
4/8/99 cps616securityjava 1

Java Security Model
and Signing Code

Spring 99
Geoffrey Fox, Nancy McCracken,

and Mehmet Sen
Syracuse University

NPAC
111 College Place

Syracuse NY 13244 4100
3154432163

4/8/99 cps616securityjava 2

Java Security Model
• Review of Java Security Mechanisms
• Models for JDK1.0, JDK1.1, and JDK1.2
• Signing Code for 1.1 and 1.2
• Signing Code for JavaScript
• Resouces:

– http://java.sun.com/security

4/8/99 cps616securityjava 3

The Java Security Model
Three mechanisms in Java help ensure safety:
• Language design features (bound checking on arrays, legal

type conversions only, no pointer arithmetic, etc.)
• Java “sandbox” mechanism that controls what the code can

do (like local file accesses) Common to both Java 1.0 and Java
1.1.

• Code signing: Programmers can use standard cryptographic
algorithms to embed a “certificate into a Java class. Then, the
users can precisely understand who implemented the code
and signed. If one alters the code, he would not be able to sign
it with the original signature. Users may decide to use or not
to use the code depending on the trust of the signer.

4/8/99 cps616securityjava 4

Sandbox mechanism
• This addresses security of the client machine once an applet has

been downloaded and includes processing of security mechanisms
such as authentication certificates

• There are three parts of the Java Security model:
– Byte Code Verifier: checks that the downloaded .class files

obey the rules of the Java Virtual Machine
– Class Loader: makes certain that Java classes have a security

structure that prevents outside applets contaminating built in
runtime.

– Security Manager: implements overall policy which depends
on particular browser and includes privileges open to applets
and processing of authentication mechanisms

– Note first two parts can have bugs; last part can have both
bugs and ill advised policies!

4/8/99 cps616securityjava 5

What can applets do - I?
• Currently the rules are strict and in fact unreasonably so because

these rules stop applets from doing things that we want general
client programs to do. They are necessary as we must assume the
worst about applet!
– We need security so that we can identify those applets that can

be given more privileges!
• Applets cannot read write delete rename files
• Applets cannot create a client directory or list a directory
• Applets cannot find out any information about a client file

including whether or not it exists
• Applets can only create a connection to computer from which it

was downloaded
• Applets cannot accept or listen to network connections on any

client port

4/8/99 cps616securityjava 6

• Applets can only create top level windows which carry
message “untrusted window”. This helps protect one making
operating system look alike windows which innocently request
you type password or similar information
– e.g. suppose I wrote an applet that generated window

saying “network connection broken” and put up identical
window to internet login process. Most people would type
in password without thinking!

• Applets cannot obtain user’s username or home directory
name.

• Applets cannot define system properties
• Applets cannot run any program on the client system using

Runtime.exec().

What can applets do - II?

4/8/99 cps616securityjava 7

• Applets cannot make the interpreter exit through either
System.exit() or Runtime.exit() methods.

• Applets cannot load dynamic libraries on the client using
load() or loadlibrary() methods of the Runtime or System
classes

• Applets cannot create or manipulate any thread that is not
part of same ThreadGroup as the applet.

• Applet cannot create a ClassLoader or SecurityManager
• Applet cannot specify network control functions including

ContentHandlerFactory, SocketImplFactory or
URLStreamHandlerFactory

• Applet cannot define classes that are part of built in client side
packages

What can applets do - III?

4/8/99 cps616securityjava 8

The Byte Code Verifier
• This check ensures that code to be executed does not violate

various semantic rules of the Language and its runtime
• In particular check that pointers are legal, access restrictions

obeyed and types correct
• a .class file consists of some overall information including a magic

number, versioning information, a constant pool, information
about the class itself (name, superclass etc.), information about
fields and methods with the byte codes themselves, debugging
information.

