
njm@npac.syr.edu 1

Java Tutorial - Fall 99

Part4: Multithreading, Useful Java
Classes, I/ O and Networking

Instructors: Geoffrey Fox , Nancy McCracken, Tom Scavo
Syracuse University

111 College Place
Syracuse

New York 13244-4100

njm@npac.syr.edu 2

Threads are part of the Java
Language!

(a more serious discussion than in part III of
tutorial)

njm@npac.syr.edu 3

Initial Remarks on Threads

u Java is remarkable for threads being built into the
language

u Threads are "light-weight" processes (unlike UNIX
processes), which communicate by a combination of
shared memory and message passing
– This communication mechanism is employed naturally by Java

u Java threads are limited and for those coming from an
HPCC background, we note Java threads have no
immediate support for some key parallel computing
concepts (see work of Chandy at Caltech) such as
distributed memory (threads running in separate
operating system instances)

njm@npac.syr.edu 4

u Each thread is a sequence of steps within a program:

u Two or more threads can give the appearance of running at the
same time even on a single CPU by sharing the CPU. Each
thread gives up execution voluntarily (by executing yield(), etc.)
or because its time slice has ended.

u Note that the Java system already has concurrently running
threads for garbage collection, window management, etc.

Thread Concurrency

Thread A Thread B

Program
 Both threads can access variables in memory.

Each thread has its own execution stack and program counter.

njm@npac.syr.edu 5

Thread Execution

u Threads are implemented by a scheduler in Java, which
asks the local operating system to run threads in the
"runnable" state.

u Typically, the OS runs each thread in turn for a "time
slice". However, some operating systems (early
versions of Solaris, e.g.) run a thread to completion
unless another thread of higher priority preempts the
running thread.

u Java threads are based on a locking mechanism using
monitors for synchronization, introduced by Hoare in
1974.

njm@npac.syr.edu 6

How to Use Threads

u One can implement threads in two ways:
– First, by subclassing the Thread class
– Second, by implementing the Runnable interface

u A class that implements the Runnable interface
(including the Thread class itself) must implement the
run() method containing the "body" of the thread.

u The Runnable interface makes it possible for an applet
to utilize threads. (Remember, an applet extends the
Applet class and so cannot multiply inherit from the
Thread class.)

njm@npac.syr.edu 7

Subclassing the Thread Class

u One way to create threads is to write a separate class
that subclasses the Thread class.
– The main line of execution is put in a method called run(),

which overrides the method of the same name from the Thread
class.

u Instances of this subclass are instantiated like this:
– MyThread mt = new MyThread();

u Thread control:
– When the thread is created, it does not automatically start

running. The class that creates it must call the Thread method
start().

– Other methods may be called: Thread.sleep(), Thread.yield(),
and join(). (Note that sleep() and yield() are static methods.)

njm@npac.syr.edu 8

The Life of a Thread
u A thread is always in one of the five states shown in this diagram,

which includes the most common methods for changing state:

Blocked

Newborn Dead

Runnable Running

sleep()
wait()
block on IO

sleep time over
notify()
IO completestart()

yield()

run method over

njm@npac.syr.edu 9

Moving out of a Blocked State

u A thread must move out of a blocked state (or the not
runnable state) into the runnable state using the
opposite of whatever put it into the blocked state:
– If a thread has been put to sleep(), the specified

timeout period must expire.
– If a thread called wait(), then someone else using the

resource for which it is waiting must call notify() or
notifyAll().

– If a thread is waiting for the completion of an input
or output operation, then the operation must finish.

u There is a method isAlive() that returns true if the
method is running, runnable or blocked, and returns
false if the method is a new thread or dead.

njm@npac.syr.edu 10

Thread Priorities
u Every thread has a priority, which can be set by the user

with setPriority(int) using constants MIN_PRIORITY (1),
MAX_PRIORITY(10), or NORM_PRIORITY, or it inherits the
priority of the thread it was created from.

u Whenever the thread scheduler picks a thread to run, it
picks the highest priority thread that is currently runnable,
which is fixed priority scheduling. (If there is more than
one thread with the same priority, each thread gets a turn
in some order.) Lower priority threads are not run as long
as there is a runnable higher priority thread.

u The scheduling is also preemptive: if a higher priority
thread becomes available, it is run.

u The Java Run-time itself does not have time slicing, but
time slicing may be provided by the underlying operating
system.

