DocXchange
Conversion Stat

SYSTEM FOR AND METHOD OF MANAGING AND DELIVERING EDUCATIONAL CONTENT
The government may have rights regarding this invention pursuant to terms of following contracts:

•
DoD High Performance Computing Modernization Program ARL Major Shared Resource Center through Programming Environment and Training (PET). Supported by Contract Number: DAHC 94-96-C-0010 with Raytheon Systems Company.

•
DoD High Performance Computing Modernization Program ASC Major Shared Resource Center through Programming Environment and Training (PET). Supported by Contract Number: DAHC 94-96-C-0005 with Nichols Research Corp.

•
DoD High Performance Computing Modernization Program CEWES Major Shared Resource Center through Programming Environment and Training (PET). Supported by Contract Number: DAHC 94-96-C-0002 with Nichols Research Corp.

A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by any one of the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.

Background of the Invention
1.
Field of the Invention
This invention relates to computer systems that may be used to educate and, more particularly, to a system for and method of managing and presenting educational content in asynchronous, synchronous or collaborative manners.

2.
Discussion of Related Art
An educator may personally author, develop, or use hundreds or even thousands of lectures, representing a huge investment of time and intellectual capital. At a higher level of organization, such as a company-, department-, or university-level of organization, the investment is naturally larger. Many of these lectures have content developed with computer tools. For example, PowerPoint, available from Microsoft, has been and remains a popular tool to create computer-based slide presentations. (A slide (or foil) presentation involves an ordered collection of slides or foils.) Other known tools have been used to create analogous slide presentations or to create other types of content, such as video, graphics, audio, animation, etc.

Management of lecture materials has been largely ad hoc and inefficient, with the typical approach being the educator storing computer-based content, such as PowerPoint foils, in the author’s file system using the author’s naming convention. To date, delivery has primarily relied on an educator-centric model in which the educator presents a lecture, including any computer-based content such as slides, at a facility where students are physically present. Moreover, there has been little integration between management and delivery and less involving construction, management and delivery.

Thus, the modern educator-centric approach is believed wanting in certain respects. To name just two, modern approaches do not integrate management of content into construction of content in any meaningful way and they do not integrate delivery of content into construction and management of content in any meaningful way.

Regarding content management, an author frequently finds it difficult to easily find, access, and use his or her content once the number of his or her lectures grows large. The author also finds it difficult to easily find, access, and use all of the necessary content when a lecture involves a high level of integration of different content, such as foils, graphics and audio. The author also finds it difficult and inefficient to leverage content among multiple lectures. These problems are even more difficult when someone who is unfamiliar with the materials desires to use the content (e.g., a professor in the same department as the author) or when people want to collaborate in the construction or modification of a lecture.

Regarding content delivery, the educator-centric approach to delivery is inefficient. It requires potentially large travel costs and inconvenience. The ability to leverage an educator over a very large number of students is limited. Very large physical audiences are believed undesirable and require costly lecture halls that may be difficult to justify economically. This shortcoming increases the cost of education and makes it difficult to leverage the skills of gifted lecturers.

A few commercial systems have been announced which promise better functionality than that described above for the educator-centric model, but details about actual systems, beyond what is posted on respective websites, are not generally known. For example, Interactive Learning International Corporation (www.ilinc.com) announced LEARNLINC 3. Additionally, Centra Software (www.centra.com) has announced CENTRA SYMPOSIUM and CENTRA CONFERENCE, and Contigo Software (www.contigo.com) has announced an Internet conferencing system. Likewise, One Touch Systems (www.onetouch.com) and Placeware (www.placeware.com) have announced conferencing products.

There is thus a need in the art for a system and method that overcomes the above disadvantages. More specifically, there is a need for a system and method that facilitates the management of new and existing educational content; that facilitates the delivery of new and existing educational content; that integrates delivery and management; that integrates construction, delivery and management; that facilitates the management and delivery of different types of content; that allows economical delivery to a very large number of students; and that allows economical delivery to students in one or more remote locations.

Summary
According to one aspect of the invention, a computer-based education system is provided and implements a corresponding method. The system includes a database having non-volatile storage and logic for storing in the storage educational content and metadata about the educational content. The system also includes a collection of templates, including a first template, stored in a storage. The templates have tags defined with computer-interpretable logic to access the database, collect data therefrom, and create HTML-compatible output from the collected data. The system also includes a content server, cooperative with the database and with the collection of templates. The content server has template interpretation logic to interpret an identified template and to invoke tag logic in response to the interpretation of tags in the identified template. The system also includes a collaboration server having session logic to receive an application-specific message from a session participant and to forward the application-specific message to all session participants. First client logic, residing at a first computer node and identified as a session participant, sends a first tuple message to the content server, the tuple identifying a template, and it sends an application-specific message containing the first message to the collaboration server. Second client logic, residing at a second computer node and identified as a session participant, receives application-specific messages from the collaboration server, programmatically creates a second tuple message therefrom, and sends the second tuple message to request corresponding content.

According to another aspect of the invention, an asynchronous education system and corresponding method are provided. The system includes a database having non-volatile storage and logic for storing in the storage a plurality of foils and logic for storing in the storage a plurality of presentations, each presentation associating a subset of foils, and a first foil template stored in a computer-readable medium. The first foil template has a first computer-interpretable tag defined with computer-interpretable logic that, when interpreted, accesses the database, collects an identified first foil from the plurality of foils, and creates HTML-compatible output including the collected foil, and a second computer-interpretable tag defined with computer-interpretable logic that, when interpreted, creates an activatable HTML link that when activated sends a tuple message to a HTTP server, identifying a servlet, a foil template and another foil. The system also includes a presentation index template stored in a computer-readable medium. The presentation index template has a third computer-interpretable tag defined with computer-interpretable logic that, when interpreted, iterates through the database to find foils associated with an identified presentation, and a fourth computer-interpretable tag defined with computer-interpretable logic that, when interpreted, creates an activatable HTML link that when activated sends a tuple message to the server identifying the servlet, the first foil template, and an associated foil, wherein the fourth tag is nested within the third tag so that the fourth tag is interpreted as the third tag iterates. The system also includes the HTTP server having the servlet executing thereat. The servlet has logic to obtain and interpret an identified template, and to provide template-created output to a client invoking the server and servlet.

Brief Description of the Drawings
In the Drawing,

Figures 1A-C show alternative embodiments of the invention;

Figure 2 shows the software architecture of preferred embodiments of the invention;

Figure 3 is a flowchart showing the control flow during content delivery of a preferred embodiment;

Figure 4 is an architectural diagram of a preferred servlet for delivering content;

Figure 5 is an architectural diagram of certain aspects of synchronous and collaborative embodiments of the invention;

Figure 6 is a flowchart showing exemplary teacher logic for synchronous and collaborative delivery embodiments of the invention;

Figure 7 shows exemplary student logic for synchronous and collaborative delivery embodiments of the invention; and

Figure 8 shows an exemplary database schema according to a preferred embodiment.

Detailed Description
Three basic architectures are outlined below, followed by a description of specific components and logic and by a description of various alternative embodiments.

1.
Basic Architectures

 Figure 1A shows an architectural diagram of a preferred architecture. The basic architecture 100 includes client 102, first server 104, servlet 106, database 108, second server 110, templates collection 112 and file system 114. Client 102 communicates with first server 104 according to a conventional internet-based protocol, such as HTTP. The first server 104 communicates with database 108 according to a conventional database communication protocol, such as JDBC, and with second server 110 according to a conventional internet-based protocol, such as HTTP. The second server 108 communicates with template collection 112 and the file system 114 using conventional protocols understood by the operating system (e.g., Windows NT, Unix) of the second server 110.

 Client 102 uses conventional computer hardware (e.g., PC) programmed with, among other things, conventional browsing logic 103a, such as browsing logic available from Sun, Netscape, Microsoft and others. Under preferred embodiments, client 102 may also include student logic 103b or teacher logic 103c, discussed below, which cooperates with the browsing logic 103a.

First server 104 uses conventional computer hardware, such as common workstation servers, programmed with, among other things, conventional HTTP server logic. For example, the server 104 preferably includes 64 MB RAM (or more) and a 200 MHz (or faster) Pentium processor. It also preferably includes servlet logic 106, described below, which cooperates with database 108. The illustrated embodiment has the servlet 106 also cooperating with a second server 110, which in turn cooperates with template collection 112 and file system 114, but alternative embodiments have the template collection 112 and file system 114 locally accessible to the servlet 106. Under preferred embodiments, server 104 is also programmed with conventional XML parsing logic 105.

Database 108, among other things, stores and manages educational content and related data according to a preferred schema, described below. The database 108 may be local or remote to first server 104.

Second server 110, as outlined above, is not necessary for operation but is shown to illustrate the embodiment’s flexibility with regard to distributed implementations. In the illustrated embodiment, second server 110 replies to template requests from servlet 106 by supplying template information from template collection 112.

Briefly, the above architecture 100 may be used for construction and management of educational content and for asynchronous delivery. Under this arrangement an educator may construct new educational content or convert existing content and import it into database 108 over the internet (or intranet or extranet) via first server 104 or directly into the database 108 either locally or remotely. The importation may also be performed directly, i.e., not via the Internet, provided that the educator has appropriate access to the database 108, for example, over a network. The database 108 provides security and content management functionality. Analogously, the educator may export educational content from the database 108 to a file or to hardcopy form, if desired. This form might be desired for example if the educator is to deliver a lecture with acetate-based hardcopies of educational foils, or if a temporal instance of the educational content is to be stored on CD-ROM for use by a file server, an example of which is described below.

 Users, whether an educator or students, may use server 104 and servlet 106 to access, format, and deliver educational content stored in database 108. For example, a client 102 can provide a URL specifying the server 104, servlet 106, and a template, along with other corresponding parameters to cause the server 104 to access, format, and deliver corresponding content (hereinafter a “tuple message” or a “distributed educational object message”). The client logic, e.g., 102, may provide navigational controls to facilitate access to a specified sequence of content or it may include special indexes, for example displayed in separate frames, windows, or views, which show a sequence of presentations from which the user can select whichever foils they like. Likewise, the client 102, server 104, or servlet 106 may maintain state information to further facilitate access, navigation and control.

Once the distributed educational object message is received, the server 104 triggers the message-specified servlet 106. The servlet in turn causes the message-specified template to be accessed and parsed by template-parsing logic 105, such as XML parsing logic. The parsing in turn may cause corresponding accesses to the database 108 to retrieve educational content and related data. Some of the content and related data to be retrieved may be directly identified in the distributed educational object message’s parameters whereas other content and related data to be retrieved may be identified indirectly with the message’s parameters or identified by accessing internal state of the servlet (for example, as will be described below, the servlet may maintain foil id counters).

The servlet’s 106 processing eventually provides an output to be delivered to the client 102. This output may include HTML format data, image data (such as GIF files) and other known forms of data, as well as downloadable and executable programming logic, for example, to implement a computer simulation. If no templates are specified, the servlet 106 uses a default template. If there are other elements associated with the foil, such as audio or video, the template may be programmed so that the appropriate contents are automatically rendered, or the user is notified via activation of certain controls that such contents are available and can be rendered on demand.

The tuple message addresses a “Distributed Educational Object” (DEO), using a hybrid information object model that defines a DEO address with a tuple (Page_URL, Component_DOM). (DOM stands for the Document Object Model as defined by the World Wide Web Consortium (W3C).) This approach views information as a collection of components (labeled by Component_DOM) arranged in pages labeled by Page_URL. Under this approach, the above label is mapped into a reference to a database cell and distributed objects can be constructed at any level of granularity as a collection of the contents of multiple cells. Pages are accessed through web address, file location, or Java naming service. A “Page” is, for traditional education, the basic curriculum unit. It is a “screenfull” or “foil” which is discussed by the lecturer or studied by the student as a single unit. In the following, the “DEO message” denotes the tuple (Page_URL, Component_DOM). These aspects are described in more detail below.

Figure 1B shows an architectural diagram of another preferred architecture 100’. This architecture 100’ is similar to the one shown in figure 1A but includes more clients, e.g., 102’a and 102’b, and includes a collaboration server 120. Each client may include modified forms of student or teacher logic 103d, 103e. (Student logic 103d and teacher logic 103e have different item designations to reflect that the logic may be different than that of the above embodiment of Fig. 1A.) The modifications to the student or teacher logic facilitate communication and collaboration among the clients. Under preferred embodiments, collaboration server 120 provides event- or message-based collaboration, in which the participating client logic determines which events or messages should be shared with others.

This embodiment, like the above embodiment, may be used for construction and management of educational content and for asynchronous delivery. It may also be used in arrangements having synchronous or collaborative delivery.

This embodiment operates similarly to the above embodiment in that some controlling user, e.g., an educator, provides a DEO message, specifying the server, servlet, template and parameters, to which server 104 provides an eventual output to the controlling user’s client, e.g., 102’a. The client logic, e.g., 103e, will also cause that DEO message to be encapsulated as an application message and sent to the collaboration server 120. The collaboration server 120, in turn, will send the application message to all participating clients, including 102’b. Each client will retrieve the DEO message from the application message and process that DEO message. For example, the receiving client may simply send the DEO message as an HTTP open request to first server 104. Thus, each client will issue a URL like the one initially sent by the controlling user, and each client will receive a corresponding output. As explained herein, some forms of the teacher’s client logic provide for modifying the DEO sent to the student’s client logic in such a way that the student client receives a modified URL and requests the same contents but rendered through different template collection. Alternatively, the student logic may re-map the DEO. Some forms of the modified client logic 103d, 103e provide for synchronized delivery, for example, allowing an educator to coordinate and control a specific sequence of individual foils to be delivered to the other users. Other forms provide for collaborative delivery, for example, allowing students to provide feedback to the educator during the delivery of a sequence of foils. Collaborative delivery may also include logic to distribute control of the presentation according to a variety of control models, for example, allowing one user to control some aspects, and other users to control other aspects.

Figure 1C shows an architectural diagram of another preferred architecture 100’’. This embodiment differs from that of figure 1B in that there are multiple content servers, not just server 104. The other servers 132,134 may be (a) replicated copies of server 104 along with database 108, (b) proxy servers of server 104 along with database 108, or (c) local file servers having exported versions of the content of interest, for example, stored on CD-ROM. Exported versions may be final HTML or XML contents metafiles.

This embodiment, like the above embodiments, may be used for construction and management of educational content and for asynchronous delivery. It may also be used in arrangements having synchronous or collaborative delivery. Student logic 103f and teacher logic 103g have different item designations to reflect that the logic may be different than the above embodiment. The difference in logic (as will be described below) provides the synchronous or collaborative capabilities and provides remapping capabilities useful in some remote arrangements.

This embodiment operates similarly to the one shown in figure 1B but some subset of the clients has modified client logic, e.g., 103f, which causes the DEO message to be remapped. The remapping may be to a closer server, e.g., 132, or a fileserver. This architecture has certain advantages when large distances separate clients. Remapping can also change template collection used.

2.
Construction and Management of Educational Content and Related Data

Figure 2 shows an architectural diagram of a collection of software tools and managers provided by, or usable in conjunction with, preferred embodiments of the invention. The architecture includes database 108, servlet logic 106, template collection 112, and file system 114 outlined above (though in this instance the template collection and file system are illustrated as being local). It also includes content construction logic 202, such as extended PowerPoint logic, directory structure 204, importer logic 206, presentation manager 208, foilworld manager 210, exporter logic 212, and maintenance tools 214.

Briefly, content may be created with content construction tools 202 and stored in directory structure 204. Once so created, the content may be imported by importer logic 206 into database 108. Once there, the content may be associated with one or more presentations, which are managed by presentation manager 208, and the presentations may be associated with one or more foilworlds, which are managed by foilworld manager 210. Besides content, the database 108 also holds related data, i.e., metadata. This metadata is used and possibly modified by the presentation manager 208 and the foilworld manager 210. The organization and management of content and related data according to presentations and foilworlds has been shown to be useful in practice. Likewise, the metadata has been shown to be useful in the organization and management of content (such as foils), presentations, and foilworlds.

The presentations may be organized according to specific lectures. A given set of content may be used (i.e., shared) in the formation of many presentations. Likewise a given presentation may be organized into foilworlds modeling the overarching organizational structure of the user community. In a university context, for example, the foilworlds may correspond to the university, its departments, the department’s programs or courses, topics in a course, and lectures on a topic. Analogously to the way content may be shared among presentations, presentations may be shared among foilworlds. The content may be exported by exporter logic 212 in a variety of manners, including forms that are usable as Internet output, e.g., HTML. The exporter logic 212, among other things, allows exportation into file formats allowing content to be produced as various hardcopy forms or non-volatile media such as diskettes and CD-ROMs so that the content may be used in file server arrangements. (See, e.g., Fig. 1C and corresponding discussion.) The exporter allows exporting of contents into XML meta-files that can be later used by the servlet to produce the dynamic HTML output.

a.
Content Construction
Conventional content construction logic 202 may be used to construct many forms of content and downloadable logic, e.g., video, audio, graphics, applets, etc. (collectively “content”). Preferred embodiments of the invention may operate with conventional PowerPoint (e.g., version 97) but preferably operate with an extended version thereof to create computer-based foils and foil sequences. The logic extension is integrated to work with the conventional PowerPoint logic by using PowerPoint’s known application programming interface (API) so that the logic extensions, described below, are activatable from a pull down menu.

The extension logic includes a first control that when activated causes the PowerPoint content to be saved in a temporary directory and to an image of specified size (e.g., 640 x 480 pixels) and format (GIF or JPEG). In addition, images in several other resolutions are created and stored. Each foil in the PowerPoint content is saved to a correspondingly named file, in which the filename, among other things, indicates the foil number within the corresponding foil sequence. The first control also saves the PowerPoint file in a (n extended HTML) form, which, unlike the output from conventional PowerPoint 97 logic, outputs data in a form retaining almost exact representation of the original foil that is, HTML compatible but extended to include extended paragraph tags (i.e., <P> and </P>) that may be used to bullet-indent the text, and contain additional formatting attributes, during exportation or delivery (more below). Further, the logic retains original formatting of the PowerPoint foils, such as fonts, font sizes, font colors, as well as correct positioning and size of text blocks and other objects, such as imported images, on the page. The logic also supplies an index file in HTML format, including relative links to the HTML files that contain both images and plain HTML.

 The extension logic also includes a second control which when activated processes the sequence of foils so that individual foils within the sequence are stored in a specified directory as separate files in the native PowerPoint format and so that a master file is created containing information relevant to all of the foils (i.e., splitting the foils into separate files). This splitting is advantageous for certain features, described below, that have proved useful for subsequent viewing and modification of managed presentations. The master file keeps information about backgrounds (slide master), footers, etc, facilitating re-assembly of the presentation. Alternatively, masters may be kept with each presentation.

 Thus, after content construction, the content is stored as a variety of files in directory structure 204. In the specific case of foil sequences, the files stored include XML versions and image versions of the specific foils. The files also include ancillary files such as the index file and the “split” PowerPoint files referred to above.

 If there is additional audio or video contents associated with each foil, auxiliary logic places this contents in the same directory, and assigns file names consistent with the scheme described above. As an example, assume that a presentation being downloaded was already publicly presented and recorded. If such a recording exists, the auxiliary logic will split the digital audio and video files into segments corresponding to each foil and place them in the presentation directory.

In a preferred embodiment, the process of content creation may either start from outside the content management tool or from one of the manager menus, in which case the process of content creation is seamlessly integrated with the process of content importing (discussed below).

b.
Importing Content into the Database
Once the various content, related files, and downloadable logic are collected, they may be imported into database 108. The importer logic 206 includes a collection of control windows in which the user can (a) specify the directory having content to be imported, (b) specify presentation attributes, and (c) specify foil attributes. In this fashion, homogenous content (i.e., in which each foil has content of the same type for example, converted PowerPoint content discussed above) may be imported. Another collection of control windows is provided so that presentations may be created from heterogeneous content (i.e., in which foils may have content of different type or origin).

Upon specifying the directory having the relevant information and activating a load control, loading of the data into the database 108 begins. A preferred embodiment includes pre-processing logic to ensure that the data being loaded is in a preferred form.

Assuming that the content is in a correct form, the importer logic 206 causes a presentation attribute window to be displayed. The primary purpose of the attribute window is to collect information related to the presentation being developed and imported.

 Preferred embodiments of the invention use a window having intuitive, color-coded labels and controls to indicate which attributes are preferably entered. A preferred embodiment, for example, considers the following attributes as obligatory: title of the presentation; a string-based presentation identification (id); subject (i.e., knowledge domain of the presentation); expiration date; and learning level (e.g., age/skill pair). “Obligatory” does not mean that this information is essential to operation of the system, and instead means that this information should be provided to achieve consistent management of content. Current set of the attributes reflects metadata standardization efforts by standard bodies such as IMS.

 The presentation attribute window preferably includes a collection of various controls, e.g., check boxes, radio buttons, menus, etc., allowing the user to specify and characterize the content to be loaded. For example, the controls allow the user to indicate the types of content to be loaded from the directory previously specified Ä e.g., text (e.g., HTML), images (e.g., JPEG or GIF), sound clips, applets, and potentially other forms of data. In doing this, the loader analyzes directory contents. If the directory contains audio and/or video files, they will be automatically and transparently loaded. However, the EDU-type indicators may also be used to inform the user about the types of contents found in the indicated directory.

An “add-on” control is provided to associate an “add-on” with presentation contents. An add-on is an entity that allows other content to be added to and associated with a foil, or presentation. The add-on control includes mechanisms to collect information, such as the title of the add-on, a URL address to be associated with the content (e.g., pointing to web page that is expected to have information related to the subject matter discussed in a foil), source platform information (e.g., to identify specific multimedia players needed), presentation mode, and possibly other attributes. Presentation mode may be used to indicate whether the add-on should automatically start when the associated foil is accessed, e.g., showing the add-on the contents of the web page identified by the add-on URL in a separate window, or whether it should be accessed only when the add-on control is clicked appropriately. Preferred embodiments include logic that allows the “add-on” control to retrieve the entire content of the referred URL, to process it so that all external links in the imported page are disabled, to create an image representation of the page in either GIF or JPG format, and to store the entire object in the database. An “add-on” stored in the database is immutable and independent of the evolution of the original contents.

A preferred embodiment includes controls so that the user can also provide the following presentation related data:

•
Keywords that may be used when searching for this presentation.

•
Signature text that may be incorporated into eventually displayed content, e.g., a copyright notice at the bottom of a displayed foil.

•
Name and label (i.e., an extended name).

•
Prerequisites.

•
Source platform, i.e., hardware and software requirements needed to present the content.

•
Events (e.g., the XYZ conference where the presentation is to be made, or was made).

•
Form, i.e., the manner in which the content is to be presented, e.g., tutorial, course, etc. Other software may use this data in a standards-specified way.

•
Level of interactivity between user and system. Other software may use this data in a standards-specified way.

•
Authors.

•
Expiration date after which the expiration shouldn’t be used. Other software, for example, may use this data to warn the user.

•
Learning level age/skill pair. This data may be used by other software, for example, to determine whether the student has fulfilled requisites.

 Once the presentation-related data is entered, a foil attribute window is displayed. The primary purpose of the foil attribute window is to collect information about the presentation being developed and imported at a foil-level of detail. Among other things, the window displays an image version of a foil (starting with the first foil in the sequence), and includes a variety of controls to collect data related to specific foils. Most of the data that can be collected is of a type identical to that outlined above. The actual attributes may be modified easily. For example, other embodiments collect the following attributes: title, platform, sound (file), primary and secondary educational types, importance, use time, and abstract. Collecting this information on a foil-basis, however, allows the foil-basis data to override the presentation-basis data. New information to be collected includes the following:

•
Image style to indicate whether the image version of the foil (as compared to the HTML text version) is “essential,” “useful,” or “not needed.” “Essential” means that the image contains necessary information that is not captured by the HTML version. “Useful” means that the image contains some information that is not captured by the HTML version. “Not needed” means that the HTML form has all of the information that would be in the image form. This information may be used in drafting template conditions (more below), for example, to alternate automatically and as appropriate to save bandwidth. Alternatively, one can specify the primary educational type, the secondary educational type and the importance of the primary. Both of the primary and secondary educational types can be selected from the full list of educational types associated with the foil.

•
Sound and/or video related to foil to associate a sound/video file with a foil. A preferred embodiment automatically constructs a drop down menu listing the file names in the directory that are believed to be sound or video files (by examining file extensions, for example) and which initially suggests a file name mirroring the naming convention used for the particular foil. Use time, i.e., the time that should be reserved for the presentation of the foil. Like the above, this data might be used in constructing a template. Suppose you assign timing, and then use the system in actual presentation. A template might display a countdown clock telling you how much time you have left to stay on track or warn you when you talk too long.

