
A. Project Description

A.1 Introduction

This proposal is especially concerned with enabling parallel computation, and the associ-

ated communications, in a world dominated by Internet technologies. We will not assume

that parallel computation is necessarily done across the Internet, although of course this

is one possibility that has been widely discussed, especially in the name of metacom-

puting. We do assume that the software and hardware technologies that will be readily

available in the immediate future|the commodity technologies|will be �ne-tuned for the

Internet environment. On the hardware side these will include parallel|perhaps massively

parallel|engines designed and deployed as Internet servers. On the software side, they will

include software developed in network-aware programming languages like Java|software

engineered to survive in heterogeneous and very dynamic environments.

One of the most inuential developments in parallel computing over the last decade was

the publication in 1994 of the Message Passing Interface (MPI) standard [10]. The idea

of an agreed, standard API for communication in parallel programs now seems obvious.

In practise it was relatively slow in coming. As a result it bene�tted from a great deal

of accumulated experience from application developers using earlier, proprietary APIs for

message passing. MPI supports the Single Program Multiple Data (SPMD) model of par-

allel computing. A group of processes cooperate by executing identical program images,

manipulating distinct local data values. MPI provides reliable point-to-point communi-

cation with several blocking and non-blocking communication modes. It also provides a

library of true collective operations (broadcast is the most trivial example). An extended

standard, MPI 2, allows for dynamic process creation and one-sided access to memory in

remote processes.

The MPI standards specify language bindings for Fortran, C and C++. None of these

languages is speci�cally adapted to the heterogeneous environment of the Internet, where

downloadable and mobile code are norms, resources (including computational resources)

may be discovered and lost spontaneously, unreliable networks and the associated need for

fault tolerance are de�ning issues. In the proposed work we will be especially concerned to

support use of network-oriented languages for high-performance computing. For now this

means Java (although we cannot rule out the emergence of other comparably important

languages in the course of the proposed work). Hence one immediate preoccupation is with

re�nement of MPI-like APIs for Java.

The validity of using Java for essentially \scienti�c" computing has been quite con-

troversial in the past, but over the last few years the prospect has become increasingly

realistic. Ongoing activities in the Java Grande Forum, complemented by work in aca-

demic and industrial sectors on optimizing compilers, JITs, language enhancements and

libraries, have helped to close the credibility gap. By now it is widely assumed that future

Java environments will meet the vital performance constraints needed to support large-

scale computations and simulations. The work on improving the performance of Java is

driven largely by its industrial application as a programming language for high-performance
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Internet servers. Scienti�c programmers will also reap the bene�ts.

As a part of the Java Grande process, a Message-Passing Working Group has been

considering MPI-like APIs for Java over the last two years. Draft speci�cations and pro-

totype implementations have been produced, but work remains to be done on the �nal

speci�cation, and robust reference implementations are urgently needed.

In the end, just providing MPI-like APIs for Java not enough. We must address the

speci�c features of distributed computing. MPI was designed for a reliable environment.

According to the philosophy of Sun's Jini project, for example, a de�ning characteristic

of distributed computing versus concurrent programming (or in our case, versus parallel

programming) is the presence of partial failures. We intend to exploit ideas similar to

those developed in the Jini project. We anticipate such ideas will facilitate construction

of scalable and fault-tolerant platforms for parallel computing, harvesting spontaneously

discovered computational resources. The technology adds new job initiation capabilities,

beyond those found in traditional high-performance computing environments.

We will research robust pure-Java implementations of the message-passing API, MPJ,

speci�ed by the Java Grande Message-Passing Working Group. We argue such implemen-

tations are likely to internally adopt Jini protocols and software components to manage

distributed resources and detect failures, while providing a traditional SPMD program-

ming environment at the user level. Later research will investigate how to bring low-level

techniques for dealing with partial failures into the realm of control of the parallel program-

mer. An overall research goal is to combine successful technologies for High Performance

computing with state-of-the-art object-oriented technologies for network programming.

A.2 Motivation of the proposed work

A.2.1 Why parallel computing and Java?

To realize its full potential, parallel computing should adapt itself to the Internet envi-

ronment, by embracing current Internet technologies. Many people accept that the Java

language and accompanying technologies are likely to continue as major inuences on the

development of Internet software. But the idea that Java should also be adopted as an

important language for large-scale technical computations has met more resistance. There

are two main reasons for this. One is the level of investment in existing scienti�c codes and

libraries written in Fortran, C, or C++. This particular concern can largely be addressed

by wrapping legacy codes in Java interfaces [6]. A more serious objection has been the

perceived ine�ciency of the Java language when compared with more mature languages

like Fortran.

