
njm@npac.syr.edu 1

Java Tutorial - 1999

Part II: Java Language and
Object-Oriented Concepts

Instructors: Geoffrey Fox ,
Nancy McCracken

Syracuse University
111 College Place

Syracuse
New York 13244-4100

njm@npac.syr.edu 2

Java Language Basics

njm@npac.syr.edu 3

Java Language Basics
u Java syntax has many similarities to C/ C++.

– All variables must be declared
– Syntax, comments, control structures are the same

u But there are some differences
– No malloc or free - it has automatic garbage collection
– No pointers - designers felt pointer arithmetic not robust or safe
– Can declare variables almost anywhere as needed.
– No struct, union, enum, typedef from C - it has classes and

objects instead.
– Java characters are based on 16--bit wide Unicode Worldwide

Character Encoding rather than the usual 8--bit wide ASCII.
This allows full support of all alphabets and hence all languages

– Primitive types for integers and floats have machine
independent semantics

– Booleans in Java have value “true” or “false” (not 0, 1, . . .)

njm@npac.syr.edu 4

Java Language Syntax
u Three types of comments are supported:

– / / ignore all till the end of this line
– / * ignore all between starts */
– / ** an insert into an automatically generated software

documentation */
» for / ** */ one inserts HTML documentation with some simple

macros such as @see (to designate see also) BEFORE the method or
class being documented

u Java reserves the following keywords:
– abstract boolean break byte case catch char class const continue

default do double else extends final finally float for goto if
implements import instanceof int interface long native new
package private protected public return short throw throws
transient try void volatile while

– Note goto is not allowed in Java but its still reserved!

u null, true, and false are literals with special meaning

njm@npac.syr.edu 5

Java Language -- Program Structure
u Source code of a Java program consists of one or more compilation

units, implemented as files with .java extension.
u Each compilation unit can contain:

– a package statement
– import statements
– class declarations
– interface declarations

u Java compiler (called javac) reads java source and produces a set of
binary bytecode files with .class extensions, one for each class
declared in the source file. For example, if Foo.java implements Foo
and Fred classes, then "javac Foo.java" w ill generate Foo.class and
Fred.class files.

u Suppose that Foo implements an applet and Fred is an auxiliary
class used by Foo. If Netscape/ Internet Explorer encounters a tag
<APPLET code="Foo.class">, it will download Foo.class and
Fred.class files and it will start interpreting bytecodes in Foo.class.

njm@npac.syr.edu 6

Java Types

u Each Java variable or expression has a definite type,
given by a declaration such as
– int i;
– double x, y, z;
– Color c;

u There are three "types" of types!
– There are Primitive or Simple types such as ints or

booleans which are built-in.
– New composite types (objects) can be constructed in

terms of classes and interfaces. The type of an object
is its class or interface

– Arrays we will see are a sort of "almost" object!

njm@npac.syr.edu 7

Primitive Types

u There are 4 integer types: byte, short, int, long of size 8,
16, 32 and 64 bits, respectively.

u float is 32 bits, double is 64 bits. Floating point
arithmetic and data formats are defined by IEEE754
standard.

u characters are given by 16bit Unicode charset and
represented as short integers.

u One can use casts for conversion such as
– long l;
– l = (long) i;
– / / which can be explicit as here and sometimes implied (see

later)

u Note booleans are either TRUE or FALSE -- they are not
0, 1 ,-1 ...

njm@npac.syr.edu 8

Java Language -- Types: Array

u Arrays are "true" or "first class" objects in Java and no pointer
arithmetic is supported.

u Like other objects, an array must be declared and created:
– int states[]; / / declaration
– alternative syntax: int[] vec;
– and then:
– states = new int[128]; / / creation
– or concisely:
– int states[] = new int[128];

u Arrays of arbitrary objects can be constructed,
– e.g. Color manycolors[] = new Color[1024];
– The only difference is that in the case of primitive types, the array

elements are actually created. In the case of arbitrary objects, an array of
object references is created; before you use array elements, you must call
the constructor of that type for each element.

njm@npac.syr.edu 9

Java Language -- More on Arrays

u An array of length 128 is subscripted by integers from 0
to 127.

u Subscripts are range checked in runtime and so vec[-1] and vec[128]
will generate exceptions.

