
njm@npac.syr.edu 1

Java Tutorial 1999

 Part 3: Graphics, the Abstract
Windowing Toolkit, and the Swing Set

Instructors: Geoffrey Fox , Nancy McCracken
Syracuse University

111 College Place
Syracuse

New York 13244-4100

njm@npac.syr.edu 2

Applets and Graphics

njm@npac.syr.edu 3

The java.awt.Graphics class

u The AWT has two different schemes for creating all or
parts of applet windows:
– A high-level scheme where a Layout manager decides how to

place components like buttons and textfields in the window
(described later).

– A low-level scheme where methods draw graphics objects to the
window and must say where to place them in terms of pixels.

(0,0) (width,0)

(0,height) (width,height)

Java Graphics
Pixel

Coordinate
System

njm@npac.syr.edu 4

Methods for drawing in the Graphics Class

u Graphics class has methods to construct basic two dimensional
images
– (all parameters are ints unless otherwise indicated)
– x, y pixel locations refer to the upper left corner of the object to be

drawn (except for strings)

u drawString (String text, x, y)
u drawLine (x1, y1, x2, y2)
u drawRect (x, y, width, height), fillRect (...),
u drawOval (...), fillOval (...),
u drawRoundRect (x, y, width, height, arcWidth, arcHeight)

– for a rectangle with rounded corners!,

u draw3DRect (x, y, width, height, Boolean b)
– (to get shadow effect as in buttons - if b is true, it's raised),

u drawArc (x, y, width, height, startAngle, arcAngle), fillArc(..),
u drawPolygon (int xPoints[], int yPoints[], n);

njm@npac.syr.edu 5

The java.awt.Font and FontMetrics Class
u Graphicsinstance.setFont(particularFont) will set the current Font

in the instance Graphicsinstance of the Graphics class to the value
particularFont of class Font.
– The default call setFont(particularFont) sets the Font in the current

applet.
– setFont can also be used on instances of AWT components, as we shall

see in later examples.

u The class Font has an important constructor used as in
u Font MyFont = new Font(”Serif", Font.PLAIN ,36);

– where one can use specific font names TimesRoman, Courier,
Helvetica, ZapfDingbats, but Sun would prefer you use the generic
names Serif, SansSerif, and MonoSpaced . Additional font names
include Dialog (the default for many AWT components).

– Font.PLAIN, Font.BOLD, Font.ITALIC are possible text styles

u In an applet, the font specified may not be available in a particular
browser. To find out which fonts are available, one may call
– String fonts[] = Toolkit.getDefaultToolkit(). getFontList();

njm@npac.syr.edu 6

FontMetrics class

u FontMetrics fm = getFontMetrics(particularFont); / / allows one to
find out about the font
– fm.stringWidth("text"); / / returns pixel width of string "text"
– fm.getHeight(); / / returns total height of highest Font character
– getAscent(),
– getDescent(),
– getLeading(),

u Drawstring uses leftmost baseline point as (x,y)

Nancy
leading
ascent

descentbaseline }height

njm@npac.syr.edu 7

The java.awt.Color Classes

u Color c = new Color (redvalue, greenvalue, bluevalue);
red/ green/ bluevalue can be specified as integers in 0 ...
255 or floating point numbers from 0 to 1.

u c is generated as a Color in RGB format.
u graphicsobject.setColor(c); / / sets current color in

graphicsobject which is used for all subsequent
operations

u There are particular Color instances already defined
such as
– Color.white equivalent to Color(255,255,255)
– Color.black as equivalent to Color(0,0,0)
– Color.pink as equivalent to Color(255,175,175)
– also orange, cyan, magenta, yellow, gray, lightGray,
– darkGray, red, green, blue

njm@npac.syr.edu 8

Graphics Examples

u Check out more examples
– Color boxes generates colors using a random number generator.
– Another example shows more graphics drawing. Note that

drawing arcs is done with respect to the following angle
representation:

– drawArc (x, y, width, height, startAngle, arcAngle)

180

270

0

90

njm@npac.syr.edu 9

The Graphics2D class
u Additional graphics 2D drawing capabilities are found in

the java.awt package added in JDK1.2. (This is not,
apparently, part of the Swing set.)

u The Graphics2D class is a subclass of the Graphics class, so
converting the graphics context to this class enables the
additional methods to be called.
 . . .
 public void paint (Graphics g)
 { Graphics2D g2d = (Graphics2D) g; . . . }

u Note that there are also packages for 3D graphics and other
media frameworks not covered in this talk.

njm@npac.syr.edu 10

The Paint interface for filling objects

u With Graphics2D, the current graphics context includes
the current “paint”:
 g2d.setPaint (p);
where p is anything that implements the interface Paint.

u The Color class implements Paint.
u New classes include GradientPaint, SystemColor, and

TexturePaint.
– new GradientPaint (x1, y1, color1, x2, y2, color2, boolval)

colors a gradient which starts at the first coordinate and shades
in the direction of the section coordinate, shading from the first
color to the second color. The boolean value determines
whether the shading is cyclic (true) or acyclic (false).

