
Grids as Production Computing Environments:
The Engineering Aspects of NASA’s Information Power Grid

William E. Johnston1, Dennis Gannon2, and Bill Nitzberg3

Numerical Aerospace Simulation Division, NASA Ames Research Center, Moffett Field, CA

Abstract

Information Power Grid (IPG) is the name of NASA’s
project to build a fully distributed computing and data
management environment – a Grid. The IPG project has
near, medium, and long-term goals that represent a
continuum of engineering, development, and research
topics. The overall goal is to provide the NASA scientific
and engineering communities a substantial increase in
their ability to solve problems that depend on use of
large-scale and/or dispersed resources: aggregated
computing, diverse data archives, laboratory instruments
and engineering test facilities, and human collaborators.
The approach involves infrastructure and services that can
locate, aggregate, integrate, and manage resources from
across the NASA enterprise. An important aspect of IPG is
to produce a common view of these resources, and at the
same time provide for distributed management and local
control. In addition to addressing the overall goal of
enhanced science and engineering, there is a potential
important side effect. With a large collection of resources
that have common use interfaces and a common
management approach, the potential exists for a
considerable pool of computing capability that could
relatively easily, e.g., be called on in extraordinary
situations such as crisis response.

IPG is a collaboration between NASA and the NSF
PACIs [1], and the initial set of distributed services are
based on the Globus metacomputing system [5]. The near
term goal of IPG is a prototype production Grid, which
entails developing, deploying, and supporting
infrastructure like LDAP information servers and PKI
security services, and the engineering aspects of adapting
R&D systems like Globus to a production environment.

1.0 Introduction

What is the Information Power Grid?
Computational Grids [4], e.g. NASA’s Information

Power Grid (IPG - www.nas.nasa.gov/IPG), will provide
significant new capabilities to scientists and engineers by
facilitating the solution of large-scale, complex,

1. wej@nas.nasa.gov
2. gannon@cs.indiana.edu
3. nitzberg@nas.nasa.gov (MRJ Technology Solutions, NASA
contract NAS2-14303)

multi-institutional / multi-disciplinary, data and
computational based problems using CPU, data storage,
instrumentation, and human resources distributed across
the NASA community. This entails technology goals of:
• Independent, but consistent, tools and services that

support various programming environments for building
applications in widely distributed environments

• Tools, services, and infrastructure for managing and
aggregating dynamic, widely distributed collections of
resources - CPUs, data storage / information systems,
communications systems, real-time data sources and
instruments, and human collaborators

• Facilities for constructing collaborative, application
oriented workbenches / problem solving environments
across the NASA enterprise based on the IPG
infrastructure and applications. These constitute the
primary science and engineering interface to Grids

• A common resource management approach that
addresses, e.g., system management, user identification,
resource allocations, accounting, security, etc.

• An operational Grid environment incorporating major
computing and data resources at multiple NASA sites in
order to provide an infrastructure capable of routinely
addressing larger scale, more diverse, and more transient
problems than is possible today.

What will IPG facilitate?
An environment with the characteristics noted above

will enable NASA scientists to make strides in four classes
of activities. First, it will allow for the construction and
management of dynamic systems such as wide area
testbeds and dynamically configured production
environments. Second, it will allow NASA to prototype
distributed systems that can adapt to future changes by
using Grid services to flexibly manage changing
environments, infrastructure, and resources.

Third, research teams will be able to construct
just-in-time, large-scale systems to support scientific and
engineering computing and data based activities that are
not steady state, i.e. those that may require a different
resource mix for every different problem. For example,
simulations and their supporting computing platforms
including data mining systems and their underlying data
archives, instrumentation systems and human
collaborators

Finally, IPG will enable the routine use of wide area,
data-intensive applications such as those involving remote
access to high data-rate real-time data sources and
instruments and large datasets as illustrated in [10].

Additionally, Grids and their services are intended to
support “large-scale” environments, where “scale” refers to
several dimensions:
• Large scale computational and storage capacity through

aggregation of resources
• Scale in the complexity of resources independent of

capacity. For example, data intensive computing tends to
require a complex mix of resources, with or without high
capacity. Management of very diverse data is one key
problem and Grids will provide transparent access to
these resources

• Scale in geographic and organizational scope
• Scale in the multiplicity of abstractions needed by

different Grid user communities

How will IPG be accomplished?
Three main areas must be addressed in order to

accomplish these goals:
1) new functionality and capability;
2) an operational environment that encompasses significant

resources;
3) new services delivery model.

