Java Tutorial 1999

Part 3. Graphics, the Abstract
Windowing Toolkit, and the Swing Set

Instructors: Geoffrey Fox , Nancy McCracken
Syracuse University
111 College Place
Syracuse
New York 13244-4100

njm@npac.syr.edu 1

Applets and Graphics

njm@npac.syr.edu

Thejava.awt.Graphics class

¢ The AWT hastwo different schemes for creating all or
parts of applet windows:

— A high-level scheme where a Layout manager decides how to
place components like buttons and textfieldsin the window
(described later).

— A low-level scheme where methods draw graphics objects to the
window and must say where to place them in terms of pixels.

(0,0) (width,0)

Java Graphics
Pixel
Coordinate
System

(0,height) (width,height)

njm@npac.syr.edu

*

® & O o o

Methods for drawing in the Graphics Class

Graphics class has methods to construct basic two dimensional
Images
— (all parameters are intsunless otherwise indicated)

— X, Yy pixel locations refer to the upper left corner of the object to be
drawn (except for strings)

drawString (String text, X, y)

drawLine (x1, yl, x2,y2)

drawRect (X, y, width, height), fillRect (...),

drawOval (...), fillOval (...),

drawRoundRect (X, y, width, height, arcWidth, arcHeight)

— for arectangle with rounded corners!,
draw3DRect (X, Yy, width, height, Boolean b)

— (to get shadow effect asin buttons - if bistrue, it's raised),
drawArc (X, y, width, height, startAngle, arcAngle), fillArc(..),
drawPolygon(int xPointg[], int yPointg[], n);

njm@npac.syr.edu 4

Thejava.awt.Font and FontMetrics Class

¢ Graphicsinstance.setFont(particularFont) will set the current Font
in the instance Graphicsinstance of the Graphics class to the value
particularFont of class Font.

— The default call setFont(particularFont) sets the Font in the current

appl et.

— setFont can also be used on instances of AWT components, as we shall
see in later examples.

¢ Theclass Font has an important constructor used asin

¢ Font MyFont = new Font(” Serif", Font.PLAIN ,36);

— where one can use specific font names TimesRoman, Courier,
Helvetica, ZapfDingbats, but Sun would prefer you use the generic
names Serif, SansSerif, and MonoSpaced. Additional font names
include Dialog (the default for many AWT components).

— Font.PLAIN, Font.BOLD, Font.ITALIC are possible text styles

+ |Inan applet, the font specified may not be available in a particular
browser. To find out which fonts are available, one may call

— String fonts[] = Toolkit.getDefaultToolkit(). getFontList();
njm@npac.syr.edu 5

FontM etrics class

¢ FontMetrics fm = getFontMetrics(particularFont); / / allowsoneto
find out about the font

— fm.stringWidth("text"); / / returns pixel width of string "text"
— fm.getHeight(); / / returnstotal height of highest Font character
— getAscent(),

— getDescent(),

— getLeading(),

¢ Drawstring uses leftmost baseline point as (X,y)

leadin

ascent height
baseline

descen

njm@npac.syr.edu 6

Thejava.awt.Color Classes

¢ Color c =new Color (redvalue, greenvalue, bluevalue),
red/ green/ bluevalue can be specified asintegersinO ...
255 or floating point numbers from O to 1.

¢ cisgenerated asaColor in RGB format.

& graphicsobject.setColor(c); / / setscurrent color in
graphicsobject which is used for all subsequent
operations

¢ There are particular Color instances already defined
such as
— Color.white equivalent to Color(255,255,255)
— Color.black as equivalent to Color(0,0,0)
— Color.pink as equivalent to Color(255,175,175)
— also orange, cyan, magenta, yellow, gray, lightGray,

— darkGray, red, green, blue
njm@npac.syr.edu

Graphics Examples

¢ Check out more examples

— Color boxes generates colors using arandom number generator.

— Another example shows more graphics drawing. Note that
drawing arcs is done with respect to the following angle
representation:

— drawArc (X, y, width, height, startAngle, arcAngle)

90

180 \ 0

270
njm@npac.syr.edu 8

The Graphics2D class

¢ Additional graphics 2D drawing capabilities are found in
the java.awt package added in JDK1.2. (Thisisnot,
apparently, part of the Swing set.)

¢ The Graphics2D class is a subclass of the Graphics class, so
converting the graphics context to this class enables the
additional methods to be called.

public void paint (Graphicsg)
{ Graphics2D g2d = (Graphics2D) g; ... }

+ Note that there are also packages for 3D graphics and other
media frameworks not covered in this talk.

njm@npac.syr.edu 9

The Paint interface for filling objects

¢ With Graphics2D, the current graphics context includes
the current “paint”:
g2d.setPaint (p);
where p is anything that implements the interface Paint.

¢ The Color class implements Paint.

¢ New classes include GradientPaint, SystemColor, and
TexturePaint.

