
A Practical Parallel Algorithm for Finding the

Block Tree of a Simply Connected Graph

Nilabha Dev R.K. Ghosh

Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur,

Kanpur 208016.

{ndev,rkg}@cse.iitk.ac.in.

March 3, 2001

Abstract

We present a new parallel algorithm for �nding the block tree corre-

sponding to the biconnected components of a simply connected graph on

the Block Distributed Memory parallel architecture [3]. Our algorithm has

a theoretical running time of � logp + �O(n
2

p
) + O(n

2

p2
). The paper includes

an experimental study of the performance of the algorithm with respect to

an e�cient sequential algorithm.

1 Introduction

The problem of �nding the biconnected components of a graph is one of the fun-

damental problems in algorithmic graph theory. E�cient sequential algorithms

for this problem use depth �rst search [6]. However when the graph has a large

number of vertices the memory requirement is high and consequently the problem

of �nding the biconnected components of a graph in the form of a block tree is

impractical using a sequential algorithm. In this paper a parallel algorithm has

been presented to solve the above problem and output the biconnected compo-

nents in the form of a block tree [5]. An experimental study of the same is also

presented.

It is well known that there exists no e�cient parallel implementation of depth

�rst search [2]. Hence any parallel implementation must either do depth �rst

search locally and then combine the results on a single processor or else must use

non depth �rst search based techniques.

1

We assume that the n vertices of a connected graph are evenly partitioned

into the p processors so that each processor has n

p
vertices. Also this algorithm

works only if the graph is connected.

The algorithm given here follows the �rst approach and is divided into two

stages [4]. In the �rst stage each processor �nds the block tree of the sub-graph

induced by the subset of vertices local to it. An edge which links a pair of vertices

belonging to two block trees across processor boundaries is called a trans-arc. A

trans-arc is represented as a block vertex in each of the two blocktrees which it

links. The block vertices representing a trans arc are referred to as non-local

block vertices in the respective processors to which they belong. All other block

vertices are referred to as local block vertices in their respective processors. In the

next stage the processors merge their respective block graphs forming the block

graph of the entire graph. With the right choice of data structure for representing

the graphs the running time of the algorithm is found to be � logp + �O(n
2

p
) +

O(n
2

p2
).

The organization of this paper is as follows. The parallel computation model

is explained in section 2. Basic graph theoretic de�nitions and the notions of

biconnected components, block tree etc, are introduced in section 3. Section 4

presents the proposed parallel algorithm and includes the running time analysis

of the same. The experimental results of the algorithm are discussed in section

5. Finally section 6 presents the conclusions.

2 The Parallel Computation Model

The parallel computation model used in this paper is a collection of powerful

general purpose processors connected by a fast interconnection network [3],[1]. It

assumes that the memory is distributed and a non local memory access results in

interprocessor communication which takes at least an order of magnitude more

than local memory access. Also every processor is assumed to have a direct link

to every other processor.

Any algorithm for this parallel computational model can be viewed as a series

of local computational steps interleaved with communication steps. The time to

transfer m consecutive words from a processor to another is given by � + �m

time where � is the latency of the network and � is the time for a processor

to inject or receive a single word from the network. The communication time

for the algorithm Tcomm(n,p) is then computed as a function of the input size n

and the number of processors p in terms of the parameters � and �. Tcomp(n,p)

is de�ned to be the time for local computation steps. The total running time

of the algorithm is then Tcomp(n,p) + Tcomm(n,p). The objective is to develop

algorithms such that Tcomp(n,p) = O(
Tseq

p
) such that Tcomm(n,p) is as small as

possible, where Tseq is the time taken by the best sequential algorithm to solve

the given problem.

2

3 Biconnected Components and Block Tree

Let G = (V ,E) be an undirected connected graph with vertex set V and edge set

E. Let {Ei | 1�i �k } be a partition of E into a set of k disjoint subsets such

that two edges e1 and e2 are in the same partition if and only if there is a simple

cycle in G containing e1 and e2 or e1 = e2. Let {V i | 1�i �k } be a collection

of sets of vertices where V i is the set of vertices in Ei for each i, 1�i �k. A

vertex v is a cutpoint if it appears in more than one vertex set V i. Subgraph Gi

= (V i,Ei) 8i, 1�i �k is called a block of G. A block tree of a connected graph

blk(G) is de�ned as follows. Each block and cutpoint in the graph is represented

as a vertex of blk(G) . The vertices representing the blocks are called b-vertices

while those representing the cut points are called c-vertices. Two vertices u and

v of blk(G) are adjacent if and only if u is a c-vertex, v is a b-vertex and the

cutpoint corresponding to u is contained in the block corresponding to v .