 To facilitate entry of the foil-related data, the foil attribute window includes two additional controls. One is used to select corresponding data from the collection of presentation-related data. The second is used to select corresponding data from the prior foil. The window also includes a control enabling a user to designate a foil as the abstract for the presentation. If no such designation is made, the system will automatically select one of the foils (e.g., second foil in sequence) to serve as an abstract by default. The use of abstracts facilitates future management of the content.

 As outlined above, preferred embodiments provide logic to collect a set of individual foils to form a presentation. A preferred embodiment allows collections of images, URLs (for external websites of interest), HTML versions to be collected with metadata such as short descriptions of the presentation and comments for a foil.

 A loading control window includes buttons, tabbed menus, and other controls as well as a foil view and a foil sequence view. The foil window provides a list of foils from which one may be selected. Upon selecting a foil, the foil view displays the corresponding data, e.g., image. The foil sequence window shows the current sequence and provides controls that allow the user to modify the sequence, for example, to (a) position, or reposition, a foil within the sequence, (b) delete a foils, or (c) insert a foil. Inserting a foil, causes a foil control window to be displayed, which analogously to those described above provides controls so that various related information and metadata may be collected. The foil window includes a control to create HTML foils, which cause a corresponding control sub-window to be displayed that provides controls so that the user may enter bulleted text, for example. Controls analogous to those described above are provided for editing notes and comments for a foil.

Once the data is collected it may be loaded as a presentation, analogously to that described above when importing content such as converted PowerPoint content.

Persons familiar with graphical user interface systems will appreciate that there are many arrangements that may be used to collect such data. For example, running lists of authors may be maintained to provide for easy selection thereof, and other controls may be provided to edit a list of authors. The scope of the invention is in no way limited to a particular arrangement or set of controls.

c. Managing Presentations
Preferred embodiments of the invention provide a presentation manager 208 to allow appropriately privileged users to manage presentations within the hierarchy of presentations stored in the database 108. (In contrast, the term “presentation layer,” or “presentation logic,” is used to refer to the logic that is responsible for actually presenting the content, for example, during a distance learning lecture.) This management includes controls allowing a user to (a) create new presentations, (b) edit metadata about a presentation and its subcomponents (i.e., sub-presentations and individual foils), (c) copy and move presentations within a foilworld (more below about foilworlds), (d) edit data for foils in a presentation, (e) delete presentation, (f) select presentations as foilworld abstracts and (g) set formatting and library attributes.

 A preferred embodiment of a presentation manager 208 includes a top-level control window that includes (a) a view of the foilworld hierarchy maintained by the database 108, (b) a view of the presentations associated with the selected foilworld, and (c) a view showing the contents of a selected or default foil for a selected presentation, e.g., showing the abstract foil. This last view is preferably tabbed allowing easy selection of views of different corresponding data. For example, the default view of the abstract might show the image form thereof, but tabs may be used to view corresponding annotations, text, add-ons, comments, URLs, etc. Preferably the presentation of foilworlds and presentations uses expandable-collapsible, hierarchical displays like those commonly used by file managers of popular modern operating systems.

 To create a presentation, a corresponding control is invoked in the context of a selected foilworld, i.e., the one that will contain the newly-created presentation. This control causes a new presentation window to be created which includes a variety of controls for collecting data related to the presentation. The obligatory or mandatory information is the same as that described above in the section describing the importing of presentations. Once the presentation is established, then foils and sub-presentations may be copied or moved to it. A sub-presentation is from the perspective of the presentation being developed, and in this regard, the entity copied to the presentation being developed may be a presentation in its own right.

To edit metadata about a presentation and its subcomponents, similar mechanisms are used to those for creating a new presentation except that data may be overwritten instead of newly entered.

To copy or move a presentation, a copy or move control is activated which causes a view to be displayed having selectable destination foilworlds. After a destination foilworld is selected, the selected source presentation may be copied thereto through corresponding controls. Both copying and moving, relies on manipulation of references, i.e., logical copying. (This applies to copying and moving of foils and foilworlds and other content and related data managed by the system.)

To edit the actual content of foils, controls are provided like those described above. A preferred embodiment also includes a control to launch PowerPoint interface in a separate window so that the content may be edited in the context of content management. In editing a particular foil, the file arrangement described above is advantageously utilized. More specifically, as described above, PowerPoint foil sequences are split into separate foils and a master file is also saved to hold data common to all foils. When a foil needs to be edited, PowerPoint is called via the so- called “Office Automation” process. PPT is handed a single foil. The foil can be edited, and is thereafter automatically stored in the database. During this process, the system repeats the loading process for just this one foil. Not only images but also HTML version is modified, and the original one-foil file is updated.

As independent functionality, the manager can synthesize a valid PowerPoint file consisting of multiple foils picked at random from the database. This is however not used for editing, but as an independent feature that allows for very fast creation of new PPT presentation from the existing ones. In the database, such a presentation is kept as a “script”.

To delete a presentation, controls are provided to delete a selected presentation. Deletion affects only the selected logical copy, unless this is the last copy. In such case, the user is warned that this is the last copy of the presentation in the database.

Analogously to the selecting of a foil to serve as a presentation abstract, preferred embodiments of the invention provide a presentation manager control that allows a selected presentation to be designated as the corresponding foilworld abstract.

A presentation consists of foils, and, in a special case, it can consists of just one foil. The presentation is composite if it refers to other presentations available in the database. The system can create composite presentation in two ways: it is possible to “physically” copy chunks of presentations to another presentation, and it is possible to build “play lists” which can be treated as “short-lived” presentations.

There are two types of presentations: Masters and Scripts “play lists.” Masters are lists of real foils (e.g. with PowerPoint source). Each foil has a number of educational objects (EOs). Scripts are lists of “shadows.” Shadows are entities that have their identity (like a foil) but they also refer to a source foil or source shadow. When created, a shadow inherits all of the EOs and properties from its source. In alternative embodiments shadows may be replaced with simple links. There are two reasons why shadows must have their identity: first, one can set properties for shadows. The properties may differ from the properties of the shadow source. Second, one can change some of the EOs associated with a shadow. In such case only the EOs that are not changed are inherited from the source (foil or shadow). This is useful when one wants to create a shadow that contains most of the same EOs, but – for example – with another sound file.

In some embodiments, each presentation contains a list of components. There are two types of presentations: masters and scripts and there are four types of components: foils, shadows, annotations, and presentation shadows. Masters can contain foils and annotations. Scripts can contain: shadows, presentation shadows, and annotations. Masters are “flat”; they do not contain other presentations scripts can include other presentations by the use of “presentation shadows” components, which can be shadows of masters or scripts. The depth of inclusion is unlimited, but it cannot form cycles. In any case, presentations – even the composite – are displayed in a “flat manner,” as a list of foils.

d. Managing Foilworlds
Preferred embodiments of the invention provide a foilworld manager 210 to manage the foilworlds stored in the database. The foilworld manager 210 allows privileged users to manage the hierarchy of foilworlds. This management include controls allowing a user to (a) create new foilworlds and (b) grant access rights to foilworlds and their sub-foilworlds.

A preferred embodiment of a foilworld manager 210 includes a top-level control window that includes an expandable-collapsible, hierarchical view of the foilworlds maintained by the database 108. The top-level foilworld manager control window includes controls to (a) insert a foilworld, (b) delete a foilworld, (c) set attributes for a selected foilworld, (d) set or modify user privileges, and (e) set ownership rights to a foilworld. Preferably, the foilworld view is intuitively color coded, for example, displaying foilworlds in green to indicate full access by the user, in yellow to indicate read access, and in red to indicate no access.

To insert a foilworld, a parent foilworld must first be selected in the control window after which the insert control may then be activated which will cause a new window to be displayed. The new window includes controls to collect information about the new foilworld, e.g., name and expiration date.

Only empty foilworlds may be deleted under a preferred embodiment.

Attributes may be set for a selected foilworld by activating the set attributes control. The attributes that may be set, assuming the user has sufficient privileges, are the same as those that are collected when new foilworlds are created.

To set access rights, the user may activate the set access rights control. Doing so will cause a new window to be displayed that will include controls, such as drop down menus of users, which facilitate the granting of access rights to the selected foilworld. A preferred embodiment allows rights to be granted individually to a user or collectively to all users. Read and write privileges are supported. In some embodiments, the full list of users is displayed together with their access privileges.

Ownership of a foilworld may be set or modified by the owner of the parent foilworld of the selected foilworld. Ownership grants rights to change rights.

Foilworlds may be cut and paste to different locations in the hierarchy analogous to the controls provided by modern file managers.

e.
Exporting Content
Preferred embodiments of the invention provide exporting logic 212 to dynamically or statically export content stored in database 108. Dynamic exporting is discussed in the section below devoted to content delivery. Static exporting is discussed in this section.

Static exportation allows an appropriately privileged user to generate a directory of content, e.g., HTML files, corresponding to a given presentation. In this fashion, content in the database 108 may be structured (more below) and stored on a CD-ROM or other non-volatile media. The stored content may then be used in standalone contexts (e.g., not web-based) or in file server contexts, e.g., see figure 1C and related discussion above. Exportation may be performed on a foilworld basis (i.e., all presentations in a foilworld) or on a presentation basis (i.e., only for a specified presentation).

As will be explained below in the section devoted to content delivery, much of the content stored in database 108 is largely decoupled from its structure. Other logic such as XML-based templates (more below) is used to structure the content and to provide a database output, e.g., HTML output. Consequently, when exporting data from a preferred embodiment one of these templates must be specified so that exportation may structure the data accordingly. (The discussion of the specific XML-based logic is reserved for the section devoted to content delivery.)

Further, logic is provided to export the presentation in the native PowerPoint format. A presentation can be assembled from arbitrary slides residing in the database, using a graphical slide sorter. After a presentation is assembled, the manager outputs a valid PowerPoint file that can be shipped over the network or on a CD-ROM and presented without engaging the system infrastructure.

f.
Maintenance Tools
Preferred embodiments of the invention provide administration tools 214 allowing users to be entered and associated with privileges. The tools also allow database connection parameters and other system data to be specified. They also allow images to be imported into and managed by the database so that they may be selectively incorporated into presentations and the like. Use of these images is left to the template administrator. As an example, the database contains a large collection of buttons in different styles that can be used to personalize user templates. Also, each user can add his/her own collection of images to the database. The image manager also includes tools to allow some editing of the image, such as scaling, cropping, rotating and tiling, among others. In some embodiments, scaling (tiling) changes only the way the image is being displayed. In other embodiments, only images being EDU objects can be edited.

User administration also allows the administrator or other privileged user to set default values for a user. Each user can modify his/her default property values. When delivering or exporting content, the system looks for certain values to use in constructing the eventual output. The search for values uses the following order of precedence, arranged highest to lowest: foil, presentation, user, and system. Thus, if a foil was imported and set to have a certain font size, for example, that value would be used. If no value was set at the foil-level, then the font size value set at the presentation level would be used and so on. User values fall into the following categories:

•
Color information: This includes color for text, links, backgrounds, etc.

•
Image information: This includes information about images that may be used for buttons and backgrounds. It also includes related information such as image sizes.

•
Font information: This includes information about the sizes and families of fonts to be used during exportation or delivery of content.

•
Configuration information: This includes information about system related entities and components that may be used therewith, such as name of the application used to play audio, the name of the server where the first server 106 is executing, the connection id to the first server 106, etc.

•
Miscellaneous: This is used to refer to all the other information. See the exemplary database schema of Figure 8.

g.
Database and Schema
As explained above, the database 108 in conjunction with managers 208 and 210 is responsible for storage of all elements of the DEOs. In particular, the database backend is responsible for the following functions:

•
Storing and managing foils, including content such as image, text, HTML, applets, etc., or perhaps more precisely information that may be used in the exportation-time or runtime construction of such materials.

•
Storing thumbnail images of all foil images.

•
Storing presentations as ordered sets of foils and/or other presentations.

•
Storing hierarchy of foilworlds as a hierarchy of presentations and/or other foilworlds.

•
Storing add-ons, for example, URLs pointing to pages related to a foil.

•
Storing contents of the HTML pages imported from the remote websites, as well as their images and thumbnails.

•
Storing sounds and videos, according to known formats, for individual foils or whole presentations.

•
Storing applets, images and other forms of binary data.

•
Storing source files for individual foils, for example, files for individual foils after “splitting” of a foil presentation.

•
Storing metadata about foils, presentations, and foilworlds (e.g., author, owner, privileges, descriptions, annotations, etc.) and storing annotations (comment in the presentation table of content).

•
Storing formatting parameters, such as preferred image sizes, type, location, color, font sizes, etc.

•
Storing information about users, such as name, identifier, password, access rights, etc.

•
Storing scripts that define new presentation by referencing elements of other presentations in the database.

•
Checking user privileges to access presentations and foilworlds and storing information about events associated with a presentation (name, place, type of the event, etc.) and “technical” images in the dynamic HTML exporter.

Preferred embodiments use an Oracle database system, e.g., version 7.3.3 to implement database 108. An exemplary schema is shown in Figure 8. The graphical interface, described herein, is constructed using Swing graphical library form Sun. The linkage between the manager and database backend is implemented using the JDBC (Java DataBase Connectivity) toolkit.

3. Delivery of Content

Under preferred embodiments of the invention, the first server 104, Template- parsing logic 105, servlet 106, templates 112, and database 108 cooperate to form and deliver content to client(s) 102. Under some embodiments, file systems, e.g., 114, and other HTTP servers, e.g., 110, or other servers, e.g., 132, 134, may also cooperate in the delivery.

a.
Basic Flow in Delivering Content
The basic flow of delivering content is described with reference to the flowchart of figure 3 and to the basic architectures shown in figures 1A-C. The flow starts in step 300 with for example a client 102 sending a DEO message to the first server 104. The DEO message preferably identifies the servlet logic 106 and a template from a collection of templates 112, in addition to identifying the server 104. The template collection is also identified. The identification of the template may be directly or indirectly URL-based, identifying another server, e.g., 110. The DEO message may also contain other parameters, such as foil identification (foil id) and presentation identification (presentation id), which may be used in collecting, forming, and delivering content.

The server 104 receives the DEO message (i.e., identifying the DEO), in step 302, and upon parsing the message identifies the servlet identification and invokes servlet 106. Preferably, the server 104 is configured to initialize servlet logic 106 in advance of any requests thereto, but such configuration is not critical and instead the servlet may be started by server 104 upon the first reference to the servlet logic 106.

In step 304, the servlet logic 106 analyzes the parameters passed to it by the server 104, including the template collection identification and other parameters such as foil id and presentation id, if they were passed, and determines whether the requested content may be served by a cached copy of the requested content. If so, the flow proceeds to step 314, discussed later; if not, the flow proceeds to step 306.

In step 306, the servlet logic 106 retrieves the specified template. Depending on the configuration, this retrieval may entail another internet-based access. For example, the template collection 112 may be stored remotely on the Internet, an intranet or extranet. Though figure 1A shows the template collection connected to one remote server 110, persons skilled in the art will appreciate that the template collection 112 may be distributed more widely, involving many servers. This solution enables local customization of the system presentation layer, i.e., multiple sites receiving contents can select different, customized graphical front-ends. Under a preferred embodiment, the templates are cached, and thus retrieval may require only local access, even if the template is identified with a URL, identifying a remote location.

Once the identified template is obtained, the servlet logic 106 cooperates with template parsing logic, such as conventional XML parsing logic 105, in step 308, to parse the template tag by tag. Under a preferred embodiment, the parsing is influenced by configuration files that define XML-based tags that may be used in the construction of templates. More precisely parsing is performed by conventional software, and configuration does not affect this process. Parsing is used only to identify tags, their attributes, and contents. The more important part is the processing of the parsed document, which is performed by the software described herein. This process can be influenced by the configuration, by properties, etc. These tags and their definitions are referred to herein as a “template definition language” (TDL). (TDL is described below. XML, from which TDL is based, is well known.) TDL tag definitions include logic that queries database 108 to retrieve content, e.g., foil image and related data. TDL, among other things, implements some “persistent tags.” Persistent tags may be used to keep state, such as state indicative of the interpretation, or parsing, history. Thus, the tag state may be used to produce different output from the otherwise same parsing input, e.g., database content. Because a template author is expected to create templates using TDL tags (as well as HTML tags), the database queries and the logic for invoking the database 108 are hidden from the template author. In general persistent tags work in the same way the standard tags do. The only difference is that the new instance of the class that contains the persistent tag implementation is not created every time the tag is being accessed, but the same class instance (object) is used. As the result when the tag is being executed next time it can use some internal variables set during previous executions. If two tags are implemented in the same class (as different methods) they can “communicate” using shared internal variables. The instances of classes implementing persistent tags are created when the template is initialized (it speeds-up the first access to the tag). None of the cache levels depends on whether or not the tag is persistent. As part of tag interpretation, the database may be queried depending on the tag definitions. This database access is preferably accomplished via a database query cache (more below).

The servlet logic 106 formats the output according to HTML protocol, in step 310. More specifically, the output is “assembled” from the template, which may contain both plain HTML and TDL (XML), and from the database contents.

In step 312, the servlet logic 106 caches the output, if so instructed. The servlet cache is multi-level. The logic of the server remembers which database elements have been recently retrieved, and the elements themselves are kept in cache. If a slightly different query comes from a client that asks, inter alia, for elements already in the cache, the servlet will not go to the database to retrieve these elements. In general, the servlet cache should be always on, except in the case when database itself is being rapidly updated. For instance, a contents developer may want to work without cache to immediately see the database contents changes. In multi-client contexts, however, caching should probably be turned on, as there will likely be subsequent requests to the server 104 that can be served with the identical output. Cache status may be changed by the template definition, i.e., by specifically requesting caching, and/or by the servlet logic 106. Special servlet administration pages may be provided for controlling cache status.

The flow then proceeds to step 314 which is also the step which step 304 proceeds to if a cached copy of the requested content may be used. In step 314, server 104 sends the HTML output.

The flow then proceeds to step 399 and ends.

b.
Servlet Logic
The architecture of servlet logic 106 and its cooperation with other elements is described with reference to the architectural diagram of figure 4. The architecture and its cooperation with other elements is first described generally, followed by a detailed discussion of the architecture’s components.

Preferably, the servlet is written in Java and developed according to java programming conventions, typically found at http://java.sun.com/products/webserver/features. Under one embodiment, the servlet logic 106 shown in figure 4 is organized into the following five modules:

•
Servlet control 402, including initialization logic 404;

•
Template loader 406 and template cache 408;

•
Template-parsing logic 105;

•
Interpreter 412, persistent storage 414, and tag definitions 416

•
Sender 418 and output cache 420.

Briefly, the servlet control 402 is responsible for activating the other servlet logic directly or indirectly. The sequence of activation generally follows steps 304-314 of figure 3. More specifically, upon receiving a HTTP call (i.e., the DEO message), the servlet control 402 determines whether output cache 420 contains cached output that can service the call. If so, the servlet control 402 causes the sender logic 418 to send that output. If not, the servlet control 402 activates the template loader 406 with a template parameter passed in the HTTP call (or a default if no template parameter is provided). The template loader 406, in turn, determines whether the template is stored in template cache 408. If so, it is retrieved and passed to the servlet control 402; if not, it is retrieved (possibly through another HTTP call to a second HTTP server 110), stored in template cache 408, and sent to the servlet control 402. Once the template is loaded, the conventional XML parser 105 is invoked. The XML parser 105 syntactically decomposes the template into a derivation tree, with TDL tags occupying tree nodes. The root node of the derivation tree is passed to servlet control 402, which then activates the interpreter 412. The interpreter 412 recursively parses the tree, and for each node, determines the tag type and activates the corresponding Java method. (As will be explained below, correspondence between a Java method and a tag type is established as part of configuration/initialization.) The corresponding Java method is invoked which in turn generates corresponding output. This generation may entail queries to database 108 via a database cache 417, open requests for content from other HTTP servers, generation of content based on servlet or tag state, etc. The interpreter eventually outputs a string of HTML formatted text. This string is passed to servlet control 402 and then to sender logic 418. The sender logic, if instructed, stores the output in output cache 420 and sends it in response to the HTTP call.

The initialization logic 404 reads configuration files 405 to help configure and initialize the servlet 106. This logic is triggered the first time that the servlet is activated. One of the configuration files associates tag names with Java classes and methods (i.e., tag definitions). Using conventional parsing techniques, the initialization logic 404 reads this file line by line. Each line has the following syntax

tag_name| Java_class.method(formal_parameters)|persistency.

“Tag_name” is the name of a TDL tag; “Java_class” is a name of a Java class implementing the tag; “method” is the name of a method of Java_class that should be invoked once the tag is detected; “formal_parameters” is a list of parameter names that should be passed to “method” (all parameter are of type java.lang.String); and “persistency” is a flag to indicate whether the TDL tag is persistent (i.e., use the same instantiation of the object created from Java_class if persistent; instantiate a new object if not persistent). Another of the configuration files associates template names with locations, thus allowing shorthand names to be used to specify a template in a HTTP call. Using conventional parsing techniques, the initialization logic 404 reads this file line by line. Each line has the following syntax

template_collection_name| template_collection_location.

“Template_name” is the name used by users and “template_location” is a URL pointing to template collection 112. This arrangement makes the servlet and the TDL extensible. The end user of the system can extend the language and customize it by adding tags and corresponding Java classes to the servlet.

The servlet control 402 is responsible for synchronizing the module activations as outlined above. The servlet control responds to HTTP POST and GET messages in which POST messages are generally used for remote configuration (more below) and in which GET messages are generally used for accessing data, i.e., synchronizing the modules as outlined above. Concurrent calls are run in a multi-threaded environment, exploiting functionality offered from Java’s built in multi-threading.

The template loader 406 is responsible for loading TDL templates. The loading may be direct or indirect, as some tags act like macros and require yet other files to be inserted at the tag’s location. The loader 406 loads a default template (e.g., a login template) if none is specified. Besides loading the specified template, the template loader 406 reads a properties file associated with each template collection, which specifies certain initial values for XML tags, according to XML syntax and rules. Certain template and other variables may be specified with default values by the servlet 106, such as the template’s default location, default database connection string, server port for HTTP server (e.g., 110) serving templates, host name of server (e.g., 104) on which servlet 106 is running, servlet directory, template id, and user id for user who invoked the template.

The template cache 408 is used to store the recently retrieved templates. Flush algorithms for template cache are separate from the other cache algorithms for the output cache 420 and query cache 417.

The XML parser 105 is conventional. Certain embodiments, for example, use the XML parser available from Microsoft, Inc. or the IBM XML Parser for Java (XML4J. The XML parser 105 outputs a derivation tree of known format.

The interpreter 412 is responsible for parsing the derivation tree created by XML parser 105. Starting with a root tag called TDL_DOCUMENT (more below), the interpreter 412 recursively parses the derivation tree and for every node loads the Java class corresponding to the node (i.e., based on the tag and its definition) and calls the selected method (again based on the tag and its definition). If the tag is persistent, then a previously created instance of the Java class is used. The persistent instance is maintained in persistent storage 414. (Among other things, persistent instances allow different methods in the same class to communicate via internal class variables.) The methods generate corresponding HTML output to form an HTML output string. An individual method may construct such output based on queries to the database 108, possibly based off of other parameters passed in the HTTP call, or from other techniques, such as HTTP GET requests to other URL specified locations. The content may also be generated by the method itself. The database accesses are preferably through a query cache 417, which keeps the results of executed SQL queries. Under one embodiment, cache “hits” are detected by having matching SQL strings.

The sender 418 uses conventional techniques to send the HTML output generated by the interpreter 412.

The output cache 420 stores HTML output. “Hits” are detected by HTTP calls having identical URLs. Although multiple caching algorithms may be employed, e.g., cleanse location after X number of hits, certain embodiment use a timing algorithm because of its simplicity. For example, each cached output is marked as discardable after a few seconds. This marking allows subsequent requests to overwrite this entry. Though controlled independently, the other caches may use similar algorithms, i.e., time-based and flush after a given number of hits.

As outlined above, the servlet 106 allows remote configuration. Servlet, template, and cache parameters may thus be modified by privileged users. Remote configuration allows tag definitions to be changed, new templates to be registered, and unnecessary templates to be deleted. Cache parameters such as active status, caching parameters (expiration time or maximum hits) and size may be modified as needed.

c.
Template Definition Language (TDL)
TDL is an application of XML (extensible markup language). As is known in the art, XML provides mechanisms for defining application specific tags that may be parsed and interpreted to create HTML output. For general information about XML, see http://www.w3.org/MarkUp/SGML/Activity and http://www.w3.org/XML/.

Templates may be constructed from tags and corresponding parameters analogously to the manner in which HTML documents are created using HTML-specified tags and parameters.