u Array length can be extracted via the length instance variable, e.g.
– int len = vec.length will assign len = 128.

u Arrays can have dynamic sizing (a fixed size determined at runtime)
– int sizeofarray = 67;
– int vec[] = new int[sizeofarray];

u Multidimensional arrays are arrays of arrays
» char icon[][] = new char[16][16]
» These arrays can be "ragged":

u int graph[][] = new int[2][];
u graph[0][] = new int[4];
u graph[1][] = new int[7];

njm@npac.syr.edu 10

Strings - an example of a class type
u Java provides many classes that represent data types, e.g.

String. To declare a String variable and create a string:
 String s = new String (“This is the text.”);

u But in the case of strings, the special syntax is allowed:
 String s = “This is the text.”;

u Once created, individual characters of a string cannot be
changed in place. The following example uses String
methods to create a new string:
– String test = "Chicken soup with rice";
– int n = test.indexOf('w');
– String newtest = test.substring(1,n-1) + "is n" + test.substring(n+5);
– / * giving "Chicken soup is nice" */

u Comparing strings - use method equals instead of “==“
 test.equals (newtest)

njm@npac.syr.edu 11

Java Language -- Expressions
u Java's expressions are very similar to C and include the following

forms. Both expressions and statements have values.
– arithmetic:

» 2+3
» (2+3)*i

– autoincriment and autodecriment
» i++ / * equivalent to i = i +1 */

– boolean
» ((i > 0) && (j>0)) | | (state = -1)

– bit operations
» i <<1 / * Left shift by 1 binary digit */

– conditional expression
» (i>0) ? expression1 : expression2

– strings have operators such as catenation
» "fred" + "jim" is "fredjim"

– object property operators
» (a instanceof B) / * True iff object a is of class B */

njm@npac.syr.edu 12

Java Language -- Control Flow I

u if (some boolean expression) { .. }
– else { ... } / / optional else

u Nested: if (some boolean expression) { .. }
– else if(another boolean) { .. }
– else { ... }

u while (any boolean) { / * Do Stuff */ }
u do { / * What to do */ } while (another boolean);
u for (expression1; booleanexpression ; expression2) { ...}

– naturally starts with expression1, applies expression2 at end
of each loop, and continues as long as booleanexpression true

» for (int i=0; i<length(a); i++)
» a[i] = i * i;
» / * loop variable i is optionally declared to be local to loop as

shown here. */

njm@npac.syr.edu 13

Java Language -- Control Flow II

u switch (expression) / * Just as in C */
– {
– case Constant1: / * Do following if expression=Constant1 */

» / * Bunch of Stuff */ break;

– case Constant2: / * Do following if expression=Constant2 */
» / * Bunch of Stuff */ break;

– default:
» / * Bunch of Stuff */ break;

– }

u One can go to the next iteration of a loop by using
– continue;

u or break out of the loop by using
– break;

njm@npac.syr.edu 14

Method Definitions

u Subprograms in Java are called methods. The definition format is

– Modifiers Returntype Methodname (Parameterlist)
» {
» declarations and statements
» }

u The parameter list contains the types and names of all the
parameters.

u The declarations and statements are called the body of the method.
Parameter names and variables declared in the body are local to it.

u Control returns from the methods either when the body is finished
execution or a return statement is encountered. Return statements
may also return a result.

u Parameters of primitive types are passed by value, of class types by
reference.

njm@npac.syr.edu 15

The Java Object Model: Classes,
Instances and Methods

njm@npac.syr.edu 16

The Java Object Model Overview
u Programs are composed of a set of modules

called classes. Each class is a template
specifying a set of behaviors on the data of
the class.

u Each class has class variables (sometimes
called instance vars) to hold the data and
methods (called functions or procedures in
other languages) to define the behaviors.
Each object in a program is created as an
instance of a class. Each class instance has its
own copy of the class variables.

u Classes can be used for data encapsulation ,
hiding the details of the data representation
from the user of the class (by marking
variables as private).

Instance
Variables

Methods

njm@npac.syr.edu 17

Defining a Class

u The class definition consists of
– a header line giving the class name, modifiers, possible subclass

and interface structure
– declarations (and possibly initializations) of class variables (aka

instance variables)
– declaration of a constructor method. This method has the same

name as the class and does any initialization whenever an
instance is created.

