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1. Introduction 
 
A cluster (or distributed computing facilities), designed to perform a certain task, accomplishes its 

objectives by partitioning that task into subtasks, and by assigning subtasks to its agents. Generically, 
some of these subtasks interact; that is, they cannot be carried out by the corresponding agents in 
isolation. This introduces the need for communication between certain pairs of agents. In this paper, 
we focus on such communicational aspects of a cluster. In particular, we describe a cluster’s 
organization by specifying “who talks to whom” or, mathematically, by means of an undirected graph 
Go = (VO, AO), called the cluster’s organizational graph, that specifies the communication capabilities 
available to the cluster. In particular, the nodes of GO correspond to the agents, and the presence of an 
arc (i,j)∈ AO signifies that agents i and j can communicate with each other. We will be always 
assuming that (i,i) ∈ AO for all i ∈  VO, which expresses the natural fact that any agent can 
communicate with itself. Note that (i,k) ∉  AO indicates that agent i and k cannot communicate, even if 
(i, j) ∉  AO and (j,k) ∉  AO for some i. A pair’s inability to communicate with each other may model the 
cluster’s security constraint.  In some groups, in order to prevent the leakage of their secret 
information, the information is compartmentalized and kept separately by different agents who are 
prevented from communicating with each other. Or, such inability may model the case where 
maintaining reliable communication between the pair is prohibitively expensive.  

 
Certain tasks might require communication between all agents of the cluster, in which case the most 
suitable cluster organization would correspond to a complete graph. On the other hand, there are 
numerous situations in which the task to be executed has a special structure, in which case fewer 
communication links suffice. Thus, the task assignment in the cluster is closely related to the 
organizational structure.  For the case of fixed organizational structure (that is, the task assigner 
cannot control the which agent can communicate with which), the subtasks must be assigned in such a 
way that the organizational structure can accommodate the communication requirements. In this case, 
the major performance measure of the assignment may be the balance of loads among agents.  For the 
case that the task assigner also has authority over the organizational structure, the task assignment is 
not constrained by the fixed organizational structure.  However, each assignment requires a certain 
structure of inter-agent communications (i.e., organizational structure).  The cost of keeping the 
communication structure may be an additional performance criterion in this case. 

 
For our problem to be well defined, we need a mathematical representation of the communication 
requirements of the task to be executed. This is done in terms of another undirected graph GT = 
(VT,AT), called the task graph. The nodes of GT correspond to subtasks, while the presence of an arc 
(i, j) ∈  AT signifies that subtasks i and j are interdependent. Each subtask i ∈  VT is to be assigned to 
an agent σi∈ VO, the agent primarily responsible for that task. In our model, the interdependence 
between two subtasks i and j is handled by assigning to a particular agent, denoted by σij∈ VO, the 
responsibility of keeping track of this interdependence. It is then natural to require that σij can 
communicate to both  σi   and  σj . 
 
Formally, we have the following definition. Given a task graph GT, a valid organizational structure is 
defined as a graph GO, together with a mapping σ: VT ∪ AT → VO such that (σij,σi) ∈  AO and (σij,σj) ∈  
AO for every (i,j) ∈  AT.  (We will mostly use the notation σij and σi instead of the more standard 
functional notations σ(i) or σ(i,j).) 



The task allocation problems to be considered will be of the following form: given the task graph GT, 
find the mapping σ and organizational structure GO, subject to some additional constraints that 
remain to be specified so as to optimize a given performance measure.  The following are some 
additional constraints: 
 

a) We can impose a constraint on the cardinality of VO, that is, on the number of available 
agents. 
b) We could assume that the graph GO is given, which would correspond to the case where we 
are dealing with a pre-existing cluster organization. In this case, all that remains to do is to 
design the mapping σ in some desirable way. An implicit assumption here is that all agents of 
the pre-existing organization are equally capable and versatile so that any subtask could be 
assigned to any agent 
c) Going one step further, we could assume that the graph GO is given and that the agent σi in 
charge of subtask i is also pre-specified for each i. In this case, we only have to choose which 
agent would be responsible for the handling of each subtask interaction. That is, we only need 
to choose the values of σij, for every (i,j) ∈ AT. Such a problem would correspond to a situation 
where each subtask is of a specific nature, intimately linked to a particular agent which is the 
only agent capable of handling it. On the other hand, the implicit assumption is that the 
handling of the interactions between subtasks i and j does not involve any particular expertise 
and can by handled by any agent, as long as the necessary communication links are in place. 

 
Next, we have to specify some relevant performance criteria. Our first criterion pertains to load 
balancing. The agents of any cluster have limited resources and there is a limit on the number of their 
responsibilities. It is plausible that the agent assigned the largest number of responsibilities could be 
a bottleneck, and that its load should be minimized. Formally, we define the load ℓi of agent i ∈  VO to 
be the cardinality of the set σ-1(i). This is equal to the number of subtasks plus the number of 
interactions that this agent is responsible for. By defining the load this way, we are implicitly 
assuming that handling a subtask takes the same amount of resources with the handling of an 
interaction. The maximum load L is defined by L = 

OVi∈max  ℓi. 