Some of the more important tags are discussed below. Appendix A defines two sets of tags (that can be combined or separated), at least an exemplary set of which includes souce code definitions. Persons skilled in the art will appreciate that each tag generally falls under one of three categories: (1) empty tags, (2) element-defining tags, and (3) control tags. Empty tags are standalone and create no context. They may involve database queries or otherwise create content but they stand on their own. An example would be the tag <AUTHOR/> in which the “/” indicates that the tag is standalone. As shown in the definition, this tag queries the database to determine the author and to generate HTML output accordingly. Element-defining tags are identified by “start” and “end” tags. A “start” tag includes angle brackets, e.g., “<BOLD>“, and an “end” tag includes angle brackets and has the tag name preceded by a “/”, e.g., “</BOLD>. Other tags and text may exist between a start and end tag, but a given tag itself may not be nested. Control tags provide various control structures such as looping controls.

Persons skilled in the art will appreciate that TDL permits templates to be defined with string-oriented expressions in which operations may be expressed in Reverse Polish Notation. Expressions are parsed outside of the XML parser. A simplified BNF-like notation for permissible expressions is provided below.

Expression ::=
Variable |

Constant |

%equ[al](ExpressionList) |

%dif[ferent] (ExpressionList) |

%or (ExpressionList) |

%and (ExpressionList) |

%gre[ater] (ExpressionList) |

%les[s] (ExpressionList) |

%nog[reater] (ExpressionList) |

%nol[ess] (ExpressionList) |

%tol[ower] (ExpressionList) |

%tou[pper] (ExpressionList) |

%tri[m] (ExpressionList) |

%nos[pace] (ExpressionList) |

%add(ExpressionList) |

%mul[tiply](ExpressionList) |

%div[ide](ExpressionList) |

%sub[stract](ExpressionList) |

%sum(ExpressionList) |

%min[imum](ExpressionList) |

%max[imum](ExpressionList) |

%not (Expression)

ExpressionList ::= Expression , ExpressionList |

Expression

Variable ::= ${variable_name} |
// access to a value of a variable

`class.method(par)`
//direct Java invocation,

//the string must not contain ‘`’ character

$$ | ${$} |

// ‘$’ character itself

$` | ${`} |

// ‘`’ character itself

$% | ${%} |

// ‘%’ character itself

$, | ${,} |

// ‘,’ character itself

$} |

// ‘}’ character itself

${quot} | // ‘“Friday, June 25, 1999 Tuesday, May 25, 1999 character itself

${true} |

// boolean value “true”

${false} |
// boolean value false, equivalent to an empty

// string

$$

Constant ::= string |
// string with no delimiters (may have ‘}’

 // characters inside)

%{string} // any string of characters with no ‘}’ character

 // inside

Functions prefixed by ‘%’ may have any number of parameters separated by commas. All parameters are evaluated from left to right. “Variable_name” is a string-based name of a variable (which under the above embodiment may not contain a ‘}’ character). Default values of a variable is an empty string. Arithmetic operations may be performed on variables by using Java methods, which in turn treat strings as encoded numbers of type integer or real. The notation “${variable_name}” stands for access to a value of a given variable. Subparts of expressions inside a pair of single quotes are treated as calls to Java methods. All prefixes inside sub-expressions are detected and evaluated recursively to produce a string, which in turn is evaluated as a call to a Java method. For example, the subexpression

‘math.add(${foil_number},1)’

is first evaluated to

‘math.add(44,”1”)’

assuming that the value of foil)number at the time of evaluation was 44.

As outlined above, TDL provides control tags. One form of control tag that TDL provides allows for conditional inclusion of fragments of templates. Conditional statements are expressed by the TDL_IF element. It is a non-empty element whose body is included in the outcome only when the specified condition is satisfied. This element has an optional part(s) included when the specified condition is not satisfied.

The syntax of the IF statement is the following:

<TDL_IF CONDITION=“...”>

<TDL_THEN>

</TDL_THEN>

<TDL_ELSE>

</TDL_ELSE>

</TDL_IF>

Inside the TDL_IF element an optional TDL_ELSE element can be included. If the condition evaluates to true, the code included in the TDL_THEN element is interpreted. Otherwise the part of code included in the TDL_ELSE element is interpreted. There could be multiple TDL_ELSE and TDL_THEN parts. These parts must be included between TDL_IF and /TDL_IF tags. The TDL_IF tag has only one attribute: CONDITION. This attribute contains an expression string that is evaluated to a Boolean value.

Under preferred embodiments of TDL, a variable can be assigned a value using the TDL_SET tag. This is an empty tag and it does not generate any output. The TDL_SET element has the following syntax:

<TDL_SET NAME=“...” VALUE=“...”/>

“NAME” is the name of the variable the value is assigned to. The variable can be later referenced by the use of this name. “VALUE is the value that should be assigned to the variable. This can be a simple constant value as well as an expression that must be first evaluated.

Values of internal servlet variables and dynamically computed expressions can be included into the output by the use of TDL_INSERT command. This command is implemented by empty TDL_INSERT tag. Note that, in comparison to TDL_SET tag, this tag directly generates an output rather than storing a new value of a given variable. The syntax of the TDL_INSERT element is the following:

<TDL_INSERT VALUE=“...”/>

The parser replaces the TDL_INSERT tag with the value calculated from the contents of the VALUE attribute being an expression. Before the servlet 106 can connect to a database 108 it must be provided with some connection parameters. These parameters include

•
DNS/IP of the computer the database is running on;

•
Driver name;

•
Port number;

•
Database name;

•
User/password.

Connection to a database is specified by TDL_CONNECT element. The required connection parameters are concatenated into one connection string attribute with JDBC-like syntax. The syntax of the TDL_CONNECT element is the following:

<TDL_CONNECT CONN_STRING=“...”/>

The TDL_CONNECT element must precede all database access elements.

Control may be passed from one template file to another by the use of <TDL_LINK> element. In the attributes of this element one can specify parameters and a filename of a template file to which control should be passed. The parameters are separated by the ‘|’ character. Each parameter definition is composed of a parameter name (i.e., a property for a calling template file) and an expression reflecting a current property value, separated by ‘=‘ character. For example, the text ATTR=“PID=1 | FID=${FID}” is a definition of two parameters, the first one with name PID and constant value 1, and the second one with name FID and a value equal to current value of variable FID. The syntax of the TDL_LINK element is the following:

 <TDL_LINK FILENAME=“...” ATTR=“...”/>

The TDL_INLINE tag is used to include a text of one template file in the other template file, before this file is parsed by the XML Parser module. This mechanism is similar to #include preprocessor command known from many programming languages, for example C/C++. The content of the file pointed by tag argument is used to substitute for the INLINE tag just before the template file is going to be parsed. The included template file may also contain TDL_INLINE tags pointing to other template files. The syntax of the TDL_INLINE element is the following:

 <TDL_INLINE FILENAME=“filename”>

Note that the current property values are passed to the sub-templates. Thus, the TDL_INLINE tag can be treated as a kind of a macro definition.

d.
Exemplary Templates
This section describes an exemplary template definitions of a preferred embodiment. (Appendix B provides full definitions.) These templates may be used for content delivery in asynchronous, synchronous, and collaborative contexts, as will be described below. TDL itself is implemented to be extensible and new templates may be easily created from the existing tag definitions. Consequently, persons skilled in the art will appreciate that the scope of the invention and the teachings of this specification are not limited to the particular templates and tag definitions described in this specification.

The five exemplary templates of the set A are

1.
Main template;

2.
Template to display foils as HTML bulleted lists;

3.
Template to display foils as images;

4.
Template to navigate in foilworld tree;

5.
Template to create and display presentation index with links to foils.

The main template (template no. 1) generates HTML output which when displayed by a browser provides some top-level foilworld information and creates a hyperlink reference to a foilworld display. More specifically, a function is defined and associated with a clickable control which when clicked invokes another template file (template no. 4, described below) having the template to navigate in foilworld tree.

The template to display foils as HTML bulleted lists (template no. 2) is invoked with foil id and parent id parameters. (The parent id parameter identifies the presentation to which the foil belongs.) The template creates HTML output that when displayed by a browser provides the bulleted text associated with the foil id. The data stored in the database is extended HTML format and has the necessary tags to do the bulleting. The HTML output created also displays related data such as the foil’s number, title, corresponding event and date, and modification date. It also creates a hyperlink reference to the appropriate template that can display an image version of the foil (template no. 3) in case a user wants to switch views of the foil. The display also includes hyperlink controls to the previous and next foil, placed both above and below the bulleted data, and a hyperlink to the template to create and display index with links to foils (template no. 5) passing the parent id as a parameter and an image associated with the parent presentation, thus providing a mechanism to cause an index of the presentation to be displayed. In this context, “previous” refers to a previous foil in the storage order, not necessarily the presentation order. The template also retrieves any sound or video objects from the database associated with the foil and references it with “ISSOUND”. The template places an activation button on the output to trigger a player corresponding to the data format. The template also retrieves any add-ons from the database associated with the foil and references it with “ISADDON”. The template likewise places a button on the output, which when activated causes the corresponding add-on to be displayed. It also obtains and inserts the signature in the context of the current user, presentation, and foil.

The template to display foils as images (template no. 3) operates analogously to the above template (template no. 2) but with the following differences. It creates HTML output having an image version of the foil, rather than HTML bulleted test. Also, it hyperlinks to an HTML version of the foil, unlike template no. 2 which creates a hyperlink to an image version of the foil. It also includes control logic to determine whether an image version of the foil exists and if not inserts the HTML bulleted version. The control logic also queries the database to determine the preferred display mode for the foil, and if the display mode is one of certain enumerated values it will insert the foil image. The conditional logic may also be built into the servlet logic 106.

The template to navigate in foilworld tree (template no. 4), referred to above, creates HTML output that when displayed by a browser provides a title of the foil world associated with the foil world id passed to the template as well as providing an index of hyperlinks to all sub-foilworlds and an index of hyperlinks of all presentations associated with the foil world. The hyperlinks to sub-foilworlds create links using template no. 4 and thus operate recursively. The hyperlinks to the presentations create links using template no. 5, described below.

The template to create and display presentation index with links to foils (template no. 5), referred to above, creates HTML output that when displayed by a browser provides a title for the presentation associated with the presentation id passed to the template as well as providing an index of hyperlinks to the foils. It also provides related data such as the author’s name, the event, event date, modification date, and a link to the presentation’s abstract along with a corresponding abstract image. Analogously to template no. 3 control logic determines whether there are any associated sound clips or add-ons and associates such data analogously to the manner described above. The index of hyperlinks to the foils is enumerated and annotations associated with each foil are displayed. Each foil has a link to the HTML version and the image version. As outlined above, template no. 2 is used for HTML bulleted text version, and template no. 3 is used for the image version.

e.
Asynchronous Delivery
Asynchronous delivery may be implemented as follows. Referring to figure 1A, student logic 103b or teacher logic 103c may issue a URL request, specifying server 104, servlet 106 and a corresponding template and other parameters. An exemplary use would specify template no. 1 directly or indirectly, as described above. The server routes the HTTP call to the servlet, and the servlet, acting in the manner described above, creates HTML output providing an index of foilworlds, from which one may be selected. The user’s selection of a foilworld triggers template no. 4 (transparently to the user), which creates an index of hyper linked sub-foilworlds, presentations of the currently selected foilworld, and related data described above. The related data, e.g., annotations, allows a user to select a presentation or sub-foilworld of interest more intelligently. User selection of a presentation invokes template no. 5 (again transparently to the user) which causes an HTML display of hyperlinks to image or HTML versions of the presentation’s foils. User activation of one of the hyperlinks invokes the corresponding templates, i.e., template nos. 2 or 3 (again transparently to the user) to display the foil as bulleted HTML text or as an image version (e.g., of the original PowerPoint foil). Sounds and add-on are presented or selectable automatically, as discussed above.

Persons skilled in the art will appreciate that with the exemplary templates, a minimal implementation of student or teacher logic 103b,c may be used. In fact, the above asynchronous use may be achieved merely from initially issuing a correct URL and using a conventional browser 103a. The depiction of student and teacher logic 102 b,c is nonetheless made in figure 1A because this logic will associate other logic to the presentation, such as audio clip player logic to play sound clips. Moreover, though the architecture of figure 1A shows the client 102 communicating with server 104, persons skilled in the art will appreciate that there are a vast number of alternative arrangements. For example, the user may be served by a proxy server or a file server, as suggested above with reference to figure 1C but in a synchronous or collaborative context.

In asynchronous mode security is handled at the level of DB connect. Users must register before they can access contents.

Persons skilled in the art, upon reading this disclosure, will appreciate that the system may be used in an extremely flexible way, not limited by the exemplary templates or tags described herein. The system by design is extensible. For example, there may be a huge number of templates incorporated into the system, depending on the users educational model and style. Some of the templates may use a hierarchical navigational paradigm, other may be arranged differently. For instance, a class or lecture may be written as a “textbook chapter,” i.e., a one long HTML file, corresponding to just one “foil” in the DB. The page can reference an arbitrary number of add-ons, sound, and video files, as well as binary objects such as applets or Macromedia animations. All these objects sit in the DB as elements of a DEO. Upon being referenced (i.e., when the page is retrieved from the DB and displayed in the browser), the references on the page will call up and display all binary objects. Asynchronous user will be able to see and manipulate these objects. Moreover, a template can use arbitrarily complex HTML, DHTML (scripted HTML), or XML. The templates using scripted HTML may be dynamic and interactive, showing different elements of a DEOs in different layers, activated by the user via mouse clicks, for example.

Moreover, the navigational model for accessing and distributing the educational objects may be much richer than that described above. For example, under one embodiment, a four-level model is used in which a hierarchical structure is labeled by the tuple (Page_URL, Component_DOM). Four essential units of information are defined in order of decreasing size: the Internet or World Wide Web, the SessionWeb, the Webwisdom Page (an arbitrary title and not a trademark or tradename) and the Page focus of attention. The first three levels are labeled by Page_URL and the Page focus is identified by the Component_DOM.

This arrangement allows increased flexibility in following the marketplace in the area of resource discovery and coupling it to the hierarchical URL namespace. The system described herein allows metadata to be automatically generated and in this fashion can comply with emerging standards in the field of resource discovery. For example, foilworlds (which are at the lowest level a presentation or SessionWeb described below) may be grouped into courses; courses into academic programs; programs into departments; departments into schools and schools into universities. The system described herein supports this organization both on the web and internally to the database using its hierarchical management interface. The same arrangement is also exposed in the browser using dynamic HTML to provide a familiar directory-like browsing interface. Every level of the hierarchy has a visual representation, which is the index to a presentation at this level and the course home page at the course level. All of these representations are as usual treated as WebWisdom Pages discussed below.

The SessionWeb is the collection of material used as information resources within a given teaching or learning activity. For instance, for a lecturer, the SessionWeb consists of all pages relevant to a particular lecture as well as all their sub-components. This local SessionWeb is of course likely to be dynamically updated with outside links, as topics come up during the lecture. Included in this concept are all local navigation both internally to the pages and between the pages that comprise the document space of a given learning session. In particular, this definition allows the lecturer to pick and choose between presentation material contained in the SessionWeb with an order that is determined in real-time. This contrasts with the clumsy frameset technology and the static sequential order available in most systems today.

In a more general browsing activity, a student learner’s SessionWeb would be less structured and would roughly consist of all pages and components stored in cache. Technically, the SessionWeb is quite small and so it is able to support richer linkage and access models using very fast client side technologies such as Java and JavaScript with the data structures stored in memory. The system described herein automatically builds a powerful dynamic HTML navigation tool for the lecturer by downloading the indexing material for the lecture. It also supports the preparation of general play lists that allow the lecturer to generate an initial choice both for the contents and initial order of the SessionWeb. This selection can consists of any pages either served from a conventional Web Site or generated from the database 108. Note that original PowerPoint data structures can be stored in the database 108 and this allows the construction of a rich navigation index to any set of PowerPoint slides and any mix of PowerPoint and HTML, as well as of the fully customizable presentation layer including both the browser and also the native authoring package displays.

As defined above, the WebWisdom Page represents the unit of information, where, in conventional practice, one does not need to scroll, reload web browser or otherwise break the attention of teacher or student. This implies a natural and limited size and, in the teaching process, a WebWisdom Page corresponds to a few minutes study and a SessionWeb is typically some 60 to 180 minutes. The inventors experience is that it is less satisfactory than a set of separate pages, each viewable in its entirety at one time. As an example, it is not usually good practice to have WebWisdom Pages with titles like “Concepts Part I”, “Concepts Part II”  but rather a hierarchical organization with Pages titled “High level Organization of Concepts”, “First Concept in detail” etc. Although scrolling is not always advisable, the system does support shared scrolling of pages but this capability can be switched off. WebWisdom Pages can be switched between either by conventional loading of URL’s or more elegantly by using dynamic HTML to choose between different layers of related information. This is the mechanism used to move between curricula page, index, quiz, survey, glossary and notes (background material). Note that these ancillary documents can be linked to documents at any level of the Page_URL hierarchy.

XML is designed to record content and HTML to the display layout of the pages. The database 108 is built around this modern concept and the database contents can be thought as the XML attributes, which are then turned into HTML using the system described above. One implements the linkage of curricula material with audio-video class recordings of classes by including the relevant XML tags in the template to specify all these components.

Finally, the system described herein supports the sharing of components of a WebWisdom Page or the Page focus. These page components include a variety of useful capabilities including shared cursors, form text fields and buttons. The latter allows one to easily share access to the many server resources, whose access is specified by HTML forms. This sharing is further described below.

f.
Synchronous and Collaborative Delivery
Synchronous or collaborative delivery operates analogously to the above asynchronous delivery in some respects and differently in others. They operate analogously in that eventually each client issues a tuple message to a HTTP server, e.g., 104, to receive corresponding content therefrom, e.g., HTML output constructed with a template. They operate differently in the way these tuple messages are shared and in some cases modified.

Architecturally, preferred synchronous or collaborative embodiments differ from asynchronous embodiments in that they include a collaboration server 120. (See Figs. 1B-C.) They also differ in that they include certain client-side logic not shown in figures 1B and 1C, but which are shown and described below. The combination of the collaboration server 120 and the client-side logic (yet to be described) forms a collaboration “backbone.” Preferred embodiments of the invention use a collaboration backbone described in U.S. Pat. Apl. Ser. No. 09/017,840 to Podgorny et al., entitled Platform-Independent Collaboration Backbone and Framework for Forming Virtual Communities Having Virtual Rooms with Collaborative Sessions, filed February 3, 1998, and assigned to the assignees of this invention, which is hereby incorporated by reference in its entirety.

The preferred collaborative backbone allows clients to be organized into collaborative “sessions” and if desired into virtual rooms and communities. A collaborative session involves client-side application logic instances (not necessarily identical) communicating and collaborating in some way in response to application- specific messages. The collaborating client-side logic instances are compatible in that they understand the application-specific messages. The backbone facilitates collaboration by providing logic to distribute the application-specific message to all session participants. It also include control logic to facilitate joining and leaving sessions, entry and exit from rooms, and remotely starting and terminating client-side logic and session participant’s computer nodes.

Sessions, rooms, and communities have “privileged” users. The privileges allow the users to control access or joining to sessions, rooms, and communities and allow privileged users to control certain locks and other critical resources that may be used directly or indirectly in executing applications forming a session. For example, a professor can be designated a privileged user having privileges allowing him or her to control access to a given virtual class room or to lecture sessions therein. Likewise, the assigned privileges may allow the professor to remotely start and terminate applications at nodes of session participants. In this fashion, the students would merely visit the web page corresponding to the virtual room, and the professor could assume responsibility for starting and terminating the necessary logic, for example, student logic, but also including other possibility such as applets implementing educatory simulations.

By providing room-level and community-level control, the backbone facilitates integration of other desirable features. For example, the virtual room may be used to correspond to a virtual classroom and allow multiple, concurrent collaborative applications. In an exemplary virtual classroom, one session may involve one instance of teacher logic collaborating with many instances of student logic. The collaborative session, for example, may entail the teacher logic causing and controlling the presentation of educational content, e.g., sequence of foils, at the many clients having student logic. Other sessions in the same room may involve computer-implemented chats between a student and teaching assistant monitoring the lecture. This allows the student to have questions addressed in context and in near real-time without disturbing the lecturer or other students in the process. As another example, the virtual community may be used to provide community level control, localizing certain security, management, and administration functions. For example, this localization may be used to ensure that the person participating in a room is properly registered with the educational institution (e.g., university, or commercial education institution).

As outlined above, many aspects of the preferred backbone are desirable but persons skilled in the art should appreciate that they are not essential to operation. For example, the room and community paradigms are desirable but not essential.

Figure 5 shows a preferred backbone arrangement in more detail, but omits other aspects of the education system shown in figures 1A-C. Under this arrangement, the backbone includes client-side demons 505a, 505b and collaboration server 120. An exemplary (though no way limiting) arrangement of client-side logic applications 512, 514a, 514b, 516, 518, 520a, 520b, 522, 524, and 526, implemented as downloadable or embeddable applets or Java script or as standalone applications, communicates with their respective demons via a predefined API. Some of the client-side applications may be served by a application server 510, for example, downloading applets via the HTTP protocol.

The demons 505a, 505b and server 120 communicate using the application-specific and collaboration messages described in the co-pending application identified and incorporated above. The application-specific message are understood only by the applications and are routed by the server, for example, based on a session identification. The collaboration-specific messages are used for session management, floor control and the like.

Once so arranged, the applications may communicate as follows. One application may send an application-specific message to its demon, which in turn sends it to the server 120. The server 120 then sends the message to all session participants, i.e., demons participating in the session. Once the message arrives at a demon, those applications that have registered an interest in receiving such a message will receive the message. The application’s action in response will depend on the client-side application logic, e.g., 512.

Preferably, client-side logic that causes and responds to collaboration messages is contained in logic separate from the application logic. This is not essential for operation but provides “cleaner” lines between the logic that may be used to provide a room specific look and feel, and the logic that implements application functionality, e.g., lecture based on delivery of foils and sound clips. In the illustrated arrangement, control applets 520a and 520b are used to this effect and they separate session management, floor control and the like from the other “real” application logic. Architecturally, they receive and respond to messages just like the other applications. They receive the collaboration messages by registering their interest in such control messages. Under preferred embodiments, the control logic provides logic controls for

1.
Entering and exiting rooms (e.g., changing rooms);

2.
Joining an existing session in a room;

3.
Launching a local or remote application;

4.
Terminating a local or remote application;

5.
Controlling entry and exit to rooms with permissions; and

6.
Controlling the joining and terminating of a session with permissions.

The control logic causes the sending of collaboration-specific messages to the server 120 via their respective demon, e.g., 505a, and it responds to such messages sent from server 120 and routed via a respective demon. For example, the control logic 520a might cause iconic controls to be displayed, which when activated allows a user to launch or join a chat session. More specifically, the control activation causes the control application to send a corresponding join message (i.e., one of the collaboration messages supported by the backbone) to the respective demon, which in turn sends it to the server 120. Depending on the manner in which the session is configured, the server may respond on its own, or it may request permission from other entities, e.g., the session owner, to “negotiate” a response.

The collaboration server 120 also maintains locks and shared variables used by the system and the applications. Locks and shared variables are used to keep the associated information “coherent.” Some of the locks and variables are created automatically by and used by the system. For example, when an a user causes the creation of a session, the system automatically creates join and terminate locks, which are used to control joining and terminating a session; likewise enter locks are created automatically for rooms. Other locks and variables may be created and used by the applications; the creation and use of these locks is implementation-specific, but it is expected to follow the protocol of the system. The information for these lock and variables is gathered and maintained during the processing of certain messages. The server consults the state to perform the necessary actions in response to a message. For example, when a message is received to terminate an application at a remote demon, the server checks that the requesting demon holds the terminate lock for that session.

In another embodiment shared variables and locks are implemented in applications. A commonly used approach is object oriented, i.e., variables are objects and locks are per object. The objects are replicated in all instances of an application and kept synchronized using standard techniques of communication between instances of the same application type. When an update is received by an instance of an application, the object change is locally committed on condition that the new state has a later timestamp, or depending on whether it has been locked. The locking mechanism is either based on the state in the master instance of application or negotiated by sending lock request and awaiting acknowledgements from all peers.

Figure 6 is a flowchart illustrating teaching logic of an exemplary embodiment. The logic starts at step 600 and proceeds to step 602.

In step 602, the teacher logic starts and student logic is activated remotely. Remote launching of the student instances is accomplished with the preferred backbone and preferably entails causing the negotiated downloading of student applets. The logic proceeds to step 604.

In step 604, the teacher logic determines whether the synchronous or collaborative delivery of content is done, i.e., whether a lecture is complete. If the presentation of content is done, the logic proceeds to step 610 which closes the remote student applications and the teacher application, and proceeds to step 699 which ends the flow.

