
Performance Prediction for Large Scale Parallel Systems

Yuhong Wen, Geoffrey C. Fox
Northeast Parallel Architecture Center

Syracuse University
111 College Place

Syracuse, NY, U.S.A
{wen,gcf}@npac.syr.edu

Abstract

In both the design of parallel computer systems and the
development of applications, it is very important to
have good performance prediction tools. This paper
describes a new approach -- PetaSIM, which is
designed for the rapid prototyping stage of machine or
application design. Computers, networks and
applications are described as objects in a Java IDL
(Interface Definition Language) with special attention
to the proper representation of caches and
hierarchical memories. PetaSIM represents a
prototype for a performance specification language or
PSL. We present encouraging initial results for a set of
data-intensive applications from the University of
Maryland. We discuss the extension of PetaSIM to
support applications of the type found in distributed
collaborative engineering.

Keywords: Performance Prediction, Performance
Specification Language, Multi-Domain Performance
Model

1. Introduction

Large-scale data-intensive parallel applications
have become the leading scientific computing
problems on the massively parallel machines,
because of their complexity and time-consuming
processing. It will be great help to the application
design and the new computer architecture design
of petaflop performance if we can give the

performance prediction before physically running
the applications on the parallel machines. There
are two kinds of performance prediction
approaches, concept design level and detailed
performance prediction. At the concept design
level performance prediction, the goal is to
provide a quick and roughly correct performance
prediction at the early stage of the model design
of the application and/or the new computer
architecture design. While the detailed
performance prediction is aimed to provide the
detailed information of a given application
running on a specific computer system, normally,
we call it performance simulation.

In this paper, we will present a performance
estimator which address to the conceptual
performance prediction, called PetaSIM. It is
designed also with particular attention to easy
interactive comparison of different system design.
It is quite convenient to change application
structure in PetaSIM but we have chosen to focus
on cases where one has a relatively fixed
application suit and wish to rapidly explore a
range of system designs. A Java applet front-end
is used to optimize interactive estimation.

The performance estimator PetaSIM is built
around the performance prediction process
sketched in Fig.1 [1]. The distinctive feather of
our approach is the use of machine and problem
abstractions which although less accurate than
detailed complete representations, can be
expected to be more robust and further quite

appropriate for the rapid prototype needed in the
design of new machines, software and algorithms.
The hearts of this performance prediction process
are two technologies - PSL (Performance
Specification Language) and PetaSIM [1], [3]. In
this paper, we will address the design of PetaSIM,
which will take three key inputs from PSL, which
describe respectively the target machines,
application, script specifying execution of the
application on the machine, to get an estimation
of the performance of the application running on
the machine. All kinds of research have showed
that the performance prediction / estimation has
been a very difficult problem, because of different
kinds of applications, and different kinds of
computer systems. It is important to design a
general performance specification language (PSL)
to support the performance estimation. In this
paper, we will also show that PetaSIM is an initial
step to suggest the characteristics of such a
Performance Specification Language.

The rest of the paper is organized as follows.
Section 2 presents the general concepts of the
performance prediction model in our approach,
and the characteristics of performance
specification language (PSL). In Section 3, we
will introduce the implementation of performance
estimator-PetaSIM, and in Section 4, some
preliminary results on real applications. Related
work and further work is discussed in Section 5.

2. Performance Prediction Model

In order to give the performance prediction of
large-scale complex applications on parallel

architectures, we need to provide a model
of their execution behavior. The main
idea in our approach of the conceptual
framework is to design a general model
of parallel computation and the use of
associative objects as the representation
basis for components. The models
developed in our system span three
domains: application, software /
operating system, and hardware. The
application domain represents parallel
computation and gives the abstract data
movement and computation behavior of
the applications. The software/operating
system domain provides the models for
task process and memory management,
inter-process communication, and

parallel file systems. The hardware domain
provides models for the processor and memory
components, where the latter includes models for
cache memory as well as shared memory
hierarchies.

2.1 General Model of Parallel Performance
Prediction

PetaSIM is aimed at a conceptual level
performance prediction - half way between
detailed instruction level machine simulation and
simple "back of the envelope" performance
estimates. It takes care of the complexity -
memory hierarchy, latencies, adaptability and
multiple program components, which make even
high-level performance estimates hard. It uses a
crucial simplification - dealing with data in the
natural blocks (or aggregates) suggested by
memory systems which both speeds up the
performance simulation and in many cases will
lead to greater insight as to the essential issues
governing performance.