Over the last three years supporters of the Java Grande Forum have been working

actively to address some of the di�culties. The o�cial goal of the forum has been to

develop consensus and recommendations on possible enhancements to the Java language,

and supporting Java standards for large-scale (\Grande") applications. Through a series of

ACM-supported conferences, the forum has also helped stimulate research on Java compil-

ers and systems, and helped lay to rest some of the doubts about the potential performance

of Java systems. An interesting series of papers from IBM's T.J. Watson Research Cen-

ter [11, 12, 16], for example, con�rmed that the current generation of Java virtual machines
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have rather poor performance on Fortran-like, array-intensive computations, but went on

to demonstrate how to apply aggressive optimizations in Java compilers to obtain per-

formance competitive with Fortran. In a recent paper [13] they described a case study

involving a data mining application that used the Java Array package supported by the

Java Grande Numerics Working Group. Using the experimental IBM HPCJ Java compiler

they reported obtaining over 90% of the performance of Fortran.

Also need to say something here about approaches to parallelism in JGF.

A.2.2 Where will parallel Java programs live?

We can assume that the computers that host major Web sites will either be multiprocessors

or clusters of workstations. Many are now, and this trend will presumably continue [Cite

Brewer paper, somehow]. Increasingly these servers are programmed in Java. The simple

fact that the computers are parallel clearly does not imply that people will write parallel

programs for them. Most of the time they surely will not|individual nodes will just handle

independent transactions. But since these technologies|Java and parallel computers|will

coexist in Internet servers, this is fertile ground in which we should see roles for Java-based

parallel computation emerging. In one scenario we can imagine that in the near future

compute-intensive commercial services start to make their appearance on the Web. The

exact nature of these services is still uncertain. Perhaps they will be data-mining queries

using parallel algorithms, or �nancial analysis programs based on physical optimization

processes, or perhaps people will simply want to play chess against a parallel computer.

If the parallel server is a symmetric multiprocessor it may be possible to write parallel

programs simply by using Java threads. But for truly scalable servers this is unlikely to be

the situation. As a speci�c example, consider the Ninja vision of the future of the Internet

elaborated by researchers at UC Berkeley [14]. In their view a service should be scalable

(able to support thousands of concurrent users), fault-tolerant (able to mask faults in the

underlying server hardware), and highly-available. A major concern is with mobile code

for service deployment|specialized active proxies that migrate out across the Internet to

position themselves close to the client devices, whatever they may be. But services must

maintain persistent state, and the architects of Ninja conclude that distributed, wide-area

management of this state is generally intractable. \Hard", persistent state is maintained

in a carefully-controlled environment|the Base|engineered to provide high availability

and scalability. The Ninja Base is assumed to be a cluster of workstations with fast, local

communication, a controlled environment, and a single administrative domain [7]. The

Base may be constructed from a heterogeneous set of nodes, and individual nodes may fail

under unpredictable loads, and so on; but the cluster is strongly coupled and essentially

trustworthy. It is not necessarily homogeneous and it is not completely reliable, so it

is not exactly a conventional parallel computer. However this is one environment where

we might expect parallel programs written in Java to thrive. Partly, as suggested above,

this could happen because massively parallel programming will be needed to implement

the individual Internet services of the future; partly it may be because the commodity

parallel computers of the future will be designed primarily as Internet servers, because this

is where the demand will be. Scienti�c programmers may exploit these resources to run

their programs simply because they are readily available.
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A completely di�erent place where we might see early uptake Java-based parallel com-

puting is in the classroom [. . . ]

The last niche for parallel Java we will mention is in a sense the most obvious. Because

of its platform independence, mobility, and other associations with the Internet, Java is a

natural candidate as a language for metacomputing. We interpret this to mean computa-

tion by parallel programs distributed across the Internet itself. [Cite some relevant papers

from the JG workshops, if poss.] Within the MPI community there is an ongoing e�ort

to extend MPI speci�cations and implementations to support metacomputing, by allowing

logical process groups (the basic cooperative units of parallel computation) to span geo-

graphically separated clusters and supercomputers. For example, an MPI interoperability

standardization e�ort led by the National Institute of Standards and Technology [8] pro-

poses a cross-implementation protocol for MPI that will enable heterogeneous computing.

