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Abstract of MPI Presentation

u This covers MPI from a user's point of view and is
meant to be a supplement to other online resources
from the MPI Forum, David Walker's Tutorial, Ian
Foster's  Book "Designing and Building Parallel
Programs", Gropp,Lusk and Skjellum "Using MPI"

u An Overview is based on subset of 6 routines that
cover send/receive, environment inquiry (for rank
and total number of processors) initialize and
finalization with simple examples

u Processor Groups, Collective Communication and
Computation, Topologies, and Derived D atatypes
are also discussed
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MPI Overview -- Comparison with HPF -- I

u MPI collected ideas from many previous message passing
systems and put them into a "standard" so we could write
portable (runs on all current machines) and scalable (runs on
future machines we can think of) parallel software

u MPI plays the same role to message passing systems that HPF
does to data parallel languages
– BUT whereas MPI has essentially all one could want -- as

message passing is “fully understood”
– HPF and related technologies will still evolve as there are

many unsolved data parallel compiler issues
» e.g. HPC++ -- the C++ version of HPF has important differences
» and there is no data parallel version of C due to pointers (there is a

C* language which has restrictions)
» HPJava is our new idea but again not same as HPF or HPC++

– whereas MPI is fine with Fortran C or C++ and even Java
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MPI Overview -- Comparison with HPF -- II

u HPF runs on SIMD and MIMD machines and is high
level as it expresses a style of programming or
problem architecture

u MPI runs on MIMD machines (in principle it could
run on SIMD but unnatural and inefficient) -- it
expresses a machine architecture

u Traditional Software Model is
– Problem --> High Level Language --> Assembly Language --> Machine

»                Expresses Problem             Expresses Machine

u So in this analogy MPI is universal "machine-
language" of Parallel processing

u MPI can be built efficiently at low risk whereas HPF compiler
is difficult project with many unsolved issues
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Some Key Features of MPI
u An MPI program defines a set of processes, each executing

the same program (SPMD)
– (usually one process per parallel computer node)

u … that communicate by calling MPI messaging functions
– (point-to-point and collective)

u … and can be constructed in a modular fashion
– (communication contexts are the key to MPI libraries)

u Also
– Support for Process Groups -- messaging in subsets of

processors
– Support for application dependent (virtual) topologies

analogous to distribution types in HPF
– Inquiry  routines to find out properties of the environment

such as number of processors
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What is MPI?
u A standard message-passing library

– p4, NX, PVM, Express, PARMACS are precursors

u MPI defines a language-independent interface
– Not an implementation

u Bindings are defined for different languages
– So far, C and Fortran 77, C++ and F90
– Java Grande Forum is defining Java bindings

u Multiple implementations
– MPICH is a widely-used portable implementation
– See http://www.mcs.anl.gov/mpi/
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History of MPI
u Began at Williamsburg  Workshop in April 1992
u Organized at Supercomputing 92 (November 92)
u Followed HPF Forum format and process

– Met every 6 weeks for two days
– Extensive, open email discussions
– D rafts, readings, votes

u Pre-final draft distributed at Supercomputing 93
u Two-month public comment period
u Final version of draft in May 1994
u Widely available now on the Web, ftp sites, netlib
u Public and optimized Vendor implementations available for Unix

and Windows NT
u Further MPI Forum meetings through 1995 and 1996 to discuss

additions to the standard
u Standard announced at Supercomputing 1996
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Who Designed MPI?
u Broad Participation
u Vendors

– IBM, Intel, TMC, Meiko, Cray, Convex, Ncube

u Message Passing Library writers
– PVM, p4, Zipcode, TCGMSG, Chameleon, Express, Linda

u Application specialists and consultants
u Companies:

– ARCO, Convex, Cray Research, IBM, Intel, KAI, Meiko, NAG, nCUBE,
Parasoft, Shell, TMC

u Laboratories:
– ANL, GMD, LANL, LLNL, NOAA, NSF, ORNL, PNL, Sandia, SDSC,

SRC

u Universities:
– UC Santa Barbara, Syracuse, Michigan State, Oregon Grad Institute,

New Mexico, Miss. State, Southampton, Colorado, Yale, Tennessee,
Maryland, Western Michigan, Edinburgh, Cornell, Rice, San Francisco
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Some Difficulties with MPI
u MPI was designed by the Kitchen Sink approach and has 129

functions and each has many arguments
– This completeness is strength and weakness!
– Hard to implement efficiently and hard to learn all its

details
u It is not a complete operating environment and does not have

ability to create and spawn processes etc.
u PVM is the previous dominant approach

– It is very simple with much less functionality than MPI
– However it runs on essentially all machines including

heterogeneous workstation clusters
– Further it is a complete albeit simple operating

environment
u However it seems clear that MPI has been adopted as the

standard messaging system by parallel computer vendors
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Sending/Receiving Messages:  Issues

u Questions:
– What is sent?
– To whom is the data sent?
– How does the receiver identify it?
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What Gets Sent: The Buffer
u First generation message passing systems only

allowed one to transmit information originating in a
contiguous array of bytes
– Hid the real data structure from hardware and

programmer
» Might make it hard to provide efficient

implementations as implied a lot of expensive memory
accesses

– Required pre-packing dispersed data, e.g.:
» Rows (in Fortran, columns in C) of a matrix must be

transposed before transmission

– Prevented convenient communication between
machines with different data representations
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Generalizing the Buffer in MPI
u MPI specifies the buffer by starting address ,

datatype, and count
– starting address is obvious
– datatypes are constructed recursively from