— new GradientPaint (x1, yl, colorl, x2, y2, color2, boolval)
colors agradient which starts at the first coordinate and shades
In the direction of the section coordinate, shading from the first
color to the second color. The boolean value determines
whether the shading is cyclic (true) or acyclic (false).

— new TexturePaint (image, rectangle)
where the image is cropped to the size of the rectangle arg and

used to tilethe space.
njm@npac.syr.edu 10

The Stroke interface for borders and lines

¢ With Graphics2D, the current graphics context includes
the current “ stroke”:

g2d.setStroke (s);
where sis anything that implements the interface Stroke.

¢ Class BasicStroke provides a variety of constructorsto
specify the width of the line, how the line ends (the end
caps), how linesjoin together (join lines), and the dash
attributes of theline.

— new BasicStroke (width, endcaps, joins, mitrelimit, dasharray,

dashphase)
where dasharray gives the lengths of a sequence of dashes and
dashphase gives which dash to start with.

njm@npac.syr.edu 11

Shapes

¢ The new package java.awt.geom.*, also new in JDK1.2,
Includes a set of newclasses that implement the interface
Shape.

— Ellipse2D.Double, Rectangle2D.Double, Arc2D.Double,
RoundRectangle2D.Double, and Line2D.Double

— There are also versions of each with .Float that takes float args.

¢ Thereisalso anew class General Path for constructing
shapes.
— Create an empty path: gp = new GeneralPath ();

— Moveto aposition: gp.moveTo (X0, y0);

— Extend the path in several ways:
» Straight lines: gp.lineTo (x1,yl);
» Bezier curves: gp.curveTo (x1,y1, x2,y2, x3,y3);
» Quadratic curves: gp.quadTo (x1,yl, x2,y2);

— End the path: gp.closePath ();

njm@npac.syr.edu 12

Graphics2D drawing methods

¢

Since Graphics2D is asubclass of Graphics, all the
previous drawing methods are still there:
g2d.drawRect (...), g2dfillRect (.. .), etc.

The new methods for drawing shapes are:
g2d.draw (shape);
which uses the current Stroke for the boundary line.
g2d.fill (shape);
which uses the current Paint for the fill of the shape.
There are also new methods for changing the origin of
the drawing:
g2d.translate (X0, y0);
g2d.rotate (angleinradians);
This enables each shape (on previous slide) to be

defined with respect to its own (0O, O) origin.
njm@npac.syr.edu 13

Applet methods

¢ These applet methods are called automatically by the
appletviewer or browser during an applet’s execution.

— 1nit() - called once when an applet is loaded for
execution.

— start() - called once after init and again every time the
user returnsto the HTML page of the applet (or
every time the browser restarts the page).

— stop() - called every time the applet’ s execution is
suspended, mainly whenever the user leaves the
HTML page.

— destroy() - called once whenever the applet is
removed from memory, normally when the browser
exits.

njm@npac.syr.edu 14

Graphicsis Event-Driven: paint method

¢

In every applet or windows application, the windowing
system creates an Image with a Graphics object to keep
track of the state of the window.

In order to draw or write text to the window, you must
override the paint method:

— public void paint(Graphics g)
The Graphics object g has a current color and font that
can be changed by methods

The window system can be interrupted for various
reasons - the user resized it or some other window was
put on top of it and then removed - and it does not save
a copy of the pixels. Instead it calls the paint method.
So even if you only draw one window, paint can be

called many times.
njm@npac.syr.edu 15

Changing Graphics: repaint method

¢ Most applets and windows applications want to change
what is drawn on the screen over itslifetime. This can
be a sequenced animation, response to user input or
mouse events, and so on.

¢ Whenever you want to redraw the screen, call
— public voidrepaint(); // note no arguments

¢ Repaint gets the graphics context g and creates a thread
to call update(g), which calls your paint method. So all
your drawing changes can also be put in paint.

¢ Onedraws asequence of text and shapes to define the screen,
where the position of the object in the screen is given by pixel
coordinates. If one object overlaps another, the latest one drawn
covers up the area of overlap.

— The exception to thisis XOR graphics, which may be used to
temporarily highlight a particular color. Thisis an advanced technique

as other colors will also be af écted
njm@npac.syr.edu 16

Introducing a Single Thread

(See |later for in-depth discussion of thread
use)

njm@npac.syr.edu

17

| ntroduction to Threads

¢ A thread isasingle sequential flow of control within a
process.

¢ |If aprocess has more than one thread, then each thread
executes concurrently.

¢ Any Javaapplet that has extensive execution or loopsto
repaint the window must run as a concurrent thread
with the browser window.

+ To make an applet with athread:

— Change your applet definition to add "implements Runnable",
the interface for threads.

— Include an instance variable for the thread of your applet.

— Have a start() method that creates a thread and starts it running
and a stop() method which stops it running.

— Implement arun() method containing the body of your appl et
code. njm@npac.syr.edu 18

Example showing the standard thread methods

¢ These applet start and stop methods can always be used to start
and stop the thread.