 
Another performance criterion relates to the amount of communication resources employed by the 
cluster. This is a natural measure, given that communication is often a constrained resource. In fact, 
we will be considering two alternative ways of measuring communication resources. 
 

A. Given a cluster organization GO, let C1 be the number of arcs (i, j) ∈ Ao for which i ≠ j. 
Thus, C1 measures the number of communication links that have to be in place when setting 
up the cluster. 
B. In an alternative method of measuring communication, we can measure the total amount of 
communication cost in the cluster. In particular, for every (i, j) ∈  AT, agent σij has to exchange 
messages with agents σi and σj, which leads, in general, to 2 units of communication traffic. 
However, if σij coincides with σi, then we should not “charge” for communication between σij 
and σi. Thus, the total communication traffic between all pairs of (distinct) agents, to be 
denoted by C2, can be defined as being equal to 2|AT| minus the number of elements (i,j) of AT 
for which σij ∈ {σi,σj }. 

 
It should be clear that the objectives of load balancing and low communication requirements 
compete with each other. For example, communication requirements are lowest if all subtasks are 
assigned to a single agent, resulting to a most unbalanced load. In our problem formulations, we will 
deal with this tradeoff by attempting to optimize one of the performance measures while constraining 



the other.  For example, we might wish to minimize C1 subject to a constraint that L be bounded by 
some given L*. 
 
Let us close by noting that the design problems that we have formulated are reminiscent of the 
mapping problems [Bo] that arise when subroutines are to be mapped to a parallel processing 
architecture. However, our problems have some distinctive features of their own, which make them 
different from the mapping problems that have been considered in the computer science literature. 
The formulation introduced in the present paper appears to be new. 
 
The remainder of this paper is organized as follows. Each one of Sections 2,3,4 considers the 
problem under different assumptions on how much of GO is assumed to be predetermined. For each 
choice of assumptions, we consider a few different problems depending on the particular choice of 
performance measure (L, C1 or C2 ). 
 
 
2.  Fixed Cluster Organization  
   
Let there be given a task graph GT . In this section, we consider the cluster design problem under the 
assumption that the organizational graph Go is also given, has the same number n of nodes as the task 
graph GT, and we also have the constraint σi = i for all i. Thus, it only remains to choose the value of 
σij for every (i,j) ∈  AT. 
 
Note that it is easy to determine whether a valid cluster organization exists. In particular, we only 
need to check whether for every (i, j) ∈  AT there exists some k for which (i, k) ∈  AO and (j, k) ∈  A0. 
 
Minimizing the maximum load L 
The first problem we consider is the following. We wish to find a valid task assignment which 
minimizes the maximum load L, subject to the constraints mentioned in the introduction to this 
section. This is equivalent to minimizing the maximum, over all agents k, of the number of pairs (i, j) 
∈  AT assigned to that agent; equivalently, the number of pairs (i, j) ∈  AT for which σij =k. 
 
Theorem 2.1: The above defined problem can be solved in polynomial time by solving a sequence of 
linear network flow problems. 
 
 
Minimizing a communication measure 
 
The problem of minimizing the number Cl of arcs is vacuous because GO is assumed to be given and 
therefore C1 is predetermined. The problem of minimizing C2 is also very simple, as we now 
discuss. If (i, j) ∈  AT and (i, j) ∈  AO, then we should let σij be equal to either σi or σj; if on the other 
hand, (i, j) ∉  AO, then we have to let σij be equal to an arbitrary element k of V0 such that (i, k) ∈  AO 
and (j,k) ∈  At. It should be clear that this method results in the minimal possible value of C2. 
 
A more interesting problem is dealt with in the following result. 
 
Theorem 2.2: Consider the problem of minimizing C2 subject to an upper bound L* on the 
maximum load L. This problem can be formulated as a linear network flow problem and can be 
therefore solved in polynomial time. 
 
 
3. The Case where the Cluster Organization Is Given up to Isomorphism  



 
Let there be given a task graph GT. In this section we also assume that the graph GO is given 
and has the same number of nodes as GT. However, in contrast to the preceding section, we do not 
impose the requirement that σi = i for all i. Instead, we impose the milder requirement that each 
division is assigned exactly one subtask, that is, the mapping i → σi is a permutation. Our main 
result states that even the problem of existence of a valid cluster organization is difficult. 
 
Theorem 3.1: The problem of deciding whether there exists a mapping σ  such that the cluster 
(Go,σ ) is valid with respect to a given task graph GT is NP-complete. 
 
Proof: That the problem belongs to NP is evident: if we have a YES instance, the mapping o 
provides a certificate. 
 
We now note that the problem of interest is equivalent to the following: 
 
Problem P: Does there exist a permutation i → σi such that whenever ( , ) Ti j A∈ , then the 
distance of σi and σj (in the graph GO) is at most 2. 
 