In the first area, Grids must provide services supporting
uniform and location independent interfaces for
aggregating, scheduling, and integrating numerous, diverse,
and distributed resources.

Such services include resource description and discovery
mechanisms; multi-party, secure, and fault tolerant
communication; access control; data location management;
job submission and data archive access; sharing
mechanisms to support collaborative interfaces and toolkits
for building problem solving environments.

Some of these services exist and some must be designed,
built, and evaluated. These services will knit together and
provide access to the many compute and data engines and
scientific instruments that will provide significantly
increased levels of computing and data analysis capability.

The operational system is discussed below.
In the third area, Grids such as IPG, effectively define a

new business model for operational organizations
delivering large-scale computing and data resources in
ways that allow them to be integrated with other widely
distributed resources controlled, e.g., by the user
community.

Implementing this service delivery model requires two
things: First, tools for production support management and
maintenance of integrated collections of widely distributed,
multi-stakeholder resources must be identified, built, and
provided to the systems and operations staffs. The second
requirement is that new organizational structures must be

evolved that account for the fact that operating Grids is
different than operating traditional supercomputer centers,
and management and operation of this new shared
responsibility service delivery environment must be
explicitly addressed.

What is the State of IPG?
Point 1), above, is being addressed by a detailed

examination of requirements generated by several NASA
application communities, both in terms of specific
capabilities identified by the applications community and as
the result of analysis of the requirements and desired
operating environments by computer scientists.

Addressing point 2), the two year IPG goal is an
operational and persistent, “large-scale”
prototype-production Information Power Grid providing
access to computing, data, and instrument resources at
NASA Centers around the country so that applications that
cannot be done today are enabled.

The first phase (targeted for 10/99) is a baseline
operating system that includes:
• approx. 300 CPU nodes in half a dozen SGI Origin 2000s

at three or four NASA sites
• several workstation clusters
• 30-100 Terabytes of uniformly accessible mass storage
• wide area network interconnects of at least 100 mbit/s
• a stable and supported operational environment

Addressing point 3), the NAS Division at Ames is
identifying the new services that will be delivered by IPG,
and is creating groups that will develop (as necessary), test,
deploy, and support these services. In addition to new local
organizational structure and local R&D, NAS is
coordinating related activities at the NSF supercomputer
centers and at universities to provide various components of
the new operational model.

Current progress is reflected in the IPG Engineering
Working Group tasks: 30+ tasks have been identified as
critical for the baseline system. Task groups are working on
each of these, and they fall into the general areas of:
• Identification and testing of computing and storage

resources for inclusion in IPG
• Initial IPG runtime system (Globus) deployment
• Global management of CPU queues, tracking, and

monitoring tools
• Resource discovery system deployment
• Public-key security component integration and

deployment
• Network infrastructure and QoS
• Mass storage system metadata catalogue and uniform

access system
• Operational and system administration procedures for

distributed systems
• User and operations documentation

+ Account and resource allocation management across
systems with multiple stakeholders

+ Globus/MPI [7], CORBA [11], and Legion [6]
programming middleware systems integration

+ High throughput job management tools
+ Distributed debugging and performance monitoring

tools

2.0 Building IPG

The strategy for building IPG first involves and on-going
requirements analysis. This task requires a generalization of
the application-specific requirements to specific service
definitions. Next, one must identify existing
implementations and/or designs of prototype Grid services
and identify and incorporate the underlying resources. One
must also construct “characteristic” applications for
validation of the Grid services. Finally, one must define and
implement the required services and infrastructure.

2.1 Characterizing the User Communities

It is important to recognize that there are several
“customer” communities for Grid services, and some of
these communities have rather different requirements. For
example:
I) Lay public, schools, community emergency services, and

military field units will access the Grid through Web
browser and kiosks.

II) Application domain scientists and engineers will use
Problem Solving Environments / application
frameworks.

III) Application domain computational scientists and tool
developers will use middleware that supports
distributed computation, aggregated and federated
access to catalogued data, computer mediated
collaboration and multiple programming paradigms.

IV) Distributed system developers use job management,
access control, generalized communications services,
resource discovery and brokering

V) Middleware / Grid common service developers will use
local resource managers (queuing, network QoS,
scheduled tape marshaling), security services, network
services and resource information bases

IPG is primarily addressing the communities II, III, and
IV.