» Elementary  (all C and Fortran datatypes)
» Contiguous array of datatypes
» Strided blocks of datatypes
» Indexed array of blocks of datatypes
» General structures

– count is number of datatype elements
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Advantages of Datatypes
u Cominations of elementary  datatypes into a derived user

defined datatype allows clean communication of collections
of disparate types in a single MPI call.

u Elimination of length  (in bytes) in favor of count (of items of
a given type) is clearer

u Specifying application-oriented layouts allows maximal use
of special hardware and optimized memory use

u However this wonderful technology is problematical in Java
where layout of data structures in memory is not defined in
most cases
– Java’s serialization subsumes user defined datatypes as a

general way of packing a class of disparate types into a
message that can be sent between heterogeneous
computers
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To Whom It Gets Sent:  Process Identifiers

u 1st generation message passing systems
used hardware addresses
– Was inflexible

» Had to recode on moving to a new machine

– Was inconvenient
» Required programmer to map problem topology

onto explicit machine connections

– Was insufficient
» Didn’t support operations over a submachine

(e.g., sum across a row of processes)



2/28/00 cps615mpi98   gcf@npac.syr.edu, njm@npac.syr.edu 15

Generalizing the Process Identifier in MPI

u MPI supports process groups
– Initial “all” group
– Group management routines

» Split group
» Define group from list

u All communication takes place in groups
– Source/destination identifications refer to

rank in group
– Communicator = group + context
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Why use Process Groups?
u We find a good example when we

consider typical Matrix Algorithm
– (matrix multiplication)
– A i,j = Σk B i,k C k,j

– summed over k'th column of B
and k'th row of C

u Consider a block decomposition of
16 by 16 matrices B and C as for
Laplace's  equation. (Efficient
Decomposition as we will see
later)

u Each sum operation involves a
subset(group) of 4 processors

k = 2
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How It Is Identified:  Message Tags
u 1st generation message passing systems used an

integer “tag” (a.k.a. “type” or “id”) to match
messages when received
– Most systems allowed wildcard on receive

» wildcard means match any tag i.e. any message
» Unsafe due to unexpected message arrival

– Most could match sender id, some with wildcards
» Wildcards unsafe; strict checks inconvenient

– All systems let users  pick the tags
» Unsafe for libraries due to interference
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Sample Program using Library
u Calls Sub1 and Sub2 are from different libraries
u Same sequence of calls on all processes, with no

global synch
Sub1();
Sub2();

u We follow with two cases showing possibility
of error with messages getting mixed up
between subroutine calls
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Correct Library Execution

Sub1

Sub2

send(2) recv(0)
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Incorrect Library Execution

Sub1

Sub2

send(2) recv(0)
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What Happened?
u Each library  was self-consistent

– Correctly handled all messages it knew about
u Interaction between the libraries killed them

– “Intercepting” a message broke both
u The lesson:

– Don’t take messages from strangers
u Other examples teach other lessons:

– Clean up your own messages
– Don’t use other libraries’ tags
– Etc. …
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Solution to the Tag Problem
u Generalize tag to tag and communicator
u A separate communication context  for each family of

messages
– Used for queuing and matching
– This is the context for communicators

u No wild cards allowed in communicator, for security
u Communicator allocated by the system, for security
u Tags retained for use within a context

– wild cards OK for tags
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MPI Conventions
u All MPI routines are prefixed by MPI_

– C is always MPI_Xnnnnn(parameters) : C is case sensitive
– Fortran is case insensitive but we will write

MPI_XNNNNN(parameters)
u MPI constants are in upper case as are MPI datatypes, e.g.

MPI_FLOAT for floating point number in C
u Specify overall constants with

– #include "mpi.h" in C programs
–  include "mpif.h" in Fortran

u C routines are actually integer functions and always return an
integer status (error) code

u Fortran routines are really subroutines and have returned status
code as last argument
– Please check on status codes although this is often skipped!
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Standard Constants in MPI
u There a set of predefined constants in include files for each

language and these include:
u MPI_SUCCESS -- successful return code
u MPI_COMM_WORLD  (everything) and

MPI_COMM_SELF(current process) are predefined reserved
communicators  in C and Fortran

u Fortran elementary  datatypes are:
– MPI_INTEGER, MPI_REAL, MPI_DOUBLE_PRECISION,