– new TexturePaint (image, rectangle)
where the image is cropped to the size of the rectangle arg and
used to tile the space.

njm@npac.syr.edu 11

The Stroke interface for borders and lines

u With Graphics2D, the current graphics context includes
the current “stroke”:
 g2d.setStroke (s);
 where s is anything that implements the interface Stroke.

u Class BasicStroke provides a variety of constructors to
specify the width of the line, how the line ends (the end
caps), how lines join together (join lines), and the dash
attributes of the line.
– new BasicStroke (width, endcaps, joins, mitrelimit, dasharray,

dashphase)
where dasharray gives the lengths of a sequence of dashes and
dashphase gives which dash to start with.

njm@npac.syr.edu 12

Shapes
u The new package java.awt.geom.*, also new in JDK1.2,

includes a set of newclasses that implement the interface
Shape.
– Ellipse2D.Double, Rectangle2D.Double, Arc2D.Double,

RoundRectangle2D.Double, and Line2D.Double
– There are also versions of each with .Float that takes float args.

u There is also a new class General Path for constructing
shapes.
– Create an empty path: gp = new GeneralPath ();
– Move to a position: gp.moveTo (x0, y0);
– Extend the path in several ways:

» Straight lines: gp .lineTo (x1, y1);
» Bezier curves: gp .curveTo (x1, y1, x2, y2, x3, y3);
» Quadratic curves: gp .quadTo (x1, y1, x2, y2);

– End the path: gp.closePath ();

njm@npac.syr.edu 13

Graphics2D drawing methods

u Since Graphics2D is a subclass of Graphics, all the
previous drawing methods are still there:
 g2d.drawRect (. . .), g2d.fillRect (. . .), etc.

u The new methods for drawing shapes are:
 g2d.draw (shape);
which uses the current Stroke for the boundary line.
 g2d.fill (shape);
which uses the current Paint for the fill of the shape.

u There are also new methods for changing the origin of
the drawing:
 g2d.translate (x0, y0);
 g2d.rotate (angleinradians);
This enables each shape (on previous slide) to be
defined with respect to its own (0, 0) origin.

njm@npac.syr.edu 14

Applet methods

u These applet methods are called automatically by the
appletviewer or browser during an applet’s execution.
– init() - called once when an applet is loaded for

execution.
– start() - called once after init and again every time the

user returns to the HTML page of the applet (or
every time the browser restarts the page).

– stop() - called every time the applet’s execution is
suspended, mainly whenever the user leaves the
HTML page.

– destroy() - called once whenever the applet is
removed from memory, normally when the browser
exits.

njm@npac.syr.edu 15

Graphics is Event-Driven: paint method

u In every applet or windows application, the windowing
system creates an Image with a Graphics object to keep
track of the state of the window.

u In order to draw or write text to the window, you must
override the paint method:
– public void paint(Graphics g)

u The Graphics object g has a current color and font that
can be changed by methods

u The window system can be interrupted for various
reasons - the user resized it or some other window was
put on top of it and then removed - and it does not save
a copy of the pixels. Instead it calls the paint method.
So even if you only draw one window, paint can be
called many times.

njm@npac.syr.edu 16

Changing Graphics: repaint method
u Most applets and windows applications want to change

what is drawn on the screen over its lifetime. This can
be a sequenced animation, response to user input or
mouse events, and so on.

u Whenever you want to redraw the screen, call
– public void repaint(); / / note no arguments

u Repaint gets the graphics context g and creates a thread
to call update(g), which calls your paint method . So all
your drawing changes can also be put in paint.

u One draws a sequence of text and shapes to define the screen,
where the position of the object in the screen is given by pixel
coordinates. If one object overlaps another, the latest one drawn
covers up the area of overlap.
– The exception to this is XOR graphics, which may be used to

temporarily highlight a particular color. This is an advanced technique
as other colors will also be affected.

njm@npac.syr.edu 17

Introducing a Single Thread

(See later for in-depth discussion of thread
use)

njm@npac.syr.edu 18

Introduction to Threads

u A thread is a single sequential flow of control within a
process.

u If a process has more than one thread, then each thread
executes concurrently.

u Any Java applet that has extensive execution or loops to
repaint the window must run as a concurrent thread
with the browser window.

u To make an applet with a thread:
– Change your applet definition to add "implements Runnable",

the interface for threads.
– Include an instance variable for the thread of your applet.
– Have a start() method that creates a thread and starts it running

and a stop() method which stops it running.
– Implement a run() method containing the body of your applet

code.

njm@npac.syr.edu 19

Example showing the standard thread methods
u These applet start and stop methods can always be used to start

and stop the thread.