2.2 Requirements Analysis

IPG development and deployment will be driven by
addressing requirements obtained by analyzing a number of
different application areas. However, the overall goal is to
address a broad spectrum of NASA’s computing, data
management, real-time data source, and collaboration needs
through a general and extensible large-scale, heterogeneous
computing environment.

General capability and services requirements come from
experience with the way science and engineering R&D uses
computer related resources.

Specific IPG requirements come from analyzing NASA
application and programs. These include the Computational
Aero-Sciences (CAS - http://cas.arc.nasa.gov/) activities,
and the Aerospace Engineering Systems (AES) project
which involves large-scale, multidisciplinary design
environments. Additional requirements come from AES
components including simulation and design systems for
airframes, turbomachinery, spacecraft and propulsion
systems. The Intelligent System and Intelligent Synthesis
Environment program (http://www.ise.nasa.gov/) which
targets distributed collaborative design systems provides a
large number of important requirements. Other important
contributions come from Earth Sciences, the Data
Assimilation Office (http://dao.gsfc.nasa.gov/) production
meteorological simulations, Astrobiology
(http://astrobiology.arc.nasa.gov), the Aviation / Space
Station remote “help desk” and on-line instrumentation
systems such as wind tunnels
(http://www-darwin.arc.nasa.gov).

Analysis of the problem solving approaches in these
disciplines gives rise to a long list of requirements, each of
which is addressed in the various IPG technology goals.

A summary of the requirements derived from discussions
with analysts / problem solvers in these discipline areas,
and from examining their work processes, is given below.

1-0 Discipline Analyst / Problem Solver Requirements
1-1 Multiple datasets maintained by discipline experts
at different sites that support both geometric and com-
putational design processes must be accessed and
updated by many collaborating analysts.
1-2 Analysts must be able to securely share all aspects
of their work process.
1-3 Data streams from instrument systems must be
available both in real-time to computational data analy-
sis systems and via well catalogued databases.
1-4 Existing heterogeneous sub-component simulations
need to be coupled and operated simultaneously in
order to provide whole system simulations (“multi-dis-
ciplinary simulation/optimization”).
1-5 Interfaces to data and computational tools must
provide appropriate levels of abstraction for discipline
problems solving.
1-6 Resource availability and scheduling must accom-
modate the “bursty” / on-demand nature of the
human-driven design process.
1-7 Access to resources must be predictable and inde-
pendent of location or time of day.

1-8 Sufficient resources must be available so that the
analyst can perform the required tasks within the con-
text of their normal work process.
1-9 Virtual reality and immersive techniques must oper-
ate in the distributed work/resource environment.
1-10 Techniques are needed to search, interpret, and
fuse multiple data archives.
1-11 Frameworks employing “software agents” are
needed to provide various functions to assist analysts.

2-0 Discipline Toolbuilder Requirements
2-1 Process and workflow management techniques must
provide transparent and uniform control over all dis-
tributed resources participating in problem solving
environments.
2-2 Tools to provide workflow definition via “visual
programming” scenarios that integrate with the analyst
“desktop” environment must be available.
2-3 New approaches to computational simulation and
data analysis must be accommodated in the distributed
work/resource environment.
2-4 Techniques are needed for coupling remote instru-
ment system operation and data streams directly to
computing and data management resources. Such sys-
tems should interoperate with tools supporting human
sharing of computing environments.
2-5 Collaborative, multi-party sharing of user inter-
faces, data, instruments, and computation must be pro-
vided.
2-6 Techniques are needed for more transparent incor-
poration of interactive/steering visualization into simu-
lations, databases, and instruments.
2-7 Techniques are needed to describe and manage
diverse strategies for parameter space exploration/fill-
ing.
2-8 Tools need to automatically manage and catalogue
the numerous datasets the result from parameter stud-
ies.
2-9 Consistency of numerical and data accuracy is
required across distributed, heterogeneous resources.
2-10 Mechanisms for managing generalized “faults”
are required for all aspects of the working environment.
2-11 Techniques are needed for coupling heterogeneous
computer codes, resources, and data sources in ways so
that they can work on integrated/coupled problems.
2-12 Location and architecture independent services
must provide for various interprocess, interactive,
data-intensive, and multi-point communication.
2-13 Techniques are needed for debugging distributed
software for correctness and performance.
2-14 The methodology and implementation of incorpo-
rating, using, and managing resources in the overall
environment must be scalable.