• The byte codes are essentially machine language for an idealized
stack based machine which are translated into true machine code
– Note such stack based machines are not necessarily best for

optimized performance. Compilers use rather different
intermediate representation

4/8/99 cps616securityjava 9

Byte Code Verification
• First one checks that .class file has correct format
• Checks all that can be done without looking at byte codes

– this includes superclass checking, verification of constant pool,
and legal names and types for field and method references,
final classes cannot be subclassed or overwritten

• Then one looks at the byte code and checks that as executed it will
give finite size stacks, correct typing for registers, fields and
methods

• One does not download the byte codes of required classes.
However one does check that the class is used consistently with its
definition

• Some steps are for run time efficiency such as checking for some
run time exceptions can be done at verification stage and removed
in running code.

4/8/99 cps616securityjava 10

Why is type checking important!
• If one has either deliberately or accidentally a “wild object pointer”

that should be to a user defined on/off object but has somehow been
applied to a sensitive object.

• Then turning userobject.onoff to true is uncontroversial but this
applied to appletprivilege could turn on the ability to write files!
– Note setting userobject.onoff = true is really “go to location of this

object and set its start address plus so many bytes to value true”!
• Thus normal computer programs often overwrite themselves when

you screw-up with a software error.
• Java applets can obviously have software bugs but such errors do

not let them ever overwrite themselves or anybody else.
– Otherwise the overwriting can radically change security

• Thus Java must guarantee types of objects precisely so operations
can be stupid but never violate security.

4/8/99 cps616securityjava 11

Applet Class Loader
• This second part of Java security implements a policy as to

which classes can access which others!
• Java classes are divided into groups which have strict access

control. There are different (class) name spaces defined by
different Class Loader instances and in particular different
run in different name spaces and can NOT interfere with each
other.

• Classes from same source (defined by directory and host
machine) are stored in same name space. An Applet can
access those classes in its name space as well the built in local
classes. It can access classes from other sites if it explicitly
specifies a URL and the methods are public.

• Note one searches the local classes first or else one could
override the built-in classes and so do things like file I/O.

4/8/99 cps616securityjava 12

Going beyond the Sandbox: History
of Java Security Models

• The Original Security Model known as sandbox model used as
JDK 1.0.2 Security Model

Sandbox protects
access to all
system resources
Application
developers have to
write their own
SecurityManager
to open up the
sandbox.

4/8/99 cps616securityjava 13

Going beyond the Sandbox-2
JDK1.1.x presented the signed applet concept additional

to sandbox mechanism.

• Code signing
provides additional
levels of security
when downloading
remote code:

• Authentication
• Integrity

• Everything on
CLASSPATH is
trusted

4/8/99 cps616securityjava 14

Going beyond the Sandbox-3
• Finally, JDK 1.2

introduced fine-
grained access
control mechanism

• Easily configurable
security policy

• Easily extensible
access control
structure

• Extension of
security checks to
all Java programs,
including applets.

4/8/99 cps616securityjava 15

JDK 1.2 Security Model
Among some features the followings are included
• The least-privilege principle by automatically intersecting the sets of

permissions granted to protection domains.

• Underlying platform independent security features.

• Does not override the protection mechanisms of the underlying operating
system

The Java Cryptography Extension (JCE) extends the JDK to include APIs
for encryption, key exchange, and message authentication code (MAC).
Together the JCE and the cryptography aspects of the JDK provide a
complete, platform-independent cryptography API.

• JDK 1.2 Software includes
– Certificate support (X.509 v1,2,3)
– Support for Secure Socket Layer (SSL) v3.0
– Code-signing support (keytool, jarsigner) and Policy Tool to define

security policy.

4/8/99 cps616securityjava 16

JAVA Fine-grained Access Control-1
• Essential mechanisms include the following:
• Identity:Every piece of code needs a specific identity for

security decisions. Origin (URL) and signature, represented in
the class java.security.CodeSource , define identity.