MPI_COMPLEX, MPI_DOUBLE_COMPLEX, MPI_LOGICAL,
MPI_CHARACTER, MPI_BYTE, MPI_PACKED

u C elementary  datatypes are:
– MPI_CHAR, MPI_SHORT, MPI_INT, MPI_LONG,

MPI_UNSIGNED_CHAR, MPI_UNSIGNED_SHORT,
MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_FLOAT,
MPI_DOUBLE, MPI_LONG_DOUBLE, MPI_BYTE,
MPI_PACKED
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The Six Fundamental MPI routines
u MPI_Init (argc, argv) -- initialize
u MPI_Comm_rank (comm, rank) -- find process label

(rank) in group
u MPI_Comm_size(comm, size) -- find total number of

processes
u MPI_Send (sndbuf,count,datatype,dest,tag,comm) --

send a message
u MPI_Recv

(recvbuf,count,datatype,source,tag,comm,status) --
receive a message

u MPI_Finalize( ) -- End Up
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MPI_Init -- Environment Management
u This MUST be called to set up MPI before any

other MPI routines may be called
u For C: int MPI_Init(int *argc, char **argv[] )

– argc and argv[] are conventional C main
routine arguments

– As usual MPI_Init returns an error
u For Fortran: call MPI_INIT(mpierr)

– nonzero (more pedantically values not
equal to MPI_SUCCESS) values of mpierr
represent errors
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MPI_Comm_rank -- Environment Inquiry
u This allows you to identify each process by a unique

integer called the rank which runs from 0 to N-1
where there are N processes

u If we divide the region 0 to 1 by domain
decomposition into N parts, the process with rank r
controls
– subregion covering r/N to (r+1)/N
– for C:int MPI_Comm_rank(MPI_Comm comm, int *rank)

» comm is an MPI communicator of type MPI_Comm
– for FORTRAN: call MPI_COMM_RANK (comm, rank,

mpierr)



2/28/00 cps615mpi98   gcf@npac.syr.edu, njm@npac.syr.edu 28

MPI_Comm_size -- Environment Inquiry

u This returns in integer size number of
processes in given communicator comm
(remember this specifies processor group)

u For C: int MPI_Comm_size(MPI_Comm comm,int *size)
u For Fortran: call MPI_COMM_SIZE (comm, size, mpierr)

– where  comm, size, mpierr are integers
– comm is input; size and mpierr returned



2/28/00 cps615mpi98   gcf@npac.syr.edu, njm@npac.syr.edu 29

MPI_Finalize -- Environment Management

u Before exiting an MPI application, it is
courteous to clean up the MPI state and
MPI_FINALIZE does this. No MPI routine
may be called in a given process after that
process has called MPI_FINALIZE

u for C: int MPI_Finalize()
u for Fortran:call MPI_FINALIZE(mpierr)

– mpierr is an integer
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Hello World in C plus MPI
u # all processes execute this program
u #include <stdio.h>
u #include <mpi.h>
u void main(int argc,char *argv[])
u {      int ierror, rank, size

– MPI_Init(&argc, &argv);      # Initialize
– # In following Find Process Number
– MPI_Comm_rank(MPI_COMM_WORLD , &rank);
– if( rank == 0)

» printf ("hello World!\ n");
– # In following, Find Total number of processes
– ierror = MPI_Comm_size(MPI_COMM_WORLD , &size);
– if( ierror  != MPI_SUCCESS )

» MPI_Abort(MPI_COMM_WORLD ,ierror);       # Abort
– printf("I am processor %d out of total of %d\ n", rank, size);
– MPI_Finalize();        # Finalize     }
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Comments on Parallel Input/Output - I
u Parallel I/O has technical issues -- how best to optimize

access to a file whose contents may be stored on N different
disks which can deliver data in parallel and

u Semantic issues -- what does printf  in C (and PRINT in
Fortran) mean?

u The meaning of printf/PRINT is both undefined and
changing
– In my old Caltech days, printf on a node of a parallel machine was a

modification of UNIX which automatically transferred data from
nodes to "host e.g. node 0" and produced a single stream

– In those days, full UNIX did not run on every node of machine
– We introduced new UNIX I/O modes (singular and multiple) to

define meaning of parallel I/O and I thought this was a great idea
but it didn't catch on!!
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Comments on Parallel Input/Output - II
u Today, memory costs have declined and ALL mainstream

MIMD distributed memory machines whether clusters of
workstations/PC’s or integrated systems such as T3D/ Paragon/
SP-2 have enough memory on each node to run UNIX or
Windows NT

u Thus printf today means typically that the node on which it
runs will stick it out on "standard output" file for that node
– However this is implementation dependent

u If on other hand you want a stream of output with information in order
» Starting with that from node 0, then node 1, then node 2 etc.
» This was default on old Caltech machines but

– Then in general you need to communicate information from nodes 1
to N-1 to node 0 and let node 0 sort it and output in required order

u MPI-IO standard links I/O to MPI in a standard fashion
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Blocking Send: MPI_Send(C)  or MPI_SEND(Fortran)

u call MPI_SEND (
– IN message             start address of data to send
– IN message_len     number of items (length in

bytes                                 determined by type)
– IN datatype             type of each data element
– IN dest_rank           Process number (rank) of

destination
– IN message_tag     tag of message to allow receiver

to filter
– IN communicator    Communicator of both sender

and receiver group
– OUT error_message)       Error Flag (absent in C)
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Example MPI_SEND in Fortran
u integer count, datatype, dest, tag, comm,

mpierr
u real sndbuf(50)
u comm = MPI_COMM_WORLD
u tag = 0
u count = 50
u datatype = MPI_REAL
u call MPI_SEND (sndbuf, count, datatype,

dest, tag, comm, mpierr)
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Blocking Receive: MPI_RECV(Fortran)
u call MPI_RECV(

– IN     start_of_buffer      Address of place to store data(address is
Input -- values of data are of course output starting at this
address!)

