayer engine. It allows multiple slides to be executed simultaneously in different layers. It takes a LayeredSlideDisplayEngine as input. It is nothing more than a “stack” of DefaultSlidePlayer’s using the same LayeredSlideDisplayEngine.

By default, it will play “Slide 0” contained in the serialization file slide.0 in the TEMPLATE_LAYER(background). This layer will remain the same always. From slide 1 and up, each slide is displayed in sequence until the sequence is exhausted. exhausted.

AppletDisplayEngine: implementation

This is a LayeredSlideDisplayEngine suitable for use within an Applet. It is used with the deployment applet and works with JDK 1.1 environments

VisualCompEditor: imlementation

This is a LayeredSlideDisplayEngine suitable for use within the development tools. In addition to display capabilities, it includes various editing capabilities and look n’ feel.

4.2 Slide Event Bus Architecture

[image: image1.wmf]EventBus

<<interface>>

EventBusPublisher

<<interface>>

EventBusSubscriber

<<interface>>

EventBusSubscriber

TBeanSlideElement

implementation

EventBusAdapter

Trigger

1

1

implementation

The event bus is a simple publisher/subscriber model of event handling. Each slide player has an event bus on which TbeanSlideElements publish and Triggers listen. The TBeanSlideElements wraps the TBeanEvent’s that TBean’s generate in TbeanEventAdapters and publishes them on the event bus in the slide player. The DefaultExecutionEngine wraps the Trigger objects inside EventBusAdapters and places it on the EventBus as subscribers. The EventBusAdapter checks each event publishes to see if it matches the trigger. If it does, it tells the DefaultExecutionEngine to execute the script elements associated with the Trigger.

This mechanism is used in both the deployment applet as well as the development application.

5 The Development Tool: Slide Editor

5.1 Overview

[image: image7.png]Insert View Repostory Windows

\
/5= 12 &

ol el el ol el ol el el el el el ol el el el

wer || meen | [on |

Triggers Actions

start

The development tool allows users to create the content for the SlidePlayer. It looks like the following:

The classes that corresponds to the above interface is as follows:

[image: image8.wmf]Menu

VisualCompEditor

DefaultScriptModelEditor

SlideEditorToolBox

Add Slide

Delete Slide

SlideEditor

SlideBlockEditor

The development tools mainly consists of two editor classes: SlideBlockEditor and SlideEditor.

The SlideBlockEditor allows the user to editing a sequential series of one or more slides. Through this interface, the user can select which slide to edit and change the name of the slide. Selecting a slide in the SlideBlockEditor will cause the SlideEditor to display the selected slide.

The SlideEditor allows the user to visually construct a single active slide. It may display the template slide but the template slide may not be edited unless it is selected in the SlideBlockEditor.

5.2 SlideEditor

The SlideEditor consists of several components as illustrated visually above and in a UML style class diagram below:

[image: image9.wmf]DefaultSlidePlayer

<<interface>>

SlidePlayer

<<interface>>

ScriptExecutionEngine

<<interface>>

SlideDisplayEngine

<<interface>>

EventBus

DefaultExecutionEngine

SimpleEventBus

SlideDisplayEngine

implementation

implementation

1

1

1

*

<<interface>>

Slide

setSlide(Slide)

play()

stop()

rewind()

LayeredSlidePlayerEngine

1

1

1..*

AppletDisplayEngine

VisualCompEditor

extends

<<interface>>

LayeredSlideDisplayEngine

setWorkingLayer(layer)

getWorkingLayer: int

1

1

VisualCompEditor

This is the display engine of the slide editor. In addition to supporting the functionality specified in the LayeredSlideDisplayEngine, it also includes the capability to select visual components, move visual components, resize visual components, and edit visual component properties through onscreen and offscreen customizers.

LayeredSlidePlayerEngine

This is the same player engine described in previous sections. In the editing environment, the display engine is set to the VisualCompEditor.

DefaultScriptModelEditor

In the prototype, this is implemented as a JTable with 2 columns. The first column list the triggers and the second column lists the script elements associated with each trigger. Each script element can be edited by double clicking on the cell that it is located in.

SlideEditorToolBox

This is the toolbar of the slide editor. Here all available TBean’s are display along with the default selection tool and the run tool. When the run tool is selected, the slide will execute using its LayeredSlidePlayerEngine.