• Permissions: System requests to perform a particular
operation on particular target are allowed based on
permissions. A policy says which permissions are granted to
which principals. Permissions include:
– java.io.FilePermission for file system access, e.g.,

 f = new filePermission ("/tmp/applets.db", "read");
– java.net.SocketPermission for network access, e.g.,

 sp= new SocketPermission(”npac.syr.edu:3768", "connect")
– java.lang.PropertyPermission for Java properties
– java.lang.RuntimePermission for access to runtime system resources
– java.security.NetPermission for authentication
– java.awt.AWTPermission for access to graphical resources such as windows

4/8/99 cps616securityjava 17

JAVA Fine-grained Access Control-2
• Implies: All permissions must implement the implies method

"a implies b" means that if one is granted permission "a",
then one is also granted permission "b”
 Permission p1 = new FilePermission("/tmp/*", "read");
 Permission p2 = new FilePermission("/tmp/readme",
 "read");
 p1.implies(p2) == true p2.implies(p1) == false
Policy: is a mapping from identity to a set of access
permissions granted to the code. An example policy object ;
grant CodeBase "http://www.npac.com/users/gcf", SignedBy "*"
{
 permission java.io.FilePermission "read,write", "/tmp/applets/*";
 permission java.net.SocketPermission "connect", "*.npac.com";
 };

4/8/99 cps616securityjava 18

JAVA Fine-grained Access Control-3
• Policies can be defined by a user or a system administrators. It

is always possible to use a particular policy for selected
applications, e.g.,
appletviewer -Djava.policy=~/gcf/policies/mypolicy1 applet.html
java -usepolicy[:policyfile] some.local.App

• Protection Domains: A domain consists of a set of objects
belonging to a principal. A protection domain is based on an
identity made up on demand. Permissions are granted to
protection domains and not directly to classes or objects.

4/8/99 cps616securityjava 19

JAVA Fine-grained Access Control-4
• Access Control: The java.security.AccessController class

implements a dynamic stack inspection algorithm. The method
checkPermission() provides permission grant check. Example:
FilePermission p = new FilePermission("/tmp/junk", "read");

• AccessController.checkPermission(p);
• Privilege: Privileges are used to grant temporary permission to

less-trusted code. Whenever a resource access is attempted, all
code traversed by the execution thread up to that point must
have permission for that resource access, unless some code on
the thread has been marked as "privileged". That is, suppose
access control checking occurs in a thread of execution that has
a chain of multiple callers. When the AccessController
checkPermission method is invoked by the most recent caller, it
decides whether to allow or deny the requested access.

4/8/99 cps616securityjava 20

• The AccessController checkPermission algorithm is as
follows:
– If the code for any caller in the call chain does not have

the requested permission, AccessControlException is
thrown, unless the following is true - a caller whose code
is granted the said permission has been marked as
"privileged" and all parties subsequently called by this
caller (directly or indirectly) all have the said permission.

JAVA Fine-grained Access Control-5

4/8/99 cps616securityjava 21

• Marking code as "privileged" enables a piece of trusted code
to temporarily enable access to more resources than are
available directly to the code that called it. This is necessary
in some situations. For example, an application may not be
allowed direct access to files that contain fonts, but the
system utility to display a document must obtain those fonts,
on behalf of the user. In order to do this, the system utility
becomes privileged while obtaining the fonts.

• The Secure Class Loader, java.security.SecureClassLoader,
tracks the code source and signatures of each class, and
hence assigns classes to protection domains.

JAVA Fine-grained Access Control-6

4/8/99 cps616securityjava 22

• Here is what the usage of privileged code looks like. Note the
use of Java's inner classes capability:(If you are using an
anonymous inner class, any local variables you access must be
final to make JAVA language looks like having closures.)

• somemethod() {
• <normal code>
• AccessController.doPrivileged (new PrivilegedAction()
• {
• public Object run()
• { <insert dangerous code here> return null; }
• });
• <more normal code>
• }

JAVA Fine-grained Access Control-7

4/8/99 cps616securityjava 23

Java Security-Related Tools
• The keytool is used to create pairs of public and private keys,

to import and display certificate chains, to export certificates,
and to generate X.509 v1 self-signed certificates and certificate
requests that can be sent to a certification authority.

• The jarsigner tool signs JAR (Java ARchive format) files and
verifies the authenticity of the signature(s) of signed JAR files.

• The Policy Tool creates and modifies the policy configuration
files that define your installation's security policy. The Policy
Tool has a graphical user interface to define policies.