PetaSIM came out to be a three-domain
performance prediction model: application,
software/operating system, and hardware in Fig.2.
In the hardware domain, we will try to represent
the detailed computing and communication
capability, and the memory hierarchy of the
parallel architectures, which include CPU speed,
memory size, cache size, components link
relationship and the inter-communication
features, etc. While in the software/operating
system domain, we will address the software level

Fig.1: The Performance Prediction Process

memory and cache management, the task
schedule approach problems. And in the
application domain, we will extract the data
distribution model, data movement between the
memory hierarchy, and the data computation
behavior.

2.2 Performance Specification Language

Because of the complexity of the various different
kinds of applications, and different kinds of
architecture of the parallel machines, the
performance prediction of such application
execution becomes rather difficult. Much research
has shown that the performance prediction or
estimation is a very difficult problem, because of
the different kinds of applications, and multitude
of distinct computer systems. It is important to
design a general performance specification
language to support the performance estimation.
In the following of this paper, we will introduce
the design and implementation of PetaSIM, and
we will also show that PetaSIM is an initial step
to suggest the characteristics of such a
Performance Specification Language (PSL).

2.2.1 Application Domain

In the application domain, the research is focused
on how to extract the data blocks, the program
execution pattern and data processing behavior of
the applications. Because we are aiming at the
conceptual performance prediction, we will deal
with data in the natural blocks (or aggregates)
instead of the detailed data computing. This will
benefit the performance prediction and make it
more robust to provide rapid processing. Thus, we
need to extract the following information from the
applications.

� the size of each data block
� the number of data blocks
� the amount of data operations in the data

block
� data distribution model
� data processing sequence/flow of the data

blocks -- the application algorithm

2.2.2 Software / Operating system Domain

In the software/operating system domain, it is
aimed to provide the information of how the
parallel operating system to schedule the parallel
tasks and process the data. In this level, we need
to provide all the system features of the parallel
machines in the performance specification
language:

� the memory management approach
� the cache management approach
� parallel task schedule method

2.2.3 Hardware Domain

In the hardware domain, the problem is how to
present the hardware features of the underlying
parallel machines, which includes the architecture
of the processing node and the topology of the
inter-connection between the nodes. In this level,
we need the language to provide the following
hardware information.

� computing capability of each processor,
which include the CPU speed and the
bandwidth

� memory size and cache Size
� architecture of each processing node
� inter-connection topology of the parallel

machines, which is to provide the
information of communication between
the processors

 .

3. Performance Estimator --
PetaSIM

In this section, we will discuss the design and
implementation of our performance estimator
PetaSIM for parallel memory hierarchy system.
PetaSIM takes three key inputs, which describe

Hardware
 Domain

Application
Domain

Software / Operating
 Domain

Fig.2: Multi Domain Model

respectively the target machines, application,
script specifying execution of the application on
the machine, to get an estimation of the
performance of the application running on the
machine. PetaSIM takes both inputs from the
application emulators (such as University of
Maryland Emulators)[4] and hand written codes.

3.1 Emulators

An application emulator is a program to extract
computational and data access patterns that
closely resemble the patterns observed when
executing a particular class of applications. In
practice, an emulator is a simplified version of the
real application, but contains all the necessary
communication, computation and I/O
characteristics of the application required for the
performance prediction study. Using an emulator
result in less accurate performance estimations
than using full application, but it is more robust
and enables fast performance predictions for rapid
prototyping of new machines. An application
emulator models the computation and data access
patterns of the full application in a parameterized
way. Adjusting the values of the parameters
makes it possible to generate various application
scenarios within a single class of applications.

