C.3
Computational Science: Issues and Opportunities

Computational Significance of GEM:  While there are similarities to the weather/climate problem, the earthquake problem presents unique computational aspects implying that entirely  new and novel algorithms will be needed.  Specifically, the observational Gutenberg-Richter magnitude-frequency relation and the Omori aftershock law, both of which are scaling relations, indicate that  the earthquake system is always operating in close proximity to a critical point (e.g., Carlson et al., 1991; Rundle and Klein, 1994; Sornette and Sammis, 1995).  Consequently, correlation lengths and correlation  times will always be large.  This is in contrast to large scale weather   forecasting, which tends to focus on "forecastable"  synoptic-scale problems  and to neglect sub-grid scale turbulent processes.  Earthquake simulations cannot afford this luxury.  Scaling laws in fluid  dynamics calculations such as the Kolmagorov five-thirds law (e.g., Frisch, 1995) are observed only intermittantly in space and time, in strongly  turbulent flows.  This difference in "persistance" of the dynamics is the reason why weather and climate are clearly "forecastable" to some extent at present, and why earthquakes are not.   For these reasons, the computational aspects of GEM will have  important implications for simulation techniques used to model similar  nonlinear threshold systems, including large neural networks (Hertz et al., 1991; Herz and Hopfield, 1995), depinning transitions in driven superconductors and charge density  wave materials (Fisher, 1985), driven foams (Gopal and Durian, 1995), magnetized domains in ferromagnets (Urbach et al., 1995), sandpiles (Bak et al., 1987) and so forth.  Many of these systems have considerable technological significance.


Why GEM is an HPC-class Problem:  Current evidence indicates that forecasting the damaging earthquakes of magnitude ~ 6 and greater almost certainly depends upon understanding the space-time patterns displayed by smaller events, e.g., the magnitude 3's, 4's and 5's  (Sornette et al., 1996; Keilis-Borok et al, 1996; Minster and Williams, 1996).  With at least 40,000 km2 of fault area in southern California capable of participating in magnitude 6 and greater events, and needing a spatial resolution of about 100 m to eliminate grid-scale effects and to capture the physical processes of the magnitude 3 events, we arrive at the conclusion that as much as 106 grid sites will be necessary for a maximally realistic simulation.  If grid sizes at the 10 m scale are used to capture the failure physics of the magnitude 3 events, then ~ 108 grid sites will be needed.  Below we give run time estimates of several months for such a problem based upon current technology.  This clearly puts the GEM problem into the HPC range.  


The scientific establishment in Japan clearly recognizes these facts.  Officials at the Japanese RIST funding agency recently announced (H. Nakamura, Personal communication, 1997) a funded program of some $400 million over the period 1996-2001 to construct a 32 TERAFLOP computer to be dedicated to weather and earthquake forecasting.  At the present time, no such computer, and no such GEM-type  program is even contemplated in the United States.

A significant feature of the GEM HPC challenge is the lack of major large “legacy” codes.  This deficiency turns out to be an advantage, because we can immediately adopt modern distributed object-oriented technology from the outset. We have used initial computations to estimate that simulation of a fault network containing 107 elements requires machines of 1 to 100 TERAFLOPs, in the same range as the machine announced by the Japanese. The uncertainty in our estimate reflects the currently unknown requirements stemming from needed accuracy in simulation of the multi-resolution physics of earthquakes. The development of a forecast/predictive capability will thus require enormous computational resources, which are comparable to those needed for the large-scale simulations of DOE's ASCI program. We expect such capabilities to be available from general facilities such as the Los Alamos Advanced Computing Laboratory (ACL), NPACI - San Diego, NCSA - Illinois, and the Boston University MARINER project. Eventually one might expect to set up dedicated resources for earthquake forecasting as planned in the major Japanese program in this area. Although these high-end machines may well have distributed shared memory architecture, our software should also support the increasingly popular clusters of PC hardware, which provide a cost-effective development environment. The many levels of complexities present in the current and future generations of New Computational Challenge simulations will call for an interactive team of Earth scientists, physicists and computational scientists working together.