– IN     buffer_len              Maximum number of items allowed
– IN     datatype                Type of each data type
– IN     source_rank          Processor number (rank) of source
– IN     tag                          only accept messages with this tag value
– IN    communicator       Communicator of both sender and

receiver group
– OUT return_status       Data structure describing what

happened!
– OUT error_message)       Error Flag (absent in C)

u Note that return_status is used after completion of receive to find actual
received length (buffer_len is a maximum length allowed), actual source
processor source_ rank and actual message tag
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Blocking Receive:  MPI_Recv(C)

u In C syntax is
u int error_message = MPI_Recv(

– void *start_of_buffer,
– int buffer_len,
–  MPI_DATATYPE datatype,
–  int source_rank,
– int tag,
– MPI_Comm communicator,
– MPI_Status *return_status)
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Fortran example: Receive
u integer status(MPI_STATUS_SIZE)  An array to store status

of received information
u integer mpierr, count, datatype, source, tag, comm
u integer recvbuf(100)
u count = 100
u datatype = MPI_REAL
u comm = MPI_COMM_WORLD
u source = MPI_ANY_SOURCE   accept any source processor
u tag = MPI_ANY_TAG             accept any message tag
u call MPI_RECV (recvbuf, count, datatype, source, tag, comm,

status, mpierr)
– Note source  and tag can be wild-carded
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Hello World:C Example of Send and Receive
u # All processes execute this program
u #include “mpi.h”
u main( int argc, char **argv )
u {

– char message[20];
– int i, rank, size, tag=137;      # Any value of tag allowed
– MPI_Status status;
– MPI_Init (&argc, &argv);
– MPI_Comm_size(MPI_COMM_WORLD , &size)    #

Number of  Processes
– MPI_Comm_rank(MPI_COMM_WORLD , &rank);    #

Who is this process
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HelloWorld, continued
– if( rank == 0 )  {  # We are on "root" -- Process 0

» strcpy(message,"Hello MPI World"); # Generate
message

» for(i=1; i<size; i++)  # Send message to the size-1 other
processes

» MPI_Send(message, strlen(message)+1, MPI_CHAR, i,
tag, MPI_COMM_WORLD );       }

– else  {   # Any processor except root -- Process 0
» MPI_Recv(message,20, MPI_CHAR, 0, tag,

MPI_COMM_WORLD , &status); }
– printf("This is a message from node %d saying %s\ n",

rank, message);
– MPI_Finalize();

u    }
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Interpretation of Returned Message Status
u In C status is a structure of type MPI_Status

– status.source gives actual source process
– status.tag gives the actual message tag

u In Fortran the status is an integer array and different
elements give:
– in status(MPI_SOURCE) the actual source process
– in status(MPI_TAG) the actual message tag

u In C and Fortran, the number of elements (called count) in the
message can be found from call to

u call MPI_GET_COUNT (IN status, IN  datatype,
u                                      OUT count, OUT error_message)

– where as usual in C last argument is missing as returned in
function call
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Collective Communication
u Provides standard interfaces to common global

operations
– Synchronization
– Communications, i.e. movement of data
– Collective computation

u A collective operation uses a process group
– All processes in group call same operation at (roughly) the

same time
– Groups are constructed “by hand” with MPI group

manipulation routines or by using MPI topology-
definition routines

u Message tags not needed (generated internally)
u All collective operations are blocking.
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Some Collective Communication Operations

u MPI_BARRIER(comm)  Global Synchronization within a
given communicator

u MPI_BCAST Global Broadcast
u MPI_GATHER Concatenate data from all processors in a

communicator into one process
– MPI_ALLGATHER puts result of concatenation in all

processors
u MPI_SCATTER takes data from one processor and scatters

over all processors
u MPI_ALLTOALL sends data from all processes to all other

processes
u MPI_SENDRECV exchanges data between two processors --

often used to implement "shifts"
– this viewed as pure point to point by some



2/28/00 cps615mpi98   gcf@npac.syr.edu, njm@npac.syr.edu 43

Hello World:C Example of Broadcast
u #include "mpi.h"
u main( int argc, char **argv )
u {     char message[20];