2-15 It must be possible to audit and account for use of
all resources.
2-16 Co-allocation of resources to support coordinated
use of multiple resources and scheduled use of
resources must be available and must accommodate
“fuzzy” reservation (resource needed sometime in a
given period).
2-17 Policy based quality-of-service should be avail-
able for all resources, including supporting construc-
tion of systems that have various “real-time” operating
constraints.
2-18 General resource scheduling must provide for use
based on either: what resources are available during
some period of time or the combination of resources
that will give a desired performance.
2-19 Systems and operations professionals must be able
to manage the distributed resources.
2-20 Techniques are needed for managing evolution of
the resources and services.
2-21 Resources should be immune to unauthorized
access and manipulation.
2-22 Resource stakeholders/owners should have easily
used mechanisms to enforce their use conditions.
2-23 The scope of the stakeholder/owner for resources
must be dynamic and easily changed in order to accom-
modate “fluid” work groups.
2-24 The security and access control services must pro-
vide for easily specified characteristics and must be
easily integrated into applications and problem solving
environments.
2-25 CPU resource queuing mechanisms must accom-
modate:
- specification of “when” a job or set of jobs needs to

complete
- large numbers of “small” jobs
- multiple service classes - e.g. interactive, debugging,

batch
- queue management tools including query mechanism

for current state, expected queue times, etc.
- rich queuing interface for specification of when and

how jobs should be run
- global queuing - overall queue management for pools

of resources
- “birth-to-death” tracking of jobs and processes
- coordinating with establishing the execution

environment, required dataset movement, etc.
2-26 Event management facilities are needed which
allow:
- generation and publish events associated with job

execution, data generation, etc.
- selective subscription to events
- agent and rule frameworks to collect, manipulate, and

act on events

2-27 Use of CORBA [11], Java [8], Java/RMI [9], and
DCOM [2] must be provided within the context of the
distributed resource environment.
2-28 Visualization techniques need to provide services
that facilitate interactive, collaborative steering, allow
spontaneous sharing and “floor control”, and can
accommodate many coordinated/related activities (e.g.
jobs of a parameter study)
2-29 Distributed data management techniques are
needed to support:
- global dataset naming
- uniform access mechanism for archival storage

systems
- dataset location management
- remote I/O
- “presentation” functions (e.g. number format

conversion)
2-30 Techniques are needed to provide dataset descrip-
tion enabling self-describing access, including: stan-
dardized metadata description, extension, and
manipulation techniques, standard file formats, and
data modeling techniques.
2-31 Mechanisms are needed for easily/automatically
tracking dataset modification history.
2-32 Tools are needed to manage distributed heteroge-
neous computing architectures, including:
- architecture independent interprocess communication

mechanisms
- architecture based code version management
- code porting and architecture based transformation

tools
- techniques to automate architecture specific

optimizations
- compilation and compiled code management tools
- standard computing system run-time libraries
- tools for managing/establishing the local execution

environment
2-33 Generalized resource discovery services needed to
provide readily available and detailed resource infor-
mation, including:
- locations, use-restrictions
- all functionally significant characteristics
- current operating state
- user allocations
- powerful and flexible resource specification language
- tools to query and select resources based on

characteristics
2-34 Support is needed for remote execution manage-
ment, including user-level checkpoint/restart, and facili-
ties for automatic fault detection and recovery.

2.3 Target Functionality

Analysis of the specific requirements and of the work
processes of the user communities, as well as some
anticipation of where the technology and problem solving
needs are going in the future leads to a characterization of
the desired functionality.

Problem Solving Environments, Supporting Toolkits, and
High-Level Services

A number of the services directly support building and
using the Grid application-user environments (e.g., by
engineers or scientists). These include the toolkits for
construction of application frameworks / problem solving
environments (PSE) that integrate Grid services into the
“desktop” environment. For example, the graphical
components (“widgets” / applets) for application user
interfaces and control; the computer mediated, distributed
human collaboration that support interface sharing and
management; the tools that access the resource discovery
and brokering services; tools for generalized workflow
management services such as resource scheduling, and
managing high throughput jobs.

One of the most important areas is the interface to the
“global shell” which supports programming rule-based
workflows, potentially driven from a published/subscribed
event service. Data cataloguing and data archive access,
security and access control are also essential components.
The PSE must also provide functionality for remote
operation of laboratory / experiment / analytical instrument
systems, remote visualization support, data-centric
interfaces and tools and support for multi-source data
exploration.