If there is more content to present, the logic proceeds to step 606. In step 606, a user selects content to deliver to students or navigates through the educational content and consequently causes the teacher logic to send a corresponding DEO message to the first server 104. For example, if the teacher logic starts with a display of a foilworld or presentation, the user may immediately select one of the content foils therefrom, as described above, and in the process send a DEO message identifying the server, e.g., 104, servlet 106, template (from collection 112), the presentation and the foil (via parent id and foil id), the response to which will be the server 104 sending HTML output for the foil in the requested form. As outlined above, the specified template may produce an image version of the foil or HTML bulleted text. On the other hand, the teacher logic may start with a view of just an upper level foilworld and not a presentation. In this case, selecting a subfoilworld or a presentation will also send a DEO message, but in this case the DEO message identifies the server, servlet, template, and either the foil or presentation the result of which will be the server sending HTML output of an index of the selected entity, i.e., subfoilworld or presentation.

The logic proceeds to step 608 where the teacher logic encapsulates the DEO message into an application message and sends it to the collaboration server 120, which has been configured to identify all session participants. (Alternatively, the teacher logic may include filters so that DEO messages are only sent to the collaboration server for foil and related contents, i.e., not indexes.) In the instant embodiment, this may be accomplished concurrently with step 602 when the teacher logic causes student logic to launch and thus join the session. Under other embodiments, this information may be pre-configured or may be collected as students join lectures in process through virtual room controls. As outlined above, the collaboration server 120 will receive the application-specific message and forward it to all session participants.

The logic will then loop back to step 604.

Figure 7 is a flowchart illustrating student logic of an exemplary embodiment. The logic starts at step 700, which in the example above occurs as a result of remote starting of the student logic. The logic then proceeds to step 702.

In step 702, the student logic receives an application-specific message from the teacher logic. Under the embodiments described above, this receipt is accomplished from the collaboration server sending messages to session participants and from the student logic, e.g., student applet 522, registering with its respective demon 505 an interest in receiving application-specific messages for a session identified with the collaborative or synchronous lecture. The message originated from teaching logic sending the message to collaboration server 120 in step 608. The application message encapsulates a DEO message. The logic then proceeds to step 704.

In step 704 the logic determines whether the DEO message should be remapped. This is determined from configuration parameters and is useful in certain contexts. For example, in some contexts sending small application specific messages may be economical, but requiring remote student applications to receive large amounts of content from a distant HTTP server may incur undesirable delays and expense. In this regard, the description of basic architecture 100’’ of figure 1C mentioned that the content might be delivered from a local file server. Thus a lecturer may send the application specific messages containing DEO messages over an Internet but the content may be server by a local file server. Thus, the lecturer still controls the lecture, but the content is served locally. In this context, the local file server may be storing exported copies of the content stored on non-volatile media as outlined above. Alternatively, the remapping may be to a replicated server, e.g., 132, see figure 1C. (Additionally, as explained above, preferred embodiments include additional controls so that a user may switch views, for example, from image to HTML bulleted text.)

If remapping is needed, the logic proceeds to step 706, which changes the DEO message accordingly. This might point to a different server, or to a different template, for example. The logic then proceeds to step 708.

In step 708, the student logic sends the DEO message contained in the application- specific message to the content server 104. The response will be the same as that outlined above, i.e., resulting in the delivery of the formatted, structured educational content. With reference to the architecture of figure 1C, this DEO message may instead be server by a proxy server 134, transparently to the user. The students and lecturer views are different. This is done using the master/slave flags supported by the collaboration backbone. All templates contain significant amount of scripting (i.e., they are in reality programs that get executed upon page load). The script recognizes its collaborative status and presents an appropriate version of the template.

The capability of creating collaborative Web page scripts is an important aspect of certain preferred embodiments of the invention. A complete description of the preferred embodiment of a set of functions enabling construction of collaborative web pages is attached to this document as Appendix C, which describes an API for using a collaborative framework of a preferred embodiment.

In one collaborative context, a separate collaborative session is formed for providing user feedback to the professor, thus potentially influencing the lecture. Under this embodiment, clients having student logic are equipped with a “feedback, raise hand” applet having a simple control, which when activated sends an application-specific message to the teacher logic using the collaboration backbone messaging, for example, as a HTTP unicast message. The professor or other person controlling the lecture may then be signaled that a student has raised his hand and respond accordingly, for example, via a chat application, video-conferencing application or the like. Additionally, the feedback raise hand signals may be monitored and scored to provide performance feedback information to the professor, indicating reception of the class in categories such as presentation speed, clarity of presentation, and perceived difficulty of the topic which sections of a lecture generated the most confusion, for example.

The room/community logic of the collaborative backbone (described above in relation to Figure 5) provides a “session manager” interface, from which a variety of tools can be started. The collection can be used to form virtual classrooms and virtual communities for learning. The above description focused on a shared browser as but one tool. The tools in the preferred implementation can include the following:

1.
Textual, 2D and 3D chat tools, with more complex multimedia chats designed for use in K-12 education

2.
Collaborative web browser - a true shared browser in which link clicks are shared and the global control is transferable. This browser can share contents independently of its source, i.e., both unstructured Web documents and input from DB 108 can be shared.

3.
Collaborative shared DHTML and form browser - an extension of above in which one can also share form input and control over the DHTML objects. This browser supports sharing of interactive DHTML objects, such as document layers, telepointers, pop-up windows and menus, etc. It also supports sharing of the form input. This is a desirable tool for remote software training. Further, with emerging technology of “XML chunks” mapping to browser objects, this browser supports dynamic sharing of WebWisdom Page focus, including shared manipulation of page elements properties and such browser controls as scrolling. Appendix D includes source code for an exemplary browser, which should be considered as part of this specification.

4.
Shared whiteboards. From very simple paint applets to layered drawing programs with read, save, and print support. All whiteboards are concurrent, i.e., many users can draw concurrently.

5.
Audio/video conferencing application. Multi-user, and multi-platform videoconferencing, allows to share live, real-time audio and video.

6.
Collaborative audio and video playback tools. - Java and native code streaming audio and video players. Interactive playback on the workstations of all session participants is controlled by one of the users.

7.
Shared editor and debugger. Collaborative versions of Xemacs and GNU debugger, as well as shared Telnet. Used for remote teaching of programming techniques.

8.
Complete Distance Learning tool suite. Student feedback modules, multiple choice testing tool.

9.
Simulation tools. Domain-specific simulation and visualization modules for distance learning and collaborative engineering.

10.
Application sharing. Shared-display mode sharing of arbitrary applications

These collaborative applications can be implemented using the above described system following the principles illustrated for the shared browser. They can be categorized as follows. First, an application can be invoked directly from the session manager (provided through the collaborative backbone), in which case it becomes an instance of general shared application. All of the applications listed above can be operated in this mode. However, it is not always an optimal way. Consider applications of type 9. An example of such an application is, for instance, an applet that visualizes planetary movement governed by the Kepler’s laws. Such an applet is de facto a part of an educational object, or, in other words, a chunk of contents. The more natural way of presenting it is as a binary object embedded in a page that provides narrative for Kepler’s laws. Such objects are called “Active Shared Objects” herein. In the preferred embodiment such an object would be displayed in a shared browser tool of type (3). The logic of the shared browser will automatically create a conduit for the Active Shared Object to make all its functions shareable as well. The Active Shared Object may then be manipulated through the distribution of DEO messages, in which the message includes “instructions” for the Shared Object. The routing of the instructions is accomplished through the navigation scheme described herein, incorporating among other things the JavaBean (COM) model, which causes the “instruction” to be received by the appropriate component, for example, as shown and described in relation to Figure 5. When a page with another active shared object is invoked, the previous conduit will be discarded and replaced by a new one serving the new object.

Second, certain applications don’t share any permanent contents Ä just interactive input. Examples are chat and videoconferencing. To this category belong also specialized applications that allow teacher and students to exchange information about lecture reception, technical problems, pending questions, etc. The “feedback” applet described above also falls into this category. Such applets are always started in the standard mode via session manager, either automatically upon system startup or on demand.

Third, some of the applets from the list above can be used either way. Examples are a whiteboard or audio/video playback tools. Normally, such tools are started directly from the session manager and are used is a session. Alternatively, these applications are treated as Active Shared Objects. A whiteboard can be started to show a complex diagram that can then be discussed and modified during the session. A video player can be embedded in a document. When the document is shown in the shared browser, the applet loads for all session participants and can play the pre-programmed contents under control of the session owner. The logic invoking the whiteboard or the video player is part of the template, meaning that it is not stored in the database. It is up to the template developer to install such logic on the page. Appendix C provides details of the preferred embodiment of a mechanism enabling Active Shared Objects. Active Shared Object technology is enabled by the Javascript API to the collaboratory backbone.

Shared DHTML browser
Item 3 of the list above describes collaborative Dynamic HTML browser. DHTML is a well-known technology and is used particularly with version 4 of Netscape browsers, but it expected to be used more widely. Technically, DHTML is a combination of two components: (1) addressable “chunks” of the page (also known as DOM components); and (2) a scripting language allowing manipulation of these chunks and reception of certain events created by users’ actions on DOM components.

Addressable chunks are currently under consideration by W3C consortium, e.g., addressable XML chunks, and provide an ability for code (such as Jscript code) to interact with the component. Regarding a scripting language, JScript has been found useful (though other implementations/embodiments may use other constructions). In the preferred embodiment, Javascript interface to collaborative backbone enables sharing of arbitrary Dynamic HTML contents.

In short, preferred browsers allow access to their event queues. Preferred embodiments of the shared browser include Jscript code to “catch” select events (via callback programming techniques) and to send DEO messages to other clients indicatove of those events. The other clients then receive the DEO message, extract the event information therein and interact with the corresponding DOM component accordingly. The collaborative backbone provides the mechanism for sending the messages. Moreover, before DEO messages are sent, the events may be “filtered.” In this fashion, a browser event may be caught, and the script code may determine that a message should be sent to all other collaborating clients, a select subset (e.g., some with predefined privileges) or to no other entity at all. XML addressable chunks extend this paradigm so that not only will browsers generate events, but XML processing (once it migrates to the client side) will generate events as well. Under this paradigm, the event caught may be either from the browser, e.g., scrolling or clicking events, or from the content itself, via XML generated events resulting from XML implementation logic (i.e., tag definitions).

Appendix D is a source code listing of an exemplary shared DHTML browser, according to exemplary embodiments of the invention. The shared DHTML browser allows a rich sharing of web pages between a master browser instance and any number of other client instances running on remote machines. These instances are known as slave browsers. The sharing is implemented by sharing browser events. Events are transmitted between browser windows using Tango Interactive framework (described above).

A core capability is a shared web page controlled by the Master instance where location of the page can be set from either

*
Explicit entry of URL in text field

*
Choice of URL from list of “favorites” preset in configuration files stored in archival files or cookies

*
Clicking of links and other such Browser invocations

Key properties of pages that can be shared include

*
Frame locations

*
Dynamic HTML and layers

*
Scrolling Position

*
Form properties

*
Window Size

The general web page can, through a form, specify access to a general server side object (such as a CGI Script, CORBA Broker, Servlet). Thus, the shared web browser can in fact share any server side object accessed from HTML pages.

The browser supports saving one’s personal pages of interest (called personal bookmarks) in special pages which are conveniently controlled from central dialog box. Only the master can control the main shared page but subsidiary system bookmarks where only the the URL is shared, can be distributed to all users by either master or if given permission, a slave client. These pages can be used for general information of value during the session. Location of the system and personal bookmarks can be set by the same mechanisms allowed for main page.

The DHTML Sgared Browser is unique in supporting form sharing. The browser supports sharing of such form propoeritis as:

*
Text fields

*
Text areas

*
Multiple and Single Selection Lists

*
File Browsing

*
Passwords

*
Radio Buttons

*
Check Boxes

*
All types of Buttons

Further, forms can be saved, read back and/or transmitted between master and slave instances. This allows master to check and edit forms filled in by users of slave browsers.

The general behavior of the browser can be individually customized and saved either in named cookies or in web pages. Configurations can be retrieved by name. Possibe customizations include:

*
Whether or not scrolling is shared

*
Which windows are saved at the end of a session

*
Whether slave clients can click on shared browser page

Sessions can be completely archived in terms of:

*
All events generated or received from TangoInteractive

*
URL’s seen in Shared Browser

*
Personal and system Bookmarks

*
Configuration data.

Archived Sessions can be read back and replayed with original or accelerated timing. As well as formal archives, all messages are saved in a console which is available for inspection and which also can be saved for debugging or other purposes.

The Shared Browser provides support for Powerpoint Internet Export and WebWisdom Pages:

*
Automatic registration of these pages through the onload handler. This makes sharing of pages more precise as Shared Bowser otherwise uses an heuristic to decide if page is loaded and it is safe to manipulate it.

*
Shared Pointer package exploiting dynamic HTML Support (pointer implemented as a separate “layer” in DHTML).

It also allows one to:

*
Measure round‑trip times from messages from a “netmaster” node to any or all of participants. Netmaster status is set by granting or requesting Tango Interactive Master Status

*
Examine processing status of any client and download times for all pages received. This can be compared to download time of Netmaster or other nodes

*
Measure and display average download times of selected Images

Performance data can be invoked or displayed locally or requested remotely by the netmaster.

Any slave instance of the Shared Browser can map URL’s by changing URL stem. This feature enables support of mirror sites.

A heuristic algorithm with user customization is used to predict the next and previous pages in a set and to guess image location of thumbnail for a page.Thumbnails can be used to provide a preview (master) or review (slave) of coming or past pages.

The shared browser supports its own window manager. A control bar, always forced on top of all other windows, provides quick and convenient access to parameters and files. Using the control bar one can force “focus” on particular windows and so manage a cluttered desktop. Control Bar can be positioned in any corner of screen

and allows the user to move other windows around.

Dynamic HTML can be used in two ways:

*
Direct Sharing of mouse and keyboard events (clicks, mouse up/down, mouse over/out)

*
A custom interface used by shared pointers and games where, for instance, mouse clicks are directly linked to Tango Interactive in the event handler.

The shared browser implements it own “heartbeat” mechnism which operates with 30 seconds interval and keeps slave instances of the browser synchronized inspite of deliberate or accidental deviations. It also supports “latecomers”. Using Tango Interactive notification mechanism, new clients joining the session are immediately updated.

Using a set of heuristics to determine completion of the page loading process, the shared browser delays subsequent events on slave instances until the page is ready. This mechanism copes with delays due to filling in passwords on protected pages or just with various delays on slave instances as compared to the master insance for a particular page.

The shared browser is built around the concept of events covering all actions, from form content or URL change to “pinging” of clients and window resizing. These events have in total some 100 distinct properties which can be displayed in the “History Page”. There is a general serialization package for JavaScript events

used to pack internally, send over Tango Interactive channels, and save in archive pages or cookies.

The way an application shares information is entirely application-dependent and again is not stored in the database. Applications may incorporate one of the following models into its design:

•
Replicated display : master copy of display is replicated to all other registered clients who cannot change it.

•
Replicated application Ä:master copy and object definition is replicated to all other clients who cannot manipulate it. Event sharing is used to replicate information about the master copy.

•
Common : all registered clients can update a single copy of data.

•
Separate : each registered client getting a separate copy of the object with the object being chosen by a master. Registered clients can individually manipulate their copy of the object.

•
Partial : each registered client gets a separate copy of the object with the object being chosen by the master. Some properties of the object are controllable via event sharing whereas others are set independently by each client.

A preferred embodiment of our system supports all these models and includes applications implementing each of the above listed models. This demonstrates that the invention is not limited in any way the nature of data sharing by the collaboratory backbone.

Upon system startup, the preferred embodiment uses a script configurable by a system administrator to start a predefined set of applications. This is called “predefined sessions”. Every person joining the same room/community is automatically joined to these applications. Predefined session cannot be “left” without leaving the room/community. The startup script describes both the set of the applications to start as well as the graphical interface layout in which predefined sessions are placed. This property allows to customize the system for different group of audiences or for different application domains.

Other forms of event handling

The above embodiment relied on DEO distribution model in which the client received the master’s event via a DEO message and in which the client either responded to that event directly, for example, by creating a URL message from it to obtain its own copy of a webpage, or in which the event was remapped. Other forms are easily integrated, such as indirect interpretation, in which the received DEO is interpreted at the client to discern its logical meaning so that a corresponding action may be taken. This can be helpful for many operations, including buttons, pointers, layer events etc. These latter forms of event, e.g., indirect interpretation, are application dependent.

Moreover, one embodiment does not process the events upon receipt but instead queues the events into at least one of a plurality of queues based on some predetermined criteria. For example, one embodiment uses a queue for general web page-level events, a second queue for events of the type above, which are directly interpreted by the shared broswer, and a third for events of the latter type above, which are indirectly interpreted, for example, by an application cooperating with the browser logic. This type of queueuing, among other things, will help address issues of timing, i.e., essentially event receipt problems akin to network jitter.

3.
Other embodiments and variants

Under the above embodiments the teacher logic accesses the content server to construct an index of foils corresponding to a selected presentation. Alternatively, the index may be pre-defined.

Other collaborative sessions, such as videoconference, or chats, may be used in the virtual classroom. For example, chats may be constrained to be inter-student or between a student and a teaching assistant. This would allow the lecture to continue with minimal interruption to the professor or other students, while allowing a given student alternative vehicles for seeking alternative explanations of the subject matter during a lecture.

The above database arrangement stores various educational content attributes or related data in the database. Alternative embodiments store the attributes in the educational object itself. For example, one desirable embodiment stores foil properties in HTML versions of the foil as meta tag data. This information may be queried by presentation logic, or alternatively, the HTML version may include script logic for iterating over the tags and providing the information to the application logic using the foil (this technique is called self-defining objects).

Other embodiments use applets to implement tele-pointing. Tele-pointing allows the controlling user to move an arrow (like a mouse arrow) on their screen and have the same image appear on the other users’ screens. For example, under one embodiment, the whiteboard supports telepointers; under another this is supported via the DHTML browser, in which case the pointer is implemented as a document layer and shared via the JavaScript API supported by the system described herein.

Having described an exemplary embodiment, it should be apparent to persons of ordinary skill in the art that changes may be made to the embodiment described without departing from the spirit and scope of the invention.

What is claimed is:

1.
A computer-based education system, comprising:

A database having non-volatile storage and logic for storing in the storage educational content and metadata about the educational content;

A collection of templates including a first template, stored in a storage, having tags defined with computer-interpretable logic to access the database, collect data therefrom, and create HTML-compatible output from the collected data;

A content server, cooperative with the database and with the collection of templates, having template interpretation logic to interpret an identified template and to invoke tag logic in response to the interpretation of tags in the identified template;

A collaboration server having session logic to receive an application-specific message from a session participant and to forward the application-specific message to all session participants;

first client logic, residing at a first computer node and identified as a session participant, to send a first tuple message to the content server identifying a template and to send an application-specific message containing the first tuple message to the collaboration server;

second client logic, residing at a second computer node and identified as a session participant, to receive application-specific messages from the collaboration server, to create a second tuple message therefrom, and to send the second tuple message to request corresponding content.

2.
The system of claim 1 wherein the content server includes a servlet having a content cache for holding HTML-compatible output and logic for detecting whether a call to the content server may be served by the content cache and if so servicing the call with HTML-compatible output held in the content cache.

3.
The system of claim 2 wherein the servlet logic maintains a persistent state variable monitoring a hit count of HTML-compatible output held in the content cache and wherein the servlet logic allows HTML-compatible output held in the content cache to be overwritten when the hit count exceeds a predefined number.

4.
The system of claim 2 wherein the servlet logic maintains a state variable monitoring a time duration when HTML-compatible output is held in the content cache and wherein the servlet logic allows HTML-compatible output held in the content cache to be overwritten when the state variable indicates that the HTML-compatible output has been held for at least a predefined amount of time.

5.
The system of claim 1 wherein the content server includes a servlet having a template cache for holding a template and logic for detecting whether a call to the content server may be served by the template cache and if so servicing the call with the template held in the template cache.

6.
The system of claim 5 wherein the servlet logic maintains a persistent state variable monitoring a hit count of a template held in the template cache and wherein the servlet logic allows a template held in the template cache to be overwritten when the hit count exceeds a predefined number.

7.
The system of claim 5 wherein the servlet logic maintains a state variable monitoring a time duration when a template is held in the template cache and wherein the servlet logic allows a template held in the template cache to be overwritten when the state variable indicates that the template has been held for at least a predefined amount of time.

8.
The system of claim 1 wherein the second client logic includes remapping logic, cooperative with the logic to programmatically create a second tuple message, to create the second tuple message to identify the content server and a template from the collection that is not the template identified in the first tuple message.

9.
The system of claim 1 further comprising a remote server having educational content stored thereat and logic to provide at least a portion of the content in response to a call to the remote server and wherein the second client logic includes remapping logic to programmatically create a call to the remote server requesting a portion of the educational content stored thereat in response to receiving an application-specific message and wherein the call to the remote server is constructed from information contained in the application-specific message.

10.
The system of claim 9 wherein the remote server is a file server.

11.
The system of claim 9 wherein the remote server is a HTTP server.

12.
The system of claim 1 further comprising a proxy server having educational content stored thereat and logic to provide at least a portion of the content in response to a call to the content server and wherein the proxy server services the second tuple message.

13.
The system of claim 1

wherein the educational content includes foils and the metadata includes presentation information associating a subset of the foils;

wherein the system further comprises a second template including tags to iterate through the database to find all foils associated with an identified presentation and to create HTML-compatible output displaying a HTML activatable link, for each associated foil, that when activated sends a tuple message to the content server identifying the first template and a corresponding associated foil and sends an application-specific message to the collaboration server containing the tuple message identifying the first template and a corresponding associated foil, and

wherein the first template includes tags to display a foil and tags to create an activatable link that when activated creates and sends a tuple message to the content server identifying the first template and another foil and creates and sends an application-specific message containing the tuple message identifying the first template and another foil to the collaboration server.

14.
The system of claim 13 wherein the other foil identified by the tuple message identifying the first template and another foil is a foil associated as a next foil in a presentation sequence measured relative to the last foil displayed and wherein the first template includes a tag to create an activatable link that when activated creates and sends a tuple message to the content server identifying the first template and a foil associated as a previous foil in a presentation sequence measured relative to the last foil displayed.

15.
The system of claim 13 wherein the tags to display a foil are defined with computer-interpretable logic to access the database and retrieve an HTML-bulleted text version thereof.

16.
 The system of claim 13 wherein the tags to display a foil are defined with computer-interpretable logic to access the database and retrieve an image version thereof and wherein the computer-interpretable logic to display a foil includes logic to determine whether an image version of an identified foil exists in the database and if not to retrieve and display an HTML-bulleted text version of the identified foil.

17.
The system of claim 1 further comprising third client logic, residing at the first computer node, and fourth client logic, residing at the second computer node, wherein the fourth client logic includes logic to send a signal to the third client logic in response to a user action at the second computer node, and wherein the third client logic includes logic to receive the signal and to display indicia thereof to a user at the first computer node.

18.
The system of claim 13 wherein a foil is identified by a corresponding presentation identification and foil identification, and wherein the first template includes tags defined with computer-interpretable logic that, when interpreted, detects whether the database has a sound object associated with the identified foil and if so associates the sound object with a predefined variable so that an audio player may playback the sound object.

19.
The system of claim 13 wherein the metadata includes foilworld information associating a subset of presentations and wherein the system further comprises a third template having tags defined with computer-interpretable logic that, when interpreted, iterates through the database to find presentations associated with an identified foilworld and to create HTML-compatible output displaying a HTML activatable link, for each associated presentation, that when activated sends a tuple message to the content server identifying the second template and a corresponding associated presentation.

20.
The system of claim 13 further comprising presentation management logic, cooperative with the database, to modify the metadata about a presentation to create, copy, or modify presentations.

21.
The system of claim 20 wherein the presentation management logic includes interface logic to receive metadata about a presentation from a user, including searchable keywords and presentation form information indicating whether the foil should be presented in image form or HTML-bulleted text form.

22.
The system of claim 1 wherein the educational content is addressable as a multipart educational object having a foil as one component thereof and at least one other multimedia component.

23.
The system of claim 22 wherein the other multimedia component is one of audio data, video data, and an executable binary object.

24.
The system of claim 22 wherein educational objects are extensible to include further components after initial formation of an educational object by associating the further components with an educational object.

25.
The system of claim 8 wherein the second tuple message identifies a template different than that identified in the first tuple message.

26.
The system of claim 22 wherein educational objects are addressable within a multi-level navigation scheme, the lowest level corresponding to foil contents and higher levels corresponding to organizational structure, wherein the higher levels are themselves addressable and shareable as educational content.