– int rank;
– MPI_Init (&argc, &argv);
– MPI_Comm_rank(MPI_COMM_WORLD, &rank); # Who is this

processor
– if( rank == 0 )    # We are on "root" -- Processor 0

» strcpy(message,"Hello MPI World"); # Generate message
– # MPI_Bcast sends from root=0 and receives on all other processor
– MPI_Bcast(message,20, MPI_CHAR, 0, MPI_COMM_WORLD);
– printf("This is a message from node %d saying %s\ n", rank, message);
– MPI_Finalize();         }

u Note that all processes issue the broadcast operation, process 0 sends the
message and all processes receive the message.
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Collective Computation
u One can often perform computing during a collective communication
u MPI_REDUCE performs reduction operation of type chosen from

– maximum(value or value and location), minimum(value or
value and location), sum, product, logical and/or/xor, bit-wise
and/or/xor

– e.g. operation labeled MPI_MAX stores in location result of
processor rank the global maximum of original in each
processor as in

– call MPI_REDUCE(original, result, 1, MPI_REAL, MPI_MAX, rank,
comm, ierror)

» One can also supply one's own reduction function
u MPI_ALLREDUCE is same as MPI_REDUCE but it stores result in all --

not just one -- processors
u MPI_SCAN performs reductions with result for processor r depending on

data in processors 0 to r
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Examples of Collective
Communication/Computation

u Four Processors where each has a send buffer of size
2
–   0               1              2               3      Processors
– (2,4)         (5,7)         (0,3)           (6,2) Initial Send Buffers
– MPI_BCAST with root=2
– (0,3)         (0,3)         (0,3)           (0,3) Resultant  Buffers
– MPI_REDUCE with action MPI_MIN and root=0
– (0,2)         (_,_)         (_,_)           (_,_) Resultant  Buffers
– MPI_ALLREDUCE with action MPI_MIN and root=0
– (0,2)         (0,2)         (0,2)           (0,2) Resultant  Buffers
– MPI_REDUCE with action MPI_SUM and root=1
– (_,_)       (13,16)       (_,_)           (_,_) Resultant  Buffers
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Collective Computation Patterns
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More Examples of Collective
Communication/Computation

u Four Processors where each has a send buffer of size 2
–   0               1              2               3      Processors
– (2,4)         (5,7)         (0,3)           (6,2) Initial Send Buffers
– MPI_SENDRECV with 0,1 and 2,3 paired
– (5,7)         (2,4)         (6,2)           (0,3) Resultant Buffers
– MPI_GATHER with root=0
– (2,4,5,7,0,3,6,2) (_,_) (_,_)         (_,_) Resultant  Buffers
– Now take four Processors where only rank=0 has send

buffer
– (2,4,5,7,0,3,6,2) (_,_) (_,_)         (_,_) Initial send Buffers
– MPI_SCATTER with root=0
– (2,4)         (5,7)         (0,3)           (6,2) Resultant Buffers
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Data Movement (1)Processors
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Examples of MPI_ALLTOALL

u All to All Communication with  i'th location in j'th
processor being sent to  j'th location in i'th processor

u Processor    0                   1                   2               3
u Start (a0,a1,a2,a3) (b0,b1,b2,b3)  (c0,c1,c2,c3) (d0,d1,d2,d3)
u After (a0,b0,c0,d0) (a1,b1,c1,d1)  (a2,b2,c2,d2) (a3,b3,c3,d3)
u There are extensions MPI_ALLTOALLV to handle

case where data stored in noncontiguous fashion in
each processor and when each processor sends
different amounts of data to other processors

u Many MPI routines have such "vector" extensions
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Data Movement (2)
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List of Collective Routines

u“ALL” routines deliver results to all
participating processes

uRoutines ending in “V” allow different
sized inputs on different processors

Allgather Allgatherv Allreduce
Alltoall Alltoallv Barrier
Bcast Gather Gatherv

Reduce ReduceScatter Scan
Scatter Scatterv
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Example Fortran: Performing a Sum
call MPI_COMM_RANK( comm, rank, ierr )
 if (rank .eq. 0) then
   read *, n
 end if
 call MPI_BCAST(n, 1, MPI_INTEGER, 0, comm, ierr )
# Each process computes its range of numbers to sum
 lo = rank*n+1
 hi = lo+n-1
 sum = 0.0d0
 do i = lo, hi
    sum = sum + 1.0d0 / i
 end do
 call MPI_REDUCEALL( sum, sumout, 1, MPI_DOUBLE,
&                    MPI_ADD_DOUBLE, comm, ierr)
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Example C:  Computing Pi
u #include “mpi.h”
u #include <math.h>
u int main (argc, argv)
u int argc;  char *argv[];
u {
u   int n, myid, numprocs , i, rc;
u   double PI25DT = 3.14159265358979323842643;
u   double mypi, pi, h, sum, x, a;

u   MPI_Init(&argc, &argv);
u   MPI_Comm_size (MPI_COMM_WORLD , &numprocs);
u   MPI_Comm_rank (MPI_COMM_WORLD , &myid);
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Pi Example continued
u {  if (myid == 0)
u     { printf (“Enter the number of intervals: (0 quits) “);
u       scanf (“%d”, &n);     }
u   MPI_Bcast (&n, 1, MPI_INT, 0, MPI_COMMWORLD );
u   if  (n == 0) break;
u   h = 1.0 / (double) n;
u   sum = 0.0;
u   for (i = myid+1; i <= n; i += numprocs)
u   { x = h * ((double) i - 0.5);   sum += 4.0 / 1.0 + x*x): }
u   mypi = h * sum;
u  MPI_Reduce (&mypi, &pi,1, MPI_DOUBLE,MPI_SUM,