import java.awt.*;
import java.util.Date;
public class DigitalClock extends java.applet.Applet
 implements Runnable
{ Font theFont = new Font(“TimesRoman”, Font.BOLD, 24);
 Date theDate;
 Thread runner;

 public void start ()
 { if (runner == null)
 { runner = new Thread(this); runner.start (); }
 }
 public void stop ()
 { if (runner != null)
 { runner.stop (); runner = null; }
 }

njm@npac.syr.edu 20

Example showing thread methods, continued

u The body of the applet is in the run method, in this case a loop to
keep showing the date.

public void run ()
 { while (true)
 { theDate = new Date ();
 repaint ();
 try { Thread.sleep (1000); }
 catch (InterruptedExecution e) { }
 }
 }
public void paint (Graphics g)
 { g.setFont (theFont);
 g.drawString (theDate.toString (), 10, 50);
 }
}

njm@npac.syr.edu 21

Motion (or Animation) Example
using threads and parent/ child

hierarchy

njm@npac.syr.edu 22

Designing the Classes
uWe want to make applets that can have objects of different shape
moving across the applet window.

–The first applet will have two rectangles.
–We will represent each rectangle as an instance of a class mRectangle.
–Then the applet will have a thread that loops, and each time around the
loop, will draw the rectangles in a new position.

uWe will design a hierarchy of classes to represent various shapes
(including rectangles).

–We define a parent class for movable point objects. Each instance of this
class is represented by an x,y location, by a dx,dy offset for the object to
move, and a color for the object. This example also illustrates data
encapsulation, where users of the class must use methods to get or set
data of the class.
–A child class will represent rectangles by adding variables for width and
height. It will also override the paint method to draw rectangles.
–Other shapes are easily constructed as children of the rectangle class by
overriding the paint method to draw a new shape.

njm@npac.syr.edu 23

The Class Hierarchy of this example

 Applet

mRectApplet
 variables:
 mPoint object[]
 methods:
 init
 run
 start
 stop
 update
 paint

mPoint
 variables:
 int x, y, dx, dy
 Color color
 methods:
 setDelta
 setColor . . .
 move
 paint

mRectangle
 int w, h
 paint
 checkBoundary . . .

mOval
 paint

mTriangle
 paint

uses

njm@npac.syr.edu 24

Images and Double Buffering

njm@npac.syr.edu 25

Getting Images Downloaded
u The Applet class provides a method getImage, which

retrieves an image from a web server and creates an
instance of the Image class.

u Image img =
– getImage(new URL("http:/ / www.tc.com/ image.gif"));

u Another form of getImage retrieves the image file relative
to the directory of the HTML or the directory of the java
code.
– Image img = getImage(getDocumentBase(), "images/ image.gif");
– Image img = getImage(getCodeBase(), "images/ image.gif");

u Note that the Image class in java.awt has many methods
for images, such as getWidth(imageobserver) and
getHeight(imageobserver), which return the width and
height in pixels.

u Images can be created from either gifs or jpegs.

njm@npac.syr.edu 26

Drawing Images to the applet window

u The Graphics class provides a method drawImage to
actually display the image on the browser screen.
– void paint ()

» { g.drawImage (img, 10, 10, this) ; }
– where the top left corner of the image will be drawn at (x,y)

position (10,10)
– use “this” as the ImageObserver argument, it is the component

in which the image is displayed.

u You can also scale the image to a particular width and
height.
– void paint ()

» { g.drawImage (img, 10, 10, w, h, this) ; }

njm@npac.syr.edu 27

ImageIcon class in Java2
u Another class for using images in Java2 is ImageIcon,

from javax.swing, which can again use both gifs and
jpegs.
 ImageIcon icon = new ImageIcon (picture.gif);

u In addition to creating an ImageIcon from a file, there
are constructors to create an ImageIcon from a URL or
another Image.

u ImageIcons are used in other swing components, but
they can also be painted to any component, such as an
applet:
 icon.paintIcon (this, g, x, y);
where this is the component in which it will be painted,
g is the graphics context, and x and y are the
coordinates of the upper left-hand corner.

njm@npac.syr.edu 28

Image Downloading -- imageObserver,
MediaTracker
u When drawImage is called, it draws only the pixels of the image

that are already available.
u Then it creates a thread for the imageObserver. Whenever more of

the image becomes available, it activates the method imageUpdate,
which in turn call paint and drawImage, so that more of the image
will show on the screen.

u The default imageUpdate doesn't work if you are double buffering
the window in which the image appears.

u More control over showing the image as it downloads can be
obtained by working with the MediaTracker class, using methods
that tell you when the image has fully arrived.
– Another method is prepareImage(MyImage, this);

» which returns a boolean that is true when image is fully
downloaded.