Import java.awt.*;
Import java.util.Date;

public class DigitalClock extends java.applet.Applet
|mplements Runnable

{ FonttheFont = new Font(* TimesRoman”, Font.BOLD, 24);

DatetheDate;
Thread runner; Deda[ea“lfead

public void start ()
{if (runner == null)
{ runner = new Thread(this); runner.start (); }

}
public void stop ()

{ if (runner !'=null)
{ runner.stop (); runner = null; }

}

Example showing thread methods, continued

¢ Thebody of the applet isinthe run method, in this case aloop to

keep showing the date.

public void run ()
{ while (true) Infid
{ theDate = new Date ();
repaint (); it 4 5ecolld
try { Thread.sleep (1000); }wal
catch (InterruptedExecutione) { }

} Do nothing for an
}
public void paint (Graphicsg)
{ g.setFont (theFont);
g.drawString (theDate.toString (), 10, 50);

}

ite LoOP

exception

}

njm@npac.syr.edu

20

Motion (or Animation) Example
using threads and parent/ child
hierarchy

njm@npac.syr.edu

21

Designing the Classes

+We want to make applets that can have objects of different shape
moving across the applet window.

—Thefirst applet will have two rectangles.

—We will represent each rectangle as an instance of a class mRectangle.

—Then the applet will have athread that loops, and each time around the
loop, will draw the rectanglesin a new position.

+We will design ahierarchy of classes to represent various shapes
(including rectangles).

—We define a parent class for movable point objects. Each instance of this
classis represented by an x,y location, by a dx,dy offset for the object to
move, and a color for the object. Thisexample also illustrates data
encapsulation, where users of the class must use methods to get or set
data of the class.

—A child class will represent rectangles by adding variables for width and
height. It will also override the paint method to draw rectangles.

—Other shapes are easily constructed as children of the rectangle class by
overriding the paint method to draw a new shape.

njm@npac.syr.edu 22

The Class Hierarchy of this example

Appl mPoint
ppiet variables:
int x, y, dx, dy
T Color color
mRectApplet < uses methods:
variabl ez-p setDelta
NV setColor . ..
mPoint object]] S ove
m_et_hods: paint
Init
run mRectangle
start intw. h
stop paint
update checkBoundary . ..
pai Nt / \
mOval mTriangle
paint paint

njm@npac.syr.edu

lmages and Double Buffering

njm@npac.syr.edu

24

Getting Images Downloaded

¢

The Applet class provides amethod getl mage, which
retrieves an image from aweb server and creates an
Instance of the Image class.

lmageimg =

— getlmage(new URL ("http:/ / www .tc.com/ image.gif"));
Another form of getimage retrieves the image filerelative
to the directory of the HTML or the directory of thejava
code.

— Image img = getlmage(getDocumentBase(), "images/ image.gif");
— Image img = getlmage(getCodeBase(), "images/ image.gif");
Note that the Image class injava.awt has many methods
for images, such as getWidth(imageobserver) and
getHeight(imageobserver), which return the width and
height in pixels.

|mages can be created fretmeMter gifs or jpegs. 25

Drawing I mages to the applet window

¢ The Graphics class provides a method drawlmageto
actually display the image on the browser screen.
— void paint ()
» { g.drawlmage (img, 10, 10, this) ; }

— where the top left corner of the image will be drawn at (x,y)
position (10,10)

— use “this” as the ImageObserver argument, it is the component
In which the image is displayed.

¢ You can also scale the image to a particular width and
height.

— void paint ()
» { g.drawlmage (img, 10, 10, w, h, this) ; }

njm@npac.syr.edu 26

|magel con class in Java2

¢ Another class for using images in Javaz2 is Imagelcon,
from javax.swing, which can again use both gifs and
] pegs.
| magel con icon = new Imagel con (picture.gif);
+ |n addition to creating an Imagelcon from afile, there
are constructorsto create an Imagelcon from a URL or
another | mage.

& Imagelcons are used in other swing components, but
they can also be painted to any component, such as an
applet:

lcon.painticon (this, g, X,y);
where thisisthe component in which it will be painted,
g isthe graphics context, and x and y are the

coordinates of the upper left-hand corner.
njm@npac.syr.edu 27

|mage Downloading -- imageObserver,
MediaTracker

*

When drawlmage is called, it draws only the pixels of the image
that are already available.

Then it creates athread for theimageObserver. Whenever more of
the image becomes available, it activates the method imageU pdate,
which in turn call paint and drawlmage, so that more of the image
will show on the screen.

The default imageUpdate doesn't work if you are double buffering
the window in which the image appears.

More control over showing the image as it downloads can be
obtained by working with the MediaTracker class, using methods
that tell you when the image has fully arrived.

— Another method is preparel mage(Mylmage, this);

» which returns a boolean that istrue when imageisfully
downloaded.

njm@npac.syr.edu 28

An Image Drawing Example

¢ This example shows how to use the getWidth and
getHeight methods of the Image class to use in scaling
the image under java program control.