0,MPI_COMMWORLD );
u   if (myid == 0)
u      printf(“pi is approximately %.16f, Error is %.16f\ n”,pi, fabs(pi-

PI35DT); }
u MPI_Finalize;   }



2/28/00 cps615mpi98   gcf@npac.syr.edu, njm@npac.syr.edu 55

Buffering Issues
u Where does data go when you send it?

– Multiple buffer copies, as in A)?
– Straight to the network, as in B)?

u B) is more efficient than A), but not always correct

recv

send

buffer

buffer

The Network

Proc0

Proc1

recv

send

The Network

Proc0

Proc1

B)A)
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Avoiding Buffering Costs
u Copies are not needed if

– Send does not return  until the data is delivered,
or
– The data is not touched after the send

u MPI provides modes to arrange this
– Synchronous: Do not return until recv is posted
– Ready: Matching recv is posted before send
– Buffered: If you really want buffering

u When using asynchronous communication send
functions, use MPI_Wait or MPI_WaitAll before
reusing the buffer to ensure that all data has been
safely transferred on its way.
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Combining Blocking and Send Modes

uAll combinations are legal
– Red are fastest, Blue  are slow

Blocking Nonblocking
Normal MPI_SEND MPI_ISEND

Buffering MPI_BSEND MPI_IBSEND

Ready MPI_RSEND MPI_IRSEND

Synchronous MPI_SSEND MPI_ISSEND
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Cartesian Topologies
u MPI provides routines to provide structure to

collections of processes.  Although it also has graph
topologies, here we concentrate on cartesian.

u A Cartesian topology is a mesh
u Example of a 3 x 4 mesh with arrows pointing at the

right neighbors:

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)
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Defining a Cartesian Topology
u The routine MPI_Cart_create creates a Cartesian

decomposition of the processes, with the number of
dimensions given by the ndim argument.  It returns a new
communicator  (in comm2d in example below) with the
same processes as in the input communicator, but
different topology.

u ndim = 2;
u dims[0] = 3;  dims[1] = 4;
u periods[0] = 0;  periods[1] = 0;  // periodic is false
u reorder = 1;                                  // reordering is true
u ierr = MPI_Cart_create (MPI_COMM_WORLD , ndim,
u                            dims, periods, reorder, &comm2d);

– where reorder specifies that it’s o.k. to reorder the default process
rank in order to achieve a good embedding (with good
communication times between neighbors).
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MPI_Cart_coords and MPI_Cart_rank

u Given the rank of the process in MPI_COMM_WORLD,
this routine gives a two element (for two dimensional
topology) array (coords in example below) with the (i, j)
coordinates of this process in the new cartesian
communicator.
– ierr MPI_Cart_coords (comm2d, rank, ndim, coords);
– coords[0] and coords[1] will be the i and j coordinates.

u Given the coords of a process, this routine gives the rank
number in the communicator.
– ierr MPI_Cart_coords ( comm2d, coords, &rank);
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Who are my neighbors?
u The routine MPI_Cart_shift finds the neighbors in each

direction of the new communicator.
u dir = 0;     // in C 0 for columns, 1 for rows
u                  //  in Fortran, it’s 1 and 2
u disp = 1;  // specifies first neighbor to the right and left
u ierr = MPI_Cart_shift (comm2d,  dir, disp, &nbrbottom,
u                                                                 &nbrtop):
u This returns the process numbers (ranks) for a

communication of the bottom and top neighbors.
u Typically, the neighbors are used with send/recv to

exchange data.
u If a process in a non-periodic mesh is on the border and has no

neighbor, then the value MPI_PROCNULL is returned.  This process
value can be used in a send/recv, but it will have no effect.
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Periodic meshes
u In a periodic mesh, as shown below the processes at

the edge of the mesh wrap around in their
dimension to find their neighbors. The right
neighbor is wrapped
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Communication in Sub-Grids
u Suppose that you have an algorithm, such as matrix

multiply, that requires you to communicate within one
row or column of a 2D grid.
– For example, broadcast a value to all processes in one row.