– declarations of other methods.

njm@npac.syr.edu 18

API of a Class
u Each class has an API (Application Programming Interface)

consisting of all the variables and methods that other programmers
(i.e. in other classes) are allowed to use. These are designated by
the "public" keyword.

u Example showing part of the Java Date class:
– public class String
– { / / Constructor methods to create instances of class
– public Date ();
– public Date (long);
– / / Accessor and Mutator methods to access and change data
– public int getTime ();
– public void setTime (long);
– / / Other public methods
– public boolean after (Date);
– public boolean equals (Date);
– . . . }

njm@npac.syr.edu 19

Using a Class
u This declares object today to have type class

– Date today
– Date() is Constructor of Date class which constructs an instance

of Date class and sets default value to be the current date
– new Date()
– Note that there are two constructor methods in this class, as in

general Java allows overloading of methods (but not operators).
u An example application using a method of the Date class:

– import java.util.Date;
– class DateTest
– { public static void main (String[] args)
– { Date today = new Date();
– Date early = new Date(1000);
– if (today.after (early))
– System.out.println ("Today is not early!");
– }}

njm@npac.syr.edu 20

A Computational Class

u A class (such as a "main routine") may also be
implemented to have just one computational instance.

u This application reads from standard input and counts
number of characters which are then printed
– class Count {
– public static void main (String[] args)
– throws java.io.IOException
– { int count = 0;
– while (System.in.read() != -1)
– count++;
– System.out.println ("Input has " + count + " chars.");
– }}

njm@npac.syr.edu 21

Header of Class Definition
u Class declaration in Java shares common aspects with

C++ but there are also some syntactic and semantic
differences.

u ClassModifiers class className [extends superClass]
[implements interfaces] { <body of class>}
– e.g. public class Test extends Applet implements Runnable

 { . . . }
– defines an applet that can use threads which have methods

defined by Runnable interface
u Only single inheritance is supported but aspects of multiple

inheritance can be achieved in terms of the interface construct.
Interface is similar to an abstract class with all methods being
abstract and with all variables being static (independent of
instance). Unlike classes, interfaces can be multiply-inherited.

njm@npac.syr.edu 22

Access Mod ifiers of Classes - I

u Possible ClassModifiers are:
– abstract -- Contains abstract methods without implementation --

typically such abstract classes have several subclasses that
define implementation of methods

– public -- May be used by code outside the class package and
(unix) file must be called ClassName.java where ClassName is
unique public class in file

– private -- this class can only be used within current file
friendly(i.e. empty ClassModifier) -- class can be used only
within current package

– protected -- Only accessible to subclasses

njm@npac.syr.edu 23

Access Mod ifiers of Classes - II

– threadsafe: Instance or static variables will never change
asynchronously and so can use compiler optimizations such as
assigning to registers. Next modifier -- final -- is also valuable to
compilers

– final -- Cannot have a subclass for classes
» cannot be overridden for methods
» final variables have a constant value e.g.

u final int ageatdeath = 101;
– transient -- specifies that objects are not persistent
– Note most of these modifiers can be used either for a class or an

object -- a particular instance of a class
» abstract only makes sense for a class and transient is perhaps more

useful on an object basis

njm@npac.syr.edu 24

Access Mod ifiers of Method s
u MethodModifier ReturnType Name(argType1 arg1,)
u Returntypes are either simple types (int, byte etc.), arrays or class names

u Possible MethodModifiers are:
– public -- This method is accessible by all methods inside and outside

class
– protected -- This method is only accessible by a subclass
– private -- This method is only accessible to other methods in this class
– friendly(i.e. empty) -- This method is accessible by methods in classes

that are in same package
– final -- a method that cannot be overriden
– static -- This method is shared by ALL instances of this class and must

be invoked with <Class>.method syntax.
– synchronized -- This method locks object on entry and unlocks it on

exit. If the object is already locked, the method waits until the lock is
released before executing -- can be used on methods or statement
blocks

– native -- to declare methods implemented in a platform -- dependent
language, e.g. C.

njm@npac.syr.edu 25

The Java Object Model: Inheritance
and the Class Hierarchy

njm@npac.syr.edu 26

Relationships between Classes

u use
» A uses B: A calls a method (sends a message to) an object of class B

or creates, receives, or returns an object of class B.