Programming Services
Tools and techniques for building applications that run in

Grid environments cover a wide spectrum of programming
paradigms and must operate in a multi-platform,
heterogeneous computing environments. We require
Globus support for Grid MPI as well as Java bindings to
Globus services. CORBA, Condor [3], Java/RMI, Legion,
DCOM all play a significant role in Grid programming.
Compilation environment management, distributed
debugging and performance analyses are difficult and
important areas that must also be addressed.

Tools are needed for converting and “wrapping” legacy
codes for operation in Grids and incorporating legacy
Fortran codes into CORBA environments. Grid-enabled
numerical solution libraries that can be optimized for
distributed architectures are important, as are services such
as NetSolve (http://www.cs.utk.edu/netsolve/).

Grid Common Services: Execution Management
The IPG group has identified five services that are

critical to execution management. The first is resource
discovery and brokering. By discovery we mean the ability

to ask questions like: how to find the set of objects (e.g.
databases, CPUs, functional servers) with a given set of
properties; how to select among many possible resources
based on constraints such as allocation and scheduling; how
to install a new object/service into the Grid; and how make

new objects known as a Grid service? The second is
execution queue management which relates to global
queues and their user-level management tools. Workflow
management and global shells is the third category. The
forth category is distributed application management. The

last category includes tools for generalized fault
management including multi-level autonomous
management mechanisms for system components and
applications and process monitoring and supplying
information to knowledge based recovery systems.

Grid Common Services: Runtime
Globus has been chosen as the initial IPG runtime

system. However, other runtime services that are needed
include checkpoint/restart mechanisms, access control as a
Grid service, a global file system, and grid communication
libraries such as a network-aware MPI that supports
security, reliable multicast and remote I/O.

High-speed, wide area, distributed data management
services include global naming and uniform access,
uniform naming and location transparent access to
resources such as data objects, computations, instruments
and networks and URNs that work through Grid-wide

object brokers. This, in turn requires uniform I/O
mechanisms (e.g. read, write, seek) for all access protocols
(e.g. http, ftp, nfs, gass...) and richer access and I/O
mechanisms (e.g. “application level paging”) that are
present in existing systems.

Data cataloguing and publishing constitute another class
of services. This includes the ability to automatically
generate the meta-data about data formats and management
of use conditions and access control. the ability to generate
model based abstractions for data access using extended
XML and XMI [12] data models is going to be very
important.

Of course, high-speed, wide area, access to tertiary
storage systems will always be critical. High-performance
applications require high-speed access to data files, and the
system must be able to stage, cache, and automatically
manage the location of local, remote and cached copies of

Internet
(communication services)

NCAR

ARC

tertiary storage

EOS

land based
sensors

disk
disk

cachedisk
disk

cache

tertiary storage

common
information base

resource
scheduling

QoS
broker

network
cache

certifica-
tion

authorities

certification
authorities
(e.g. X.509)

data
catalogues

NCEM

LBNL

Grid Common Services

data sets

users

Legion

MCAT/SRB
data sets

methodsusers

CORBA
data sets

users
resources

human problem
solvers

GASS

global
queuing GSI

MDS
GRAM

security

access
control

compute
CPU

CPU

CPU

CPU

Mem

I/O

compute
CPU

CPU

CPU

CPU

Mem

I/O

compute
CPU

CPU

CPU

CPU

Mem

I/O

Globus

GEM

access
control

instrument
control

collaboration
management

tele-
conference

services

access
control

authentica
tion

Collaboratory Infrastructure

earth
sciences

CFD
oriented

image
oriented

molecular

Visualization

Application Oriented Middleware Systems

The PSE layer provides the scientist’s /
engineer’s interface to Grid services. It is an
application domain-specific collection of tools
(e.g. simulations, databases, instruments), and
a “workbench” environment that makes it easy
to use those tools and to collaborate with others
working on the same problem.

The middleware layer
provides different styles of
service interfaces for
application developers to
access the basic Grid
services.

Grid services are “standard”
interfaces for the functions
needed to build and manage
distributed applications of all
sorts.

Most “resources” are “local”
and will have their own
resource managers and use
policies. It is the use
mechanisms and interfaces for
the local resources that the
Grid common services are
intended to homogenize.