4/8/99 cps616securityjava 24

How to sign Java Code
Currently, separate vendors have the following major code-

signing tools;
– Netscape's Object Signing
– Microsoft's Authenticode
– Sun's JDK 1.1 Code Signing
– Sun's Java 2 Code Signing

Though Java is designed to be portable, there are various
vendor specific code signing tools that make signed Java
code incompatible in others environment. Having various
complexity levels , vendor dependencies for leaving
sandboxes, giving different control mechanisms to user
makes them independent from each other.

4/8/99 cps616securityjava 25

Signing Classes with the Netscape
Object Signing Tool

• Get a signing certificate from a CA, Certificate Authority, listed
at https://certs.netscape.com.

• Import the certificate to your Netscape Communicator browser.
• Use The Netscape Object Signing Tool, which is a command line

program, signtool, to sign JAR files. (Note that digital signature
information is transmitted in JAR files);

• Refer to the signed code as
 <APPLET CODE="signed.class" ARCHIVE="myjarfile.jar">

• Use signtool to sign the classes and create a JAR file:
signtool -d"path to certificate" -k"my CA" -e ".class”
 -Z myjar.jar

4/8/99 cps616securityjava 26

• Some useful options of signtool is illustrated as following;
– signtool -d"path to certificates" -l

 list available certificates in your database
– signtool -d"<path to certificate>" -v myjar.jar

Check validity of signature on jar file whether it is
tampered or not.

– signtool -d"<path to certificate>" -w myjar.jar
Check who signed myjar.jar

• Adding Capabilities to Signed Classes: The Netscape
Capabilities library provides a class called the Privilege
Manager which turns on-off privileges for incoming program
requests.

Netscape Object Signing Tool -2

4/8/99 cps616securityjava 27

Netscape Object Signing Tool -3
• For the first request, the Privilege Manager asks the Netscape

user whether the privilege should be granted, showing the
certificate used to sign the code requesting the privilege. Grants
are valid for lifetime of the applets.

• Example privileges are UniversalFileAccess, UniversalSendMail,
UniversalExitAccess, UniversalExecAccess,
PrivateRegistryAccess.
– import netscape.security.PrivilegeManager;
– import netscape.security.ForbiddenTargetException; . . .
– try { PrivilegeManager.enablePrivilege("UniversalFileRead");
– ta.appendText("Read enabled!\n");
– } catch (ForbiddenTargetException fte) {
– ta.appendText("Read not enabled.\n");
– ta.appendText(fte.toString());
– }

4/8/99 cps616securityjava 28

Signing Java Applets with
Microsoft's Authenticode

• Get an Authenticode Certificate, e.g., from
 digitalid.verisign.com/developer/ms_pick.htm.

• Get Microsoft Java SDK, from
www.microsoft.com/msdownload/java/sdk/31f/SDK-JAVA.asp

• Prepare archive file , in Microsoft's CAB format,
 cabarc N test.cab *.class

• Use Microsoft Security Zones concept. By default, a security
zone, assigned a security level, is a group of Web sites. The
available levels are Low, Medium, High, Custom.

• signcode -j JavaSign.dll -jp High -spc c:\myCert.spc
 -v a:\myKey.pvk -n "My Applet Software"
 -i http://www.mywebpage.com/ myapp.cab
where -j is to sign java code, -jp to pass parameter to JavaSign.dll, zone
level, -i information page for the software that user can check.

4/8/99 cps616securityjava 29

• To test signature
 chkjava test.cab

• To access applets from browser html tag is like
 <APPLET CODE= "MyApplet.class">
 <PARAM name="cabbase" VALUE="myapp.cab">
 </APPLET>

• makecert -sk myKey.pvk -n "CN=Your Name" myCert.cer
provides unauthorized certificate with key.

• cert2spc myCert.cer myCert.spc provides signing certificate.

Microsoft's Authenticode 2

4/8/99 cps616securityjava 30

Signing Code with Sun's JDK 1.1.x

• Sun has its own set of signing tools, which have evolved
along with the JDK.