MPI implementations that support the Interoperable MPI (IMPI) protocol will allow paral-

lel message passing computations to span systems, using the native vendor message passing

library within each system.

Java-based metacomputing can exploit and supplement these ongoing MPI activities in

various ways. Suppose, for example, that only a parallel sub-component of a distributed

application is particularly suited to implementation in Java. If the Java part is programmed

in the essentially MPI-like paradigm we espouse, the option is open for the Java component

to interact with the non-Java, MPI-based part through the inherently parallel IMPI proto-

cols (rather than, say, through a serial, performance-limiting CORBA or RMI gateway). In

another scenario, a parallel program may be written uniformly in Java, using our MPI-like

API. An optimized implementation of the communication class library is made available at

each site that hosts distributed Java jobs. Internally these implementations can use a na-

tive, vendor-supplied MPI, with IMPI protocols between sites. The platform-independent,

compiled byte-code for the user's parallel program is uploaded to host sites at run-time

and dynamically linked to the local message-passing stubs.

The three application areas described here|parallel servers, teaching, metacomputing|

are suggestive only. This is essentially a research proposal, and we cannot predict with

certainty how the results might be used.

A.2.3 Where does Jini �t in?

Jini is Sun's Java architecture for making services available over a network. It is built on top

of the Java Remote Method Invocation (RMI) mechanism. The main additional features

are a set of protocols and basic services for \spontaneous" discovery of new services, and a

framework for detecting and handling partial failures in the distributed environment.

A Jini lookup service is typically discovered through multicast on a well-known port.

The discovered registry is a uni�ed �rst point of contact for all kinds of device, service, and

client on the network. Aside from the initial act of discovery, all Jini-related operations

are built on RMI. Services install serialized proxy objects in the registry; clients download

the proxy for the service they need, selecting primarily on the Java class of the serialized

object. The Jini model of discovery and lookup is distinct from the more global concept

of discovery in, say, the CORBA trading services or HP's e'speak. The Jini version is a

light-weight protocol, especially suitable for initial binding of clients and services within
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multicast range. In the Ninja framework, for example, Jini technology might �t comfortably

at the periphery, near the end-user devices, or within the Base, addressing initial federation

of nodes, crashes of individual nodes, etc. This latter setting is particularly interesting to

us.

The ideas of Jini run deeper than the lookup services. Jini completes a vision of dis-

tributed programming started by RMI [15]. In this vision partial failure is a de�ning charac-

teristic, distinguishing distributed programming from the textbook discipline of concurrent

programming. The principles of concurrent programming are embodied in the Java lan-

guage and the JVM through support for threads and monitors. But mechanisms that are

appropriate within a single JVM must be replaced by something more complex when mul-

tiple JVMs are federated over a potentially unreliable network. Remote objects and RMI

replace ordinary Java objects and methods. Garbage collection for recovery of memory is

replaced by a leasing model for recovery of distributed resources. The events of AWT or

Javabeans are replaced in the distributed events of Jini. The synchronized methods of Java

are mirrored in the nested transactions of the Jini model.

A.2.4 Bringing these things together

To support the parallel programmers of the future we will need Java implementations

of lightweight messaging systems akin to MPI|the single most successful platform for

parallel computing. A likely physical setting is in the more or less tightly coupled (but

probably heterogeneous, multi-user) clusters of trusted workstations that we expect will

host the Web services of the future. While models of distributed programming other than

message-passing (notably Linda-based models like JavaSpaces) certainly have a role, we

doubt whether they are the best model for SPMD computing. Most of the experience

with earlier generations of parallel computer suggests that the low-latency message-passing

model is a better �t.

These are likely to be volatile environments that demand the reliability provided by

foundations like Java and Jini. Any software must be adaptive. Availability changes as

workloads and network tra�c uctuates; nodes crash, new ones are attached and discovered

on the y, old ones are removed. Jini is a Java technology for dealing with these situations.

Message-passing parallel programming is not exactly the same discipline as concurrent

programming. An interesting research question is whether one can develop is a distributed

model of parallel programming that extends the conventional MPI model in a manner

similar to the way the Jini model extends concurrent programming.