Local Services / Resources

Applications, e.g. simulations, sit
below the PSE and use
middleware services.

uniform
data

access

compute
CPU

CPU

CPU

CPU

Mem

I/O

compute
CPU

CPU

CPU

CPU

Mem

I/O

compute
CPU

CPU

CPU

CPU

Mem

I/O

disk
disk

cache

����������������

Problem Solving Environments,
AES Frameworks, Collaboratories,

Application Domain Workbenches, etc.

Applications
Applications

methods

 Figure 1 Grid Architecture

files. We are also going to need the ability to dynamically
manage large, distributed “user-level” caches and
“windows” on off-line data. Support for object-oriented
data management systems will also be needed.

Services supporting collaboration and remote instrument
control are needed. In addition, application monitoring and
application characterization, prediction, and analysis, will
be important for both users and the managers of the Grid.

Finally, monitoring services will include precision time
event tagging for dispersed, multi-component performance
analysis as well as generalized auditing data file history and
control flow tracking in distributed, multi-process
simulations.

Grid Common Services: Environment Management
The key service that is used to manage the grid

environment is the “Grid resource information service,”
which we refer to as the “Common Information Base.” This
service – currently provided by Globus MDS – maintains
detailed characteristics and state information about all
resources, and will also need to maintain dynamic
performance information, information about current
process state, user identities, allocations and accounting
information.

Autonomous system management and fault management
services provide the other aspect of the environmental
services.

Resource Management for Co-Scheduling and
Reservation

One of the most challenging and well known grid
problems is that of scheduling scarce resources such as a
large instruments. In many, if not most, cases the problem is
really one of co-scheduling multiple resources. Any
solution to this problem must have the agility to support
transient experiments based on systems built on-demand for
limited periods of time. CPU advance reservation
scheduling and network bandwidth advance reservation
scheduling based on differentiated IP services are critical
components to the co-scheduling services. In addition, tape
marshaling in tertiary storage systems to support temporal
reservations is essential.

Operations and System Administration
Implementing a persistent, managed Grid requires tools

for deploying and managing the system software. In
addition, tools for diagnostic analysis and distributed
performance monitoring are required, as are accounting and
auditing tools. An often overlooked service that we are also
addressing involves the operational documentation and
procedures that are essential to managing the Grid as a
robust production service.

Access Control and Security
The first requirement for establishing a workable

authentication and security model for the grid is to provide

a single-sign-on authentication for all Grid resources based
on cryptographic credentials maintained in the users
desktop / PSE environment(s) or on one’s person. In
addition, end-to-end encrypted communication channels is
needed in for many applications in order to ensure data
integrity and confidentiality.

The second requirement is an authorization and access
control model that provides for management of stakeholder
rights (use-conditions) and trusted third parties to attest to
corresponding user attributes. A policy-based access
control mechanism that is based on use-conditions and
attributes is also a requirement.

Security and infrastructure protection are, of course,
essential requirements for the resource owners.

Services for Scalability
There are a number of services and design

considerations that are necessary to ensure that the Grid
will scale numerically, geographically, organizationally,
and functionally. The ability to broker and manage
resources and handle faults autonomously is an important
consideration. An additional consideration is very reliable
access to “global” system state information. Finally, one
must have general policy based access control and
use-condition management that operates relatively
automatically and has distributed management.

Services for Operability
To operate the Grid as a reliable, production

environment is a challenging problem. Management tools
for the Grid Common Information Base that provides
global information about the configuration and state of the
Grid are needed. In addition, diagnostic tools so
operations/systems staff can investigate remote problems
are essential. Other required services include tools and
common interfaces for system and user administration,
accounting, auditing and job tracking. Verification suites,
benchmarks, regression analysis tools for performance,
reliability, and system sensitivity testing are essential parts
of standard maintenance.

2.4 IPG Will Identify Some “Benchmark”
Applications that Validate and Test the Services

Several applications have been identified as
characteristic because of the mix of services and resources
that they require. These applications are being used as
realistic validators of the IPG services and system. Some of
the current applications include:
• Distributed multi-component NPSS system from NASA

Glenn Research Center (hpcc.lerc.nasa.gov).
• Overflow, which is a NASA Ames CFD code is being

tested as a widely distributed numerical simulation.
• NASA Ames’ Darwin project which involves distributed

instrumentation will be an important IPG driver.