In a simulation-based performance prediction
framework, application emulator provides a
specification of the behavior of the application to
the simulator. Using an application emulator has
several advantages over using traces from actual
program runs or running the full application on
the simulator. First, a trace is static and represents
the behavior of the application for a single run on
a particular configuration of the machine. Since
an application emulator is a program that can be
run on the simulator, it can model the dynamic
nature of an application and can be used for
different machine configurations. Second, running
a real application may complicate the task of the
simulator unnecessarily. By abstracting away
parts of the application that are not critical to
predicting performance, an application emulator
can allow an efficient simulation without getting
bogged down in the unimportant details of the
application. Third, execution of a complete
application requires the availability of real input
data. Since the application behavior is only
emulated, an application emulator does not

necessarily require real input data, but can also
emulate the characteristics of the actual data. This
can enable performance studies of applications on
large machine configurations with large data sets.
An application emulator without a great amount
of detail can be used for rapid prototyping of the
performance of the application on a new machine
configuration; while a highly detailed emulator
can be used, for instance, to study different
parallelization strategies for the application.

3.2 Petasim

There are three parts of descriptions in the
PetaSIM performance estimation system,
architecture description and application
description, and the system/software description.
The most general computer architectures can be
specified using the PetaSIM nodeset and linkset
objects while the applications can be specified
using dataset and distribution objects. While the
system description represent the software feature
of the parallel machines.

A nodeset is a collection of entities with
current types allowed as:

� memory with cache (with flushing rules)
as special case

� disk which is essentially same as a
memory.

� CPU where results can be calculated
� pathway such as a bus, switch or network

cable which concentrates data

A linkset connects nodesets together in
various ways. distributions specify the horizontal
(geometrical) connectivity of nodesets and
linksets. Typically these are arranged in a natural
default for the classic homogeneous architectures.
The default mapping is inferred from sizes of
nodesets and done in a simple one-dimensional
block fashion. The vertical (flow of information)
connectivity in the architecture is specified in the
execution script with defaults implied in
architecture specification.

The application is specified by the dataset
objects, whose implementation are controlled by
the distribution objects that specify classic HPF
style geometric decomposition across memories
and CPU objects. The computation is specified by
the execution script, which also specifies data
movement.

 nodeset, linkset, dataset and distribution are
Java classes that are subclassed as necessary to
give particular special cases with particular
capabilities. They have methods that are defaulted
for simple cases but can be overridden for
complicated cases. Thus we are essentially Java
as IDL (Interface Definition Language) for these
core PetaSIM objects.

Much of the execution is controlled by
methods in nodeset, linkset and dataset objects.
Some typical additional commands that implicitly
invoke these methods to represent the data
movement and computing are:

� send DATAFAMILY from MEM-
LEVEL-L to MEM-LEVEL-K

� Here DATAFAMILY is a dataset
specified by name

� MEM-LEVEL-K, MEM-LEVEL-L are
nodesets labeled by name which must be
linked by a linkset.

� move DATAFAMILY from MEM-
LEVEL-L to MEM-LEVEL-K

� Use distribution DISTRIBUTION on
NODESET1,…,LINKSET1,…,DATASE
T1

� compute DATAFAMILY-A,
DATAFAMILY-B .. on MEM-LEVEL-L

� synchronize synchronizes all processors
(loosely synchronous barrier). Pipelining
which is normally assumed, is stopped by
this.

One of the most important motivations of
PetaSIM is to provide a performance estimation
tool for the new computer architecture designer to
get a fast and accurate performance prediction
during the conceptual architecture design. This
requires that PetaSIM should be easy to operate
and that it be convenient to modify features of the
computer architecture. As shown in fig. 1, we
chose a Java applet front end to meet this
requirement in the design of PetaSIM.

The heart of the PetaSIM is a C++ simulator
which takes the computer architecture description
and application description to give the
performance estimation. A multi-user Java Server
provides the service to different Java Applet
clients from the global Internet. The designers can

download the applet from web site
(http://kopernik.npac.syr.edu:4096/PetaSIM/V1.0/
PetaSIM.html) to get easy access to the PetaSIM.
PetaSIM supports both inputs from the emulators
(such as University of Maryland Emulators) and
hand written codes.

4. Preliminary Results

In this section we summarize some preliminary
results from PetaSIM with three data-intensive
applications Pathfinder, Titan and Virtual Micro-
Scope from the University of Maryland. The
architecture and application description files are
all automatically generated by University of
Maryland's emulators[4].

The results are plotted against the number of
parallel SP2 nodes except for one case
(Pathfinder) where we also compare results
plotted against number of I/O nodes in the
system. From the benchmarks we can see that the
PetaSIM estimate results are quite close to the
measured application's running time on SP2
machine. We illustrate PetaSIM’s abstraction of
the SP2 system used in the results presented in
fig. 3.