• The JDK ships with a command-line tool called javakey.
“javakey” provides management of a database of entities
(people, companies, etc.) and their public/private keys and
certificates.

• HotJava and the appletviewer program that comes with the
JDK can validate JARs signed by javakey. Since the VMs in
Communicator and Internet Explorer do not support javakey
signing, in order to run javakey-signed applets with those
browsers, users must download and install Sun's Java Plug-
In.

4/8/99 cps616securityjava 31

• Some examples of using javakey
• javakey -cs your_name :makes a new signer
• javakey -ld : list the database (stored in identitydb.obj file

by default)
• javakey -gk your_name DSA 512 : generates new key pair

with modulus 512
• javakey -gc cert_directives.dir : generate a certificate

using the directive file "cert_directives.dir”
• javakey -dc outfile.509 : display the certificate contents

from the certificate file

Signing Code with Sun's JDK 1.1.x-2

4/8/99 cps616securityjava 32

Signing Code with Sun's JDK 1.1.x-3

• javakey -gs signMyApplet.dir Animator.jar: sign the applet,
i.e. Animator.jar from the directives file signMyApplet.dir
– (Making jar files is done as following:

– jar cvf Animator.jar AnimatorApplet.class)
– As an example try to browse a signed applet which is at

URL
• http://java.sun.com/security/signExample/
• See following foil for details

• javakey -h: brings the help menu for all the available options
• Note that certificates and the keys produced by javakey are

all in DER format.

4/8/99 cps616securityjava 33

Browsing Signed Applets

• http://java.sun.com/security/signExample/ contains an
applet signed by Duke

• To run the applet with appletviewer,
– First get a copy of Duke's certificate and store it in a

file named Duke.x509
– Make an identity Duke in your JDK identity database

in your local machine;
• % javakey -c Duke true

– Import Duke's certificate into your identity database,
• % javakey -ic Duke Duke.x509

– Run the applet signed by Duke

4/8/99 cps616securityjava 34

The Java Authentication Framework
The basic concepts are
• Principal Interface; this describes real-world entities like

persons, companies etc.
• Identity class; an identity is derived from Principal Interface

and has property corresponding to a public key
• Certificate class; a certificate has two properties of class

Identity: one is the Identity that is being certified, and the other
Identity is a guarantor, with which the principal is associated
for this certificate.

• To keep identities safe from conflicts, e.g., “ G. Fox” at NPAC
and “G. Fox” at Sun Inc. , Java defines IdentityScopes.

• An IdentityScope may have other IdentityScopes in it. For
example, Syracuse University is an IdentityScope, and it
contains the NPAC IdentityScope.

4/8/99 cps616securityjava 35

The Java Authentication
Framework-2

• Each Java Virtual Machine has a system IdentityScope,
which keeps unique identities in its scope, and is available to
all Java programs in this VM.
– It is best to use your own identity scope and add it to the

scopes contained in the system IdentityScope.
• Java 1.1 requires applets to be signed to be able to take

advantage of this framework

4/8/99 cps616securityjava 36

• The javakey tool from JDK 1.1 has been replaced by two tools
in Java 2.

• keytool manages keys and certificates in a database.
jarsigner is responsible for signing and verifying JAR files.
The keystore, that contains certificate and key information,
replaces the identitydb.obj from JDK 1.1.

• Java 2 does allow Certificate Authorities to sign generated
certificates

• Useful command line examples are
• keytool -alias keyname -genkey : Generating a public and

private key pair and self-signed certificate.
• keytool -storepasswd to change password. Note that keystore

stores keys, and identity information necessary for certificates
protected under a password.

Signing Code with Sun's Java 2

4/8/99 cps616securityjava 37

• keytool -list view the fingerprints of certificates in the
keystore.

• keytool -list -v view the personal information about the issuer
and owner of the certificate.

• keytool -identitydb - Import information from a JDK 1.1.x-
style identity database.

• keytool -keypasswd - Assign a password to a private key in a
key/certificate entry.

• keytool -printcert - Print out the information in a specified file
containing a certificate.

• keytool -certreq -alias keyname -file requestfile :Generate a
certificate request.