njm@npac.syr.edu 29

An Image Drawing Example
u This example shows how to use the getWidth and

getHeight methods of the Image class to use in scaling
the image under java program control.

import java.awt.*
public void class Drawleaf extends java.applet.Applet
{ Image leafimg;

 public void init ()
 { leafimg = getImage(getCodeBase(),”images/ Leaf.gif”);
 }
 public void paint (Graphics g)
 { int w = leafimg.getWidth(this);
 int h = leafimg.getHeight(this);
 g.drawImage (leafimg ,10, 10, w/ 4, h/ 4, this);
 }
}

njm@npac.syr.edu 30

Flickering in Applets and its Solution

u Unless you are careful, dynamic applets will give
flickering screens (in the regular AWT, not in Swing set).

u This is due to the cycle
– repaint()
– update(g) clearing screen
– paint(g) drawing new screen
– where flicker is caused by the rapid clear-paint cycle.

u There are two ways to solve this problem which involve
changing update() in different ways
– 1: Change update() either not to clear screen at all (because you

know paint() will write over parts that are to be changed) or to
just clear the parts of the screen that are changed

– or 2:Double Buffering

njm@npac.syr.edu 31

The default Update(Graphics g) Method

u This sets background color and initializes applet
bounding rectangle to this color
– public void update(Graphics g)

» {
» g.setColor(getBackground());
» g.fillRect(0,0,getSize().width,getSize().height);
» g.setColor(getForeground());
» paint(g);
» }

– getBackground() and getForeground() are methods in
component class

– fillRect() is a method in Graphics class

njm@npac.syr.edu 32

Double Buffering to Reduce Flicker - I

u Here you have two "graphics contexts" (frame buffers of
the size of the applet), and you construct the next image
for an animation "off-line" in the second frame buffer.

u This frame buffer is then directly copied to the main
applet Graphics object without clearing image as in
default update()

u In init(), you would create the frame buffer:
– Image OffscreenImage; / / Place to hold Image
– Graphics offscreenGraphics; / * The second graphics

context of offscreenImage */
– offscreenImage =

createImage(getSize().width,getSize().height);
» offscreenGraphics = offscreenImage.getGraphics();

njm@npac.syr.edu 33

Double Buffering to Reduce Flicker - II

u In paint(), one will construct applet image in
offscreenGraphics as opposed to the argument g of
paint(). So one would see statements such as:
– offscreenGraphics .drawRect(x, y, w, h);

u Finally at end of paint(), one could transfer the off-
screen image to g by
– g.drawImage(offscreenImage,0,0,this);

u One would also need to override the update() method
by
– public void update(Graphics g)
– { paint(g);
– }

njm@npac.syr.edu 34

Double Buffering
u The DigitalClock doesn’t flicker, but this illustrates the technique

on a short example.
public void class DigitalClock extends java.applet.Applet
 implements Runnable
{ . . .
 Image offscreenImg;
 Graphics og;
 public void init ()
 { offscreenImg = createImage (getSize().width, getSize().height);
 og = offscreenImg.getGraphics ();
 }
 public void paint (Graphics g)
 { og.setFont (theFont);
 og.drawString (theDate.toString (), 10, 50);
 g.drawImage (offscreenImg, 0, 0, this);
 }
 public void update (Graphics g)
 { paint (g); }
}

njm@npac.syr.edu 35

Abstract Windowing Toolkit (AWT):

Components such as buttons, textfields, etc.
Java 1.1 Event Model

njm@npac.syr.edu 36

AWT GUI Components

u In Java, the GUI (Graphical User Interface) is built hierarchically in
terms of Components -- one Component nested inside another
starting with the smallest Buttons, including Menus, TextFields etc.
and ending with full Window divided into Frames, MenuBars etc.

u The placement of components in the window is controlled in a
fairly high-level way by one of several Layout Managers.

u The user can interact with the GUI on many of its components, by
clicking a button, typing in text, etc. These actions cause an Event
to be generated , which will be reported by the system to a class
which is an Event Listener, and which will have an event handler
method for that event. This method will provide the appropriate
response to the user's action.

njm@npac.syr.edu 37

Top Levels of the Component Hierarchy

java.awt.Component

java.awt.Container

Panel Window

Applet

Dialog

Frame

java.awt
basic

components javax.swing.JComponent

javax.swing
basic

and other
components

JFrame

JApplet

njm@npac.syr.edu 38

AWT vs. Swing Components
u The AWT components are designed to take on the “look

and feel” of the underlying window system where they are
displayed. For applets, this is wherever the browser is
running.
– AWT components have peer classes in which they have a specific

window implementations.

u Swing components are designed to have a fixed “look and
feel” on all platforms.
– They are sometimes called lightweight because they are

implemented in Java itself. The only peer implementation required
is to put up a window and paint it. Thus, swing components are
far less prone to windowing system dependency bugs.

u The default “platform look and feel”, abbreviated plaf, is
Metal. Others are available such as Motif and Windows.
For example: UIManager.setLookAndFeel (plaf);

njm@npac.syr.edu 39

AWT Components
u We first describe the basic AWT components and the

event handling model.
u We next describe Swing components.