27.
The system of claim 1 wherein the database stores data in relational form and wherein the templates are XML templates having tag logic to access the database and to form HTML output.

28.
The system of claim 1 at least one of the first and second client logic includes a registration interface for registering message interests with the one of the first and second client logic, wherein a client-side educational program may communicate with the client logic via the registration interface.

29.
The system of claim 28 wherein the client-side educational program receives at least a portion of a tuple message received by the client logic, the portion instructing the educational program to act in a corresponding manner.

30.
The system of claim 29 wherein the client-side educational program is a computer-interpretable program downloaded from a content server.

31.
The system of claim 29 wherein the client-side educational program is implemented in a native mode programming language.

32.
The system of claim 29 wherein the client-side educational program is embedded within a foil and addressable as a component within a navigation scheme.

33.
The system of claim 32 wherein either the first or second client logic is capable of sending a tuple message to the educational program embedded with the foil.

34.
The system of claim 1 wherein the first computer node includes a first browser cooperating with the first client logic and the second computer node includes a second browser cooperating with the second client logic, wherein the first tuple message causes a first page to be displayed at the first computer node and the second tuple message causes a corresponding page to be displayed at the second computer node.

35.
 The system of claim 28 further having a predefined published application interface for receiving communication requests from a client-side educational program.

36.
The system of claim 1 wherein the first and second client logic includes at least one of a chat program, a shared whiteboard, an audio player, a video player, and a shared editor.

37.
The system of claim 1 wherein first and second client logic form a distributed lecture program and wherein control of at least one aspect of the distributed lecture program requires a corresponding client logic to possess a control variable, and wherein the system provides means for sharing the control variable so that at a first moment the first client logic possesses the control variable and at a later moment the second client logic possesses the control variable.

38.
The system of claim 1 wherein user access is controlled via registration logic.

39.
The system of claim 38 wherein the registration logic is managed by the database.

40.
The system of claim 26 wherein the multi-level navigation scheme includes a presentation index having links to educational objects associated with a presentation, and wherein the first tuple message identifies the presentation index and wherein the second client logic creates a second tuple message to cause a local display of the presentation index so a user of the second client logic may select any educational object therefrom.

41.
A method of educating using a content server having template interpretation logic to interpret an identified template and to invoke tag logic in response to the interpretation of tags in the identified template and using a collaboration server having session logic to receive an application-specific message from a session participant and to forward the application-specific message to all session participants, comprising:

storing in a database educational content and metadata about the educational content;

storing a collection of templates including a first template having tags defined with computer-interpretable logic to access the database, collect data therefrom, and create HTML-compatible output from the collected data;

first client logic, residing at a first computer node and identified as a session participant, sending a first tuple message to the content server identifying a template;

the first client logic sending an application-specific message containing the first tuple message to the collaboration server;

second client logic, residing at a second computer node and identified as a session participant, receiving the application-specific messages from the collaboration server;

the second client logic programmatically creating a second tuple message from the application-specific message; and

the second client logic sending the second tuple message to request corresponding content.

42.
The method of claim 41 further comprising

caching at the content server HTML-compatible output created by the content server;

detecting whether a call to the content server may be served by the cached HTML-compatible output and if so servicing the call with HTML-compatible output held in the cache.

43.
The method of claim 42 further comprising

monitoring a hit count of HTML-compatible output held in the cache; and

allowing HTML-compatible output held in the cache to be overwritten when the hit count exceeds a predefined number.

44.
The method of claim 42 further comprising

monitoring a time duration when HTML-compatible output is held in the cache, and

allowing HTML-compatible output held in the cache to be overwritten when the HTML-compatible output has been held for at least a predefined amount of time.

45.
The method of claim 41 further comprising

caching a template at the content server, and

detecting whether a call to the content server may be served by the cached template and if so servicing the call with the cached template.

46.
The method of claim 45 further comprising

monitoring a hit count of the cached template, and

allowing the cached template to be overwritten when the hit count exceeds a predefined number.

47.
The method of claim 45 further comprising

monitoring a time duration when a template is held in the cache, and

allowing a cached template to be overwritten when the cached template has been held for at least a predefined amount of time.

48.
The method of claim 41 further comprising

the second client logic creating the second tuple message to identify the content server and a template from the collection that is not the template identified in the first tuple message.

49.
The method of claim 41 further comprising

providing a remote server having educational content stored thereat;

the second client logic creating a call to the remote server requesting a portion of the educational content stored thereat; and

the remote server providing at least a portion of the educational content in response thereto.

50.50.

The method of claim 41 wherein the educational content includes foils and the metadata includes presentation information associating a subset of the foils, wherein the first template includes tags to display a foil and tags to create activatable links to other foils in the associated presentation, and wherein the collection of templates includes a second template including tags to create a presentation index having activatable links to foils associated with a presentation.

51.
The method of claim 50 wherein a foil is identified by a corresponding presentation identification and foil identification, and wherein the first template includes tags defined with computer-interpretable logic that, when interpreted, detects whether the database has a sound object associated with the identified foil and if so associates the sound object with a predefined variable so that an audio player may playback the sound object.

52.
The method of claim 50 wherein the metadata includes foilworld information associating a subset of presentations and wherein the collection of templates includes a third template having tags defined with computer-interpretable logic that, when interpreted, creates a foilworld index having activatable links to presentations associated with an identified foilworld.

53.
A computer-based education system, comprising:

a database having non-volatile storage and logic for storing in the storage a plurality of foils and logic for storing in the storage a plurality of presentations, each presentation associating a subset of foils;

a first foil template stored in a computer-readable medium having

a first computer-interpretable tag defined with computer-interpretable logic that, when interpreted, accesses the database, collects an identified first foil from the plurality of foils, and creates HTML-compatible output including the collected foil, and

a second computer-interpretable tag defined with computer-interpretable logic that, when interpreted, creates an activatable HTML link that when activated sends a tuple message to a HTTP server, identifying a servlet, the first foil template and another foil,

a presentation index template stored in a computer-readable medium having

a third computer-interpretable tag defined with computer-interpretable logic that, when interpreted, iterates through the database to find foils associated with an identified presentation, and

a fourth computer-interpretable tag defined with computer-interpretable logic that, when interpreted, creates an activatable HTML link that when activated sends a tuple message to the server identifying the servlet, the first foil template, and an associated foil, wherein the fourth tag is nested within the third tag so that the fourth tag is interpreted as the third tag iterates,

the HTTP server having the servlet executing thereat, the servlet having logic to obtain and interpret an identified template, and to provide template-created output to a client invoking the server and servlet.

54.
The system of claim 53 wherein the first foil is identified by a corresponding presentation identification and foil identification and wherein the second tag identifies a subsequent foil in a presentation corresponding to the presentation identification as the other foil.

55.
The system of claim 54 wherein the first template further comprises a fifth computer-interpretable tag defined with computer-interpretable logic that, when interpreted, creates an activatable HTML link that when activated sends a tuple message to the HTTP server, identifying the servlet, the first foil template, and a previous foil in the presentation corresponding to the presentation identification.

56.
The system of claim 53 wherein the first foil is identified by a corresponding presentation identification and foil identification, and wherein the first foil template includes a sixth computer-interpretable tag defined with computer-interpretable logic that, when interpreted, detects whether the database has a sound object associated with the identified first foil and if so associates the sound object with a predefined variable so that an audio player may playback the sound object.

57.
The system of claim 55 further comprising a second foil template having

an eighth seventh computer-interpretable tag defined with computer-interpretable logic that, when interpreted, accesses the database, collects an identified first foil from the plurality of foils, and creates HTML-compatible output including the collected foil, and

a ninth computer-interpretable tag defined with computer-interpretable logic that, when interpreted, creates an activatable HTML link that when activated sends a tuple message to a HTTP server, identifying a servlet, the second foil template and another foil,

wherein one of the first and eighth tags creates HTML-compatible output as bulleted-text and the other of the first and eighth tags creates HTML-compatible output as an image.

58.
The system of claim 57 wherein the first tag creates HTML-compatible output as bulleted-text and the eighth tag creates HTML-compatible output as an image, and wherein the second template includes tag logic to determines whether an image version of the identified first foil exists in the database and, if so, displays the first foil as an image and, if not, displays the first foil as bulleted text.

59.
The system of claim 55 further comprising

a foilworld index template stored in a computer-readable medium having

a tenth computer-interpretable tag defined with computer-interpretable logic that, when interpreted, iterates through the database to find presentations associated with an identified foilworld, and

an eleventh computer-interpretable tag defined with computer-interpretable logic that, when interpreted, creates an activatable HTML link that when activated sends a tuple message to the server identifying the servlet and the presentation index template, wherein the eleventh tag is nested within the tenth tag so that the eleventh tag is interpreted as the tenth tag iterates.

60.
The system of claim 53 wherein the foils and other multimedia information are addressable as a multipart educational object having a foil as one component thereof and at least one other multimedia component.

61.
The system of claim 60 wherein the other multimedia component is one of audio data, video data, and an executable binary object.

62.
The system of claim 60 wherein educational objects are extensible to include further components after initial formation of an educational object by associating the further components with an educational object.

63.
The system of claim 60 wherein educational objects are addressable within a multi-level navigation scheme, the lowest level corresponding to foil contents and higher levels corresponding to organizational structure, wherein the higher levels are themselves addressable as educational content.

64.
The system of claim 59 wherein the database stores data in relational form and wherein the first foil and presentation index templates are XML templates having tag logic to access the database and to form HTML output.

65.
The system of claim 13 wherein foils have properties associated therewith and the presentation information includes at least a subset of the properties and wherein the system includes logic to use a value for a property set within the presentation information if the property is not set at for an associated foil.

66.
The system of claim 13 wherein a foil is associated with at least one educational object.

67.
The system of claim 1

wherein the educational content includes foils and the metadata includes presentation information associating a subset of the foils;

wherein the system further comprises a shadow template to iterate through the database to find all foils associated with an identified presentation, the shadow template including logic to override properties or foils of a presentation.

68.
The system of claim 67 wherein a foil is associated with at least one educational object and wherein the shadow template includes logic to override an educational object associated with a foil

69.
The system of claim 67 wherein the shadow template includes logic to inherit properties from a source presentation.

70.
The system of claim 13 wherein the presentation template includes logic to associate an annotation therewith.

71.
The system of claim 67 wherein a shadow created from a shadow template can be used as a component of another presentation.

72.
The system of claim 69 wherein the set of properties is extensible.

73.
The system of claim 53 having exportation logic to store a subset of the database contents, the first foil template, and the presentation index template to an XML file.

74.
The system of claim 53 having importation logic to import a subset of the database contents, the first foil template, and the presentation index template from an XML file.

75. The system of claim 74 wherein the exported XML file can be used by the server to produce dynamic HTML contents

Appendix A
Appendix A contains specification of the Template Definition Language and corresponding examples of the templates implemented using TDL. The preferred embodiment includes two sets of TDL tags. Set A is designed to be relatively low-level and it allows template authors great flexibility and control at the expense complexity. Set B is high-level. It has been designed with system performance in mind (complex database access operations are streamlined and optimized within tags). It also allows template programmers to write extremely concise documents, at the expense of certain flexibility. In practice, both sets of tags can be mixed in the templates.

For each set, Appendix A provides tag reference specification, while Appendix B lists template examples. Appendix B also contains an example implementation of few tags as servlet Java classes.

Tag definitions - set A

 The tag names begin with WW_” prefix. In the table below all tags of set A are presented in details. All the tags except WW_COUNTER are declared as non-persistent.

Tag name
Java class/method invoked
Purpose

WW_ABSMISSING
Tags.WW_ABSMISSING (PRESENTATIONID)
inserting a link to the image version of the presentation abstract (more precisely to temptitleabs.tdl file which is the image version of the abstract foil) Presentation is identified by the PRESENTATIONID attribute

WW_ABSTRACTIMAGE
Tags.WW_ABSTRACTIMAGE (PRESENTATIONID)
inserting an image of an abstract of presentation PRESENTATIONID

WW_ABSTRACTTEXT
Tags.WW_ABSTRACTTEXT (PRESENTATIONID)
inserting a text (HTML bulleted list) of an abstract of presentation PRESENTATIONID

WW_ADDON
Tags.WW_ADDON (FOILID, PARENTID)
inserting add-on for foil FOILID in presentation PARENTID

WW_ANNOTATION
Tags.WW_ANNOTATION (PRESENTATIONID, POSITION)
inserting an annotation belonging to presentation PRESENTATIONID at position POSITION

WW_AUTHORNAME
Tags.WW_AUTHORNAME (FOILID, PARENTID)
inserting name of author of foil FOILID in presentation PARENTID

WW_BODYIMAGE
Tags.WW_BODYIMAGE (FOILID, PARENTID)
inserting ‘body’ HTML tag with background image for image template for foil FOILID in presentation PARENTID

WW_BODYINDEX
Tags.WW_BODYINDEX (PRESENTATIONID)
inserting ‘body’ HTML tag with background image typical for index files for presentation PRESENTATIONID

WW_BODYSEPHTML
Tags.WW_BODYSEPHTML (FOILID, PRESENTATIONID)
inserting HTML “BODY” tag for templates for displaying text-based HTML version of foil FOILID in presentation PRESENTATIONID rather than its image version

WW_CONNECT
Tags.WW_CONNECT (CONNECTION)
connecting to the database with connection string CONNECTION

WW_COUNTER
Pers.WW_COUNTER()
the only persistent tag counting references to the template

WW_CREATIONDATE
Tags.WW_CREATIONDATE (FOILID)
inserting date of creation of foil FOILID

WW_DBSET
Tags.WW_DBSET (NAME, PROPNAME, PROPTYPE, FOILID, PARENTID)
WW_DBSET retrieves value of a property from the database for current user, presentation and foil. PROPTYPE attribute specifies the property type; PROPNAME specifies the database property name. The value of the property is put into variable given in the NAME attribute. If FOILID is provided, the foil property value is checked. If FOILID is empty and PARENTID is provided, the property scanning starts from the presentation level. If both are empty, the property is read from current user or default settings.

WW_DEFAULTBG
Tags.WW_DEFAULTBG ()
taking default background image for templates

WW_DEFAULTLOGO
Tags.WW_DEFAULTLOGO ()
taking default logo image for templates

WW_DOCUMENT
Tags.WW_DOCUMENT ()
root XML/TDL document” tag, a container for all other tags (like an ‘html’ tag in HTML)

WW_ELSE
Tags.WW_ELSE ()
ELSE control statement for WW_IF tag

WW_EVENT
Tags.WW_EVENT (FOILID)
Inserting primary event related to a foil FOILID

WW_EVENTDATE
Tags.WW_EVENTDATE (FOILID)
Inserting primary event date of an event associated with FOILID

WW_EXTERNAL
Tags.WW_EXTERNAL (FOILID, PARENTID)
inserting link to external web page for foil FOILID in presentation PARENTID

WW_FIRSTFOIL
Tags.WW_FIRSTFOIL (PARENTID, NAME)
inserting into NAME variable identifier of the first foil of presentation PARENTID

WW_FOIL
Tags.WW_FOIL (FOILID, PARENTID, MODE)
inserting an image or text-based version of foil FOILID in presentation PARENTID based on MODE value (IMAGE,TEXT or ASNEEDED)

WW_FOILIMAGE
Tags.WW_FOILIMAGE (FOILID, PARENTID)
inserting an image of foil FOILID in presentation PARENTID

WW_FOILLINK
Tags.WW_FOILLINK (FOILID, FILENAME, ATTR)
inserting a HREF link to template file FILENAME with foil FOILID and parameters ATTR; it allows to create an ‘index’ of all foils contained in a given presentation

WW_FOILLOOP
Tags.WW_FOILLOOP (PARENTID, NAME)
tag iterates for all foils in PARENTID presentation each time assigning current child foil ID to NAME variable

WW_FOILNUMBER
Tags.WW_FOILNUMBER (PARENTID, FOILID)
inserting foil number for foil FOILID in presentation PARENTID

WW_FOILTEXT
Tags.WW_FOILTEXT (FOILID)
inserting HTML bulleted list of foil FOILID

WW_FOILWORLDLINK
Tags.WW_FOILWORLDLINK (FWID, FILENAME, ATTR)
inserting a HREF link to template file FILENAME with foilworld FWID and parameters ATTR; it allows to create an ‘index’ of all foilworlds contained in a given foilworld

WW_FOILWORLDLOOP
Tags.WW_FOILWORLDLOOP (FWID, NAME)
parsing in a loop contents of foilworld FWID, setting for each loop pass a variable given by NAME attribute. This variable contains an identifier of a ‘child’ foilworld. The loop is repeated as many times as many child foilworlds the given foilworld contains.

WW_FWPARENTLINK
Tags.WW_FWPARENTLINK (FWID, FILENAME, ATTR)
inserting HREF tag with a pointer to foilworld containing current presentation by the use of template file FILENAME with attributes ATTR

WW_IF
Tags.WW_IF (CONDITION)
IF control statement

WW_IMAGE
Tags.WW_IMAGE (IMAGENAME, FOILID, PARENTID)
inserting image being the value of image property named IMAGENAME for foil FOILID in presentation PARENTID

WW_INSERT
Tags.WW_INSERT (NAME)
inserting current value of an expression to evaluate; an expression could be a variable evaluation

WW_LINK
Tags.WW_LINK (FILENAME, ATTR)
inserting link to another template file FILENAME invoked with parameters ATTR

WW_LOGIN
Tags.WW_LOGIN ()
log-in page to the WebWisdom NT system

WW_LOGINFORM
Tags.WW_LOGINFORM()

user identification form; the “SUBMIT” button of this form redirects control to a special template file – “index.tdl”

WW_MISSING
Tags.WW_MISSING (FOILID, PARENTID)
inserting HTML “HREF” link to the template file that is capable to access an image version of foil FOILID in presentation PARENTID

WW_MODIFICATIONDATE
Tags.WW_MODIFICATIONDATE (FOILID)
inserting date of last modification of foil FOILID

WW_NEXT
Tags.WW_NEXT (PARENTID, FOILID, FILENAME, IMAGENAME)
inserting a button with HREF links to template file FILENAME with next foil in the presentation PARENTID after foil FOILID; IMAGENAME is a name of the property defining image

WW_NOBULLETSIFGIF
Tags.WW_NOBULLETSIFGIF (FOILID)
inserting HTML bulleted text if there is no corresponding image for foil FOILID

WW_NOTE
Tags.WW_NOTE(FOILID, PARENTID)
Inserting a HTML bulleted list of a note of foil FOILID in presentation PARENTID

WW_NUMBEROFFOILS
Tags.WW_NUMBEROFFOILS (PARENTID)
inserting number of foils in presentation PARENTID

WW_OWNERNAME
Tags.WW_OWNERNAME (FOILID)
inserting name of owner of foil FOILID

WW_PASSWORD
Tags.WW_PASSWORD ()

user identification tag – a text field in the log-in form to enter user’s password

WW_PRESENTATIONLINK
Tags.WW_PRESENTATIONLINK (PRESENTATIONID, FILENAME, ATTR)
inserting a HREF link to template file FILENAME with presentation PRESENTATIONID and parameters ATTR; it allows to create an ‘index’ of all presentations contained in a given foilworld

WW_PRESENTATIONLOOP
Tags.WW_PRESENTATIONLOOP (FWID, NAME)
parsing in a loop contents of foilworld PARENTID, setting for each loop pass a variable given by NAME attribute. This variable contains an identifier of a child presentation. The loop is repeated as many times as many presentations the given foilworld contains.

WW_PREV
Tags.WW_PREV (PARENTID, FOILID, FILENAME, IMAGENAME)
inserting a button with HREF links to template file FILENAME with previous foil in the presentation PARENTID before foil FOILID; IMAGENAME is a name of the property defining image

WW_RUNNINGTITLE
Tags.WW_RUNNINGTITLE (FOILID)
inserting foil running title” of foil FOILID

WW_SELECTADDON
Tags.WW_SELECTADDON (FOILID, NAME)
checking for the existence of add-on in foil FOILID; if an add-on is associated with the specified foil, the ID of the database object containing add-on is inserted into variable given by the NAME attribute.

WW_SELECTCOMMENT
Tags.WW_SELECTCOMMENT (FOILID)
if there is a comment associated with foil FOILID, parsing body of the tag

WW_SELECTDISPMODE
Tags.WW_SELECTDISPMODE (FOILID, NAME)
tag inserts into variable with name given by NAME attribute the preferred display mode of foil FOILID

WW_SELECTEXTERNAL
Tags.WW_SELECTEXTERNAL (FOILID)
if there is an external web page associated with foil FOILID, parsing body of the tag

WW_SELECTIMAGE
Tags.WW_SELECTIMAGE (FOILID)
if there is an image defined for foil FOILID, parsing body of the tag

WW_SELECTNOTE
Tags.WW_SELECTNOTE (FOILID)
if there is a note defined for foil FOILID, parsing body of the tag

WW_SELECTSOUND
Tags.WW_SELECTSOUND (FOILID, NAME)
checking for the existence of sound in foil FOILID; if a sound is associated with the specified foil, the ID of the database object containing sound is inserted into variable given by the NAME attribute.

WW_SELECTSOURCEFOIL
Tags.WW_SELECTSOURCEFOIL (FOILID)
if there is source PowerPoint file defined for foil FOILID, parsing body of the tag

WW_SELECTSOURCEMASTER
Tags.WW_SELECTSOURCEMASTER (FOILID)
if there is source PowerPoint “master” file for foil FOILID, parsing body of the tag

WW_SELECTSOURCEPRES
Tags.WW_SELECTSOURCEPRES (FOILID)
if there is source PowerPoint file with presentation containing source for foil FOILID, parsing body of the tag

WW_SELECTTEXT
Tags.WW_SELECTTEXT (FOILID)
if there is HTML-based text data defined for foil FOILID, parsing body of the tag

WW_SET
Tags.WW_SET (NAME, VALUE)
setting a new value VALUE for a variable (property) NAME

WW_SETPOSITION
Tags.WW_SETPOSITION (PARENTID, FOILID, NAME)
inserting foil position of foil FOILID in presentation PARENTID into variable NAME

WW_SOUND
Tags.WW_SOUND (FOILID, PARENTID)
inserting sound data for foil FOILID in presentation PARENTID

WW_THEN
Tags.WW_THEN ()
THEN control statement

WW_TITLE
Tags.WW_TITLE (FOILID)
inserting foil title of foil FOILID

WW_TITLEFOILWORLD
Tags.WW_TITLEFOILWORLD (FWID)
inserting a title of foilworld FWID

WW_USERNAME
Tags.WW_USERNAME()

user identification tag – a text field in the log-in form to enter user’s name

Tag definitions - set B. The tag names begin with TDL_” prefix.

Tag Name
Tag

type
Input

parameters
Java class/method
Description

TDL_DEFAULTBG
empty
none
tdls.tags.General.TDL_DEFAULTBG

Returns a string used in <BODY BACKGROUND=“...”> tag. Allows retrieving the default background image.

TDL_DEFAULTLOGO
empty
none
tdls.tags.General.TDL_DEFAULTLOGO
Returns a string used in tag. Allows retrieving a default logo image.

TDL_DOCUMENT
non-empty
none
tdls.tags.General.TDL_DOCUMENT
Top level XML tag – container for all other tags. Returns parsed body.

TDL_INSERT
empty
NAME: String – any legal expression
tdls.tags.General.TDL_INSERT
Returns a string with a calculated value of the expression given in the NAME parameter.

TDL_SMALLLOGO
empty
none
tdls.tags.General.TDL_SMALLLOGO
Returns a string used in tag. Allows retrieving a small Wisdom NT logo image.

TDL_LOGINFORM
non-empty
none
tdls.tags.Login.TDL_LOGINFORM
 The default servlet authentication procedure is called (method POST with “login” query string).

TDL_USERNAME
empty
none
tdls.tags.Login.TDL_USERNAME
Returns a string with <INPUT> HTML tag for user name.

TDL_PASSWORD
empty
none
tdls.tags.Login.TDL_PASSWORD
Returns a string with <INPUT> HTML tag for user password. The user-input characters are displayed as asterisks (*).

TDL_FOLDERPROPS
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_FOLDERPROPS
Sets “FOLDER_TITLE” (title of the folder given by folder ID) and “FOLDER_PATH” (full path to the folder given by folder ID beginning from the [Root] folder) template properties. The properties can be used in the template document by the use of the TDL_INSERT tag.

TDL_FOLDERUP
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_FOLDERUP
Returns image and link to the parent folder of the folder given by folder ID. The parent folder name is not displayed.

TDL_NAMEDCURRENTFOLDER
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_NAMEDCURRENTFOLDER
Returns image and link to the current folder given by folder ID. The parent folder name is displayed.