– containment
» A has a B: special case of use - an object of class A contains an

object of B

u inheritance
» B is an A: specialization - B extends A (is a subclass of A) if B has

all the variables and methods of A (and more).

– In the class definition of B, the child class, there is no need to
repeat declarations of variables and methods of A, they are
assumed to be there. The definition of B has the additional
variables and methods of B.

njm@npac.syr.edu 27

Use of Methods Defined in Parent
u If you call a method in a class that was defined in some parent, the

compiler has a simple algorithm to find the definition: it searches
up the parent/ child hierarchy.

Class:
 method A

Definition of method
is given in parent

Class: Class:

Class: Class:

Object2Object1 Object1 creates object2
and calls object2.A

njm@npac.syr.edu 28

Use of Methods Defined in Parent
 but overridden in child class
u This algorithm also works for the case when the method is

overridden

Class:
 method A

Definition of method
is given in parent

Class: Class:
method A

Class: Class:

Object2Object1 Object1 creates object2
and calls object2.A

njm@npac.syr.edu 29

Comments on Casting
u Casting (type conversion) is supported between types and class

types. Syntax:
– (classname)reference

u Two forms of casting are possible: widening and narrowing
u Widening, where the subclass is used as an instance of the

superclass, is performed implicitly
u Narrowing, where the superclass is used as an instance of the

subclass, must be performed explicitly
u Given Parent: Dot -> DrawableDot (Child):

– Widening: An instance of DrawableDot is used as an instance of
Dot

– Narrowing: An instance of Dot is used as an instance of
DrawableDot

u Casting between sibling classes is a compile-time error
u Note that otherwise conversions between types are given explicitly

by methods within the class.

njm@npac.syr.edu 30

Array - A Pseudo Class!

u Not in any package
u One final instance variable: length
u For each primitive type (and all classes), there's an

implicit Array subclass
u Cannot be extended (subclassed)
u Superclass is Object
u Inherits methods from Object

– new int[5]).getClass().getSuperclass()
– will return Java.lang.Object

njm@npac.syr.edu 31

Comments on Overloading and Overriding in Classes

u Overriding Methods (where child class provides method with same
signature as method in parent)
– To override a method, a subclass of the class that originally declared

the method must declare a method with the same name, return type
(or a subclass of that return type), and same parameter list.

– When the method is invoked on an instance of the subclass, the new
method is called rather than the original method.

– The overridden method can be invoked using the super variable .
– Super can be used to refer to instance variables in the superclass as

well.

u Overloading (where a class can provide a set of methods all with
the same name, but with different signatures): The signature is
defined (as in Arnold-Gosling book) by
– Lowest conversion cost of parameter list, based on type and number of

parameters. Return type and declaration order not important.
– Java will declare an error if method is invoked where there is not one

with a unique signature

njm@npac.syr.edu 32

Abstract Methods and Classes
Interfaces (classes without

implementation)

njm@npac.syr.edu 33

Abstract Methods and Classes

u An abstract method has no body - it is provided in a
class to define the signature of the method for program
structuring purposes. It must be defined in some
subclass of the class in which it is declared.
– Constructors, static methods, private methods cannot be

abstract
– A method that overrides a superclass method cannot be abstract

u Classes that contain abstract methods and classes that
inherit abstract methods without overriding them are
considered abstract classes
– It is compile-time error to instantiate an abstract class or attempt

to call an abstract method directly.

njm@npac.syr.edu 34

Java Language -- Interfaces - Overview

u An interface specifies a collection of methods (behaviors) without
implementing their bodies (akin to giving the API).
– public interface Storable {

» public abstract void store(Stream s);
» public abstract void retrieve(Stream s);
» }

u Any other class which implements the interface is guaranteeing
that it will have the set of behaviors, and will give concrete bodies
to the methods of the interface.

u Interfaces solve some of the same problems as multiple inheritance,
without as much overhead at runtime.
– There is a small performance penalty because interfaces involve

dynamic method binding.
u Interfaces can be implemented by classes on unrelated inheritance

trees, making it unnecessary to add methods to common
superclass.