5.3 Onscreen & Offscreen Customizers

Each SlideElement in the development tools will be given a SlideEditingContext. Through this context, the editElement(SlideElement) method can be invoked. The implementation of this context EditingContextSupport allows the use of onscreen and offscreen customizers.

In this architecture, whenever the editElement(SlideElement) is invoked, the context will looks for a class XXXCustomizer where XXX is the name of the SlideElement class. If found, this customizer must be a implementation of the SlideElementCustomizer class. It can then return an onscreen customizer and offscreen customizer through the SlideElementCustomizer.getOnScreenEditor() and SlideElementCustomizer.getOffScreenEditor() methods.

The onscreen customizer must be a java.awt.Component that will be set to the same size of the display screen and added as the top element on the display screen. This customizer can then trap mouse events and interpret them for editing purposes. The customizer can also find out what the display’s current state through the SlideEditingContext.getDisplayEngine() method. Uses of the onscreen customizer include animation path planning. It is generally used when the user needs to overlay the edits with the display.

The offscreen customizer must also be a java.awt.Component and is recommended to be JPanel. This customizer can contain property sheets and other editing behavior that does not require it to be overlaid with the display. This customizer is the standard Java Beans customizer. The TBeanSlideElement returns a BeanPropertyPanel object as the offscreen customizer. The BeanPropertyPanel uses Intropsection to detect the property of a TBean and create PropertyEditors for them.

Please see the TBean and TBean Library specification for examples of the onscreen and offscreen editors. Also, each of the Action subclasses implement one or both customizers.

Data Collector

5.4 Overview

The DataCollector component is available to slide elements as a means of recording interaction logs, user preferences, timers, and miscellaneous information. The prototype currently allows the collection of three different kinds of basic data:

1. String values

2. Integer Counters

3. Timer Values

Each piece of data is identified by a String parameter name. The data can be displayed using the DataDisplayBean in a slide. There are currently two ways to record data:

1. TBeans can directly access the DataCollector interface through the CBTContext.getCurrentContext().getDataCollector() method.

2. Data can be recorded in the pregrogrammed script using the Collect Data action type (DataCollectorAction).

The data collector can be extended by implementing a custom version of the data collector and creating it during development tool initialization in the CBT.main.DevClientMain class.

5.5 CMI Data Collection Extensions

CMI Compliance can easily be accomplished by implemented a special version of the DataCollector that takes these parameters and output it in the CMI format; however, to support full CMI capabilities, the TBeans must also agree to store data using the guidelines outlines below. All parameters collected and passed to the applet correspond to the LESSON.XXX files in the CMI specifications.

The following are guidelines on how to export to a CMI Compliant format for the relevant parameters:

5.5.1 Data Collector Formating Guidelines

Each Execution of a Slide Block corresponds to an AURecord in a Lesson

Please see CMI system specifications for more details. All data collected corresponds to the information contained in the LESSON.TXT file.
All CMI parameters should be stored parameter name: CMI:[File]:[Keyword]

For example, the LESSON.CMI File’s Start_Time and End_Time keywords should be stored into the data collector using the following String parameter name and parameter values:

CMI Parameter
Parameter Name

Start_Time

CMI:CMI:Core Lesson:Start_Time

End_Time
CMI:CMI:Core Lesson:End_Time

The [File] portion should be the extension of the CMI file.

The [Keyword] should be exactly the same as the keyword in the CMI file. This part can be empty if no keywords are used.

All Stored Parameter Values Should Conform to the CMI value format specifications

All parameter values passed to the data collector should be in the format specified in the CMI 2.0 guidelines.

All Interaction Log (Stored in the Interactions File) should be preceded by a CMI:INT: Tag

All interactive logs can be stored in any format since it is not specified by the CMI guidelines. All such interactive should be marked with a particular parameter name prefix so that the DataCollector knows which file it belongs in.

All Interactive Components that can be Tests or Objects Must Store The Resulting Score And Status

Each interactive component that can be a test or objective in the AU(SlideBlock) must record their status when the user finishes interacting. The following rules must be observed:

· Upon creation, it should store in the data collector a “Not Attempted” status under the parameter name “CMI:OBJ:[Slide Number]:[Element ID]”

· The status should be updated as soon as the user interacts with the objective.