These figures show the actual wall clock time
used by PetaSIM to produce the estimates. As this
runs on a sequential machine and the execution
script is not explicitly data-parallel, the time to
get an estimation increases linearly with the
number of nodes. If one looks at the estimation
time for simple data-parallel systems such as
finite difference problems, PetaSIM would be
much faster (as just a few not a few thousand
lines of execution script) and take a time roughly
independent of the number of nodes on the target
machine. In fact we have recently abstracted the
operations in the applications shown in fig. 3 to a
“primitive data parallel operation” and have
correspondingly drastically reduced the time
needed to produce the estimate. One can expect to
initially use a simple crude loop over parallel
nodes for each new type of computation. If used
enough, it can be implemented in data parallel
fashion and added to PetaSIM’s library of
operations.

PetaSIM provide the ability to easily modify
the features of the architecture and application
behavior, which helps greatly in the architecture
conceptual design and get accurate performance
estimation. And PetaSIM provide the interface for
both inputs from the emulators (like our
experience with the University of Maryland's
emulators) and from the hand-written code of the
system designers, which make it even more
flexible.

5. Related Work and Further Work

PetaSIM bases its performance estimate on
several inputs: namely the computer architecture
description, nodeset and linkset, and application
description, dataset and distribution, and the data
operation description, execution script, of the
application. This has similarities to the approach
used by the POEMS group led by University of

Texas at Austin. In the POEMS system, one
divides the performance estimation into
application domain, system and software domain,
and hardware domain. In each domain, they
provide a model to describe the features of both
application and architecture. The performance
estimation will be based on the information
provided. [6]

Compared with some other performance
estimators, PetaSIM has some special
characteristics. Most of the other simulators, such
as the University of Maryland’s systems [4], [5],
base their simulation on the task graph describing
the application. PetaSIM instead uses an
execution script for the application specified in
ASCII format, which corresponds to a coarse
grained description of the application. PetaSIM’s
approach appears to provide a more intuitive
interface to both application and resource
description, which naturally supports rapid
prototyping studies over a wide range of

Fig.3: Measured Execution Time compared to the estimated execution time from PetaSIM for
four examples. We also show the sequential execution time needed to produce the estimate.

computer architectures. In some cases PetaSIM’s
interpreted processing of the ASCII execution
script [2], may be too slow and some pre-
processing (compilation) of the execution script
should be added as an option. Remember one of
our goals was to support the study of a range of
architectures for a fixed application suite and in
this case, it makes sense to compile the execution
script.

References:

[1] "The Petaflops Systems Workshops",
Proceedings of the 1996 Petaflops
Architecture Workshop (PAWS), April 21-
25, 1996 and Proceedings of the 1996
Petaflops System Software Summer Study
(PetaSoft), June 17-21, 1996, edited by
Michael J. MacDonald (Performance Issues
are described in Chapter 7).

[2] Kivanc Dincer and Geoffrey C. Fox, "Using
Java in the Virtual Programming Laboratory:
A web-Based Parallel Programming
Environment", to be published in special issue
of Concurrency: Practice and Experience on
Java for Science and Engineering
Computation.

[3] Geoffrey C. Fox and Wojtek Furmanski,
Computing on the Web -- New Approaches to
Parallel Processing-- Petaop and Exaop
Performance in the Year 2007", submitted to
IEEE Internet Computing,
http://www.npac.syr.edu/users/gcf/petastuff/p
etaweb/

[4] Mustafa Uysal, Tahsin Kurc, Alan Sussman,
Joel Saltz, Performance Prediction
Framework for Data Intensive Applications
on Large Scale Parallel Machines, University
of Maryland Technical Report: CS-TR-3918
and UMIACS-TR-98-39, July 1998

[5] M. Uysal, A. Acharya, R. bennett, J. Saltz, "A
Customizable Simulator for Workstation
Networks", Proceedings of the International
Parallel Processing Symposium, April 1997.

[6] Deelman, Bagrodia, Dube, Browne, Hoisie,
Luo, Lubeck, Wasserman, Oliver, Teller,
Sundram-Stukel, Vernon, Adve, Houstis, and
Rice, POEMS: End-to-end Performance
Design of Large Parallel Adaptive

Computational Systems: Technical Report,
August 1998