4 The Parallel Algorithm

As mentioned in section 1, initially the vertices of a given graph are assumed

to be evenly distributed among the p processors. Each processor is responsible

for �nding the blocktree of the sub-graph induced by the vertices assigned to it.

The algorithm for �nding the block tree of a connected graph, presented in this

paper assumes that the graph has been evenly distributed on the processors .

Each processor has n

p
vertices . Also the vertices have been numbered such that

processor i has vertices numbered from i�n

p
to

(i+1)�n

p
�1 for i = 0, 1,2,...,p-1.

The algorithm is divided into two stages. In the �rst stage all processors

locally compute the block tree of the sub-graph induced by the vertices assigned

to it using an e�cient sequential algorithm. Trans-arcs are represented in their

respective components belonging to two di�erent processors. The block trees

that do not have at least one b-vertex composed of local vertices are eliminated

as they are super�uous. Note that these block trees consist of only non-local

vertices. In the second stage the algorithm iteratively merges the block trees of

the processors to form the �nal block tree.

The processors allocate themselves into groups in the second stage. The num-

ber of groups decreases by half in each iteration while the number of processors

in each group doubles . Initially each group has only two processors. In every

iteration the processors elect a group leader, the processor with the lowest index.

The processors in each group send their local blocktrees to the group leader, in

case there exists an edge in the original graph linking any two sub-graphs assigned

to the processors in the group. Eventually the block tree held by each processor

is sent to processor 0 as the underlying graph is known to be connected.

There are p = 2m processors in this computation for some small m = 1, 2, .

. . log p. In iteration i of the algorithm the processors organize themselves into

3

p = 0 p = 1

p = 2 p = 3

(a) original graph distribution on a p = 4 processor
 grid

b) the block trees local to each processor after stage1
 of the algorithm

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

0,1,
2,3

1

3
2

1,4

3,6

2,8 3,7

1,4

3,6

4

6

4,5,
6,7

7,13

7

8
2,8

3,8
8,9,
10,11

7,13 13

12,13
14,15

c) the block graph in processor 0 after the first
 iteration of the second phase. Here block
 trees of processors 0 adn one are merged in
 processor 0. In this iteration processors 0 and 1
 form one group and processors 2 and 3 form
 group. No merging takes place in the other group
 composed of processors 2 and 3 as there is no
 direct edge between them

0, 1,2, 3,4,5,6,7

2 3 7

2,8 3,8 7,13

0,1,2,3,4,5,6,7,8

8

8,9
10,11

12,13
14,15

7,137 13

d) the final block graph on processor 0 after iteration 2 of the
 algorithm. In iteration 2 all the 4 processors are in a single
 group and the edges are merged in the group leader,
 processor 0.

Figure 1: An example to illustrate the algorithm

groups of 2i+1 processors each. Note that in this algorithm the processors do not

have to do any more communication steps besides the sending of the sub-graphs

because each processor can locally �nd out the index of the processor to which a

vertex j belongs in particular iteration by the following formula.

2i(jdiv(2i
n

p
)) (1)

where j = 0,1,2,...n-1 is the original vertex number at the end of the �rst stage

of the algorithm and i = 0, 1,2,...,log p-1 is the iteration number.

During each iteration a processor can be in one of four di�erent states namely

receiving, sending, inactive and dead. A processor in receiving state receives a sub-

graph from a processor in sending state. An inactive processors does nothing. A

processor enters the dead state after sending its local sub-graph. Dead processors

do not change their state in the later iterations and thus the algorithm proceeds

to completion.

4

4.1 The Detailed Parallel Algorithm

The following is run on processor j.

Algorithm 1 Parallel Algorithm to �nd the Block Tree of a Connected Graph

Input

j : my processor number

p : total number of processors

state 2{ receiving, sending, inactive or dead } : state of the processor

begin

(i) Processor �nds the block tree of the sub-graph induced in it using an e�-

cient sequential algorithm.

(ii) If any block tree is composed of only one c vertex and only one b vertex,

that corresponds to a trans arc then eliminate that block tree.

(iii) Initially all processors mark themselves as sending.

for i = 0 to log p -1

begin

(1) Processor j locates its own group as g = j div 2i+1and also �nds

the other processors in its group. The processor calculates its serial

number in its group as l = j mod 2i+1. Besides this the processors �nd

out what are the non-local edges, the vertices corresponding to these

non-local edges and the cutpoints in the sub-graph local to each.