njm@npac.syr.edu 11

Synchronization
u In Java, two threads can communicate by accessing a

shared variable (shared-memory model).
u If two threads can both modify an object, that is, they can

both execute a method that assigns to a shared variable,
then the modifications must be synchronized .

u This is easy - just declare the method to be synchronized!
Java will associate a lock with each object containing the
method - only one synchronized method from that object
can be executed at a time.

u Suppose more than one thread can access an account:
– public class Account
– { int bankBalance; ...
– public synchronized void CreditAcct(int amt)
– { ... bankBalance += amt; ... }}

njm@npac.syr.edu 12

More on Synchronization

u Sometimes while a thread is executing a synchronized method, it
wants to wait for some condition to become true. Therefore, it may
need to give up the lock on the synchronized method for a time.

u This is implemented by the monitor is associated with the instance
of the class; it has a lock and a queue.

u The queue holds all threads waiting to execute a synchronized
method.
– A thread enters the queue by calling wait() inside the method or

when another thread is already executing the method.
– When a synchronized method returns, or when a method calls

wait(), another thread may access the object.
– As always, the scheduler chooses the highest-priority thread

among those in the queue.
– If a thread is put into the queue by calling wait(), it can't be

scheduled for execution until some other thread calls notify().

njm@npac.syr.edu 13

Thread wait

u If a thread must wait for the state of an object to change,
it should call wait() inside a synchronized method.
– void wait()
– void wait(int timeout)
– These methods cause the thread to wait until notified or until

the timeout period expires, respectively.

u Without a timeout, the thread waits until either notify()
or notifyAll() is called. (See next foil.)

» wait() is called by the thread owning the lock associated with a
particular object; wait() releases this lock (atomically, i.e., safely)

u With a timeout, wait can be used in the place of sleep,
except that a notifyAll will wake it up, unlike sleep
which always waits until completion of the sleep time.

njm@npac.syr.edu 14

Thread notify

u void notify()
u void notifyAll()

– These methods must be called from a synchronized method.
– These methods notify a waiting thread or threads.

u notify() notifies the thread associated with the given
synchronization object that has been waiting the longest
time

u notifyAll() notifies all threads associated with the given
object and is therefore safer than notify()

u One can mark a variable as "threadsafe" to inform the
compiler that only one thread will be modifying this
variable.

njm@npac.syr.edu 15

Threads and Synchronization - Example

u Suppose that several threads are updating a bank
balance (i.e., several threads can access one instance of
class Account below). Then a thread that finds
insufficient funds to debit an account can wait until
another thread adds to the account:
– public class Account
– { int bankBalance; ...
– public synchronized void DebitAcct (int amt)
– { while ((bankBalance - amt) < 0) wait();
– bankBalance -= amt; ... }
– public synchronized void CreditAcct (int amt)
– { bankBalance += amt;
– notify(); ... } }

njm@npac.syr.edu 16

Useful Java Classes

njm@npac.syr.edu 17

The Overarching Object Class

u Public class Object is the root of the class hierarchy.
Every Java class has Object as its ultimate parent and so
any object (object with a small "o" is any instance of a
class) can use methods of Object.

u Methods of Object include:
– clone() creates a clone of the object
– equals(Object) compares two objects, returning a boolean

result
– getClass() returns a descriptor of type Class (a child of Object)

defining the class of the object
– toString() returns a String representation of the object. It is

expected that each subclass will override this method
– wait(...) in various forms causes threads to wait
– finalize() executed when the object is deleted by system (i.e.,

garbage collected)

njm@npac.syr.edu 18

Determining and Testing Class of Object

u Suppose we have an object called obj. We get the class
of obj by:
– Class class = obj.getClass();

u and its name by:
– String name = class.getName();

u One can also use instanceof in following fashion:
– "foo" instanceof String

u evaluates to true, but
– (new mPoint(x,y)) instanceof String

u evaluates to false.

njm@npac.syr.edu 19

java.lang.Object Wrappers
u Primitive types such as int, char, float, etc. are NOT

classes. Thus one cannot use methods such as
– int var;
– var.toString();

u ALL primitive types have associated wrappers:
– Character myChar = new Character('A');

u The Character class has methods such as:
– if (myChar.equals(ch)) ...
– System.out.print(myChar.toString());

u There are also many static (class) methods:
– ch = Character.toLowerCase(myChar);
– if (Character.isUpperCase(myChar)) ...

u The methods in a wrapper class are also useful to
convert types, such as a String to a Double.

njm@npac.syr.edu 20

The java.lang.Math class

u This class provides standard mathematical functions,
using types int, long, float and double.

u It is a static class, meaning that you only use the
methods and never create "Math objects".

u The methods include
» IEEEremainder, abs, ceil, cos, exp, floor, log, max, min, pow ,

random, sin, sqrt, and other trig functions.