– The event handling model is the same.
– Each AWT component, such as Button, has a corresponding

Swing component, called JButton.
– The Sw ing component typically may have additional

functionality. For example, a Button’s appearance may have a
text label and colors. In addition, a JButton may have an Icon
on it.

– Swing components have a more complex implementation -
they are essentially wrapper classes for a set of classes giving a
“model - view - controller” design pattern:

» model gives contents - such as state or text
» view gives visual appearance
» controller gives behavior - such as reaction to events

njm@npac.syr.edu 40

Picture of the AWT Component Class and some of
its inheritance u Other components can be

placed inside a container.Component

Label

Button

Checkbox

Scrollbar

TextComponent

TextArea Textfield

ScrollPane

List

Canvas Container

Panel Window

Applet

Dialog

Frame

Other classes include
Menu, MenuItem, etc.

njm@npac.syr.edu 41

Basic AWT Components
u For each basic component, one can create one or more

instances of the component type and then use one of the
"add" methods to place it into a Container such as an
applet window.

u For now, we assume that components are added to the
window in order from left to right and top to bottom as
they fit. (This is actually the default FlowLayout
Manager).

u For each component, there will be methods:
– some affect the properties or appearance, such as

setBackground or setFont, which are inherited from the
Component class.

– others may dynamically obtain or change information about the
component, such as getText for TextFields, which may return
whatever String the user has typed into the TextField.

njm@npac.syr.edu 42

Basic AWT Component: Label

u This is an area where text can be displayed in the window.
u Create an instance of the Label class and add it to the window:

– Label label1 = new Label ("aligned left");
– add (label1);

u Another constructor allows a second argument which is an
alignment: Label.LEFT, Label.CENTER, or Label.RIGHT
– Label label2 = new Label ("aligned right", Label.RIGHT);

u Method setText allows you to change the String in the Label, and
getText() returns the current String
– label2.setText("another message");

aligned left aligned right

njm@npac.syr.edu 43

Basic AWT Component: Button

u A Button is the familiar way to allow a user to cause an
event by clicking with the mouse and is created with a
String to label it
– Button button1 = new Button("Click here");
– add (button1);

u AWT Buttons are normally created to appear in the style
of the user's windowing system, except that you can
control the color of the button and the String
– button1.setBackground (Color.cyan);
– button1.setForeground (Color.black);

Click here

njm@npac.syr.edu 44

The AWT Event Model
u An Event Listener is an instance of any class that wants to receive

events.
u An event source is an object that generates events. An event source

will keep a list of event listeners who want to be notified for
particular events. This is sometimes called event delegation.

u The event source notifies event listeners by invoking a particular
method of the event listener (aka the event handler method or
event procedure) and passing it an Event object, which has all the
information about the event.

u For example, a component with a button is an event source, which
generates an event called ActionEvent. There must be a class which
implements an interface called ActionListener and which is on the
list of listeners for that button. Then the Java system will provide
the mechanism that passes the ActionEvent to a standard method
of the ActionListener interface, namely a method called
actionPerformed (). This method will receive the event object and
carry out the response to the event.

njm@npac.syr.edu 45

L

Event Model illustrated with Button

Click here

Window with event
source - a Button.
The button puts L on
its ActionListener list.

Instance of class
implementing
ActionListener

actionPerformed
method

S L

When user clicks the button, the
button makes an ActionEvent
object and passes it to the
actionPerformed method of
listeners on its list.

ActionEvent

njm@npac.syr.edu 46

Setting up ActionEvents for a Button

u When the button is created, it should have at least one listener class
added to its list of listeners:
– button1.addActionListener (eventclass);

u where eventclass is an instance of the listener class.
– every component which can cause an event called X, has

methods addXListener and removeXListener.
u Then this class must implement the interface ActionListener. This

interface requires only one event handler method:
– public class EventClass implements ActionListener
– {
– public void actionPerformed (ActionEvent e) { ... }
– }

u If the event source class is acting as its own listener, then you just
say
– button1.addActionListener (this);

njm@npac.syr.edu 47

The Event Classes
u Every event has a source object, obtained by getSource(), and a type

value, obtained by getID(). In the case of buttons, the ID is
ACTION_PERFORMED. Other Events may have more than one
type of event ID.

u Event subclasses also have methods for whatever data is needed to
handle the event. For example, ActionEvent has a method
getActionCommand, which for buttons, returns the string labelling
the button. MouseEvent has methods getX() and getY(), which
return the x and y pixel location of the mouse, and getClickCount().