njm@npac.syr.edu 35

Interface Example -- Implementing Storable

u A class may implement an interface, in which case it
provides the body for the methods specified in the
interface.

u interface storable has store and retrieve methods
– public class Picture implements Storable {

» public void store(Stream s) {
» / / JPEG compress image before storing
» }
» public void retrieve(Stream s) {
» / / JPEG decompress image before retrieving
» }
» }

– public class StudentRecord implements Storable {
» . . .
» }

njm@npac.syr.edu 36

Interfaces can be used as Classes in type specification

u Interfaces behave exactly as classes when used as a type.
u The normal type declaration syntax "interfaceName variableName"

declares a variable or parameter to be an instance of some class that
implements interfaceName.

» public class StudentBody {
» Stream s;
» Picture id_photo; / / of interface storable
» StudentRecord id_card; / / of interface storable
» . . .
» public void register() {
» save(id_photo);
» save(id_card);
» }
» public void save(Storable o) {
» o.store(s);
» }
» }

njm@npac.syr.edu 37

Further Features of Interfaces
u Interfaces are either public or have the default friendly access

(public for the package and private elsewhere)
u Methods in an interface are always abstract and have the same

access as the interface. No other modifiers may be applied
u Variables in an interface are public, static, and final. They must be

initialized.
u Interfaces can incorporate one or more other interfaces, using the

extends keyword:
– public interface DoesItAll extends Storable, Paintable {

» public abstract void doesSomethingElse();
» }

u A class can implement more than one interface:
» public class Picture implements Storable, Paintable {
» public void store(Stream s) {...}
» public void retrieve(Stream s) {...}
» public void refresh() {...}
» }

njm@npac.syr.edu 38

More on Interfaces -- Why use them

u Note that Interfaces often play a software engineering as
opposed to required functional role

u Note that Interfaces are not significantly used in current
Java release where perhaps there are 15 times as many
class definitions as interface definitions

u But Interfaces play a crucial role in structuring
programs that need to declare multiple sets of behaviors
such as applets and threads.

u And Interfaces play a crucial role in the Remote Method
Interface (RMI), where an Interface is the common
specification between a Java applet or application and
the set of methods that it can call remotely.

njm@npac.syr.edu 39

Packages in Java

njm@npac.syr.edu 40

Overview of Packages and Directory Structure

u One file can contain several related classes, but only one
of them can be public. If the public class is called
wheat.java, then the file must be called wheat.

u A set of classes in different files can be grouped together
in a package. Each of the files must be in the same
directory and contain the command
– package mill;

u The name of the directory must the same as the package.

Directory name: mill

File: wheat.java: stone.java:
 package mill package mill
 public class wheat . . . public class stone . . .

njm@npac.syr.edu 41

Using Java packages
u One conveniently uses files in a package by inserting

» import mill.*

u at the beginning of a file that needs classes from the mill
package
– Then classes in the mill package can be refered to by just using

their Classname
– ithout the import command, one must explicitly say

mill.Classname
u Packages can be grouped hierarchically, with the corresponding

directory tree. For example, the mill package could be a
subpackage of agriculture. Then a class is referred to as
agriculture.mill.Classname.

u Except for classes provided with the Java language, a class that is
imported or used must either be in the current directory or be
accessible to the compiler through the CLASSPATH environment
variable.

njm@npac.syr.edu 42

Java 1.0 System Packages

u java.lang Contains essential Java classes and is by default imported
into every Java file and so import java.lang.* is unnecessary.
Thread, Math, Object and Type Wrappers are here

u java.io contains classes to do I/ O. This is not necessary (or even
allowed!) for applets which can't do much I/ O in Netscape!

u java.util contains various utility classes that didn't make it to
java.lang. Date is here as are hashtables

u java.net contains classes to do network applications. This will be
important for any distributed applications

u java.applet has the classes needed to support applets
u java.awt has the classes to support windowing -- The Abstract