– The random number generator is a linear congruential
generator, which is fast but not random enough for many
scientific applications.

njm@npac.syr.edu 21

The Date class

u This class provides an implementation of "date"
structures. Date has methods to create and compare
dates, obtain and set the time, and convert dates to
strings.

u The Date constructor creates today's date:
– Date today = new Date();

u In Java 1.1, most Date methods have been deprecated in
favor of the Calendar class:
– Calendar date1 = Calendar.getInstance();
– date1.set(999, 12, 31); / * Dec. 31, 999 */
– Calendar date2 = Calendar.getInstance();
– date2.set(1996, 12, 31, 23, 59, 59)

u /* Dec.31,1996 at 23:59:59 */

njm@npac.syr.edu 22

The String Class
u Strings are fixed-length collections of Unicode characters.
u Usually a string is created from a string literal or by using

the constructor on an array of characters:
– String greeting = "Hello";

u or
– char[] bunch = {'H', 'e', 'l', 'l', 'o'};
– String greeting = new String(bunch);

u Once created, individual characters of a string cannot be
changed in place. The following example uses String
methods to create a new string:
– String test = "Chicken soup with rice";
– int n = test.indexOf('w');
– String newtest = test.substring(1,n-1) + "is n" + test.substring(n+5);
– / * giving "Chicken soup is nice" */

njm@npac.syr.edu 23

More on Strings and the StringBuffer Class

u String comparison is done with the methods equals()
and equalsIgnoreCase(). Note that == tests if two
strings are the same string instance, while equals() tests
if two distinct strings have the same characters.

u Other methods include length(), charAt(int) and
toLowerCase().

u The StringBuffer class has mutable strings, but with a
fixed maximum size. Methods such as append(...)
automatically extend the length of the string.

njm@npac.syr.edu 24

Example using StringBuffer

u This class returns an object of class String that reverses
order of characters in its argument:
– class ReverseString
– { public static String reverse(String s)
– { int i, len = s.length();
– StringBuffer dest = new StringBuffer(len);
– for(i = (len-1); i >= 0 ; i--)
– { dest.append(s.charAt(i));
– }
– return dest.toString();
– }
– }

njm@npac.syr.edu 25

The Vector Class
u In Java, while you can give the size of an array at run time, you

cannot dynamically change the size of an array during the
computation. The vector class provides a data structure with just
this property, but the restriction is that all of the elements must be
of type Object.
– Usually, we insert an element of any type and Java will convert

it to an Object, but when you extract an element, you must
explicitly cast it to convert it back to the type you want.

u A vector is created with an "initial capacity" and a "capacity
increment". (The default is an initial capacity of 10 and an
increment that doubles each time.) As you add elements, if the
initial capacity is exceeded, then more memory is automatically
allocated in the size of the capacity increment.
– Vector shoes = new Vector();
– Vector orders = new Vector(100, 10);

njm@npac.syr.edu 26

Methods for Vectors

u Elements are created with the addElement(...) method:
– Order missouri = new Order();
– orders.addElement(missouri);

u The object missouri of type Order is automatically
converted to an Object and added to Vector instance
orders defined on the previous foil.

u There are methods for indexing vectors. Like arrays, the
indexing is zero-based.
– x = (Typeofx) v.elementAt(i);
– v.setElementAt(x, i);

u The length of the Vector may also be obtained:
– int size = v.size;

njm@npac.syr.edu 27

The Hashtable class

u This class is similar to a Perl associative array (or hash).
It can store a set of key-value pairs, neither of which can
be null.
– Hashtable staff = new Hashtable();
– Employee harry = new Employee("Harry Hacker");
– staff.put("987-98-9996", harry);

u Values are retrieved by indexing with a key. Like
Vectors, Hashtables only store objects of type Object, so
you must cast the result:
– steve = (Employee) staff.get("149-26-7355");

u If there is no entry, a null value is returned.
u Performance of the Hashtable can be affected by giving

an initialCapacity and a loadFactor for reallocation.

njm@npac.syr.edu 28

I/ O and the powerful Stream Zoo

njm@npac.syr.edu 29

I/ O Streams
u A stream is a sequence of bytes or characters.
u Stream sources and sinks include:

– files
– network connections
– blocks of memory
– threads

u That is, all types of streams are treated similarly.
u The most basic byte streams are InputStream and OutputStream .