u MPI_Comm rowcomm;
freecoords[0] = 0;  freecoords[1] = 1;
ierr = MPI_Cart_sub(comm2d, freecoords, &rowcomm)

u Defines nrow new communicators, each with the
processes of that row.  The array freecoords has boolean
values specifying whether the elements of that
dimension “belong” to the communicator.
– if bcastroot is defined as the root processor in each row, broadcast

a value along rows:
MPI_Bcast(value, 1, MPI_FLOAT, bcastroot, rowcomm);
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Motivation for Derived Datatypes in MPI
u These are an elegant solution to a problem we struggled with

a lot in the early days -- all message passing is naturally built
on buffers holding contiguous data

u However often (usually) the data is not stored contiguously.
One can address this with a set of small MPI_SEND
commands but we want messages to be as big as possible as
latency is so high

u One can copy all the data elements into a single buffer and
transmit this but this is tedious for the user and not very
efficient
– It has extra memory to memory copies which are often quite slow

u So derived datatypes can be used to set up arbitary  memory
templates with variable offsets and primitive datatypes.
Derived datatypes can then be used in "ordinary" MPI calls in
place of primitive datatypes MPI_REAL MPI_FLOAT etc.
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Derived Datatype Basics
u Derived Datatypes should be declared integer in Fortran and

MPI_Datatype in C
u Generally have form { (type0,disp0), (type1,disp1) ... (type(n-

1),disp(n-1)) } with list of primitive data types typei and
displacements  (from start of buffer)  dispi

u call MPI_TYPE_CONTIGUOUS (count, oldtype, newtype,
ierr)
– creates a new datatype newtype made up of count

repetitions of old datatype oldtype
u one must use call MPI_TYPE_COMMIT(derivedtype, ierr)

before one can use the type derivedtype in a communication
call

u call MPI_TYPE_FREE(derivedtype, ierr) frees up space used
by this derived type
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Simple Example of Derived Datatype
u integer derivedtype,  ...
u call MPI_TYPE_CONTIGUOUS(10, MPI_REAL,

derivedtype, ierr)
u call MPI_TYPE_COMMIT(derivedtype, ierr)
u call MPI_SEND(data, 1, derivedtype, dest, tag,

MPI_COMM_WORLD , ierr)
u call MPI_TYPE_FREE(derivedtype, ierr)
u is equivalent to simpler single call
u call MPI_SEND(data, 10, MPI_REAL, dest, tag,

MPI_COMM_WORLD , ierr)
u and each sends 10 contiguous real values at location data

to process dest
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Derived Datatypes:  Vectors

u MPI_TYPE_VECTOR (count, blocklen, stride, oldtype,
newtype, ierr)
– IN count        Number of blocks to be added
– IN blocklen   Number of elements in block
– IN stride        Number of elements (NOT bytes)

between start of each block
– IN oldtype     Datatype of each element
– OUT newtype Handle(pointer) for new derived type
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Example of Vector type
u Suppose in C, we have an array

– phi [ypoints+2] [xpoints+2]
– where we want to send rows and columns of elements

from 1 : nxblock and 1 : nyblock
– in C, arrays are stored row major order (Fortran is column

major)
Contiguous elements

MPI_Type_vector
    (xpoints, 1, ypoints+2,
       MPI_DOUBLE, &strided);

defines a type called strided
which refers to the column of
elements

0                        xpoints+1

ypoints+1

0
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Why is this interesting?
u In Jacobi like algoritms, each processor stores its own

xpoints by ypoints array of variables as well as guard
rings containing the rows and columns from neighbours.
One loads these guard rings at start of computation
iteration and only updates
points internal to array

Guard Rings
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Derived Datatypes:  Indexed
u Array of indices, useful for gather/scatter
u MPI_TYPE_INDEXED (count, blocklens, indices, oldtype,

newtype, ierr)
– IN count        Number of blocks to be added
– IN blocklens  Number of elements in each block -- an

array of length count
– IN indices     Displacements (an array of length count) for

each block
– IN oldtype     Datatype of each element
– OUT newtype Handle(pointer) for new derived type



2/28/00 cps615mpi98   gcf@npac.syr.edu, njm@npac.syr.edu 71

Designing MPI Programs

u Partitioning
– Before tackling MPI

u Communication
– Many point to collective

operations

u Agglomeration
– Needed to produce MPI

processes

u Mapping
– Handled by MPI

The 
Problem

Initial tasks

Communication

Combined  Tasks

Final Program
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Jacobi Iteration: The Problem
u Used to numerically solve a Partial Differential

Equation (PDE) on a square mesh -- below is
Poisson’s Equation

u Method:
– Update each mesh point by the average of its neighbors
– Repeat until converged

∂ 2u
∂x 2 + ∂ 2u

∂y 2 = −2x 2 + 2x − 2y 2 + 2y

u = 0 if x = 0, x = 1, y = 0,  or y = 1 x

y

x

0

0.5

1

y

x

y

-0.08

-0.06

-0.04

-0.02

0

u

x

y
x

u

y

 

This is right hand side
f(x,y)
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Jacobi Iteration:  MPI Program Design
u Partitioning is simple

– Every point is a micro-task

u Communication is simple
– 4 nearest neighbors  in Cartesian mesh
– Reduction for convergence test

u Agglomeration works along dimensions
– 1-D packing for high-latency machines (as minimizes

number of messages)
– 2-D packing for others (most general as minimizes

information sent)
– One process per processor practically required
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Jacobi Iteration:  MPI Program Design
u Mapping: Cartesian grid supported by MPI virtual topologies
u For generality, write as the 2-D version

– Create a 1×P (or P×1) grid for 1-D version
u Adjust array bounds, iterate over local array