TDL_NAMEDFOLDERUP
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_NAMEDFOLDERUP
Returns image and link to the parent folder of the folder given by folder ID. The parent folder name is displayed.

TDL_SUBFOLDERS
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_SUBFOLDERS
Returns the list of links to subfolders of the folder given by folder ID. Folder name is displayed.

TDL_SUBPRESENTATIONS
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_SUBPRESENTATIONS
Returns the list of links to presentations contained by folder given by folder ID. Presentation name and icons are displayed. Named link connects to the presentation index. Icons connect to first foil of presentation (using primary or secondary foil eduobject), index, and print template.

TDL_FOILINDEX
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID
tdls.tags.Presentation.TDL_FOILINDEX
Returns the list of foils in the presentation given by presentation ID. Icons specifying accessible eduobjects are displayed. Thumbnails (if exists) are displayed.

TDL_FOILTHUMBS
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID
tdls.tags.Presentation.TDL_FOILTHUMBS
Returns the list of thumbnails of foils in the presentation given by presentation ID. Thumbnails are grouped in X columns where X is specified in general properties.

TDL_PRESPROPS
empty
PRESID: String – presentation ID
tdls.tags.Presentation.TDL_PRESPROPS
Sets “PRES_TITLE” (title of the presentation) “, “PRES_AUTHOR” (author(s) of the presentation), and “PRES_EVENT” (event(s) connected with the presentation) template properties. The properties could be used several times in the template document, using TDL_INSERT tags.

TDL_FOIL
empty
PRESID: String – presentation ID,

FOILID: String – foil ID,

SHOW: String – edutype to display,

MODE: String – “rich”, “best way”, or none show mode
tdls.tags.Foil.TDL_FOIL
Returns the foil contents. When MODE is set to “none” the eduobject of type specified by SHOW parameter is displayed. In other case, the primary or secondary importance eduobject is displayed.

TDL_JSFUNCTIONS
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID,

 FOILID: String – foil ID,

SHOW: String – edutype to display,

MODE: String – “rich”, “best way”, or none show mode
tdls.tags.Foil.TDL_JSFUNCTIONS
Returns the JavaScript navigational functions for the lower frame in the foil display. Also provides functions for thumbnails display.

TDL_NAVIGATION
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID,

FOILID: String – foil ID,

SHOW: String – edutype to display,

MODE: String – “rich”, “best way”, or none show mode
tdls.tags.Foil.TDL_NAVIGATION
Returns navigational icons for the lower frame in the foil display. “First”, “Previous”, “Next”, “Last”, “Index”, and edutype icons are displayed.

TDL_PREFETCH
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID,

FOILID: String – foil ID,

SHOW: String – edutype to display,

MODE: String – “rich”, “best way”, or none show mode
tdls.tags.Prefetch.TDL_PREFETCH
Causes servlet to start new threads for retrieving all next foils. Retrieved foils are stored in the servlet cache.

TDL_SUBFRAME

empty
EID: String – Eduobject ID
tdls.tags.Foil.TDL_SUBFRAME
Returns the parsed contents of the subframe.

TDL_TIMER
empty
PRESID: String – presentation ID,

FOILID: String – foil ID
tdls.tags.Foil.TDL_TIMER
Starts a separate window with a timer counting down if the foil has the “USE_TIME” attribute set.

TDL_PRESUP
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID,

NAME: String – name of the presentation
tdls.tags.Presentation.TDL_PRESUP
Shows a link to the presentation index.

 /**

 * Main tag for all TDL documents

 * Standard TDL tag implementation.

 */

 public String WW_DOCUMENT () {

 return parseChildren();

 }

/**

 * IF loop.

 * Standard TDL tag implementation.

 * Must be used with THEN and/or ELSE tags.

 * @param condition ‑ <code>if</code> condition

 */

 public String WW_IF (String condition) {

 String res=““;

 condition = evaluateExpression(condition);

 setIntAttrValue(Constants.IFLevelProperty,getIntAttrValue(Constants.IFLevelProperty)+1);

 if (condition!=““)

 setIntAttrValue(Constants.IFLevelConditionProperty+getIntAttrValue(Constants.IFLevelProperty),1);

 else

 setIntAttrValue(Constants.IFLevelConditionProperty+getIntAttrValue(Constants.IFLevelProperty),0);

 res+=parseChildren();

 removeAttrValue(Constants.IFLevelConditionProperty+getIntAttrValue(Constants.IFLevelProperty));

 setIntAttrValue(Constants.IFLevelProperty,getIntAttrValue(Constants.IFLevelProperty)‑1);

 return res;

 }

/**

 * THEN loop.

 * Standard TDL tag implementation.

 * Have to be used only in IF tag context.

 * @return Parsed contents

 */

 public String WW_THEN () {

 if

(getIntAttrValue(Constants.IFLevelConditionProperty+getIntAttrValue(Constants.IFLevelProperty))==1)

 return parseChildren();

 else

 return ““;

 }

/**

 * ELSE loop.

 * Standard TDL tag implementation.

 * Have to be used only in IF tag context.

 * @return Parsed contents

 */

 public String WW_ELSE () {

 if

(getIntAttrValue(Constants.IFLevelConditionProperty+getIntAttrValue(Constants.IFLevelProperty))==0)

 return parseChildren();

 else

 return ““;

 }

/**

 * Inserts result of the calculation or the variable value.

 * Standard TDL tag implementation.

 * @param name ‑ variable or expression

 * @return String with a value

 */

 public String WW_INSERT(String name) {

 return evaluateExpression(name);

 }

/**

 * Inserts result of the calculation or the variable value

 * into <code>name</code> variable.

 * Standard TDL tag implementation.

 * @param name ‑ name of the variable

 * @param value ‑ variable or expression value

 * @return Empty string

 */

 public String WW_SET (String name, String value) {

 name = evaluateExpression(name);

 value = evaluateExpression(value);

 setStringAttrValue (name,value);

 return ““;

 }

/**

 * Connects to database using <code>connection</code> connection string.

 * Standard TDL tag implementation.

 *

 * @param connection ‑ connection string, if <code>connection</code> is empty,

 * default value is taken from property file.

 * @return Empty string

 */

 public String WW_CONNECT (String connection) {

 connection = evaluateExpression(connection);

 if (connection.equals(““)) {

 connection = getStringAttrValue (Constants.ConnectionStringProperty);

 }

 else {

 setStringAttrValue (Constants.ConnectionStringProperty,connection);

 }

 try {

 setConn (DriverManager.getConnection(connection));

 } catch (SQLException e) {

 ExceptionHandler.handleException(e,”TAGS:WW_CONNECT”);

 }

 return ““;

 }

/**

 * Process the contents inserting into the <code>name</code> variable foilworld id’s

 * in the foilworld specified by <code>fwid<code>

 * @param fwID ‑ foilworld id

 * @param name ‑ name of the variable

 * @return Parsed contents

 */

 public String WW_FOILWORLDLOOP (String fwID, String name) {

 name = evaluateExpression(name);

 fwID = evaluateExpression(fwID);

 int usid = unscrambleUser(getIntAttrValue (Constants.CurrentUserProperty));

 String res = ““;

 String query = “SELECT WID FROM FOILWORLD WHERE WID<>1 AND BELONGS_TO_WID = “+fwID+”

ORDER BY NAME”;

 try {

 Statement sqlStatement = getConn().createStatement();

 ResultSet rs = sqlStatement.executeQuery(query);

 while (rs.next()) {

 int wid = rs.getInt(“WID”);

 if (Utils.userHasRights(wid, usid, getConn())) {

 setStringAttrValue(name, Functions.int2String(wid));

 res+=parseChildren();

 }

 }

 rs.close(); sqlStatement.close();

 } catch (SQLException e) {

 ExceptionHandler.handleException(e,”TAGS:WW_FOILWORLDLOOP”);

 }

 return res;

 }

/**

 * Process the contents inserting into the <code>name</code> variable presentation id’s

 * in the foilworld specified by <code>fwid<code

 * @param fwID ‑ foilworld id

 * @param name ‑ name of the variable

 * @return Parsed contents

 */

 public String WW_PRESENTATIONLOOP (String fwID, String name) {

 name = evaluateExpression(name);

 fwID = evaluateExpression(fwID);

 String res = ““;

 String query = “SELECT PRES_PID FROM FW_CONTAIN_PR WHERE FOILWORLD_WID=“+fwID;

 try {

 Statement sqlStatement = getConn().createStatement();

 ResultSet rs = sqlStatement.executeQuery(query);

 while (rs.next()) {

 setStringAttrValue(name,rs.getString(“PRES_PID”));

 res+=parseChildren();

 }

 rs.close(); sqlStatement.close();

 } catch (SQLException e) {

 ExceptionHandler.handleException(e,”TAGS:WW_PRESENTATIONLOOP”);

 }

 return res;

 }

/**

 * Process the contents inserting into the <code>name</code> variable foil id’s

 * in the presentation specified by <code>parentID<code>

 * @param parentID ‑ presentation id

 * @param name ‑ name of the variable

 * @return Parsed contents

 */

 public String WW_FOILLOOP (String parentID, String name) {

 name = evaluateExpression(name);

 parentID = evaluateExpression(parentID);

 String res=““;

 Vector vc = new Vector();

 vc = tdls.tags.Utils.getPresentationComponents(Functions.string2Int(parentID),

tdlTemplate, getConn(), tdlXmlDoc);

 Enumeration en = vc.elements();

 while (en.hasMoreElements()) {

 FoilInfoContainer fic = (FoilInfoContainer)en.nextElement();

 setStringAttrValue(name,Functions.int2String(fic.id));

 res+=parseChildren();

 }

 return res;

 }

Appendix B

Templates implemented using set A of TDL tags

Main template file

<?WWTEMPLATE>

<?XML VERSION=“1.0” CACHE=“NO”?>

<WW_DOCUMENT>

<!-- This is a first file of the template.

 If in the URL, after the name of the template, the filename is omitted,

 the index.tdl file is read by default.

-->

<!-- ?WWTEMPLATE and ?XML tags form a header for all template files.

 CACHE attribute of the XML tag specifies whether the servlet should cache

 this file or not.

-->

<!-- The main task of this file is to redirect a user to a list of foilworlds.

 This is implemented by a JavaScript function that redirects to

 the following URL: tempfoilworld.tdl?FWID=1.

 The tempfoilworld.tdl file lists all foilworlds and presentations

 in a foilworld identified by FWID parameter (1 identifies the root foilworld)

-->

<html>

<head>

<title>Get WebWisdom NT Started</title>

</head>

<script LANGUAGE=“JavaScript”>

<!-- function a ()

{top.location.href = “tempfoilworld.tdl?FWID=1”;}

-->

</script>

<body background=“greymarb.gif” >

<h1>Click The Correct Button to Get to WebWisdom NT</h1>

<form>

Click this if you have Netscape 3.0(but not 2.0 which is confused by Complex Javascript).
 If you don’t have a JavaScript Multiframe system,

other links below form will take you to where you want to go with lower technology!

<form>

<input type=“button” value=“Start Click Here!” onClick=“a()”>

</form>

WebWisdom NT is a JavaScript and servlet-based system for managing hierarchically arranged information such as you get in Education as you span lectures, courses, degrees, departments, Universities. The database available here illustrates 3 worlds:

Administration,

The Virtual University with Courses(electronic foils) and the

Virtual Family (photo sets)

<center></center>

<center><h2>The Tree of Wisdom </h2></center>

<center></center>

</body>

</html>

</WW_DOCUMENT>

Template file to display foils in form of HTML-bulleted lists

<?WWTEMPLATE>

<?XML VERSION=“1.0” CACHE=“NO”?>

<WW_DOCUMENT>

<WW_CONNECT CONNECTION=““/>

<!-- See comments in tempfoilsepimage.tdl for detailed info-->

<html>

<head>

<title> Separate HTML for LOCAL Foil

<WW_FOILNUMBER PARENTID=“${PID}” FOILID=“${FID}”/> <WW_TITLE FOILID=“${FID}”/>

</title>

</head>

<WW_BODYSEPHTML/>

<WW_LINK FILENAME=“temphelp.tdl” ATTR=““>HELP!</WW_LINK>

GREY=local<tt> LOCAL HTML version of Foils prepared

<WW_MODIFICATIONDATE FOILID=“${FID}”/> </tt>

<h2> Foil <WW_FOILNUMBER PARENTID=“${PID}” FOILID=“${FID}”/>

<WW_TITLE FOILID=“${FID}”/> </h2>

 <i>From</i>

<WW_RUNNINGTITLE FOILID=“${FID}”/>

<WW_EVENT FOILID=“${FID}”/> --

<WW_EVENTDATE FOILID=“${FID}”/>. <i>by</i>

<WW_AUTHORNAME FOILID=“${FID}”/> *

<WW_MISSING FOILID=“${FID}” PARENTID=“${PID}”/>

<hr>

<!-- WW_NEXT and WW_PREV insert buttons with HREF links to next and

 previous foil in the current presentation. FOILID and PARENTID

 attributes specify IDs of current foil and current presentation,

 FILENAME is a template filename (usually the same as current)

 and IMAGENAME is a name of the property defining image

 that should be used for the button.

-->

<WW_NEXT FOILID=“${FID}” PARENTID=“${PID}” FILENAME=“tempfoilsephtml.tdl” IMAGENAME=“ww_next”/>

<WW_PREV FOILID=“${FID}” PARENTID=“${PID}” FILENAME=“tempfoilsephtml.tdl” IMAGENAME=“ww_prev”/>

<WW_LINK FILENAME=“tempfullindex.tdl” ATTR=“PID=${PID}”>

<WW_IMAGE IMAGENAME=“ww_up” FOILID=“${FID}” PARENTID=“${PID}”/>

</WW_LINK>

<!-- WW_SELECTSOUND checks for the existence of sound in the

 foil. If a sound is associated with the specified foil, the ID of the

 eduobject containing sound is inserted into variable given by the NAME

 attribute. The same is accomplished by WW_SELECTADDON tag for presentation/foil add-ons

-->

<WW_SELECTSOUND FOILID=“${FID}” NAME=“ISSOUND”>

<INSERT NAME=“${ISSOUND}”/>

</WW_SELECTSOUND>

<WW_SELECTADDON FOILID=“${FID}” NAME=“ISADDON”>

<INSERT NAME=“${ISADDON}”/>

</WW_SELECTADDON>

<hr>

<WW_FOILTEXT FOILID=“${FID}”/>

<hr>

<WW_NEXT FOILID=“${FID}” PARENTID=“${PID}” FILENAME=“tempfoilsephtml.tdl” IMAGENAME=“ww_next”/>

<WW_PREV FOILID=“${FID}” PARENTID=“${PID}” FILENAME=“tempfoilsephtml.tdl” IMAGENAME=“ww_prev”/>

<WW_LINK FILENAME=“tempfullindex.tdl” ATTR=“PID=${PID}”>
<WW_IMAGE IMAGENAME=“ww_up” FOILID=“${FID}” PARENTID=“${PID}”/>

</WW_LINK>

<!-- The following pair of tags inserts into output text the signature

 for current foil/presentation. First the WW_DBSET tag takes signature value from database property in context of current user, presentation, and foil.

 PROPTYPE attribute specifies the type of the property (‘overall’ in case of the signature), PROPNAME specifies the database property name. The value of the property is assigned to a variable with name given by NAME attribute - here: SIG. WW_INSERT inserts the value of the signature (here variable value) into output text.

-->

<WW_DBSET NAME=“SIG” PROPNAME=“signature” PROPTYPE=“OVERALL” FOILID=“${FID}” PARENTID=“${PID}”/>

<WW_INSERT NAME=“${SIG}”/>

</WW_DOCUMENT>

Template file to display foils as images

<?WWTEMPLATE>

<?XML VERSION=“1.0” CACHE=“NO”?>

<WW_DOCUMENT>

<!-- ?WWTEMPLATE and ?XML tags form a header for all template files.

 CACHE attribute of the XML tag specifies whether the servlet should

 cache the file or not.

-->

<!-- WW_CONNECT is a tag that establishes a connection to the database.

 Connection string may be supplied in the CONNECTION attribute,

 or if it is omitted (empty string) the default connection string is

 taken from properties.txt file for current template.

-->

<WW_CONNECT CONNECTION=““/>

<html>

<head>

<title> Separate IMAGE for LOCAL foil

<!-- WW_FOILNUMBER tag takes the position of the current foil in the current

 presentation.

 BUG! Because of the presentation nesting it returns false results

 for nested presentations and foils

-->

<WW_FOILNUMBER PARENTID=“${PID}” FOILID=“${FID}”/>

<!-- WW_TITLE is a tag that allows to insert title of a presentation or foil.

 The presentation/foil is identified by an ID supplied in FOILID attribute.

 PARENTID is not currently used by the WW_TITLE tag, but can be later

 used, e.g. to check the formatting properties, which can be defined on

 the presentation level. FID and PID were supplied by the servlet from query attributes of the URL

-->

<WW_TITLE FOILID=“${FID}”/> </title>

</head>

<!-- WW_BODYIMAGE inserts a ‘body’ HTML tag with background image typical

 for foil files. This tag should be reimplemented to take images from DB

-->

<WW_BODYIMAGE/>

<tt>Image Buttons </tt>

<WW_LINK FILENAME=“temphelp.tdl” ATTR=““>HELP!</WW_LINK>

* GREY=local<tt> LOCAL IMAGE version of Foils prepared

<!-- WW_MODIFICATIONDATE inserts modification date of the current foil -->

<WW_MODIFICATIONDATE FOILID=“${FID}”/> </tt>

<h2> Foil <WW_FOILNUMBER PARENTID=“${PID}” FOILID=“${FID}”/>

<WW_TITLE FOILID=“${FID}”/> </h2>

 <i> From </i>

<!-- WW_RUNNINGTITLE inserts running title of the specified foil. WW_EVENT,

 WW_EVENTDATE, and WW_AUTHORNAME get appropriate data for the current foil

 from the database

-->

<WW_RUNNINGTITLE FOILID=“${FID}”/>

<WW_EVENT FOILID=“${FID}”/> — <WW_EVENTDATE FOILID=“${FID}”/>. <i>by</i> <WW_AUTHORNAME FOILID=“${FID}”/>

<!-- This WW_LINK tag inserts a link to the HTML version of the

 current foil -->

<WW_LINK FILENAME=“tempfoilsephtml.tdl” ATTR=“FID=${FID}|PID=${PID}”>* HTML Version</WW_LINK>

<hr>

<!-- WW_NEXT and WW_PREV insert buttons with HREF links to next and

 previous foil in the current presentation. FOILID and PARENTID attributes

 are IDs of current foil and current presentation, FILENAME is a template

 filename (usually the same as the current),

 and IMAGENAME is a property name specifying the image that should be

 used for link button.

-->

<WW_NEXT FOILID=“${FID}” PARENTID=“${PID}” FILENAME=“tempfoilsepimage.tdl” IMAGENAME=“ww_next”/>

<WW_PREV FOILID=“${FID}” PARENTID=“${PID}” FILENAME=“tempfoilsepimage.tdl” IMAGENAME=“ww_prev”/>

<WW_LINK FILENAME=“tempfullindex.tdl” ATTR=“PID=${PID}”>

<WW_IMAGE IMAGENAME=“ww_up” FOILID=“${FID}” PARENTID=“${PID}”/>

</WW_LINK>

<!-- WW_SELECTSOUND checks for the existence of the sound in the

 foil. If a sound object is associated with the specified foil, the ID of

 the eduobject containing sound is assigned to a variable given by

 NAME attribute.

 The same accomplished by WW_SELECTADDON tag for presentation/foil add-ons

-->

<WW_SELECTSOUND FOILID=“${FID}” NAME=“ISSOUND”>

<INSERT NAME=“${ISSOUND}”/>

</WW_SELECTSOUND>

<WW_SELECTADDON FOILID=“${FID}” NAME=“ISADDON”>

<INSERT NAME=“${ISADDON}”/>

</WW_SELECTADDON>

<hr>

<!-- WW_NOBULLETSIFGIF checks for existence of the foil image.

 If the foil specified in FOILID attribute has no image, the element

 contents will be parsed. Because inside WW_NOBULLETSIFGIF there is a WW_FOILTEXT tag, the table with foil text will be displayed if this foil has no image. If foil has an image, the contents of WW_NOBULLETSIFGIF will be ignored. this tag should be named WW_IFNOGIF but it is named WW_NOBULLETSIFGIF in accordance with original NPAC templates)

-->

<WW_NOBULLETSIFGIF FOILID=“${FID}”>

<WW_FOILTEXT FOILID=“${FID}”/>

</WW_NOBULLETSIFGIF>

<!-- WW_SELECTDISPLAYMODE inserts into variable with name given by NAME

 attribute the preferred display mode of the foil.

 With the following WW_IF, it acts in the same way as the original

 NPAC {select=123} tag.

-->

<WW_SELECTDISPMODE FOILID=“${FID}” NAME=“QUERY”/>

<WW_IF CONDITION=“%OR(%EQU(${QUERY},1),%EQU(${QUERY},2),%EQU(${QUERY},3))”>

<WW_THEN>

<!-- WW_FOILIMAGE inserts image for foil given by FOILID

 attribute. The presentation id: PARENTID will be later

 used to determine formatting properties (properties,

 different than the default, can

 be defined on user, presentation, or foil level).

 -->

<WW_FOILIMAGE FOILID=“${FID}” PARENTID=“${PID}”/>

</WW_THEN>

</WW_IF>

<hr>

<WW_NEXT FOILID=“${FID}” PARENTID=“${PID}” FILENAME=“tempfoilsepimage.tdl” IMAGENAME=“ww_next”/>

<WW_PREV FOILID=“${FID}” PARENTID=“${PID}” FILENAME=“tempfoilsepimage.tdl” IMAGENAME=“ww_prev”/>

<WW_LINK FILENAME=“tempfullindex.tdl” ATTR=“PID=${PID}”>

<WW_IMAGE IMAGENAME=“ww_up” FOILID=“${FID}” PARENTID=“${PID}”/>

</WW_LINK>

<!-- The following pair of tags inserts the signature of the current

 foil/presentation.

 First WW_DBSET takes the signature value form a database property

 in context of the current user, presentation and foil.

 PROPTYPE attribute specifies the type of the property

 (‘overall’ in case of signature), PROPNAME supplies the

 database property name. The value of the property assigned to a variable

 given by NAME attribute - here: SIG.

 WW_INSERT inserts the value of the signature into the output text.

-->

<WW_DBSET NAME=“SIG” PROPNAME=“signature” PROPTYPE=“OVERALL” FOILID=“${FID}” PARENTID=“${PID}”/>

<WW_INSERT NAME=“${SIG}”/>

</WW_DOCUMENT>

Template file used to navigate in the foilworld tree

<?WWTEMPLATE>

<?XML VERSION=“1.0” CACHE=“NO”?>

<WW_DOCUMENT>

<!-- ?WWTEMPLATE and ?XML tags form the header for all template files.

 CACHE attribute of the XML tag specifies whether the servlet should

 cache the file or not.

-->

<!-- WW_CONNECT is a tag that establishes a connection to a database.

 Connection string may be supplied in the CONNECTION attribute,

 or if omitted (empty string) the default connection string is taken from properties.txt file, which specific for the template.

-->

<WW_CONNECT CONNECTION=““/>

<html>

<head>

<!-- WW_TITLEFOILWORLD is a tag that inserts the foilworld title into output text.

 The foilworld is identified by the FWID attribute. The current value

 of this attribute is taken here from the FWID variable.

 This variable was set automatically by a servlet on the base of the URL

 query parameter.

 NOTE:

 Every parameter passed within an URL is put into a variable of the same

 name before a file is parsed. For instance, before parsing a file

 referenced by an URL:

‘file.tdl?A=1&B=3&C=one’

 the following variables will be set:

A with value 1,

B with value 3, and

C with value ‘one’.

 All these variables are accessible within the file using ${variable_name} syntax.

-->

<title> Foilworld contents for <WW_TITLEFOILWORLD FWID=“${FWID}”/> </title>

</head>

<!-- WW_BODYINDEX inserts a ‘body’ HTML tag with background image typical

 for index files.

 This tag should be reimplemented to take images from the database

-->

<WW_BODYINDEX/>

<h2><tt>Title for</tt> <WW_TITLEFOILWORLD FWID=“${FWID}”/> </h2>

<hr>

<tt>Foilworlds in this foilworld </tt><p>

<!-- WW_FOILWORLDLOOP is a loop tag that for given foilworld ID (passed as FWID

 attribute), parses its contents, setting for each loop pass a variable given by

 NAME attribute.

 This variable contains an identifier of a ‘child’ foilworld.

 The loop is repeated as many times as many child foilworlds the

 current foilworld contains.