Import java.awt.*
public void class Drawleaf extends java.applet.Applet
{ Image |leafimg;

public voidinit ()
{ leafimg = getlmage(getCodeBase(),”images/ Leaf.gif");
}
public void paint (Graphicsg)
{ int w =leafimg.getWidth(this);
Int h = leafimg.getHeight(this);
g.drawlmage (leafimg ,10, 10, w/ 4, h/ 4, this);
}

njm@npac.syr.edu

Flickering in Applets and its Solution

¢ Unlessyou are careful, dynamic applets will give
flickering screens (in the regular AWT, not in Swing set).

¢ Thisisduetothecycle
— repaint()
— update(g) clearing screen
— paint(g) drawing new screen
— where flicker is caused by the rapid clear-paint cycle.

¢ There are two waysto solve this problem which involve
changing update() in different ways

— 1: Change update() either not to clear screen at all (because you
know paint() will write over partsthat are to be changed) or to
just clear the parts of the screen that are changed

— or 2:Double Buffering

njm@npac.syr.edu 30

The default Update(Graphics g) Method

& This sets background color and initializes appl et
bounding rectangle to this color
— public void update(Graphics Q)

» {
» g.setColor(getBackground());

» g.fillRect(0,0,getSize().width,getSize().height);
» g.setColor(getForeground());
» paint(g);
» }
— getBackground() and getForeground() are methodsin
component class

— fillRect() is a method in Graphics class

njm@npac.syr.edu 31

Double Buffering to Reduce Flicker - |

¢ Here you havetwo "graphics contexts" (frame buffers of
the size of the applet), and you construct the next image
for an animation "off-line" in the second frame buffer.

¢ Thisframe buffer isthen directly copied to the main
applet Graphics object without clearing image asin
default update()

¢ Ininit(), you would create the frame buffer:
— Image Offscreenimage; / / Placeto hold Image

— Graphics offscreenGraphics; / * The second graphics
context of offscreenimage */

— offscreenlmage =
createl mage(getSize().width,getSize().height);

» offscreenGraphics = offscreenlmage.getGraphics();

njm@npac.syr.edu 32

Double Buffering to Reduce Flicker - |1

+ |npaint(), onewill construct applet image in
offscreenGraphics as opposed to the argument g of
paint(). So one would see statements such as:

— offscreenGraphics.drawRect (X, y, w, h);
¢ Finally at end of paint(), one couldtransfer the off-
screen image to g by
— g.drawl mage(offscreenlmage,0,0,this);
¢ One would also need to override the update() method
by
— public void update(Graphics g)
- { paint(g);
- }

njm@npac.syr.edu

Double Buffering

¢ TheDigitalClock doesn’t flicker, but thisillustrates the technique
on a short exampnle,

public void class DigitalClock extends java.applet.Appl et
Implements Runnable
{

| mage offscreenlmg;

Graphics og;

public voidinit ()

{ offscreenlmg = createl mage (getSize().width, getSize().height);
og = offscreenlmg.getGraphics ();

}

public void paint (Graphicsg)

{ og.setFont (theFont);
og.drawString (theDate.toString (), 10, 50);
g.drawlmage (offscreenimg, O, O, this);

}
public void update (Graphics Q)

{ paint(g); }

Abstract Windowing Toolkit (AWT):

Components such as buttons, textfields, etc.
Java 1.1 Event Model

njm@npac.syr.edu 35

AWT GUI Components

*

In Java, the GUI (Graphical User Interface) isbuilt hierarchically in
terms of Components -- one Component nested inside another
starting with the smallest Buttons, including Menus, TextFieldsetc.
and ending with full Window divided into Frames, MenuBarsetc.

The placement of componentsin the window is controlled in a
fairly high-level way by one of several Layout Managers.

The user can interact with the GUI on many of its components, by
clicking a button, typing in text, etc. These actions cause an Event
to be generated, which will be reported by the system to a class
which is an Event Listener, and which will have an event handler
method for that event. This method will provide the appropriate
response to the user's action.

njm@npac.syr.edu 36

Top Levels of the Component Hierarchy

java.awt.Component

java.awt.Container

java.awt
basic
components Panel Window javax.swing.JComponent
Applet
javax.swing
JApplet _ basic
Dialog and other
components
Frame
JFrame

njm@npac.syr.edu

37

AWT vs. Swing Components

¢

The AWT components are designed to take on the “look

and feel” of the underlying window system where they are
displayed. For applets, thisiswherever the browser is
running.
— AWT components have peer classes in which they have a specific
window implementations.
Swving components are designed to have afixed “look and
feel” on all platforms.

— They are sometimes called lightweight because they are
Implemented in Javaitself. The only peer implementation required
IS to put up awindow and paint it. Thus, swing components are
far less prone to windowing system dependency bugs.

The default “platform ook and feel”, abbreviatedplaf, is
Metal. Others are available such as Motif and Windows.