For any graph G, let T(G) be a graph with the same set of nodes and such that (i, j) is an arc of 
T(G) if and only if the distance of i and j in the graph G is at most two. We then see that we are 
dealing with the following problem: 
 
Problem P': Given two graphs GT and Go with the same number of nodes, is GT isomorphic to a 
subgraph of T(Go)? 
 
We recall that the problem CLIQUE which is known to be NP-complete [GJ] and that CLIQUE 
problem  is the following: Given a graph G, and an integer k, does G have a clique of size k? 
 
Lemma 1: CLIQUE remains NP-complete even if we restrict to instances for which k ≥ n/2 + 2 
and for which the degree of each node is at least n/2 + 1, where n is the number of nodes in the 
graph G. 
 
 
Recall now the SUBGRAPH ISOMORPHISM problem: given two graphs G and G', is G 
isomorphic to a subgraph of G'? Since CLIQUE is a special case of SUBGRAPH 
ISOMORPHISM, and in view of Lemma 1, we see that SUBGRAPH ISOMORPHISM is NP-
complete even if we restrict to graphs for which the degree of each node is at least n/2 + 1. 
 
We will be needing another graph transformation. Given a graph G, we denote by Q(G) the graph 
which is the same as G except that each arc of G is replaced by a sequence of 3 arcs, as shown in 
Fig. 1.  We introduce some more notation. If G is a graph and i is a node of that graph, we use 
T(Q(i)) to denote the image of node i when the transformations Q and T are applied in succession. 
 
Lemma 2: Let G be a graph in which all nodes have degree at least d. 
a)  



If i is a node of G, then T(Q(i)) has degree at least 2d; all nodes of T(Q(G)), not of the form T(Q(i)) 
for some i, have degree bounded by n + 1.  
b)  
If (i, j) is an arc of G, then the distance, which is in the graph T(Q(G)), between T(Q(i)) and 
T(C)(j)) is equal to 2; if (i, j) is not an arc of G, then the distance between T(Q(i)) and T(Q(j)) is 
larger than 2. 
 
 
Note that if all nodes of G have degree at least n/2 + 1, then nodes, of the form T(Q(i)) will 
have degree at least n + 2. All other nodes of T(Q(G)) will have degree at most n + 1. Thus, for 
each node of T(Q(G)), it can be immediately determined whether it is of the form T(Q(i)) or not. 
 
 
Lemma 3: Let G and G' be graphs in which all nodes have degree at least n/2 + 1. Then, G is 
isomorphic to a subgraph of G' if and only if T(Q(G)) is isomorphic to a subgraph of T(Q(G')). 
 
 
We notice that Lemma 3 reduces a special case of SUBGRAPH ISOMORPHISM (shown earlier to 
be NP-complete) to problem P', with the identification Go = Q(G') and GT = T(Q(G)), except that 
we have not enforced the requirement that the two graphs in an instance of problem P' have the 
same number of nodes. This is easily taken care of, by adding a number of zero-degree nodes, and 
we conclude that problem P' is NP-complete, and the proof of Theorem 3.1 has been completed. 
Q.E.D. 
 
 
We have shown that it is difficult to even determine whether a valid cluster does exist. It follows 
that the problem of determining an optimal valid cluster is also difficult (NP-hard), for any 
nontrivial choice of the performance criterion. 
 
 
4. The Case where Only the  Number of Nodes in Go Is Fixed 
 
We now consider the case where GT is given and we require that GO have the same number of 
nodes as GT; no other constraints are imposed on GO. We also impose the requirement that each 
node i of GT be mapped to a different node σi of GT. 
 
Under the above constraints, the problem of designing a valid organization that minimizes C1 is 
trivial: assuming that GT is connected with n nodes, let GO = ({1,...,n}, {(1,2),...,(1,n)}) (a “star" 
graph), and let σij = 1 for all (i,j) ∈  AT. We then have C1=n-1. Since GT is connected, it is clear that 
G0 must also be connected and therefore no valid organization could have less than n-1 arcs.  
 
If we impose a load balancing constraint L < L* and attempt to minimize Cl subject to that 
constraint, we obtain an apparently more difficult problem. We conjecture that this problem is NP--
hard [GJ], although we have not been able to establish this result. 
 
The last problem to be considered is dealt with by the following result. 



 
Theorem 4.1: Under the assumptions of this section, the problem of designing a valid 
organization in which C2 is minimized subject to the constraint L ≤ L*, can be formulated as a 
min-cost linear network flow problem and can be solved in polynomial time. 
 
  
5. Conclusions 
 
We have formulated a new class of design problems for clusters. We have derived solution 
procedures for some of these design problems, and we have showed that another variation leads to 
NP-hard problems. We believe that our formulation captures some generic features of cluster 
design problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: a) A graph G; b) the graph Q(G);  c) the graph T(Q(G)). 
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