AWTEvent

ActionEvent

InputEvent

Adjustment
Event

ItemEvent ComponentEvent

MouseEvent KeyEvent

. . .

TextEvent

FocusEvent WindowEvent

njm@npac.syr.edu 48

AWT Components -- Text Fields & Areas
u To add a text field for display or input one line of text (in this case,

30 characters wide):
– TextField tf = new TextField ("initial text", 30);
– add(tf);

u The text which is displayed can be changed:
– tf.setText("now show a new text");

u If the user types input into the text field, it can be obtained:
– stringvar = tf.getText();

u Or you can disallow the user to type:
– tf.setEditable(false);

u The TextArea class also has these methods, but it can display
multiple lines.

u When the user types in text and presses "return" or "enter", an
ActionEvent is generated , so, similarly to Buttons, an
ActionListener must be provided. TextAreas generate TextEvents.

njm@npac.syr.edu 49

AWT Components -- Checkbox
u Checkboxes are on-off toggles implemented as

– Checkbox red = new Checkbox("Red");
– Checkbox green = new Checkbox("Green");
– Checkbox blue = new Checkbox("Blue",null, true);
– add(red); add(green); add(blue);

u The first two are initially set to "false" as the optional
third argument is not given. The last one is initially set
to "true".

u The state of a checkbox, i.e. whether it is checked, is
given by a boolean result of the method, getState:
– if (red.getState()) . . .;

u If a user clicks a Checkbox, an ItemEvent is generated .
The listener must implement ItemListener with the one
method itemStateChanged (ItemEvent e).

Red
Green
Blue

njm@npac.syr.edu 50

Some Further AWT Components --
typical subunits of panels
u Choice is a class that gives a menu where you choose

from various items, also sometimes called a drop-down
list. Selecting an element of the menu generates an ItemEvent.

u List is another child of Component that is similar in use
to Choice but gives a fixed size list which can be scrolled
and where you can select one or more entries. Lists can
generate both ItemEvents if the user selects (clicks once) an item,
and ActionEvents if the user double-clicks an item.

u Scrollbar is a class that defines a horizontal or vertical
scrollbar. Note this is distinct from scrollbars that come
with TextArea and List. It generates AdjustmentEvents. The
AdjustmentListener must have a method
adjustmentValueChanged.

njm@npac.syr.edu 51

Keyboard and Mouse Events
u More generally, any component, including containers,

can generate mouse and keyboard events as the user
moves or clicks the mouse in the window, or types a
single key on the keyboard.

u This is quite often used in a Canvas or graphics drawing
area.

u The previous events (ActionEvent, ItemEvent,
AdjustmentEvent and TextEvent) are called semantic
events as they express what the user is doing on a
component. The remaining ones, such as KeyEvents,
MouseEvents, FocusEvents and Window Events, are
called low-level events.

njm@npac.syr.edu 52

Key Events
u Typing a single key generates KeyEvents. These events

must be handled by implementing the KeyListener
interface. It has three methods corresponding to the three
actions that can occur on a key:
– public void keyPressed (KeyEvent e)
– public void keyReleased (KeyEvent e)

» these methods are called when a key is pressed down and
released up, respectively, and report a virtual key code, which
is an int encoding of the keys, such as VK_SHIFT, VK_A, . . .

– public void keyTyped (KeyEvent e)
» this reports the character on the key that was pressed

u Typically, one uses methods on the key event to find the
name of the key or key code:
– String s = e.getKeyChar ();
– String t = e.getKeyText (e.getKeyCode());

njm@npac.syr.edu 53

Mouse Events
u There are seven different MouseEvents, handled by

methods in both the MouseListener and the
MouseMotionListener interfaces.
– MouseListener :

» public void mousePressed (MouseEvent e)
u called when the mouse button is pressed with the

cursor in this component
» public void mouseClicked (MouseEvent e)

u called when the mouse button is pressed and
released without moving the mouse

» public void mouseReleased (MouseEvent e)
u called when the mouse button is let up after

dragging

njm@npac.syr.edu 54

Additional Mouse Event handler methods

– More MouseListener methods
» public void mouseEntered (MouseEvent e)

u called when the mouse cursor enters the bounds of
the component

» public void mouseExited (MouseEvent e)
u called when the mouse cursor leaves the component