For example: UlManager.setL ookAndFeel (plaf);
njm@npac.syr.edu 38

AWT Components

¢ Wefirst describe the basic AWT components and the
event handling model.

¢ We next describe Swing components.

The event handling model isthe same.

Each AWT component, such as Button, has a corresponding
Swing component, called JButton.

The Swing component typically may have additional
functionality. For example, a Button’'s appearance may have a
text label and colors. In addition, a JButton may have an lcon
on it.

Swing components have a more complex implementation -
they are essentially wrapper classes for a set of classes giving a
“model - view - controller” design pattern:

» model gives contents - such as state or text

» Vview gives visual appearance

» controller gives behavior - such asreaction to events
njm@npac.syr.edu 39

Picture of the AWT Component Class and some of
Its inheritance ¢ Other components can be

Component placed inside a container.
|
Laibel C|)a|n|vas Cont;i ner
Button
Checkbox Panel Window
Scrollbar Applet
List
Scroll Pane Dialog
TextComponent Frame
| | Other classesinclude
TextArea Textfield Menu, Menultem, etc.

njm@npac.syr.edu

40

Basic AWT Components

& For each basic component, one can create one or more
Instances of the component type and then use one of the
"add" methodsto place it into a Container such as an
applet window.

¢ For now, we assume that components are added to the
window in order from left to right and top to bottom as
they fit. (Thisisactually the default FlowL ayout
Manager).

& For each component, there will be methods:

— some affect the properties or appearance, such as
setBackground or setFont, which are inherited from the
Component class.

— others may dynamically obtain or change information about the
component, such as getText for TextFields, which may return

whatever String the user has typed into the TextField.
njm@npac.syr.edu 41

Basic AWT Component: L abel

¢ Thisisan areawheretext can be displayed in the window.

¢ Create an instance of the Label class and add it to the window:
— Label labell = new Label ("aligned left");
— add (labell);

¢ Another constructor allows a second argument which is an
alignment: Label .LEFT, Label.CENTER, or Label .RIGHT

— Label label2 = new Label ("aligned right", Label .RIGHT);

¢ Method setText allows you to change the String in the Label, and
getText() returns the current String

— |label2.setText("another message");

aligned | eft aligned right

njm@npac.syr.edu 42

Basic AWT Component: Button

¢ A Buttonisthe familiar way to allow a user to cause an
event by clicking with the mouse and is created with a
String to label it
— Button buttonl = new Button("Click here");
— add (buttonl);

¢ AWT Buttons are normally created to appear in the style
of the user's windowing system, except that you can
control the color of the button and the String
— buttonl.setBackground (Color.cyan);
— buttonl.setForeground (Color.black);

Click here

njm@npac.syr.edu 43

The AWT Event Model

*

An Event Listener is an instance of any class that wantsto receive
events.

An event source is an object that generates events. An event source
will keep alist of event listeners who want to be notified for
particular events. Thisis sometimes called event delegation.

The event source notifies event listeners by invoking a particular
method of the event listener (aka the event handler method or
event procedure) and passing it an Event object, which has all the
Information about the event.

For example, a component with a button is an event source, which
generates an event called ActionEvent. There must be a class which
Implements an interface called ActionListener and which is on the
list of listeners for that button. Then the Java system will provide
the mechanism that passes the ActionEvent to a standard method
of the ActionListener interface, namely a method called
actionPerformed (). This method will receive the event object and

carry out the response to the event.
njm@npac.syr.edu 44

Event Model illustrated with Button

Window with event
source - a Button.
The button puts L on
Its ActionListener list.

| nstance of class
Implementing
ActionListener

L

ActionEvent
Click here

When user clicks the button, the
button makes an ActionEvent
object and passes it to the
actionPerformed method of
listenerson itslist.

njm@npac.syr.edu

Setting up ActionEventsfor a Button

¢ \When the button iscreated, it should have at |east one listener class
added to its list of listeners:

— buttonl.addActionListener (eventclass);
¢ where eventclassis an instance of the listener class.

— every component which can cause an event called X, has
methods addXListener and removeXListener.

¢ Then thisclass must implement the interface ActionListener. This
Interface requires only one event handler method:

— public class EventClass implements ActionListener
- {
— public void actionPerformed (ActionEvente) { ... }
-}
¢ |f the event source classis acting as its own listener, then you just
say

— buttonl.addActionListener (this);
njm@npac.syr.edu 46

The Event Classes

¢ Every event has a source object, obtained by getSource(), and atype
value, obtained by getID(). In the case of buttons, theID is
ACTION_PERFORMED. Other Events may have more than one
type of event ID.

¢ Event subclasses also have methods for whatever datais needed to
handle the event. For example, ActionEvent has a method
getActionCommand, which for buttons, returns the string labelling
the button. MouseEvent has methodsgetX() and getY(), which
return the x and y pixel location of the mouse, and getClickCount().

AWTEvent

ActionEvent| |Adjustment| |ItemEvent| | TextEvent| ComponentEvent

Event

M ouseEvent KeyEvent 47

FocusEvent InputEvent | WindowEvent| . ..