– For convenience, include shadow region to hold communicated
values (not iterated over)

0                         xpoints+2

ypoints+2

nx by ny points in a
npx by npy decomposition,
boundary values define problem
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Jacobi Iteration: C MPI Program Sketch
    / * sizes of data and data files   */
    int NDIM = 2;
    int xpoints = nx/ npx;  int ypoints = ny/ npy;
    double phi[ypoints+2][xpoints+2],

oldphi[ypoints+2][xpoints+2];

/ *  communication variables */
int rank; int rankx, ranky;
int coords[NDIM];
int reorder = 0;
int dims[NDIM], periods[NDIM];
MPI_Comm comm2d;
MPI_Datatype  contig , strided;
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Jacobi Iteration:  create topology
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_size( MPI_COMM_WORLD, &size );

periods[0] = 0;   periods[1] = 0;
dims[0] = npy;   dims[1] = npx;

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods,
                         reorder, &comm2d);
MPI_Cart_coords(comm2d, rank, 2, coords);
ranky = coords[0];
rankx = coords[1];

MPI_Cart_shift(comm2d, 0, 1, &bottomneighbor, &topneighbor);
MPI_Cart_shift(comm2d, 1, 1, &leftneighbor, &rightneighbor);
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Jacobi iteration:  data structures

/*  message types  */
MPI_Type_contiguous (ypoints, MPI_DOUBLE, &contig);
MPI_Type_vector (xpoints, 1, ypoints+2, MPI_DOUBLE, &strided);
MPI_Type_commit (&contig);
MPI_Type_commit (&strided);

/* define mask array to be true on boundary and false elsewhere in
    each processor.
    Define boundary values in phi array in each processor.
 */
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Jacobi Iteration: send guard values
while (err > tol) {  /* copy phi array to oldphi */
/ * communicate edge rows and columns to neighboring

processor  to put in their guard rings               */
    / * Send right boundary to right neighbor
       and receive left ghost vector in return from left neighbor*/

MPI_Sendrecv (&(oldphi[1][xpoints]), 1, strided ,
           rightneighbor, 31, &(oldphi[1][0]), 1, strided ,
           leftneighbor, 31, comm2d, &status);
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Remaining communication

   / * Send left boundary in each processor to left neighbor */
    MPI_Sendrecv (&(oldphi[1][1]), 1, strided , leftneighbor, 30,

           &(oldphi[1][xpoints+1]), 1, strided, rightneighbor, 30,
               comm2d, &status);
/ * Send top boundary to top neighbor */

     MPI_Sendrecv (&(oldphi[1][1]), 1, contig, topneighbor, 40,
           &(oldphi[ypoints+1][1]), 1, contig, bottomneighbor, 40,
           comm2d, &status);
/ * Send bottom boundary to bottom neighbor */

     MPI_Sendrecv (&(oldphi[ypoints][1]), 1, contig,
           bottomneighbor, 41, &(oldphi[0][1]), 1, contig,
           topneighbor, 41, comm2d, &status);
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Jacobi Iteration:  update and error
for (j = 1; j <= xpoints; j++)
          {
            for (i = 1; i <= ypoints; i++)
              {
                if (mask[i][j]) {
                  phi[i][j] = 0.25 * (oldphi[i-1][j] +
                                      oldphi[i+1][j]
                                      + oldphi[i][j-1] +
                                      oldphi[i][j+1]);
                  diff = max(diff, abs(phi[i][j] - oldphi[i][j]));
                } }}
 /* maximum difference over all processors */
 MPI_Allreduce(&diff, &err, 1, MPI_DOUBLE, MPI_MAX,
comm2d);
 if (err < ((double)TOLERANCE))    done = 1;
}
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The MPI Timer
u The elapsed (wall-clock) time between two points in an

MPI program can be computed using MPI_Wtime:
– double t1, t2;
– t1 = MPI_Wtime ( );
– . . .
– t2 = MPI_Wtime ( );
– printf (“Elapsed time is %f \ n”, t2-t1 );

u The times are local;  the attribute
MPI_WTIME_IS_GLOBAL may be used to determine if
the times are also synchronized with each other for all
processes in MPI_COMM_WORLD .
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MPI-2
u  The MPI Forum produced a new standard which

include MPI 1.2 clarifications and corrections to MPI
1.1

u MPI-2 new topics  are:
– process creation and management, including client/server

routines
– one-sided communications (put/get, active messages)
– extended collective operations
– external interfaces
– I/O

u additional language bindings for C++ and Fortran-90
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I/O included in MPI-2
u Goal is to provide model for portable file system allowing for

optimization of parallel I/O
– portable I/O interface POSIX judged not possible to allow

enough optimization
u Parallel I/O system provides high-level interface supporting

transfers of global data structures between process memories
and files.

u Significant optimizations required include:
– grouping, collective buffering, and disk-directed I/O

u Other optimizations also achieved by
–  asynchronous I/O, strided accesses and control over

physical file layout on disks.
u I/O access modes defined by data partitioning expressed with

derived datatypes