These classes have methods that can read or write a byte from or to
a stream:
– int read();
– void write(int);
– skip(long); available(); flush(); close();

u All of the above methods throw a possible IOException.
u The read() and write(int) methods "block" during transfer.

njm@npac.syr.edu 30

The Input Stream Zoo
u The subclasses of InputStream offer additional methods that write

a byte stream in a more structured way or provide other
functionality.
– For example, to open a byte stream to an input file, use:
– FileInputStream s = new FileInputStream("/ usr/ gcf/ file");

InputStream

FileInput
Stream

PipedInput
Stream

FilterInput
Stream

SequenceInput
Stream

Buffered
InputStream

Pushback
InputStream

DataInput
Stream

njm@npac.syr.edu 31

FilterInputStreams
u Subclasses of FilterInputStream are used to convert a raw

InputStream to one with added value. You can define your own
filters but useful ones are already provided in java.io:
– BufferedInputStream -- establishes an intermediate buffer to

service the stream
– DataInputStream -- has methods to input other data types

besides bytes (char, double, boolean, etc.)
– PushbackInputStream -- allows one to "unread" a byte and put

it back in the input stream
u These streams may be "chained" for added functionality:

– DataInputStream in =
– new DataInputStream (new FileInputStream(file));
– or
– BufferedInputStream in =
– new BufferedInputStream (new FileInputStream(file));
– where file is a filename string.

njm@npac.syr.edu 32

The Output Stream Zoo
u The subclasses of OutputStream are analogous to those of

InputStream.
– For example, to open a byte stream to an output file, use:
– FileOutputStream s = new FileOutputStream("/ usr/ gcf/ file");

OutputStream

ByteArray
OutputStream

FileOutput
Stream

FilterOutput
Stream

PipedOutput
Stream

Buffered
OutputStream PrintStream DataOutput

Stream

njm@npac.syr.edu 33

FilterOutputStreams
u DataOutputStream and BufferedOutputStream are two

important FilterOutputStreams.
u To open a data stream to an output file, use:

– DataOutputStream out =
– new DataOutputStream (
– new FileOutputStream(filename));

u where filename is a filename string.
u Note that DataOutputStream has methods to write any

primitive type.
– To open a buffered output stream, use:
– BufferedOutputStream out =
– new BufferedOutputStream (
– new FileOutputStream(filename));

u Only bytes may be written to a Bu fferedOutputStream.

njm@npac.syr.edu 34

Character Streams
u Java 1.1 introduced Reader and Writer classes for character streams,

which are used to read/ write text files.
u To construct a character output stream, for example:

– PrintWriter out =
– new PrintWriter(
– new OutputStreamWriter(
– new FileOutputStream(filename)));

u The OutputStreamWriter constructor takes a byte stream and
converts it to a character stream. As a shortcut, use
– PrintWriter out =
– new PrintWriter(
– new FileWriter(filename));
– where FileWriter is a subclass of OutputStreamWriter .

njm@npac.syr.edu 35

Buffered Text I/ O
u For buffered text output, use the character stream:

– BufferedWriter out =
– new BufferedWriter(
– new OutputStreamWriter(
– new FileOutputStream(filename)));

u Similarly, for buffered text input, use:
– BufferedReader in =
– new BufferedReader(
– new InputStreamReader (
– new FileInputStream(filename)));

u Optionally use the subclasses FileWriter and FileReader
for brevity (as in the previous foil).

u Note that the BufferedReader class has a handy
readLine() method for sequential text input.

njm@npac.syr.edu 36

A Monster Chain

u The buffered output construct in the previous foil is of
limited use since BufferedWriter has so few output
methods. Instead, use the "monster" chain:
– PrintWriter out =
– new PrintWriter(
– new BufferedWriter(
– new OutputStreamWriter(
– new FileOutputStream(filename))));
– which can be shortened somewhat by using FileWriter as

shown earlier.

u The PrintWriter class defines print(...) and println (...)
methods for all primitive types, which unlike other
Reader/ Writer classes never throw exceptions.

njm@npac.syr.edu 37

Standard Input/ Output
u The System class in java.lang provides the "standard" IO

streams System.in, System.out, and System.err.
u System.in is an instance of InputStream.
u System.out and System.err are instances of PrintStream.
u PrintStream is a subclass of FilterOutputStream, which

itself is a subclass of OutputStream.
u PrintStream objects should not be instantiated; use other

subclasses of FilterOutputStream for byte streams or
PrintWriter objects for character streams.