 With following WW_FOILWORLDLINK, which creates a HREF link to same

 file but with child foilworld_id, it allows to create an ‘index’ of all

 foilworlds contained by the current foilworld.

 In this case the HREF link will have the form:

HREF=“tempfoilworld.tdl?FWID=child_id_from_LOCALFWID_var&_

other_attributes_given_in_ATTR”

 The target file can be changed using FILENAME attribute and additional

 attributes may be suplied in the ATTR attribute

-->

<WW_FOILWORLDLOOP FWID=“${FWID}” NAME=“LOCALFWID”>

<WW_FOILWORLDLINK FWID=“${LOCALFWID}” FILENAME=“tempfoilworld.tdl” ATTR=““/>

</WW_FOILWORLDLOOP>

<hr>

<tt>Presentations in this foilworld </tt><p>

<!-- The same as WW_FOILWORLDLOOP and WW_FOILWORLDLINK pair, but creates

 a list of links to presentations instead of child foilworlds,

 contained by a current foilworld.

 Note that the filename in the FILENAME attribute was changed and points

 to a full index file for presentation

-->

<WW_PRESENTATIONLOOP FWID=“${FWID}” NAME=“LOCALPID”>

<WW_PRESENTATIONLINK PRESENTATIONID=“${LOCALPID}” FILENAME=“tempfullindex.tdl”

ATTR=““/>

</WW_PRESENTATIONLOOP>

</WW_DOCUMENT>

Template file to create and display index with links to foils

<?WWTEMPLATE>

<?XML VERSION=“1.0” CACHE=“YES”?>

<WW_DOCUMENT>

<!-- ?WWTEMPLATE and ?XML tags form header for all template files.

 CACHE attribute of the XML tag specifies whether the servlet should

 cache the template file or not.

-->

<WW_CONNECT CONNECTION=““/>

<html>

<head>

<title> Full Index for LOCAL <WW_TITLE FOILID=“${PID}”/> </title>

</head>

<!-- WW_BODYINDEX inserts a ‘body’ HTML tag with background image typical for index

files. This tag should be re-implemented to take images from the database.

-->

<WW_BODYINDEX/>

<!-- WW_LINK inserts HREF link pointing to file given by FILENAME with

 optional attributes specified in the ATTR attribute.

-->

<WW_LINK FILENAME=“tempbasicsearch.tdl” ATTR=““>Basic Foilset Search

<!-- WW_IMAGE inserts an IMG SRC html tag where SRC is pointing to a program

 (servlet) that allows retrieval of images from the database.

 All parts of the URL are filled in using database properties

 for a given user in context of current presentation and foil

 (given by FOILID and PARENTID attributes).

 Because this file is a presentation index,

 there is no foil context so the same ID is supplied for both.

 Name of the image property is given by the IMAGENAME attribute.

 It is a ‘search name’ for the database image property(not a gif/jpeg file name).

 The same property can have different values in different

 user/presentation/foil contexts.

-->

<WW_IMAGE IMAGENAME=“ww_search” FOILID=“${PID}” PARENTID=“${PID}”/>

</WW_LINK>

<WW_LINK FILENAME=“temphelp.tdl” ATTR=““>Help!</WW_LINK>

* GREY=local<tt> Full Index for </tt><h2> LOCAL foilset <WW_TITLE FOILID=“${PID}”/> </h2>

Given by

<!-- Following tags get information from the database for the specified

 presentation.

 (WW_AUTHORNAME) - name of the author,

 (WW_EVENT) - the event,

 (WW_EVENTDATE) - date of the event,

 and (WW_MODIFICATIONDATE) - presentation modification date

-->

<WW_AUTHORNAME FOILID=“${PID}”/> at

<WW_EVENT FOILID=“${PID}”/> on

<WW_EVENTDATE FOILID=“${PID}”/>. <tt> Foils prepared

<WW_MODIFICATIONDATE FOILID=“${PID}”/> </tt>

<WW_LINK FILENAME=“temptitleabs.tdl” ATTR=“PID=${PID}”>More Detail!</WW_LINK> *

Foil Index from this file *

<!-- WW_SELECTSOUND checks for the existence of the sound in the

 foil. If a sound object is associated with the specified foil, the ID of

 the eduobject containing sound is assigned to a variable given by

 NAME attribute.

 The same accomplished by WW_SELECTADDON tag for presentation/foil add-ons

-->

<WW_SELECTSOUND FOILID=“${PID}” NAME=“ISSOUND”>

<WW_INSERT NAME=“${ISSOUND}”/>

</WW_SELECTSOUND>

<WW_SELECTADDON FOILID=“${PID}” NAME=“ISADDON”>

<INSERT NAME=“${ISADDON}”/>

</WW_SELECTADDON>

<!-- WW_ABSMISSING inserts a link to the image of the presentation

 abstract (more precisely to the temptitleabs.tdl file which is an image

 version of the abstract foil).

 The PRESENTATIONID attribute specifies the presentation.

-->

<WW_ABSMISSING PRESENTATIONID=“${PID}”/>

<p>

<!-- WW_ABSTRACT TEXT inserts table with a bulleted text of the abstract

 foil for the presentation specified in the PRESENTATIONID attribute.

-->

<WW_ABSTRACTTEXT PRESENTATIONID=“${PID}”/>

<p>

<hr>

<h2>Table of Contents for <WW_TITLE FOILID=“${PID}”/> </h2>

A denotes presence of Additional linked information

<WW_IMAGE IMAGENAME=“ww_audio” FOILID=“${PID}” PARENTID=“${PID}”/> Indicates Available audio which is grayed out if missing

<hr>

<!-- Following tags create a index (list) of foils in current presentation.

 First WW_SET sets the COUNTER variable which allows to insert foil numbers

 (this is different from the position of the foil in the presentation

 because of the nested presentations) then WW_FOILLOOP iterates for all

 foils in the current presentation each time assigning current child foild

 ID to LOCALFID variable (given by NAME attribute)

-->

<WW_SET NAME=“COUNTER” VALUE=“1”/>

<WW_FOILLOOP PARENTID=“${PID}” NAME=“LOCALFID”>

<!-- WW_ANNOTATION inserts the annotation text for the current position

 within presentation given by PRESENTATIONID attribute. The position is

 taken from the COUNTER variable

 (See comment for WW_SET tag above)

-->

<WW_ANNOTATION PRESENTATIONID=“${PID}” POSITION=“${COUNTER}”/>

<!-- WW_INSERT tag inserts current value of COUNTER variable into the

 output text. This is used both for ‘A’ html tag to identify

 anchor and to insert current number into the displayed text -->

 <a name=“local<WW_INSERT NAME=“${COUNTER}”/>“>

<WW_INSERT NAME=“${COUNTER}”/>

<!-- These two WW_LINK tags insert links to template files with foil

 image and foil text respectively. The foil and presentation IDs

 are suplied in the ATTR attribute.

NOTE:

Because of XML grammar the “&” sign cannot be use in tag attributes.

 Instead, the “|” sign is used. The WW_LINK tag implementation

 replaces the “|” signs with “&” in output text.
-->

<WW_LINK FILENAME=“tempfoilsepimage.tdl” ATTR=“FID=${LOCALFID}|PID=${PID}”>

Separate IMAGE </WW_LINK>

* <WW_LINK FILENAME=“tempfoilsephtml.tdl” ATTR=“FID=${LOCALFID}|PID=${PID}”>

Separate HTML </WW_LINK>

<WW_TITLE FOILID=“${LOCALFID}”/>

<!-- This WW_SET increments variable COUNTER (same as Java ‘counter++’) -->

<WW_SET NAME=“COUNTER” VALUE=“%ADD(${COUNTER},1)”/>

</WW_FOILLOOP>

<hr>

<WW_LINK FILENAME=“tempfullsearch.tdl” ATTR=““>Full WebWisdom URL and this Foilset Search<WW_IMAGE IMAGENAME=“ww_search” FOILID=“${PID}” PARENTID=“${PID}”/></WW_LINK>

<WW_LINK FILENAME=“tempaliaslist” ATTR=““>Alias List</WW_LINK>

This contains all WebWisdom links preceded by those referenced in this foilset

<hr><h2> List of WebWisdom URL’s Used in this Foilset </h2>

<WW_DBSET NAME=“SIG” PROPNAME=“signature” PROPTYPE=“OVERALL” FOILID=“${PID}” PARENTID=“${PID}”/>

<WW_INSERT NAME=“${SIG}”/>

</WW_DOCUMENT>

Templates implemented using set B of TDL tags:

Purpose: enables user authentication

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<html>

<head>

 <title>Get WebWisdom Started</title>

</head>

<body background=“<TDL_DEFAULTBG/>“ text=“#FEF5C2”>

<TDL_LOGINFORM>

 <table border=0 width=100%>

<tr>

 <td rowspan=4>

<img src=“<TDL_DEFAULTLOGO/>“ name=“Image1” alt=“WWLogo”>

 </td>

 <td colspan=2 align=“center”>

<h1> Welcome to WebWisdom! </h1>

 </td>

</tr>

<tr>

 <td align=“right”>

<i>User Name:</i>

 </td>

 <td>

<TDL_USERNAME/> </p>

 </td>

</tr>

<tr>

 <td align=“right”>

 <i>Password:</i>

 </td>

<td>

<TDL_PASSWORD/></p>

 </td>

</tr>

<tr>

 <td colspan=2 align=“center”>

</TDL_LOGINFORM>

 </td>

</tr>

</table>

</body></html>

</TDL_DOCUMENT>

The first template of the set B template collection that is displayed when a user accesses the TDLServlet the first time is login.tdl. This template enables user authentication. There are two text fields in the right part of the window. The user should enter there a valid user name and the corresponding password. Provided that the user name and password match corresponding values in the database, after pressing the “Login” button the user can proceed to the next template – index.tdl.

File: index.tdl

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<TDL_FOLDERPROPS FOLDERID=“1”/>

<html>

<head>

 <title> WebWisdom NT - Folder <TDL_INSERT NAME=“${FOLDER_TITLE}”/> </title>

</head>

<body bgcolor=“#008080” text=“#FFFFFF” link=“#FFFF00” vlink=“#00FF00”>

<center>

 <img src=“<TDL_SMALLLOGO/>“ border=0 align=“middle” alt=“WWLogo”>

 <i> WebWisdom NT </i>

</center>

<hr>

 Current folder:

 <i><TDL_INSERT NAME=“${FOLDER_PATH}”/></i>

<hr>

 Folders:

<p>

 <TDL_SUBFOLDERS FOLDERID=“1”/>

<hr>

 Presentations:

<p>

 <TDL_SUBPRESENTATIONS FOLDERID=“1”/>

<hr>

<small><i>WebWisdom NT (C) v. 3.0 template<i></small>

</body>

</html>

</TDL_DOCUMENT>

The index.tdl template is used to browse the root foilworld. The list of the sub-foilworlds and presentations is displayed. The TDLServlet includes on the list only those sub-foilworlds where the currently logged user has at least “read” access. All sub-foilworlds are browsed using folder.tdl template.

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<TDL_FOLDERPROPS FOLDERID=“${fld}”/>

<html>

<head>

 <title> WebWisdom NT - Folder <TDL_INSERT NAME=“${FOLDER_TITLE}”/> </title>

</head>

<body bgcolor=“#008080” text=“#FFFFFF” link=“#FFFF00” vlink=“#00FF00”>

<center>

 <img src=“<TDL_SMALLLOGO/>“ border=0 align=“middle” alt=“WWLogo”>

 WebWisdom NT

</center>

<hr>

 Current folder:

 <i><TDL_INSERT NAME=“${FOLDER_PATH}”/> </i>

<hr>

 Folders:<p>

<TDL_FOLDERUP FOLDERID=“${fld}”/>

<TDL_SUBFOLDERS FOLDERID=“${fld}”/>

<hr>

 Presentations:

<p>

 <TDL_SUBPRESENTATIONS FOLDERID=“${fld}”/>

<hr>

<small><i>WebWisdom NT (C) v. 3.0 template<i></small>

</body>

</html>

</TDL_DOCUMENT>

The sub-foilworlds of the root foilworld can be browsed by the use of the folder.tdl template. Sample result of parsing folder.tdl template is presented in the Figure 141. In the upper part of the window, the list of sub-foilworlds is presented. The first item in the list is a link to the parent foilworlds. In the lower part of the window, the list of presentations belonging to the current foilworld is displayed. Each presentation is presented by a book-icon followed by the presentation title, and four buttons. The first button “Rich show” enables browsing of the presentation primary educational objects (usually images). The second button enables browsing of the presentation in the “best way” mode. In this mode, only those primary educational objects that have high value of the importance attribute are displayed. All other foils are represented by the secondary educational objects (usually HTML text). The third button (with the same link as the presentation title) can be used to access the presentation index. The fourth button points to the print-ready form of presentation.

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<TDL_PRESPROPS PRESID=“${pres}”/>

<TDL_FOLDERPROPS FOLDERID=“${fld}”/>

<html>

<head>

<title> WebWisdom NT - Folder <TDL_INSERT NAME=“${FOLDER_TITLE}”/> - Presentation <TDL_INSERT NAME=“${PRES_TITLE}”/> </title>

</head>

<body bgcolor=“#008080” text=“#FFFFFF” link=“#FFFF00” vlink=“#00FF00” onLoad=“loadTh()”>

<center><img src=“<TDL_SMALLLOGO/>“ border=0 align=“middle” alt=“WWLogo”> WebWisdom NT </center>

<hr>

<table border=0 width=“100%”>

 <tr>

 <td> Current folder:

<i><TDL_INSERT NAME=“${FOLDER_PATH}”/> </i>

 </td>

 <td align=“right” width=200>

<TDL_NAMEDCURRENTFOLDER FOLDERID=“${fld}”/></td>

 </tr>

</table>

<hr>

<center>

<table border=1>

 <tr>

 <td align=“center”>

<TDL_INSERT NAME=“${PRES_TITLE}”/>
 Index</td>

 </tr>

</table>

</center>

<p>

<center>

<table border=0>

 <tr>

 <td>

Presentation given by
<TDL_INSERT NAME=“${PRES_AUTHOR}”/>

<TDL_INSERT NAME=“${PRES_EVENT}”/></td>

 </tr>

</table>

</center>

<hr>

<TDL_FOILINDEX FOLDERID=“${fld}” PRESID=“${pres}”/>

<hr>

<small><i>WebWisdom NT (C) v. 3.0 template<i></small>

</body>

</html>

</TDL_DOCUMENT>

The presindex.tdl template can be used to browse the index of presentation foils. Sample result of parsing the presindex.tdl file is presented in the Figure 142. In the upper part of the window, a link to the current folder is located. Below, the presentation title, authors, and events are displayed. In the lower part of the document, the list of the presentation foils is shown. Each line consists of:

 •
educational object buttons,

 •
foil title,

 •
foil thumbnail.

The educational object buttons show the set of available educational types in the foil. Each button points to the foil.tdl template, with a parameter indicating the educational object to be displayed.

For the performance reasons, thumbnails are loaded after the presentation index is displayed. If there is no thumbnail for a particular foil, corresponding image is displayed.

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<TDL_PRESPROPS PRESID=“${pres}”/>

<html>

<head>

<title> WebWisdom NT - Presentation <TDL_INSERT NAME=“${PRES_TITLE}”/> </title>

</head>

<frameset rows=“40,*,145”>

 <frame name=“upper”

src=“upper.tdl?<TDL_INSERT NAME=“${QUERY_STRING}”/>“

marginwidth=“10”

marginheight=“10”

scrolling=“no”

frameborder=“no”>

 <frame name=“middle”

src=“middle.tdl?<TDL_INSERT NAME=“${QUERY_STRING}”/>“

marginwidth=“10”

marginheight=“10”

scrolling=“auto”

frameborder=“no”>

 <frame name=“lower”

src=“lower.tdl?<TDL_INSERT NAME=“${QUERY_STRING}”/>“

marginwidth=“0”

marginheight=“0”

scrolling=“no”

frameborder=“no”>

</frameset>

</html>

</TDL_DOCUMENT>

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<TDL_PRESPROPS PRESID=“${pres}”/>

<html>

<head>

<title> WebWisdom NT </title>

</head>

<body bgcolor=“#008080” text=“#FFFFFF” link=“#FFFF00” vlink=“#00FF00”>

<center>

 <TDL_PRESUP FOLDERID=“${fld}” PRESID=“${pres}” NAME=“${PRES_TITLE}”/>

</center>

<p>

</body>

</html>

</TDL_DOCUMENT>

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<TDL_FOIL PRESID=“${pres}” FOILID=“${foil}” SHOW=“${show}” MODE=“${mode}”/>

<TDL_TIMER FOILID=“${foil}” PRESID=“${pres}”/>

<TDL_PREFETCH FOLDERID=“${fld}” PRESID=“${pres}” FOILID=“${foil}” SHOW=“${show}” MODE=“${mode}”/>

</TDL_DOCUMENT>

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<html>

<head>

<title> WebWisdom NT </title>

</head>

<body bgcolor=“#008080” text=“#FFFFFF” link=“#FFFF00” vlink=“#00FF00” onLoad=“loadThs()”>

 <TDL_JSFUNCTIONS FOLDERID=“${fld}” PRESID=“${pres}” FOILID=“${foil}” SHOW=“${show}” MODE=“${mode}”/>

 <TDL_NAVIGATION FOLDERID=“${fld}” PRESID=“${pres}” FOILID=“${foil}” SHOW=“${show}” MODE=“${mode}”/>

</body>

</html>

</TDL_DOCUMENT>

The foil.tdl template can be used to display foils. Sample result of parsing of the foil.tdl file is presented in the Figure 143. In the upper part of the window, presentation title is displayed. This title is a link to the presentation index. In the middle part of the window, current educational object is displayed. Below the navigational panel is presented. The panel consists of:

 •
navigational buttons,

 •
index button,

 •
educational object buttons,

 •
thumbnails.

Navigational buttons allow showing: the first foil, previous foil, next foil or the last foil. The educational object buttons allow to switch between available educational types for the current foil.

If the presentation is started using “Rich show” or “Best way” buttons from the folder.tdl template, pressing one of the navigational buttons will cause displaying the appropriate foil according to the primary/secondary importance paradigm (regardless the educational object currently displayed). If the presentation is started from the presindex.tdl template, changes in displayed educational type will be permanent, i.e., next foil will be displayed with the same educational type as the current foil.

The index button points to presentation index. Thumbnail images display two subsequent foils.

Purpose: printing of foil thumbnails

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<TDL_PRESPROPS PRESID=“${pres}”/>

<TDL_FOLDERPROPS FOLDERID=“${fld}”/>

<html>

<head>

<title> WebWisdom NT - Folder <TDL_INSERT NAME=“${FOLDER_TITLE}”/> - Presentation <TDL_INSERT NAME=“${PRES_TITLE}”/> </title>

</head>

<body bgcolor=“#FFFFFF” link=“#000000”>

<table border=0>

 <tr>

<td align=“center”>

<TDL_INSERT NAME=“${PRES_TITLE}”/>
 Index

 </td>

 </tr>

</table>

<p>

<hr>

<TDL_FOILTHUMBS FOLDERID=“${fld}” PRESID=“${pres}”/>

<hr>

<small><i>WebWisdom NT (C) v. 3.0 template<i></small>

</body>

</html>

</TDL_DOCUMENT>

The print.tdl template enables printing of the presentation thumbnail index. Sample view of the parsed print.tdl template is presented in the Figure 144. Each of the thumbnails is a link to the real-size version of the image.

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<html>

<head>

<title> WebWisdom NT </title>

</head>

<body bgcolor=“#FFFFFF”>

<TDL_FOIL PRESID=“${pres}” FOILID=“${foil}” SHOW=“${show}” MODE=“${mode}”/>

<hr>

<small><i>WebWisdom NT (C) v. 3.0 template<i></small>

</body>

</html>

</TDL_DOCUMENT>

Purpose: displaying internally stored HTML pages

<?XML VERSION=“1.0” CACHE=“YES”?>

<TDL_DOCUMENT>

<TDL_SUBFRAME EID=“${eid}”/>

</TDL_DOCUMENT>

Example implementation of TDL tags as servlet Java classes:

import java.io.*;

import java.util.*;

import java.sql.*;

import java.sql.Date;

import db.*;

import view.*;

public class Tags extends TDLTag {

...

/**

 * Main tag for all TDL documents. Standard TDL tag implementation.

 * @return Parsed contents

*/

 public String WW_DOCUMENT () {

 return parseChildren();

// parses all children

 }

/**

 * IF statement. Standard TDL tag implementation.

 * Must be used with THEN and/or ELSE tags.

 * @param condition - <code>if</code> condition

 * @return Parsed contents

*/

 public String WW_IF (String condition) {

 String res=““;

 condition = evaluateExpression(condition);

 setIntAttrValue(Constants.IFLevelProperty,

getIntAttrValue(Constants.IFLevelProperty)+1);

 // setting a temporary property with current value of the condition

 if (condition!=““)

 setIntAttrValue(Constants.IFLevelConditionProperty+

 getIntAttrValue(Constants.IFLevelProperty),1);

 else

 setIntAttrValue(Constants.IFLevelConditionProperty+

 getIntAttrValue(Constants.IFLevelProperty),0);

 res+=parseChildren();

// removing temporary property

 removeAttrValue(Constants.IFLevelConditionProperty+

getIntAttrValue(Constants.IFLevelProperty));

 setIntAttrValue(Constants.IFLevelProperty,

getIntAttrValue(Constants.IFLevelProperty)-1);

 return res;

 }

/**

 * THEN statement. Standard TDL tag implementation.

 * Must be used only in IF tag context.

 * @return Parsed contents

*/

 public String WW_THEN () {

 if (getIntAttrValue(Constants.IFLevelConditionProperty+

 getIntAttrValue(Constants.IFLevelProperty))==1)

 return parseChildren();

 else

 return ““;

 }

/**

 * ELSE statement. Standard TDL tag implementation.

 * Must be used only in IF tag context.

 * @return Parsed contents

*/

 public String WW_ELSE () {

 if (getIntAttrValue(Constants.IFLevelConditionProperty+

 getIntAttrValue(Constants.IFLevelProperty))==0)

 return parseChildren();

 else

 return ““;

 }

/**

 * Inserts result of the calculation or the variable value.

 * Standard TDL tag implementation.

 * @param name - variable or expression

 * @return String with a value

*/

 public String WW_INSERT(String name) {

 return evaluateExpression(name);

 }

/**

 * Inserting result of the calculation or the variable value

 * into <code>name</code> variable. Standard TDL tag implementation.

 * @param name - name of the variable

 * @param value - variable or expression value

 * @return Empty string

*/

 public String WW_SET (String name, String value) {

 name = evaluateExpression(name);

 value = evaluateExpression(value);

 setStringAttrValue(name,value);

 return ““;

 }

/**

 * Connecting to database. Standard TDL tag implementation.

 * @param connection - connection string, if <code>connection</code> is empty,

 * default value is taken from property file.

 * @return Empty string

*/

 public String WW_CONNECT (String connection) {

 connection = evaluateExpression(connection);

 if (connection.equals(““))

 connection=getStringAttrValue(Constants.ConnectionStringProperty);

 else

 setStringAttrValue(Constants.ConnectionStringProperty,connection);

 try {

 setConn (DriverManager.getConnection(connection));

 } catch (SQLException e) {

 ExceptionHandler.handleException(e,”TAGS:WW_CONNECT”);

 }

 return ““;

 }

 ...