(2) If l = 0 then processor is a receiver.

(3) If processor is a receiver then it receives block trees from at most 2i+1

�1 processors and merges these block trees using an e�cient sequential

algorithm.

(4) If processor is in sender or inactive state then it �nds the group leader

and checks if any of the non-local vertices in it can be found in the

group leader in this iteration. If this is not the case then the processor

marks itself as inactive.

(5) If processor is a sender then it sends a block tree to the group leader

if any of the non-local vertices in the block tree can be found in the

group leader.

(6) If processor is a sender and was successful in sending all the block

trees in it, it marks itself as dead. A dead processor does not change

its state during the execution of the algorithm.

end

end

5

3

0.1

0,2 0,3

p = 1

p = 3

0 1

2 3

a) a graph of 4 vertices spanning
 across 4 processors

p = 1p = 0

p = 2 p = 3

1

2

p = 0

p = 2

b) the block trees in the various
 processors

0 0,1

0,3
0,2

p = 0

p = 2

p = 1

p = 3

0 0,1

0,3
0,2

c) deleting the block trees in processors
 1,2 and 3 has no effect on the final
 block tree as it is entirely represented
 in processor 0

Figure 2: An example to illustrate Lemma 1

4.2 Correctness of the Algorithm

Lemma 1 : Elimination of block trees corresponding to step(ii) of the algorithm

does not a�ect the �nal computation of the block tree.

Proof : The block tree in Figure 2(b) shows a block tree composed of only two

vertices. It consists of a c-vertex and a b-vertex corresponding to a single trans-

arc. This block tree can be eliminated, because the b-vertex is also represented

in its own component of the processor corresponding to the other end of the

trans-arc. That processor can �nd the complete block tree without referring to

this block tree.

Lemma 2 : Formula (1) correctly calculates the index of the processor in which

the non-local vertex of a trans-arc can be found.

Proof : This follows directly from the de�nition of trans-arc, non-local vertex

and Formula (1).

Lemma 3 : Merging of two block trees gives a new block tree.

Proof : An algorithm for merging the block tree is given as follows

For each edge e in the second blocktree

add e to the the �rst blocktree using the algorithm given in [5].

Lemma 4 : The size of the blocktree in iteration i of the algorithm is bounded

by O(2i n
p
) + O(n

2

p
) space requirement.

Proof : So far no mention has been made about the data structure for storing the

block graphs up to this stage. While no speci�c data structure is proposed here,

the space requirements of the data structure is linear in the number of edges of

the block tree. This is crucial as entire block trees are sent from one processor

6

to another.

In an iteration i, the total number of local vertices is given by 2i n
p
. As ex-

plained earlier in section 1, a non-local b-vertex contains two block vertices be-

longing to two di�erent processors. While the local b-vertices are stored explicitly

in the block tree representation the non-local b-vertices are represented implic-

itly in the adjacency information of the respective c-vertices. Therefore non-local

b-vertices are not stored locally in a processor.

The space requirement of the local b-vertices is given by the total number

of connected components that can be formed from the number of vertices in the

processor. The number of vertices local to each processor in iteration i is given

by O(2i n
p
). The same bound holds for storing the adjacency information of these

local b-vertices. The maximum number of c-vertices in the block tree is 2i n
p
,

the space bound being same as that for the b-vertices. For c-vertices that are

adjacent to local b-vertices the space requirement is again O(2i n
p
) which is the

maximum number of local b-vertices in the graph. Now, any c-vertex may be

connected to n� 2i n
p
other non-local b-vertices where n is the maximum number

of b-vertices and at most 2i n
p
b-vertices are local to a processor. Thus the total

space requirement for storing the adjacency information is calculated as

O(2i
n

p
(n� 2i

n

p
)) (2)

This is because in iteration i the maximum number of non-local vertices corre-

sponding to a c-vertex is n - 2i n
p
. This is in fact the maximum degree of any

such c-vertex. For i = 0 (i.e. the �rst iteration) the space requirement is maxi-

mum and is given by O(n
2

p
) thus giving the total space requirement as O(2i n

p
) +

O(n
2

p
).

Theorem 1 : The above algorithm correctly calculates the block tree of the algo-

rithm in time � log p + �O(n
2

p
) + O(n

2

p2
).

Proof : The algorithm terminates because a processor after sending the block

tree to its group leader marks itself as dead. At the end of log p steps of the

algorithm, all the processors except 0 are marked dead.