The Resume State Should Be The Slide Currently Playing

The currently playing slide should be stored in the “CMI:Save State” parameter. The parameter should be an integer specifying the currently playing slide. This number should be updated at the beginning of each slide.

5.6 XML Extensions Notes

The same extensible data collector architecture can be used to export data to XML. The exact format and XML schema can be arbitrarily determined in the product.

To facilitate CMI compliant along with XML compliance, the final XML format should be derivable from the above guidelines.

For example, a CMI:INT:XXXX parameter can be stored inside an <INTERACTION LOG> tag.

CMI Integration

This section describes the guidelines for integrating Slide Blocks into a CMI system as a lesson. It areas within the CBT system that must be upgraded in order to support the CMI 2.0 guidelines as well as integration guidelines with the CMI system. The integration can be divided into four topics:

1. Additional Architectural Support

2. Lesson Creation and Storage

3. Lesson Launch

4. Lesson Data Collection

Step three has already been described in the previous section under CMI Data Collection. In this section, steps 1, 2, and 3 will be discussed.

5.7 Architectural Support

Some additional architectural support is needed for CMI compliant. In this section, they are listed:

CMI Compliant TBean interface

In order to properly support CMI objectives within a lesson, TBeans that can be objective must implement the CMIObjective interface. This interface identifies the TBean as a CMI compliant bean and also specifies some common behavior among these beans. The following is the interface:

public interface CMIObjective {

public int getMaxScore();

public int getMasteryScore();

}

SlideBlockPlayer Timer

A slide block player timer features must be implemented. This timer should start when the block starts playng and end when the block stops playing. This timer is used for the Max_Time_Allowed field and other timers needed for recording interactions and performances.

5.8 Lesson Creation and Storage:

CMI compliant lesson is an additional export option within the CBT system that must be implemented. This export format treats CMI Compliant TBeans in a special way and generates a .TSL file described in Appendix B of the CMI system. A user interface will have to be implemented to allow users to specify certain lesson fields that can not be automatically generated.

There are several fields that can be generated. They are:

· Max Score
The export module should calculate this from all CMI Compliant TBeans

· Mastery Score
The export module can also calculate this from all CMI Compliant TBeans within the slide.

Once the lesson is created, it should be imported into the CMI server and stored on a web server where it can be referred to by the CBT launcher described in later sections.

5.9 Lesson Launch

The following is the architectural guidelines for launching a stored AU (AKA Slide Block).

[image: image10.wmf]SlideEditor

abstract WorkArea

VisualCompEditor

abstract LayeredSlideDisplayEngine

1

1

SlideEditorToolBox

1

LayeredSlidePlayerEngine

1

DefaultSlidePlayer

<<interface>>

SlidePlayerEngine

1

1..*

1

1

DefaultScriptModelEditor

1

Trusted Student Client CMI Applet

This applet allows the student to view their progress and launch CBT lesson as described in the CMI system specifications. This applet is responsible for generating the LESSON.TXT parameter file format to launch the lesson/AU. The CMI 2.0 Web guidelines format can also be used instead.

CBT Launcher Servlet/CGI

 This logic component takes the parameters given to it by the Trusted Student Client CMI Applet and generates an Applet tag set with the stored preferences and AU state stored in the CMI system from a previous execution.

Web Server

This is the web server that contains the AU to be launch (exported from the CBT system) and a copy of the CBT Launcher Servlet/CGI.

The sequence of events that occur in launching the AU are:

1. Student selects an AU to launch and clicks “Start”

2. The CMI applet reads the last saved state of the lesson and generates the necessary parameters

3. The CMI applet passes the parameters using the LESSON.TXT format or the format specified in the CMI 2.0 web guidelines.
Note: For the LESSON.TXT format, the file paths can be changed to [Group Name] keywords and the data embedded directly under the [Group Name]

4. The CBT Launcher receives the data and generates an dynamic HTML page with the appropriate SlideBlockPlayer Applet parameters. These parameters should restore the state of the AU.
Note: The state of the AU can be saved in the Core_Vendor parameter.

� EMBED CorelPhotoPaint.Image.8 ���

Page 3 of 17

_990625025.bin