– MouseMotionListener
» public void mouseDragged (MouseEvent e)

u called when the mouse is moved while the button is
held down

» public void mouseMoved (MouseEvent e)
u called when the mouse cursor moves

njm@npac.syr.edu 55

Methods for Mouse Events
u All mouse events report the x and y location of the mouse in

pixels:
– event.getX () ;
– event.getY () ;

u You can also obtain the click count for double or event triple
clicks:
– event.getClickCount () ;

u You can distinguish between different mouse buttons:
– (event.getModifiers () & InputEvent.BUTTON3_MASK) != 0

tests for a right click of the mouse
u Note that one response to mouse motion can be to change the

appearance of the cursor . There are 14 different built-in cursors as well
as a Toolkit method to define your own.
– if (b) setCursor (Cursor.getDefaultCursor ())

 else setCursor (Cursor.getPredefinedCursor (Cursor.HAND_CURSOR));

njm@npac.syr.edu 56

Using Mouse Events for User Interaction

u We set up a test program that creates three movable
objects, a rectangle, circle and triangle, as in the earlier
example. In this program, we start with them all cyan.
Whenever the mouse is detected to be over one of the
objects, its color is changed to red. If the mouse button
is used to drag the object, we move the object to the
mouse location.

u Note that it is not necessary to introduce a thread for
this applet since it is not running continuously - it is
mostly waiting for mouse events.

njm@npac.syr.edu 57

Adapter Classes
u For every Event Listener interface with more than one method,

there is a corresponding Event Adapter class. For example, there is
an MouseAdapter class to go with the MouseListener interface.

u The adapter class implements its corresponding listener class by
providing all of the required methods, but which have bodies that
do nothing.

u For interfaces like MouseListener and MouseMotionListener , this
can be handy because there are several methods in each interface.
Typically, you don't want to implement all of the methods. So it is
more convenient to make a class which extends the adapter class
than to directly implement the listener class.

» class MouseHandler extends MouseAdapter
» { ... / / override only the methods that you want to

implement
» public void mousePressed(MouseEvent e) { . . . }
» }

njm@npac.syr.edu 58

Separating GUI and Application Code
u In large applications, some Java experts recommend that it

is a better design to separate the responsibilities of getting
user input and executing commands because it is common
to have multiple ways to activate a command.
– Make an object for every command
– Each command object is a listener for the events that trigger it

u The Swing package provides the Action interface to
encapsulate commands and attach them to multiple event
sources. The Action interface implements the ActionListener interface
and has additional methods for properties of the command:
– void actionPerformed (ActionEvent e)
– void setEnabled (boolean b), boolean isEnabled ()
– void putValue (String key, Object val), Object getValue (String key)
– addPropertyChangeListener, removePropertyChangeListener

njm@npac.syr.edu 59

Abstract Windowing Toolkit (AWT):
Layouts

njm@npac.syr.edu 60

Layout of Components in a Panel

u The various panels in a container are laid out separately
in terms of their subcomponents

u One can lay components out "by hand" with positioning
in pixel space

u However this is very difficult to make machine
independent. Thus one tends to use general strategies
which are embodied in 5 LayoutMangers which all
implement the LayoutManager Interface. One can
expect further custom LayoutManager's to become
available on the Web

u To create a layout, such as FlowLayout, in your panel:
– setLayout(new FlowLayout());
– This particular Layout is the default.

njm@npac.syr.edu 61

Brief Description of LayoutManagers

u FlowLayout is a one dimensional layout where components are
"flowed" into panel in order they were defined. When a row is full
up, it is wrapped onto next row

u BorderLayout arranges the components into five areas called
North, South, East, West and Center.

u GridLayout is a two dimensional layout where you define a N by
M set of cells and again the components are assigned sequentially
to cells starting at top left hand corner -- one component is in each
cell. The cells are the same size.

u In Java2, BoxLayout is a one dimensional layout where you have
more control over the spacing and sizing of the components.

u CardLayout lays out in time not space and each card (Displayed at
one time) can be laid out with one of spatial layout schemes above

u GridBagLayout uses a class GridBagConstraints to customize
positioning of individual components in one or more cells

njm@npac.syr.edu 62

Description and Example of BorderLayout

u BorderLayout has five cells called North South East West Center
and components are assigned to these cells with the add method.
Unlike other add methods, here the order is not important:

» add(new TextField("Title",50), BorderLayout.NORTH);
» add(new TextField("Usually_status_message",50),

BorderLayout.SOUTH);
u Remember this is default for a Frame Container
u The constructor "new BorderLayout()" can have no arguments or

"new BorderLayout(hgap, vgap)" can specify numbers of pixels
inbetween components. North

South

W
e
s
t

E
a
s
t

njm@npac.syr.edu 63

FlowLayouts in detail

u This simple layout manager "flows" components into
the window. The components can be aligned, and space
between them specified by arguments hgap and vgap:
– setLayout(new FlowLayout(FlowLayout.LEFT, 5, 2));

setLayout(new FlowLayout(FlowLayout.CENTER));

– setLayout(new FlowLayout(FlowLayout.RIGHT));

u The FlowLayout Manager's strategy includes making
each component its default "preferred size".