A.3 Related Work

A.3.1 Experience with mpiJava

mpiJava is our object-oriented Java interface to MPI. It implements a Java API suggested

in 1997. That proposal built on work on Java wrappers for MPI started at NPAC about a

year earlier. The system provides a fully-featured Java binding of MPI 1.1 standard. The

object-oriented API is modelled largely on the C++ binding that appeared in the MPI 2

standard. The implementation of mpiJava is by JNI (Java Native Interface) wrappers to a
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Figure A.1: Principal classes of mpiJava

suitable native implementation of MPI. The software comes with a comprehensive test-suite

translated from the IBM test suite for the C version of MPI. Platforms currently supported

include Solaris using MPICH or SunHPC-MPI, Linux using MPICH, and Windows NT

using WMPI 1.1.

The MPI standard is explicitly object-based. The C and Fortran bindings rely on

\opaque objects" that can be manipulated only by acquiring object handles from con-

structor functions, and passing the handles to suitable functions in the library. The C++

binding speci�ed in the MPI 2 standard collects these objects into suitable class hierarchies

and de�nes most of the library functions as class member functions. The mpiJava API fol-

lows this model, lifting the structure of its class hierarchy directly from the C++ binding.

The major classes of mpiJava are illustrated in Figure A.1. A minimal mpiJava program

is illustrated in Figure A.2.

[Select benchmarks. Explain them. Mention copying and JNI.]

mpiJava is part of the HPJava environment.

A.3.2 Java Grande Message-passing Working group

The Message-Passing Working Group of the Java Grande Forum was formed just over a

year ago as a response to the appearance of several prototype Java bindings for MPI-like

libraries. [Describe them.]

An initial draft for a common API speci�cation was distributed at Supercomputing '98.

Since then the working group has met in San Francisco and Syracuse, and a Birds of a

Feather meeting was held at Supercomputing '99. The nascent API is now called MPJ.

[etc.]
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import mpi.* ;

class Hello {

static public void main(String[] args) {

MPI.Init(args) ;

int myrank = MPI.COMM_WORLD.Rank() ;

if(myrank == 0) {

char [] message = "Hello, there".toCharArray() ;

MPI.COMM_WORLD.Send(message, 0, message.length, MPI.CHAR, 1, 99) ;

}

else {

char [] message = new char [20] ;

MPI.COMM_WORLD.Recv(message, 0, 20, MPI.CHAR, 0, 99) ;

System.out.println("received:" + new String(message) + ":") ;

}

MPI.Finalize();

}

}

Figure A.2: Minimal mpiJava program (run in two processes)

Figure A.3: PingPong Results in Distributed Memory mode
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A.3.3 Case study: reference implementation of MPJ

Presently there is no complete implementation of the draft MPJ speci�cation. Our own Java

message-passing interface, mpiJava, is moving towards the \standard". The new version

1.2 of the software supports direct communication of objects via object serialization, which

is an important step towards implementing the speci�cation in [3].

The mpiJava wrappers rely on the availability of a platform-speci�c native MPI im-

plementation for the target computer. While this is a reasonable basis in many cases, the

approach has some disadvantages. For one thing the two-stage installation procedure|

get and build a native MPI then install and match Java wrappers|can be tedious and

discouraging to potential users. Secondly, in the development of mpiJava we sometimes

saw conicts between the JVM environment and the native MPI runtime behaviour. The

situation has improved, and mpiJava now runs with several combinations of JVM and MPI

implementation, but some problems remain. Finally, this strategy simply conicts with the

ethos of Java, where pure-Java, write-once-run-anywhere software is the order of the day.

Ideally, the �rst two problems would be addressed by the providers of the original native

MPI package. We envisage that they could provide a Java interface bundled with their C

and Fortran bindings. Ultimately, such packages would presumably be the best, industrial-

strength implementations of systems like MPJ. Meanwhile, to address the last shortcoming

listed above, we have outlined in [2] a design for a pure-Java reference implementation for

MPJ. Design goals were that the system should be as easy to install on distributed systems

as we can reasonably make it, and that it be su�ciently robust to be useable in an Internet

environment. A particularly strong requirement is that in no circumstances should the

software leave resource-wasting orphan processes lingering after an abrupt termination.

We are by no means the �rst people to consider implementing MPI-like functionality

in pure Java. Working systems have already been reported in [4, 9], for example. Our goal

was to build on the some lessons learnt in those earlier systems, and produce software that

is standalone, easy-to-use, robust, and fully implements the speci�cation of [3].