}

 /**

 * Processes its contents inserting into the <code>name</code> variable

 * id’s of foilworlds that are in the foilworld specified by

 * <code>fwid<code>

 * @param fwID - foilworld id

 * @param name - name of the variable

 * @return Parsed contents

 */

 public String WW_FOILWORLDLOOP (String fwID, String name) {

 name = evaluateExpression(name);

 fwID = evaluateExpression(fwID);

 String res = ““;

 String query = “SELECT WID FROM FOILWORLD WHERE BUFFER_OWNER_UID IS

NULL AND WID<>1 AND BELONGS_TO_WID = “+fwID+” ORDER BY NAME”;

 try {

Statement sqlStatement =

tdlTemplate.getCon().createStatement();

ResultSet rs = sqlStatement.executeQuery(query);

 while (rs.next()) {

 setStringAttrValue(name,rs.getString(“WID”));

 res+=parseChildren();

 }

 rs.close(); sqlStatement.close();

 } catch (SQLException e) {

 ExceptionHandler.handleException(e,”TAGS:WW_FOILWORLDLOOP”);

 }

 return res;

 }

 /**

 * Processes the contents inserting into the <code>name</code> variable

 * id’s of presentations from the foilworld specified by <code>fwid<code>

 *

 * @param fwID - foilworld id

 * @param name - name of the variable

 * @return Parsed contents

 */

 public String WW_PRESENTATIONLOOP (String fwID, String name) {

 name = evaluateExpression(name);

 fwID = evaluateExpression(fwID);

 String res = ““;

 String query = “SELECT COMPONENT_PID FROM FW_CONTAIN_PR WHERE

CONTAINER_WID=“+fwID;

 try {

Statement sqlStatement =

tdlTemplate.getCon().createStatement();

ResultSet rs = sqlStatement.executeQuery(query);

 while (rs.next()) {

 setStringAttrValue(name,rs.getString(“COMPONENT_PID”));

 res+=parseChildren();

 }

 rs.close(); sqlStatement.close();

 } catch (SQLException e) {

 ExceptionHandler.handleException(e,”TAGS:WW_PRESENTATIONLOOP”);

 }

 return res;

 }

 /**

 * Processes the contents inserting into the <code>name</code> variable foil

 * id’s from the presentation specified by <code>parentID<code>

 *

 * @param parentID - presentation id

 * @param name - name of the variable

 * @return Parsed contents

 */

 public String WW_FOILLOOP (String parentID, String name) {

 name = evaluateExpression(name);

 parentID = evaluateExpression(parentID);

 String res=““;

 Vector vc = new Vector();

 fillFoilID(parentID, vc);

 Enumeration en = vc.elements();

 while (en.hasMoreElements()) {

 setStringAttrValue(name,(String)en.nextElement());

 res+=parseChildren();

 }

 return res;

 }

Appendix C

This Appendix contains a detailed description of the Javascript API to the collaboratory framework (referred to below as TangoInteractive). This API enables other technologies, such as Active Shared Objects and shared DHTML applications, as explained in the Detailed Description

Section 0: Becoming a Tango Interactive application

Tango Interactive runtime, as a generic platform, will know nothing about our application until we advertise it to the Tango Interactive control application. What we have to realize here though is that, in the case of JavaScript applications, the control application shall know the location of a web page with our application. This location will be used to start the application by opening a new browser window and loading its content from the given URL. Our task is, then, to create a Tango Interactive enabled HTML/Javascript page.

In the following sections we assume that the Tango Interactive session manager is working and is configured to know the location of our Web page. The scope of this document is confined to the creation of HTML content for this very page.

 Section 1: Connecting to the Tango Interactive system

Before any collaboration can take place, the application must connect to the Tango Interactive runtime. This step, which will be referred to as registering, has to be performed even though the Tango Interactive itself starts our application. Regstration procedure not only notifies the Tango Interactive system that we are joining, but also provides us with a system proxy - the handle to the Tango Interactive agent. Here is the implementation:? ”L

Β?_Initial

 ex11.html

 <html>

 <body>

 <script language=“javascript”>

 var

 Tango_agent=Packages.webwisdom.tango.TAgentJS.

 createTAgentJS(window);

 </script>

 </body>

 </html>

 In the script above, a new variable Tango_agent is created. Tango_agent is initialized to the value returned by the static method createTAgentJS() of TAgentScript class from webwisdom.tango package. The package is available to the script if the Tango Interactive client has been installed. If, for any reason, registration fails, createTAgentJS() will return null. From now on we will use Tango_agent to access the Tango Interactive runtime.

It is a good practice to let the system release the resources. We shall use exitJS() function of Tango_agent when the application is unloaded:

 ex12.html

 <html>

 <body onUnload=“Tango_exit()”>

 <script language=“javascript”>

 var Tango_agent=null;

 function Tango_register(win)

 {

 Tango_agent=Packages.webwisdom.tango.TAgentJS.

 createTAgentJS(win);

 if(Tango_agent!=null)

 Tango_agent.setDbgModeJS(true);

 }

 function Tango_exit()

 {

 if(Tango_agent!=null)

 Tango_agent.exitJS();

 }

 Tango_register(window);

 </script>

 </body>

 </html>

 Note also that we added setDbgModeJS() call, which will help us trace how Tango_agent interprets arguments we pass. With this option engaged, all calls to Tango_agent will be echoed on the browser’s Java console.

 Section 2: Exchanging data within a session

 Registered application’s fundamental capability is its ability to communicate with other applications registered in the same session. Sending and receiving messages achieve the information exchange. In case of JavaScript applications, a message takes form of a string. Sending is as simple as calling sendJS() method of Tango_agent. In order to receive, the application has to register a script page as a listener of messages. (Note the difference between registering application and registering a listener.) This is done by calling addTDataListenerJS() method of Tango_agent. Once a script is registered as a listener its method Tango_receive() will be called upon receiving messages.

 We create a simple chat to illustrate sending and receiving mechanism:

 chat.html

 <html>

 <body>

 <form name=“chat”>

 <input type=“text” name=“tty” size=16>

 <input type=“button” value=“send”>

 </form>

 </body>

 </html>

 Our chat is a form named “chat” made of two elements:

 a text field named “tty”; and

 a button with the label “send”.

 Now we add Tango Interactive code to it:

 ex21.html

 <html>

 <body onUnload=“Tango_exit()”>

 <script language=“javascript”>

 var Tango_agent=null;

 function Tango_register(win)

 {

 Tango_agent=Packages.webwisdom.tango.TAgentJS.

 createTAgentJS(win);

 }

 function Tango_exit()

 {

 if(Tango_agent!=null)

 Tango_agent.exitJS();

 }

 function Tango_send(m)

 {

 if(Tango_agent!=null)

 Tango_agent.sendJS(m);

 }

 function Tango_receive(m)

 {

 document.forms.chat.tty.value=m;

 }

 Tango_register(window);

 if(Tango_agent!=null)

 Tango_agent.addTDataListenerJS(window);

 </script>

 <form name=“chat”>

 <input type=“text” name=“tty” size=16 onclick=

 “Tango_send(tty.value)”>

 <input type=“button” value=“send”>

 </form>

 </body>

 </html>

 In the script above, two functions are defined:

 Tango_send(), which simply calls sendJS() method on Tango_agent;

 Tango_receive(), which will be called by the Tango Interactive runtime when a message arrives. Only one Tango_receive() function can be called at a time.

 The actual sending is triggered when the “send” button is pressed. The onClick event of the button is handled by Tango_send() function, invoked with the value of the text field “tty”. The code registering a listener is placed after Tango_receive() function definition. This is because browsers interpret html page sequentially from top to bottom; therefore it may happen that certain code contained on the page is executed while objects from the rest of the page are still undefined. Because registering a listener may result in an immediate attempt to call Tango_receive() function, we have to make sure this function is defined beforehand.

 Section 3: Acquiring system level information

This section shows how the system level information can be acquired in synchronous or asynchronous manner.

At any point in time after registration, certain system information can be obtained from Tango_agent:

 userName: name of the user as logged to the Tango Interactive

 isMaster: whether the user is the master of this session

 masterName: name of the user who is the master of this session

 participantNames: names of all participants of this session

 isAudioAvailable: whether Tango Interactive system allows using audio at this moment

Example below creates a form with one button, which, when clicked, calls appropriate methods of Tango_agent in order to get Tango Interactive system info and print it out to the Java console of the browser:

 ex31.html

 <html>

 <body onUnload=“Tango_exit()”>

 <script language=“javascript”>

 var Tango_agent=null;

 function Tango_register(win)

 {

 Tango_agent=Packages.webwisdom.tango.TAgentJS.

 createTAgentJS(win);

 }

 function Tango_exit()

 {

 if(Tango_agent!=null)

 Tango_agent.exitJS();

 }

 function print(s)

 {

 Packages.java.lang.System.out.println(s);

 }

 function Tango_debug()

 {

 if(Tango_agent==null)

 return;

 print(“agent=“+Tango_agent);

 print(“ userName=

 “+Tango_agent.getUserNameJS());

 print(“ isMaster=“+Tango_agent.isMasterJS());

 print(“ masterName=

 “+Tango_agent.getMasterNameJS());

 print(“ participantNames=

 “+Tango_agent.getParticipantNamesJS());

 print(“ isAudioAvailable=

 “+Tango_agent.isAudioAvailableJS());

 }

 Tango_register(window);

 </script>

 <form>

 <input type=“button” value=“debug” onclick=

 “Tango_debug()”>

 </form>

 </body>

 </html>

Function print() is only a utility that prints its argument to the Java console. Function Tango_debug() calls Tango_agent’s methods and prints results using print() function. Button “debug” calls Tango_debug() when clicked.

 Some of the information provided by the Tango Interactive system is, by its very nature, constant, e.g. user name, which is determined on login, remains unchanged during the session’s life span. Other system information may change during the session, e.g. who is the master of the session. It is useful to have a mechanism for being informed about changes when they occur. In Tango Interactive, an application may register to receive asynchronous updates about system state changes. The way to do this is similar to registering data listeners (Tango_agent.addTDataListenerJS(window) in Section 2):

 ex32.html

 <html>

 <body onUnload=“Tango_exit()”>

 <script language=“javascript”>

 function print(s)

 {

 Packages.java.lang.System.out.println(s);

 }

 var Tango_agent=null;

 function Tango_register(win)

 {

 Tango_agent=Packages.webwisdom.tango.TAgentJS.

 createTAgentJS(win);

 }

 function Tango_exit()

 {

 if(Tango_agent!=null)

 Tango_agent.exitJS();

 }

 Tango_register(window);

 function Tango_masterChanged(isM,mNa)

 {

 print(“Tango_masterChanged(“+isM+”,”+mNa+”)”);

 }

 function Tango_participantJoined(pNa)

 {

 print(“Tango_participantJoined(“+pNa+”)”);

 }

 function Tango_participantLeft(pNa)

 {

 print(“Tango_participantLeft(“+pNa+”)”);

 }

 function Tango_audioRequested(isR)

 {

 print(“Tango_audioRequested(“+isR+”)”);

 }

 if(Tango_agent!=null)

 Tango_agent.addTControlListenerJS(window);

 </script>

 </body>

 </html>

 Function addTControlListenerJS() registers the script identified by the window passed as the function’s argument. Note that this is different registration than the initial registration in the system (Tango_register()) or the registration of this session private data listeners (addTDataListenerJS()). This one notifies Tango_agent that the given script should receive notifications about system events. Notifications will be made by calling script’s functions:Tango_masterChanged(), Tango_participantJoined(), Tango_participantLeft(), and Tango_audioRequested(). All these functions must be defined in the script, and their signatures (number of arguments) must be as in the example above. The implementation, however, will vary with the applications needs; some functions’ bodies may be left empty, while another may make a full use of all the arguments. Our code just prints function names and their arguments.

Advanced applications will most probably require asynchronous notifications and still use synchronous calls for the sake of convenience.

Section 4: Broadcasting versus sending messages selectively

In addition to broadcasting mechanism, which was described in Section 1, Tango Interactive allows for sending data to selected members of the session.

Given the ability to obtain the names of session participants as described in Section 3, we can use these names for explicit addressing of messages. Function selectiveSendJS() takes two arguments. First is an array of user names to which the message, given as the second argument, is addressed. In the example that follows, selectiveSendJS() is called when the “send” button is pressed. Note also the use of system notifications Tango_participantJoined/Left() and getParticipantsJS() call for updating html forms displaying current participants of the session:

 ex41.html

 <html>

 <body onUnload=“Tango_exit()”>

 <script language=“javascript”>

 function print(s)

 {

 Packages.java.lang.System.out.println(s);

 }

 var Tango_agent=null;

 function Tango_register(win)

 {

 Tango_agent=Packages.webwisdom.tango.TAgentJS.

 createTAgentJS(win);

 if(Tango_agent!=null)

 {

 Tango_agent.setDbgModeJS(true);

 Tango_agent.addTDataListenerJS(win);

 Tango_agent.addTControlListenerJS(win);

 }

 }

 function Tango_exit()

 {

 if(Tango_agent!=null)

 Tango_agent.exitJS();

 }

 function Tango_selectiveSend(recp,data)

 {

 if(Tango_agent!=null)

 Tango_agent.selectiveSendJS(recp,data);

 }

 function Tango_receive(data)

 {

 document.forms.chat.tty.value=data;

 }

 function Tango_masterChanged(isM,mNa)

 {

 }

 function Tango_participantJoined(pNa)

 {

 optionsAddOption(document.forms.chat.userNames.

 options,pNa);

 }

 function Tango_participantLeft(pNa)

 {

 optionsRemoveOption(document.forms.chat.

 userNames.options,pNa);

 }

 function Tango_audioRequested(isR)

 {

 }

 function optionsToArray(opts)

 {

 var a=new Array();

 for(var i=0,ai=0;i<opts.length;i++)

 {

 var o=opts[i];

 if(o.selected)

 a[ai++]=o.value;

 }

 return a;

 }

 function optionsAddOption(opts,nam)

 {

 var o=new Option(nam,nam);

 opts[opts.length]=o;

 }

 function optionsRemoveOption(opts,nam)

 {

 for(var i=0;i<opts.length;i++)

 {

 if(opts[i].value==nam)

 {

 opts[i]=null;

 return;

 }

 }

 }

 </script>

 <form name=“chat”>

 <input type=“text” name=“tty” size=16>

 <select name=“userNames” size=4 multiple>

 </select>

 <input type=“button” value=“send” onclick=

 “Tango_selectiveSend(optionsToArray

 (userNames.options),tty.value)”>

 </form>

 <script language=“javascript”>

 Tango_register(window);

 if(Tango_agent!=null)

 {

 var part=Tango_agent.getParticipantNamesJS();

 for(var i=0;i<part.length;i++)

 optionsAddOption(document.forms.chat.

 userNames.options,part[i]); }

 </script>

 </body>

 </html>

This time we split the Java script code into two parts. The second part appears only after forms are created and takes care of their initialization. Initial content of the form “userNames” is obtained from Tango_agent.getParticipantNamesJS() call. The form is updated in Tango_participantJoined/Left() functions whenever change is reported by the Tango Interactive system. Functions Tango_masterChanged() and Tango_audioRequested() are not used in this example but have to be defined as a consequence of registering control listener in Tango_agent.addTControlListenerJS() (see Section 3 for description of the asynchronous system notifications).

Messages are sent by Tango_agent.selectiveSendJS(), which takes array of recipients as the first parameter and the message itself as the second one. Although different method must be used for selective and nonselective sends, reception in both cases is identical: Tango_receive() is called if data listener is registered by Tango_agent.addTControlListenerJS().

 Other functions used in the example are JavaScript utilities:

 optionsToArray() re-packs array of JavaScript objects Option into array of

 strings;

 optionsAdd/RemoveOption() changes elements of array of Options.

 Section 5: Collaborative applets embedded in JavaScript

 Applets can be directly connected to Tango Interactive using Java API. However, if multiple applets want to participate in the same session they all have to use a single Tango Interactive proxy: instance of TAgent class in Java or Tango_agent in JavaScript. Because Tango_agent is in fact an instance of TAgent it can also be used inside Java applications, as is TAgent in Java API for Tango Interactive. To make it happen the reference on Tango_agent must be passed to the applet. Moreover, message streams of different applications must be channeled so they can be delivered to their appropriate counterparts.

 We create a simple chat - Java applet - that uses Tango Interactive capabilities via JavaScript.

 Chat.java

 import java.awt.*;

 import java.applet.Applet;

 import netscape.javascript.JSObject;

 import webwisdom.tango.*;

 public class Chat extends Applet implements

 TDataListener

 {

 TextField text;

 private TAgent agent=null;

 private int channelId=0;

 public void init()

 {

 super.init();

 setLayout(new BorderLayout());

 text=new TextField(“Uninitialized”);

 add(“North”,text);

 JSObject jsWin=JSObject.getWindow(this);

 Object[] args=new Object[1];

 args[0]=this;

 jsWin.call(“appletReadyJ”,args);

 }

 public void initTangoJS(TAgent a,Number ch)

 {

 agent=a;

 channelId=((Number)ch).intValue();

 if(agent!=null)

 agent.addTDataListener(channelId,this);

 }

 public boolean handleEvent(Event evt)

 {

 if(evt.id==Event.ACTION_EVENT)

 if(evt.target==text)

 if(agent!=null)

 agent.send(channelId,stringToBytes

 (text.getText()));

 return super.handleEvent(evt);

 }

 public void receive(byte[] b)

 {

 text.setText(bytesToString(b));

 }

 private String bytesToString(byte t[])

 {

 return new String(t,0);

 }

 private byte[] stringToBytes(String s)

 {

 int l=s.length();

 byte[] t=new byte[l];

 s.getBytes(0,l,t,0);

 return t;

 }

 }

 Important in this Applet is that it uses send() and addTDataListener() functions with the channel number as the first of their arguments. Channel number, together with TAgent, is received from JavaScript application in initTangoJS() call. This is JavaScript application that decides which application should use which channel so the data streams of possibly multiple applications using the same TAgent do not interfere. Neither initTangoJS() function nor mechanism of passing information from JavaScript application to Java applet is a part of Tango Interactive API - this is an interface between a JavaScript application and its applet sub-components.

 Let’s now take a look how this chat application makes part of the JavaScript application:

 ex51.html

 <html>

 <body onUnload=“Tango_exit()”>

 <script language=“javascript”>

 var Tango_agent=null;

 function Tango_register(win)

 {

 Tango_agent=Packages.webwisdom.tango.TAgentJS.

 createTAgentJS(win);

 if(Tango_agent!=null)

 Tango_agent.setDbgModeJS(true);

 }

 function Tango_exit()

 {

 if(Tango_agent!=null)

 Tango_agent.exit();

 }

 Tango_register(window);

 function appletReadyJ(a)

 {

 a.initTangoJS(Tango_agent,57);

 }

 </script>

 <applet name=“app” codebase=“.” code=“Chat.class”

 width=200 height=33 mayscript>

 </applet>

 </body>

 </html>

Applet Chat is placed on the page and identified by the name “app”. Function appletReadyJ() is exposed by the script and called by chat when the applet finishes its initialization (see Chat.init() function). Call to this method signifies that the applet is ready to be used and its interface functions can now be called. In particular, initTangoJS() method of the applet is invoked to pass Tango Interactive specific arguments. For the applet it is equivalent of creating its own TAgent, so the applet can start effectively using the Tango Interactive communication framework. Number 57 has no special meaning - it just identifies a channel.

Next example will show how multiple applets, in addition to script’s own messages are all connected to Tango_agent. Effectively, JavaScript here plays a role of an integration platform for applets in collaborative environments:

 ex52.html

 <html>

 <body onUnload=“Tango_exit()”>

 <script language=“javascript”>

 var numAppReady=0;

 var masterReady=false;

 var Tango_agent=null;

 function Tango_register(win)

 {

 Tango_agent=Packages.webwisdom.tango.TAgentJS.

 createTAgentJS(win);

 if(Tango_agent!=null)

 {

 Tango_agent.setDbgModeJS(true);

 Tango_agent.addTDataListenerJS(window);

 }

 Tango_send(‘q’);

 }

 function Tango_exit()

 {

 if(Tango_agent!=null)

 Tango_agent.exit();

 }

 function Tango_send(data)

 {

 if(Tango_agent!=null)

 Tango_agent.sendJS(data);

 }

 function Tango_receive(data)

 {

 var tag=data.substring(0,1);

 if(tag==‘t’)

 {

 document.forms.chat.tty.value=

 data.substring(1,data.length);

 }

 else if(tag==‘r’)

 {

 masterReady=true;

 if(numAppReady==2)

 initApplets();

 }

 else if(tag==‘q’)

 {

 if((Tango_agent.isMaster())&&(masterReady==true))

 Tango_send(‘r’);

 }

 }

 Tango_register(window);

 function appletReadyJ(a)

 {

 numAppReady++;

 if(numAppReady==2)

 {

 if(Tango_agent.isMaster())

 {

 initApplets();

 masterReady=true;

 Tango_send(‘r’);

 }

 else

 {

 if(masterReady)

 initApplets();

 }

 }

 }

 function initApplets()

 {

 document.applets.a1.initTangoJS(Tango_agent,57);

 document.applets.a2.initTangoJS(Tango_agent,58);

 }

 </script>

 <form name=“chat”>

 <input type=“text” name=“tty” size=16 onclick=

 “Tango_send(‘t’+tty.value)”>

 <input type=“button” value=“send”>

 </form>

 <applet name=“a1” codebase=“.”

 code=“Chat.class”

 width=200 height=33

 mayscript>

 </applet>

 <applet name=“a2” codebase=“.” code=“Chat.class”

 width=200 height=33

 mayscript>

 </applet>

 </body>

 </html>

 This application is made of three independent sub-applications:

 JavaScript chat represented by the form “chat”,

 Java applet Chat named “a1”, and

 Java applet Chat named “a2”.

Each of these applications uses the same Tango_agent created by the JavaScript application. JavaScript chat was described in Section 2, Java chats were introduced earlier in this section. Messages of these three applications are sent via different channels: JavaScript chat goes by implicit and unnamed default channel, Java chats use channels 57 and 58. The choice of channels is arbitrary and has no other meaning than to distinguish several applications.

Special care is taken to assure proper initialization. Because applets may be not activated instantly when the JavaScript application registers with Tango Interactive, their creation should be synchronized. These precautions can be omitted if applets are stateless. Our example, however, implements special protocol to ensure connection of slave applets to Tango Interactive after the applets on the master side are connected. The protocol consists of three message types:

 messages starting with ‘t’ - to pass chat text;

 messages starting with ‘r’ - to notify about master readiness;

 messages starting with ‘q’ - to ask if master applications are ready.

 Application’s initialization state is remembered by two variables:

 numAppReady is incremented each time a sub-application calls

 appletReadyJS(), and

 masterReady turns to true when ‘r’ messages from master is received.

 Slave can be connected to Tango Interactive when numAppReady equals 2 - the number of applets - and masterReady flag is true.

The protocol ‘r’ notification could be implemented per applet rather than once per all applets.

SYSTEM FOR AND METHOD OF MANAGING AND DELIVERING

EDUCATIONAL CONTENT

Abstract

A computer-based education system is provided and implements a corresponding method. The system includes a database having non-volatile storage and logic for storing in the storage educational content and metadata about the educational content and a collection of templates including a first template, stored in a storage. The templates have tags defined with computer-interpretable logic to access the database, collect data therefrom, and create HTML-compatible output from the collected data. The system also includes a content server, cooperative with the database and with the collection of templates. The content server has template interpretation logic to interpret an identified template and to invoke tag logic in response to the interpretation of tags in the identified template. The system also includes a collaboration server having session logic to receive an application-specific message from a session participant and to forward the application-specific message to all session participants. First client logic, residing at a first computer node and identified as a session participant, sends a first Tuple message to the content server identifying a template and sends an application-specific message containing the first Tuple message to the collaboration server. Second client logic, residing at a second computer node and identified as a session participant, receives application-specific messages from the collaboration server, programmatically creates a second Tuple message therefrom, and sends the second Tuple message to request corresponding content. Other logic is described including “raise hand” logic in which a student may send signal to a teacher with a predefined meaning during a computer-based lecture. Various control modes are described for controlling a lecture, and asynchronous embodiments of the above are described.

/LegalA-F/Dichiara_Peter/op/107556.117/apl/webwsdm/apl3.wpf

*****************Box Stats***********************

Box Number: 1 on Page: 123; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

File: login.tdl
*****************Box Stats***********************

Box Number: 2 on Page: 126; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

Purpose: browsing of the root folder contents

*****************Box Stats***********************

Box Number: 3 on Page: 128; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

File: folder.tdl
Purpose: browsing contents of folders

*****************Box Stats***********************

Box Number: 4 on Page: 129; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

File: presindex.tdl
Purpose: displaying the presentation index

*****************Box Stats***********************

Box Number: 5 on Page: 132; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

File: foil.tdl
Purpose: frameset container for browsing of foils

*****************Box Stats***********************

Box Number: 6 on Page: 133; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

File: upper.tdl
Purpose: upper part of the foil-browsing window

*****************Box Stats***********************

Box Number: 7 on Page: 133; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

File: middle.tdl
Purpose: middle part of the foil-browsing window

*****************Box Stats***********************

Box Number: 8 on Page: 133; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

File: lower.tdl
Purpose: lower, navigational part of the foil-browsing window

*****************Box Stats***********************

Box Number: 9 on Page: 135; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

File: print.tdl
*****************Box Stats***********************

Box Number: 10 on Page: 136; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

File: printfoil.tdl
Purpose: printing of foils

*****************Box Stats***********************

Box Number: 11 on Page: 136; Filename: None; Content Type: Text; Text Angle: 0; Width: 0.00166666666666667; Height: 0.00166666666666667.

File: subframe.tdl
dichiara_peter C:\Docx97\convert\drft5.wpf
�PAGE \# "'Page: '#'�'" ��Document contained 11 boxes. Box content and statistics can be found at the end of this document.

- 2 -