In the �rst stage of the algorithm the running time for calculating the local

block tree is given as O(n
2

p2
) + O(n

p
). This is because the maximum number of

edges in a graph of n vertices is given by
�
n

2

�
which is O(n2).

In the second stage the running time of the algorithm is divided into two

parts. Tcomp and Tcomm.

In iteration i, the running time is given by

T(i) = Tcomp(i) + Tcomm(i).

Now Tcomm(i) = � + �S(i). where S(i) is the maximum size of the block tree

in iteration i.

The computation time for the algorithm is given by the time required by the

group leader to merge the sub-graphs in iteration i. Therefore Tcomp(i)=N(i).S(i)

7

where N(i) is the number of sub-graphs in i th iteration that are being merged

and S(i) is as de�ned earlier. The number N(i) is equal to 2i. The merging step

is linear in the number of edges of blocktrees being merged [5].

Therefore the total time for the second stage is given by

T =
log p�1X
i=0

Tcomm(i) +
log p�1X
i=0

Tcomp(i)

=

log p�1X
i=0

(� + �S(i)) +

log p�1X
i=0

N(i):S(i):

= O(� log p) + �

log p�1X
i=0

S(i) +
log p�1X
i=0

N(i)S(i)

Now using Equation 2 of Lemma 4, we obtain the time bound as

= O(� log p + �O(n
2

p
)+ O(np).

Therefore the total time bound for the algorithm is given as � logp + �O(n
2

p
)

+ O(n
2

p2
) for n > p

3.

5 Experimental Results

The parallel blocktree �nding algorithm presented here was implemented using

MPI/C on a 16 node IBM SP machine. A sequential algorithm was also imple-

mented for purposes of comparison with the parallel algorithm. This algorithm

is detailed in [5]. The maximum size of the graph taken was one of 2000 vertices.

The algorithm was tested for 4, 8 and 16 processors. A speed-up of a factor of 5 to

8 is obtained using 16 processors over the sequential algorithm. The results were

in line with theoretical calculations. However the proposed theoretical speedup

of p was not obtained. This is because of the latent communication cost, given

as � in the calculation .

In the graph shown in Figure 3 the time in milliseconds is represented on the

y-axis in a log scale and the number of vertices is represented on the x-axis in

a linear scale. The above graph shows that for larger values of p, the results

are much better. For graphs with large number of vertices the number of MPI

messages may increase substantially. Hence there may be a increase in overhead

for exchanging messages. However the trend of plots indicate that the parallel

algorithm presented in this paper is expected to perform very well in practice for

large graphs.

8

1000

10000

100000

1e+06

1e+07

200 400 600 800 1000 1200 1400 1600 1800 2000

 T
im

e
: i

n
m

ill
is

ec

 N : no of vertices

Comparison of parallel and serial blocktree finding algorithms

Using p = 1(serial)

Using p = 16

Using p = 8Using p = 4

Figure 3: The experimental results

6 Conclusion

In this paper a practical parallel algorithm for �nding the biconnected compo-

nents of graph in the form of a block tree was developed. It was shown through

experimental evidences that the performance of the algorithm is indeed close to

theoretical results. A huge number of important scienti�c and computer science

problems can be conveniently modeled as graphs. For problems of huge sizes using

a sequential algorithm to solve the problem is not always feasible. Hence, there

is a need to �nd e�cient parallel algorithms to solve these kind of problems.

References

[1] D. A. Bader, D. R. Helman, and J. F. JaJa, Practical parallel algo-

rithms for personalized communication and integer sorting, ACM Journal of

Experimental Algorithmics, 1 (1996), pp. 1�42.

[2] J. F. JaJa, An Introduction to Parallel Algorithms, Addison-Wesley, USA,

1992.

[3] J. F. JaJa and K. W. Ryu, The block distributed memory model, IEEE

Transactions on Parallel and Distributed Systems, 7 (1996), pp. 830�840.

9

[4] G. Karypis and V. Kumar, Parallel algorithm for multilevel graph parti-

tioning and sparse matrix ordering, Journal of Parallel and Distributed Com-

puting, 48 (1998), pp. 71�95.

[5] A. Rosenthal and A. Goldner, Smallest augmentations to biconnect a

graph, SIAM Journal of Computing, 6 (1977).

[6] R. E. Tarjan, Depth-�rst search and linear graph algorithms, SIAM Journal

of Computing, 1 (1972).

10