u PrintStream and PrintWriter define methods print(...)
and println (...), which output any primitive type:
– System.out.println ("Enter character: ");
– int ch = System.in.read();
– System.out.println ((char) ch);

njm@npac.syr.edu 38

SequenceInputStream

u The constructor of SequenceInputStream takes a pair of
InputStreams and concatenates them together:
– SequenceInputStream in =
– new SequenceInputStream (
– new FileInputStream(file1),
– new FileInputStream(file2));

u Alternatively, SequenceInputStream takes a Java
Enumeration type:
– SequenceInputStream in =
– new SequenceInputStream (
– new FileListEnumerator(args));
– where args is an array of command-line arguments and

FileListEnumerator is a class that implements the Enumeration
interface.

njm@npac.syr.edu 39

The File Class

u The File class defines methods and variables that
provide access to the underlying file system in a
machine-independent way.

u For example, there are methods getParent() and
getPath(), as well as boolean methods isDirectory() and
isFile(), plus many more.

u A very handy method is the list() method, which returns
a string array of directory contents:
– File dir = new File("/ tmp");
– if (d ir.exists() && dir.isDirectory())
– String directory[] = dir.list();

u Instances of class File may be used in lieu of filename
strings in InputStream constructors.

njm@npac.syr.edu 40

The FileDialog Class

u The FileDialog class is part of the AWT, a child of
Dialog, and allows applications with a window interface
to allow the user to “browse” the file system to select a
file and directory.
– fd = new FileDialog(parent, “title”, FileDialog.LOAD)
– where the parent is the frame that created this dialog box
– “title” is the title of the window
– FileDialog.LOAD specifies that the dialog box is to show files

that can be loaded, one can also use FileDialog.SAVE to specify
that the dialog box is to show files that can be written.

u FileDialog methods getFile() and getDirectory() can
return the file and directory that the user selected or
specified.

njm@npac.syr.edu 41

Random Access

u The RandomAccessFile class offers all the functionality
of DataInputStream and DataOutputStream combined,
plus additional capabilities.

u To open a random access file for reading, use:
– RandomAccessFile in =
– new RandomAccessFile(filename, "r");
– Such a file may be accessed sequentially with
– in.readLine();
– or randomly by repositioning the file pointer:
– in.seek(offset);
– where offset is a byte offset into the random file. (Use "rw" for

read/ write access.)

u Random access files have no inherent structure; the
structure must be imposed by the programmer.

njm@npac.syr.edu 42

StreamTokenizer class

u This class converts an instance of a Reader class to a
StreamTokenizer . There is a similar StringTokenizer class.

u It parses the characters into a stream of “tokens” separated
by white space, and skipping comments.

u Types of tokens:
– TT_WORD, TT_NUMBER, TT_EOL, TT_EOF

u A set of flags controls aspects of the parsing.
u A typical application

– creates an instance of StreamTokenizer
– sets the flags to control the parsing
– repeatedly calls a method nexttoken(), which advances the stream

by one token and returns the type of the token. Based on the token
type, the value of the token is either in the variable sval (WORDS)
or nval (NUMBERS). sval has type String and nval has type double.

njm@npac.syr.edu 43

More on StreamTokenizer
u StreamTokenizer flags are set by the methods

– eolIsSignificant(boolean) - whether EOL is returned as a token
or treated as white space

– slashStarComments(boolean) - whether to recognize C style
comments

– slashSlashComments(boolean) - whether to recognize C++ style
comments

– lowerCaseMode(boolean) - whether to convert all WORD
tokens to lower case

u Other parsing properties
– parseNumbers() - if false, parses only WORDS - default is to

parse both WORD and NUMBER tokens.
– whitespaceChars(int,int) - specifies to use all chars in the range

between the two ints as white space.
– Other methods can specify word chars.

njm@npac.syr.edu 44

Object Serialization
u ObjectInputStream and ObjectOutputStream allows you to read

and write objects from any class (not just primitive types).
u Java objects are serialized with writeObject() and deserialized with

readObject(). For example:
– Vector lines = new Vector(256); ...
– try {
– new ObjectOutputStream(
– new GZIPOutputStream(
– new FileOutputStream(filename)));
– out.writeObject(lines);
– out.close();
– } catch (IOException e) { }

u Only objects of classes that implement Serializable (or
Externalizable) can be serialized. (The Serializable interface defines
no methods.)

u Object variables not to be serialized are called transient.