GEM Computational Infrastructure:  The GEMCI will involve the following elements:


User Interface


Non-local Equation Solver  (Green’s functions)


Modules specifying local Physics and friction 


Evaluation, Data analysis and Visualization


Data storage, indexing and access for experimental and computational information


Complex Systems and Pattern Dynamics Interactive Rapid Prototyping environment for 

developing new phenomenological models with their analysis and visualization.


Overall Integration of GEMCI into a problem solving environment

We will describe the details in sections C.7, C.8 and C.9 but here we summarize our overall approach. One important feature of GEM is that there are no major large “legacy” codes so that we can adopt modern distributed object-oriented technology from the outset. There are ambitious high performance computing projects in this area: POOMA (http://www.acl.lanl.gov/ PoomaFramework/; Nile (http://www.nile.utexas.edu/) and Legion (http://www.cs.virginia. edu/~legion/ ). We intend to adopt a simpler approach where we do not initially link distributed object and parallel computing concepts. We will use traditional Message Passing Interface (MPI) based parallel systems with extensive use of libraries so that for instance the fast multipole algorithm can be used by application programs from a high level interface that hides the details of its MPI implementation. Sequential or parallel programs will then be encapsulated as Common Object Broker Architecture (CORBA) objects which will allow us to link them together and with databases, visualization and collaboration tools with invocations that do not depend on the computing platform and module implementation. Early on, we intend to establish an overall Computational Seismic Framework, which will allow the team to develop different modules separately, in such a way as to enable this integration. This involves effectively defining a "CORBA vertical facility" with the properties and methods of the GEM modules defined in terms of a specific IDL (Interface Definition Language) syntax. NPAC has substantial experience in this area with projects for the NCSA Alliance, DoD Modernization and ASCI. A new book  'Building Distributed Systems for the Pragmatic Object Web'  (http://www.npac.syr.edu/users/shrideep /book/) co-authored by Fox and his colleagues describes how other commodity technologies including Microsoft's COM and Java can be integrated with CORBA in the emerging object web. 


As most of our software will be built from scratch, we expect that we can establish and enforce the uniform practices of a Computational Seismic Framework which will lead to a GEMCI consisting at a high level of a set of coarse grain “Distributed Scientific Objects.” These can be in any language (such as parallel C, C++ Java or Fortran) but with a uniform Javabean applet front end.  Note, for instance, that cellular automata models are natural applications for Fortran or HPF, but the complex hierarchical data structures of the fast multipole method are much more naturally handled in C or C++.  One can also anticipate using Java to directly develop some application modules as this is rapidly emerging as an attractive modeling language (http://www.npac.syr.edu/projects/javaforcse). The support of multiple paradigms will not lead to a chaotic environment because we will enforce uniformity at the module interfaces. Integration of these multi-paradigm coarse grain objects will rely either on commercial CORBA or COM object brokers or on custom technology such as NPAC's WebFlow/JWORB (which integrates Web CORBA and COM in a single Java Server.) NPAC has also already demonstrated (http://www.npac.syr.edu/users/gcf/alliance98/index.html) how one can use a multi-tier architecture to link Globus (http://www.globus.org) with CORBA and Web modules to achieve high-performance when necessary. This complication is only needed to enhance inter-module performance; we use conventional parallel computing approaches internally to each module.


We do not propose to assign significant resources to develop an overall computer science infrastructure: we will be using well established parallel computing techniques and impose a uniform overall design framework to allow commodity distributed object systems such as CORBA to manage the coarse grain structure of GEMCI. It is clear that a rich set of tools is quickly becoming available to support this approach. Our clear separation of parallel and object technologies is not the most ambitious approach possible but ensures an excellent system, which can adapt to inevitable change with a modest level of effort.