Windows Toolkit
u java.awt.image has image processing classes

– java.awt.peer is a secret set of classes with platform dependent
details

njm@npac.syr.edu 43

Additional Java 1.1 System Packages

u java.awt.datatransfer Classes and interfaces to transfer data from a
Java program to the system clipboard (enabling drag-and-drop)

u java.beans Contains classes to write reusable software components
u java.lang.reflect Enables a program to discover the accessible

variables and methods of a class at run-time
u java.rmi Remote Method Invocation
u java.security Enables a Java program to encrypt data and control

the access privileges provided
u java.sql Java Database Connectivity (JDBC) enables Java programs

to interact with a database using the SQL language
u java.text Classes that provide internationalization capabilities for

numbers, dates, characters and strings
u java.util.zip Combines java .class files and other files into one

compressed file called a Java archive (JAR) file.

njm@npac.syr.edu 44

Additional Java 1.2 System Packages

u javax.accessibility - contracts between user interface
components and assistive technology

u javax.swing - additional user interface components as
well as providing standard “look and feel” for old ones
– border, colorchooser , event, filechooser, plaf, table, text, tree,

undo

u org.omg.CORBA - Provides the mapping of the Object
Management Group CORBA APIs to the Java
programming language, including the class ORB, which
is implemented so that a programmer can use it as a
fully-functional Object Request Broker (ORB).

njm@npac.syr.edu 45

More on the Java Language:
Exceptions

njm@npac.syr.edu 46

Java Language -- Handling Runtime
Errors Using Exceptions
u The language itself supports concept of an exception
u Java supports a hierarchical model of exceptions which

allow and indeed require user to supply suitable
handlers for any exception that can occur in a Java
program

u Note exceptions that can occur in a method must either
be caught (i.e. handled inside method) or thrown (i.e.
returned to callee)

u Thrown exceptions are like returned arguments and are
for instance part of interface to a method

u Exceptions are all (at some level in hierarchy) subclasses
of Throwable class

njm@npac.syr.edu 47

The try statement for handling exceptions
u File file; / * defines file to be object of class File */

– / *The body of the try statement is executed until an error occurs.
 It then skips to the body of the catch. */

– try{
– file = new File("filenameyouwant");
–
– file.write("stuff put out");
– } catch (IOException e) {
– / / This catches ALL I/ O errors including read and write stuff
– / * Handle Exception somehow */ }
– return;
– }
– / * but the optional finally clause will be executed
– whether or not code terminates normally */
– finally
– { file.close(); }

njm@npac.syr.edu 48

User Created Exceptions
u The Exception class has data structures and methods that can give

information about the exception and how it occurred. There are
two constructors, one of which allows a message to be included in
each instance.

u The user can either throw an exception of type Exception with a
unique message, or create own subclass of Exception:
– public static void MyMethod () throws MyException
– { . . .
– throw new MyException;
– . . . }
– class MyException extends Exception
– { public MyException ()
– { super ("This is my exception message."); }
– }

u Methods which call "MyMethod" should use a try and catch block
which catches an exception e of type MyException. Methods
e.getMessage and e.printStackTrace can be used on Exceptions.

njm@npac.syr.edu 49

Basic Structure of Exception Handling in
Nested Calls

– method1 {
– try {
– call method2;
– } catch (Exception3 e) {
– doErrorProcessing(e);
– }
– }
– method2 throws Exception3 {
– call method3; / / method2 just passes exception through
– }
– method3 throws Exception3 {
– call dividebyzeroorreadfileorsomething; / / create exception
– }

njm@npac.syr.edu 50

Examples of Exception Hierarchy
u As Examples of hierarchy:
u catch(FileNotFoundException e) { .. } would catch particular

exception whereas
u catch(IOException e) { .. } would catch all IOexceptions

Throwable

. . .

Error Exception

RuntimeException IOException

EOFException

FileNotFoundException

InterruptedIOException

njm@npac.syr.edu 51

Classes of Exceptions

u There are two subclasses of Throwable
– Error such as OutOfMemoryError which do NOT have to be

caught as they are serious but unpredictable and could typically
occur anywhere!

– Exception which we have discussed

u Exception has a subclass RuntimeException that need
NOT be caught
– Typical RuntimeException subclasses are

» ArithmeticException, ClassCastException,
IndexOutofBoundException

u Note that exceptions which are thrown but not caught
appear as error message on stderr. For applets this is in
the “Java console” of the browser.