AWT Components -- Text Fields & Areas

*

To add atext field for display or input one line of text (in this case,
30 characters wide):

— TextField tf = new TextField("initial text", 30);
— add(tf);
The text which is displayed can be changed:
— tf.setText("now show a new text");
If the user types input into the text field, it can be obtained:
— stringvar = tf.getText();
Or you can disallow the user to type:
— tf.setEditable(false);

The TextArea class al so has these methods, but it can display
multiplelines.

When the user typesin text and presses "return” or "enter", an
ActionEvent is generated, so, similarly to Buttons, an
ActionListener must be provided. TextAreas generate TextEvents.

njm@npac.syr.edu 48

AWT Components -- Checkbox

¢ Checkboxes are on-off toggles implemented as
— Checkbox red = new Checkbox("Red");
— Checkbox green = new Checkbox("Green");
— Checkbox blue = new Checkbox("Blue",null, true);
— add(red); add(green); add(blue);

s Red
m Green
® Blue

¢ Thefirst two areinitially set to "false" as the optional
third argument isnot given. Thelast oneisinitially set

to "true".

¢ The state of acheckbox, i.e. whether it ischecked, is

given by a boolean result of the method, getState:

— If (red.getState()) . . .;

o If auser clicks a Checkbox, an ItemEvent is generated.
The listener must implement ItemListener with the one

method itemStateChanged (ItemEvent e).
njm@npac.syr.edu

49

Some Further AWT Components --

typical subunits of panels

¢ Choiceisaclassthat gives a menu where you choose
from various items, also sometimes called a drop-down
list. Selecting an element of the menu generates an [temEvent.

¢ List isanother child of Component that issimilar in use
to Choice but gives afixed size list which can be scrolled

and where you can select one or more entries. Listscan
generate both ItemEvents if the user selects (clicks once) an item,
and ActionEvents if the user double-clicks an item.

¢ Scrollbar is aclass that defines a horizontal or vertical

scrollbar. Note thisis distinct from scrollbars that come

with TextAreaand List. It generates AdjustmentEvents. The

AdjustmentListener must have a method

adjustmentV alueChanged.
njm@npac.syr.edu 50

Keyboard and Mouse Events

¢ More generally, any component, including containers,
can generate mouse and keyboard events as the user
moves or clicks the mouse in the window, or types a
single key on the keyboard.

¢ Thisisquite often used in a Canvas or graphics drawing
area.

¢ The previous events (ActionEvent, ItemEvent,
AdjustmentEvent and TextEvent) are called semantic
events as they express what the user isdoing on a
component. The remaining ones, such as KeyEvents,
MouseEvents, FocusEvents and Window Events, are
called low-level events.

njm@npac.syr.edu 51

Key Events

¢ Typing asingle key generates KeyEvents. These events
must be handled by implementing the KeyL istener
Interface. It hasthree methods corresponding to the three
actions that can occur on akey:

— public void keyPressed (KeyEvent e)

— public void keyReleased (KeyEvent e)

» these methods are called when akey is pressed down and

released up, respectively, and report avirtual key code, which
IS anint encoding of the keys, suchasVK_SHIFT, VK_A, . ..

— public void keyTyped (KeyEvent e)
» this reports the character on the key that was pressed
¢ Typically, one uses methods on the key event tofind the
name of the key or key code:
— String s = e.getKeyChar ();

— Stringt = e.getKeyText (e.getKeyCodg());
njm@npac.syr.edu 52

Mouse Events

¢ There are seven different MouseEvents, handled by
methods in both the MouseListener and the
MouseM otionListener interfaces.

— MouseL istener:
» public void mousePressed (MouseEvent e)

+ called when the mouse button is pressed with the
cursor in this component

» public void mouseClicked (MouseEvent e)

+ called when the mouse button is pressed and
released without moving the mouse

» public void mouseReleased (M ouseEvent e)

+ called when the mouse button is let up after
dragging

njm@npac.syr.edu

Additional Mouse Event handler methods

— More MouseListener methods
» public void mouseEntered (MouseEvent e)

« caled when the mouse cursor enters the bounds of
the component

» public void mouseExited (MouseEvent e)
+ called when the mouse cursor |eaves the component
— MouseMotionListener
» public void mouseDragged (MouseEvent e)

« cdled when the mouse is moved while the button is
held down

» public void mouseMoved (MouseEvent e)

+ called when the mouse cursor moves
njm@npac.syr.edu A

¢

M ethods for Mouse Events

All mouse events report the x and y location of the mouse in

pixels:
— event.getX () ;
— event.getY ();

You can also obtain theclick count for double or event triple
clicks:
— event.getClickCount () ;

You can distinguish between different mouse buttons:

— (event.getModifiers() & InputEvent.BUTTON3 MASK) =0
testsfor aright click of the mouse

Note that one response to mouse motion can be to change the
appearance of the cursor. There are 14 different built-in cursors as well
as a Toolkit method to define your own.