njm@npac.syr.edu 64

GridLayouts
u The first two arguments of the GridLayout constructor

specify the number of rows of cells (i.e. number of cells
in the y direction) and the number of columns of cells
(in the x direction)
– setLayout(new GridLayout (2, 3));

u Additional arguments hgap and vgap specify the
number of pixels inbetween the columns and rows:
– setLayout(new GridLayout (2, 3, 10, 15));

u The GridLayout Manager's strategy is to make each cell
exactly the same size so that rows and columns line up
in a regular grid.

njm@npac.syr.edu 65

BoxLayouts in Java 2

u Like the other layout managers, you can setLayout of a
panel to be a BoxLayout, but in addition, there is a
special container called Box whose default layout is a
vertical or horizontal box layout:
 Box b = Box.createHorizontalBox ();
or Box b = Box. createVericalBox ();

u You can add components in the usual way and they are
flowed into the one dimension, where the size strategy
is to make them fit into one row or column, using the
preferred size if possible (and alignment), but growing
them to maximum size if necessary.

u There are invisible fillers available to space the
components.

njm@npac.syr.edu 66

BoxLayout fillers in Java2
u There are three kinds of fillers:

– A strut adds some space between components:
 b.add (button1);
 b.add (Box.createHorizontalStrut (8));
 b.add (button2);
adds 8 pixels between these buttons in a horizontal box.

– A rigid area also adds a fixed amount of space between
components, but may also specify a second dimension which
may affect the height of a horizontal box and the width of a
vertical box.
 b.add (Box.createRigidArea (new Dimension (10, 20));

– Adding glue separates the components as much as possible.
 b.add (button1);
 b.add (Box.createGlue ());
 b.add (button2);

njm@npac.syr.edu 67

Hierarchical Use of Layouts

u Each component in a Layout may itself be a Panel with another
Layout Manager, thus subdividing areas of the user interface.
Using this hierarchy one can achieve complex GUI's.

u A simple example of using hierarchical Layout divides the main
applet space into two components in a BorderLayout. The Center
component is a Canvas for drawing graphics or images; the North
component is itself a Panel which has three buttons in a
GridLayout. This example is a very simple example of a standard
paradigm for drawing or displaying data.

– Also note other examples showing CardLayouts and
GridBagLayouts.

njm@npac.syr.edu 68

Abstract Windowing Toolkit (AWT):
Swing Components and

More Components of the AWT

njm@npac.syr.edu 69

The AWT and Swing Hierarchy
java.awt.Component

java.awt.Container

Panel Window

Applet

Dialog

Frame

javax.swing.JComponent

javax.swing
basic

and other
components

JFrame

JApplet

JDialog

njm@npac.syr.edu 70

Internal Structure of a JFrame
u Applets actually reside inside Frames and JApplets inside

JFrames. While applets, panels and other components
paint and add directly, in the Swing set, things are
painted and added to the ContentPane of the JFrame that
they are in.

Title
JFrame

JRoot

Optional menu bar

Content pane

Glass pane

njm@npac.syr.edu 71

Swing Component Hierarchy
JComponent

JLabel

JButtonJComboBox

JScrollbar

JTextComponent

JTextArea JTextfield

JOptionPane

JList

AbstractButton

JMenuItem JToggleButton

JMenu

JCheckbox

JRadioButtonJMenuBar

njm@npac.syr.edu 72

JLabel

u In addition to having a line of text and an alignment,
Jlabels may have an icon, which is an image placed beside
or above the text:
 JLabel label =
 new JLabel (“Text”, icon, SwingConstants.CENTER);

u The icon argument is anything that implements the
interface Icon, such as ImageIcon.

u Note that the label alignment constants come from an
interface called SwingConstants, which include LEFT,
RIGHT, CENTER, NORTH, EAST, and so on.

u Where the icon is placed with respect to the text can be
specified and fine-tuned with various horizontal and
vertical alignment methods.

njm@npac.syr.edu 73

JButtons
u JButtons may also have an icon or text or both. The

alignment methods are inherited from the abstract button
class.

u In Swing, many components are implemented in terms of
the model-view-controller design pattern . That is, there
are separate classes for the different parts of the
components:
– contents, such as the state of the button, or the text of the textfield
– visual appearance (color, size, and so on)
– behavior (reaction to events)

u Note that the Abstract Button class allows the use of other
models.

u JButtons, JCheckboxes, and JRadioButtons may have the
same model, but different view and controller.

njm@npac.syr.edu 74

JTextField and JTextArea
u For compatibility with TextField , when the user hits

“enter”, the JTextField fires an ActionEvent which can use
the methods getText and setText to access the JTextField .

u However, the JTextComponents have additional
DocumentEvents. When text has changed, one of the
following three methods from the Document Interface is
called:
 void insertUpdate (DocumentEvent e)
 void removeUpdate (DocumentEvent e)
 void changedUpdate (DocumentEvent e)

u The JTextComponent class has methods to select text by
highlighting it and to get selected text.

u Note that JTextArea must be put in a scroll pane to have
scroll bars.