3.0 Grid Architecture: How do all these
services fit together?

We envision the Grid as a layered set of basic services
that manage the resources, and middleware that supports
different styles of usage (e.g. different programming
paradigms). (See Figure 1.)

However, the implementation is that of a continuum of
hierarchically related, independent and interdependent
services, each of which performs a specific function, and
may rely on other Grid services to accomplish its function.

Further, the “layered” model should not obscure the fact
that these “layers” are not just APIs, but usually a collection
of functions and autonomous management systems that
work in concert to provide the “service” at a given “layer.”

4.0 Conclusions

The IPG as a prototype production Grid system is
intended to provide NASA with a persistent ability to
access, utilize and manage a significant body of distributed
computing and data resources in order to facilitate
application such as:
• Coupled, multidisciplinary simulations distributed across

several computing systems
• Remote data analysis based control of on-line instruments
• Coupling of remote, on-line instruments to large-scale

computation simulation
• Coordinated use of many dispersed data archives
• Large-scale simulations distributed across several

computing systems
• Remote access to high data-rate real-time data

sources / instruments and very large datasets
• Work by dispersed groups based, e.g., on central design

databases (e.g. airframe or turobmachinery geometry and
performance)

• On-demand data and simulation based crisis response
In addition to these mission-oriented capabilities, IPG is

an experiment in using a uniform approach to distributed
management of locally controlled resources.

5.0 Acknowledgements

Almost everyone in the NAS division of the NASA
Ames Research Center, numerous other people at the
NASA Ames, Glenn, and Langley Research Centers, as
well as many people involved with the NSF PACIs
(especially Ian Foster, Argonne National Lab. and Carl
Kesselman, USC/ISI) have contributed to this work. In
particular, we would like to thank Bill Feiereisen, NAS
Division Chief, and while the NASA HPCC Program
Manager the initiator of IPG, Alex Woo, NAS Research
Branch Chief, Bob Ciotti, NAS Engineering Branch Chief,
and Bill Thigpen and Mary Hultquist of the NAS Division.

6.0 References

[1] The NSF PACIs are the Alliance/NCSA
(http://www.ncsa.uiuc.edu/) and NPACI/SDSC
(http://www.npaci.edu/).
[2] Chappell, D., Understanding ActiveX and OLE,
Redmond, WA, Microsoft Press, 1997.
[3] Epema, D. H. J., Livny, R. van Dantzig, X. Evers, J.
Pruyne, “A worldwide flock of Condors: Load sharing
among workstation clusters”, Future Generation Computer
Systems, 12:53-65, 1996.
[4] Foster, I., C. Kesselman, eds., “The Grid: Blueprint
for a New Computing Infrastructure,” Morgan Kaufmann,
publisher. August, 1998.
http://www.mkp.com/books_catalog/1-55860-475-8.asp
[5] Foster, I., C. Kesselman, Globus: A metacomputing
infrastructure toolkit”, Int’l J. Supercomputing
Applications, 11(2);115-128, 1997. (See also,
http://www.globus.org)
[6] Grimshaw, A. S., W. A. Wulf, and the Legion team,
“The Legion vision of a worldwide virtual computer”,
Communications of the ACM, 40(1):39-45, 1997.
[7] Gropp, W., E. Lusk, A. Skjellum, Using MPI:
Portable Parallel Programming with the Message Passing
Interface, Cambridge, MA, MIT Press, 1994.
[8] Java Team, J. Gosling, B. Joy, G. Steele, The Java
Language Specification, Addison-Wesley, 1996,
www.javasoft.com.
[9] JavaSoft, “RMI: The JDK 1.1 specification”,
javasoft.com/products/jdk/1.1/docs/guide/rmi/index.html,
1997.
[10] “Johnston, W., G. Jin, C. Larsen, J. Lee, G. Hoo, M.
Thompson, and B. Tierney (LBNL) and J. Terdiman
(Kaiser Permanente Division of Research). “Real-Time
Generation and Cataloguing of Large Data-Objects in
Widely Distributed Environments.” Invited paper,
International Journal of Digital Libraries - Special Issue on
“Digital Libraries in Medicine”. May, 1998.
http://www-itg.lbl.gov/WALDO/
[11] Otte, R., P. Patrick, M. Roy, Understanding CORBA,
Englewood Cliffs, NJ, Prentice Hall, 1996.
[12] World Wide Web Consortium, “Extensible Markup
Language (XML)”, http://www.w3.org/XML/