— if (b) setCursor (Cursor.getDefaultCursor ())
else setCursor (Cursor.getPredefinedCursor (Cursor.HAND CURSOR));

njm@npac.syr.edu 55

Using Mouse Events for User Interaction

¢ We set up atest program that creates three movable
objects, arectangle, circle and triangle, asin the earlier
example. Inthis program, we start with them all cyan.
Whenever the mouse is detected to be over one of the
objects, its color is changed to red. If the mouse button

IS used to drag the object, we move the object to the
mouse location.

¢ Notethat it isnot necessary to introduce athread for

this applet since it is not running continuously - itis
mostly waiting for mouse events.

njm@npac.syr.edu 56

Adapter Classes

*

For every Event Listener interface with more than one method,
there is a corresponding Event Adapter class. For example, thereis
an MouseAdapter class to go with the MouseL istener interface.

The adapter class implements its corresponding listener class by
providing all of the required methods, but which have bodies that
do nothing.

For interfaces like MouseL istener and MouseMotionListener, this
can be handy because there are several methods in each interface.
Typically, you don't want to implement all of the methods. Soitis
more convenient to make a class which extends the adapter class
than to directly implement the listener class.

» class MouseHandler extends MouseAdapter

» { ... I/ override only the methods that you want to
Implement

» public void mousePressed(MouseEvente) { ...}

» }

njm@npac.syr.edu 57

Separating GUI and Application Code

+ |nlarge applications, some Java experts recommend that it
IS a better design to separate the responsibilities of getting
user input and executing commandsbecause it iscommon
to have multiple ways to activate a command.

— Make an object for every command
— Each command object is alistener for the events that trigger it

¢ The Swing package provides the Action interface to
encapsulate commands and attach them to multiple event

sources. The Action interface implements the ActionListener interface
and has additional methods for properties of the command:

— void actionPerformed (ActionEvent e)

— void setEnabled (boolean b), booleanisEnabled ()

— void putValue (String key, Object val), Object getValue (String key)
— addPropertyChangeL istener, removePropertyChangeL istener

njm@npac.syr.edu 58

Abstract Windowing Toolkit (AWT):
L ayouts

njm@npac.syr.edu 59

L ayout of Componentsin a Panel

¢ Thevarious panelsinacontainer are laid out separately
In terms of thelr subcomponents

¢ One can lay components out "by hand" with positioning
In pixel space

¢ However thisisvery difficult to make machine
Independent. Thus one tends to use general strategies
which are embodied in 5 LayoutMangerswhich all
Implement the LayoutM anager Interface. One can
expect further custom LayoutManager's to become
available on the Web

¢ Tocreate alayout, such as FlowLayout, in your panel:
— setL ayout(new FlowL ayout());
— This particular Layout isthe default.

njm@npac.syr.edu 60

Brief Description of LayoutManagers

¢ FlowLayout isaone dimensional |layout where components are
"flowed" into panel in order they were defined. When arow is full
up, it iswrapped onto next row

¢ BorderLayout arranges the components into five areas called
North, South, East, West and Center.

¢ GridLayoutisatwo dimensional layout where you defineaN by
M set of cells and again the components are assigned sequentially
to cells starting at top left hand corner -- one component isin each
cell. The cells are the same size.

¢ InJava2, BoxLayout is aone dimensional layout where you have
more control over the spacing and sizing of the components.

¢ CardLayout laysout intime not space and each card (Displayed at
one time) can be laid out with one of spatial layout schemes above

¢ GridBaglLayout uses a class GridBagConstraintsto customize
positioning of individual components in one or more cells

njm@npac.syr.edu 61

Description and Example of BorderL ayout

¢ BorderLayout hasfive cells called North South East West Center

and components are assigned to these cells with the add method.

Unlike other add methods, here the order is not important:
» add(new TextField("Title",50), BorderLayout. NORTH);

» add(new TextField("Usually_status message",50),
BorderLayout.SOUTH);

¢ Remember thisis default for a Frame Container

¢ The constructor "new BorderLayout()" can have no arguments or
"new BorderLayout(hgap, vgap)" can specify numbers of pixels
Inbetween components.

njm@npac.syr.edu

62

FlowL ayoutsin detail

¢ Thissimple layout manager "flows" componentsinto
the window. The components can be aligned, and space
between them specified by arguments hgap and vgap:

— setLayout(new FlowLayout(FlowLayout.LEFT, 5, 2));
setLayout(new FlowLayout(FlowLayout. CENTER));

— setLayout(new FlowL ayout(FlowLayout.RIGHT));

¢ The FlowLayout Manager's strategy includes making
each component its default "preferred size".

njm@npac.syr.edu 63

GridL ayouts

¢

The first two arguments of the GridL ayout constructor
specify the number of rows of cells (i.e. number of cells
In the y direction) and the number of columns of cells
(in the x direction)

— setLayout(new GridLayout (2, 3));
Additional arguments hgap and vgap specify the
number of pixelsinbetween the columns and rows:

— setLayout(new GridLayout (2, 3, 10, 15));
The GridLayout Manager's strategy isto make each cell

exactly the same size so that rows and columns line up
Inaregular grid.

njm@npac.syr.edu 64

BoxLayoutsin Java 2

¢ Likethe other layout managers, you can setLayout of a
panel to be aBoxLayout, but in addition, thereisa
special container called Box whose default layout is a
vertical or horizontal box layout:

Box b = Box.createHorizontalBox ();
or Box b = Box. createVericalBox ();

¢ You can add components in the usual way and they are
flowed into the one dimension, where the size strategy
IS to make them fit into one row or column, using the
preferred size if possible (and alignment), but growing
them to maximum size if necessary.

¢ Thereareinvisible fillersavailable to space the
components.

njm@npac.syr.edu 65

BoxLayout fillersin Java2

¢ Therearethreekinds of fillers:

— A strut adds some space between components:
b.add (buttonl);
b.add (Box.createHorizontal Strut (8));
b.add (button2);
adds 8 pixels between these buttonsin a horizontal box.
— A rigid area also adds afixed amount of space between
components, but may also specify a second dimension which
may affect the height of a horizontal box and the width of a

vertical box.
b.add (Box.createRigidArea (new Dimension (10, 20));

— Adding glue separates the components as much as possible.
b.add (buttonl);
b.add (Box.createGlue ());
b.add (button2);

njm@npac.syr.edu 66

Hierarchical Use of Layouts

¢ Each component in aLayout may itself be a Panel with another
Layout Manager, thus subdividing areas of the user interface.
Using this hierarchy one can achieve complex GUI's.

¢ A simple example of using hierarchical Layout dividesthe main
applet space into two componentsin a BorderLayout. The Center
component is a Canvas for drawing graphics or images; the North
component isitself a Panel which has three buttonsin a
GridLayout. Thisexampleisavery simple example of a standard
paradigm for drawing or displaying data.

— Also note other examples showing CardL ayouts and

GridBagLayouts. im@npec.syr.edu &

Abstract Windowing Toolkit (AWT):
Swing Components and
More Components of the AWT

njm@npac.syr.edu 68

The AWT and Sving Hierarchy

java.awt.Component

java.awt.Container

Panel Window javax.swing.JComponent
Applet
javax.swing
JApplet : basic
Dialog and other
/ components
_ Frame
JDialog
JFrame

njm@npac.syr.edu

69

|nternal Structure of aJFrame

¢ Applets actually reside inside Frames and JAppletsinside
JFrames. While applets, panels and other components
paint and add directly, in the Swing set, things are
painted and added to the ContentPane of the JFramethat

they are in. |
Title 3\. JFrame

- Optiona menu bar

- Content pane

e Glasspane

njm@npac.syr.edu 70

Sving Component Hierarchy

JComponent
|

JL abel

/

AbstractButton

JComboBox JBufton

JMenultem JToggleButton

JScrollbar

JList

JMenu

JOptionPane

JMenuBar

JTextComponent

JTextArea JTextfield

njm@npac.syr.edu

JCheckbox

JRadioButton

71

JLabel

+ |n addition to having aline of text and an alignment,
Jabels may have an icon, which is an image placed beside
or above the text:

JLabel label =
new JLabel (“Text”, icon, SwingConstants.CENTER);

¢ Theicon argument is anything that implements the
Interface Icon, such as Imagel con.

¢ Note that the label alignment constants come from an
Interface called SwingConstants, which include LEFT,
RIGHT, CENTER, NORTH, EAST, and so on.

¢ Where theicon is placed with respect to the text can be
specified and fine-tuned with various horizontal and
vertical alignment methods.

njm@npac.syr.edu 72

JButtons

¢ JButtonsmay also have an icon or text or both. The
alignment methods are inherited from the abstract button
class.

¢ |n Swing, many components are implemented in terms of
the model-view-controller design pattern. That is, there
are separate classes for the different parts of the
components:
— contents, such as the state of the button, or the text of the textfield
— visual appearance (color, size, and so on)
— behavior (reaction to events)

¢ Notethat the Abstract Button class allows the use of other
models.

¢ JButtons, JCheckboxes, and JRadioButtons may have the

same model, but different view and controller.
njm@npac.syr.edu 73

JTextField and JTextArea

& For compatibility with TextField, when the user hits
“enter”, the JTextField fires an ActionEvent which can use
the methods getText and setText to access the JTextField.

¢ However, the JTextComponents have additional
DocumentEvents. When text has changed, one of the

following three methods from the Document Interfaceis
called:

void insertUpdate (DocumentEvent e)

void removeUpdate (DocumentEvent e)
void changedUpdate (DocumentEvent e)

¢ The JTextComponent class has methods to select text by
highlighting it and to get selected text.

¢ Note that JTextAreamust be put in ascroll pane to have
scroll bars.

njm@npac.syr.edu 74