We wish to simplify installation of message-passing software to a bare minimum. A user

should download a jar-�le of MPJ library classes to machines that may host parallel jobs,

and run a parameterless installation script on each. Thereafter parallel java codes can be

compiled on any host in the LAN (or subnet). An mpjrun program invoked on that host

transparently loads all the user's class �les to available hosts, and the parallel job starts.

The only required parameters for the mpjrun program should be the class name for the

application main program, and the number of processors the application is to run on.

To be usable, an MPJ implementation should be fault-tolerent in at least the following

senses. If a remote host is lost during execution, either because a network connection breaks

or the host system goes down, or for some other reason, all processes associated with a�ected

MPJ jobs must shut down within some short interval of time. On the other hand, unless it

is explicitly killed or its host system goes down altogether, the MPJ daemon on a remote

host should survive unexpected termination of any particular MPJ job. Concurrent tasks

associated with other MPJ jobs should be una�ected, even if they were initiated by the

same daemon.

The paper design suggests that Jini is a natural foundation for meeting these require-

ments. The installation script can start a daemon on those machines by registering a
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Figure A.4: Layers of an MPJ reference implementation

persistent activatable object with an existing rmid daemon. The MPJ daemons automat-

ically advertise their presence through the Jini lookup services. The Jini paradigms of

leasing and distributed events are used to detect failures and reclaim resources in the event

of failure. These observations lead us to believe that an initial reference implementation

of MPJ should probably use Jini technology [1, 5] to facilitate location of remote MPJ

daemons and to provide a framework for the required fault-tolerance.

A possible architecture is sketched in Figure A.4. The bottom level, process creation and

monitoring, incorporates initial negotiation with the MPJ daemon, and low-level services

provided by this daemon, including clean termination and routing of output streams (Figure

A.5). The daemon invokes the MPJSlave class in a new JVM. MPJSlave is responsible for

downloading the user's application and starting that application. It may also directly

invoke routines to initialize the message-passing layer. Overall, what this bottom layer

provides to the next layer is a reliable group of processes with user code installed. It

may also provide some mechanisms|presumably RMI-based (we assume that the whole

of the bottom layer is built on RMI)|for global synchronization and broadcasting simple

information like server port numbers.

The next layer manages low-level socket connections. It establishes all-to-all TCP socket

connections between the hosts. The idea of an \MPJ device" level is partly modelled on

the abstract device interface of MPICH. A minimal API includes non-blocking standard-

mode send and receive operations. All other point-to-point communication modes can be

implemented with reasonable e�ciency on top of this minimal set. The device level is in-

tended to be implemented on socket send and recv operations, using standard Java threads
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MPJClient
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MPJClient

Jini Lookup Services

Figure A.5: Independent clients may �nd MPJService daemons through the Jini lookup

service. Each daemon may spawn several slaves.

and synchronization methods to achieve its richer semantics. The next layer above this is

base-level MPJ, which includes point-to-point communications, communicators, groups,

datatypes and environmental management. On top of this are higher-level MPJ operations

including the collective operations. We anticipate that much of this code can be imple-

mented by fairly direct transcription of the src subdirectories in the MPICH release|the

parts of the MPICH implementation above the abstract device level.

A.3.4 Other approaches to parallelism in Java

[etc.]

More things to mention. . .

� Object serialization

� MPI-2 (dynamic process creation).

� Java interfaces to VIA

� MPI-RT (Skjellum's work)

Realistic assessment of current level of demand for MPI + Java

� java-mpi membership: 71 subscribers.

� mpiJava downloads|currently around 30 per month, overall total about 330.

Conclude: presumably not yet large enough for commercial exploitation, but enough to

encourage research.
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A.4 Workplan

Reiterate: this proposal will address design issues for new message-passing APIs for Java

and potentially other object-oriented network programming languages. It will address the

principles of reliably implementating these APIs in the dynamic environments of Internet

servers and networks. In particular implementations on top of Jini and emerging successors

will be developed. The proposal will consider how MPI-like parallel programming APIs

may best be enhanced to make Jini-like techniques for fault-tolerant programming available

directly at the parallel application level.

Complete MPJ reference implementation.

Improving the API: talk about channels, MPI-RT.

Hand waving about how we will import Jini-like fault-tolerance into MPJ. (Don't really

have anything concrete to say yet. Checkpointing?)
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