Signing Code with Sun's Java 2-II

4/8/99 cps616securityjava 38

• keytool -import -alias newalias -trustcacerts -file response
:import certificates from authorities.

• keytool -export -alias keyname -file mycert : Export
• jarsigner SignMe.jar keyname sign a jar file
• jarsigner -verbose SignMe.jar keyname monitor signing

process
• jarsigner -verify Unknown.jar verify signing of a file
• jarsigner -verify -verbose -certs Unknown.jar More detailed

check.
• Running a Signed Applet
• keytool -import -alias analias -file acert : Import to run others

signed programs

Signing Code with Sun's Java 2-III

4/8/99 cps616securityjava 39

• Make a Simple Policy for Signed Applets
• Example .java.policy is
• keystore ".keystore";
• grant signedBy "friend”;
• codeBase "http://www.friendly.com/~mybuddy/applets/"
• {
• permission java.io.FilePermission "c:\\tmp*", "write";
• };

Signing Code with Sun's Java 2-IV

4/8/99 cps616securityjava 40

Some Comparisons of Sign Tools
• Differences Between Netscape Object Signing and JDK

javakey
• Netscape Object Signing only works within Communicator.

JDK 1.1 signed applets can work in any browser, but with
Java Plug-In for the applet to leave the sandbox.<APPLET>
tag must be changed by HTMLConverter for plugin use.
– JDK1.2 applets all require JRE plug-in

• JDK 1.1 javakey-signed applets that are trusted get complete
access to the host while Netscape Object Signing prompts for
specific actions.

• JDK 1.1 users can generate their own certificates without
needing a certificate authority.

• IN general, 1.1 javakey is less useful than the others.
• JDK1.2 users have very fine-grained control over privileges.

4/8/99 cps616securityjava 41

• Comparing Authenticode to Netscape Object Signing
• Netscape has finer-grained access to resources. Microsoft

simply gives an access level instead of dealing with privileges,
which is easy for developers.

• Microsoft's Authenticode is more simple for end-user.
Netscape prompts to user to grant permission for each
privilege request. User has more control but may get
exhausted with unrelated security questions.

Some Comparisons of Sign Tools - 2

4/8/99 cps616securityjava 42

JavaScript Security Model
• JavaScript Security depends on the implementation of the

browsers.
• There are two security policies in JavaScript:

– Same Origin Policy: Navigator version 2.0 and later
automatically prevents scripts on one server from
accessing properties of documents on a different server,
including user session histories, directory structures etc..

– Signed Script Policy: The JavaScript security model for
signed scripts is based upon the Java security model for
signed objects. The scripts you can sign are inline scripts
(those that occur within the SCRIPT tag), event handlers,
JavaScript entities, and separate JavaScript files.

4/8/99 cps616securityjava 43

JavaScript Security Issues

• Signed Script Policy comes with Netscape version 4.
• In Navigator 3.0, one could use data tainting to get

access to additional information.
– This was very clumsy and almost impossible to

use and in particular to make precise
• However, Navigator 4.0 replaces data tainting with

the signed script policy. Because signed scripts
provide greater security and greater precision than
tainting, tainting has been disabled in
Communicator 4.x.

4/8/99 cps616securityjava 44

Same Origin Policy
• When loading a document from

one origin, a script loaded from a
different origin cannot get or set
certain predefined properties of
certain browser and HTML
objects in a window or frame.

• Origin is defined as
protocol://host, where host may
include optional parts of URL
including :port, part of an URL.

• Any applets in the document are
also subject to origin checks
when calling JavaScript.

• The same origin policy is the
default policy since Netscape 2.

• Properties subject to origin check
•

4/8/99 cps616securityjava 45

Signed Script Policy-1
• The JavaScript security model for signed scripts is based

upon the Java security model for signed objects. The scripts
you can sign are inline scripts (those that occur within the
SCRIPT tag), event handlers, JavaScript entities, and
separate JavaScript files.

• A signed script requests expanded privileges, gaining access to
restricted information. It requests these privileges by using
LiveConnect and the Java classes referred to as the Java
Capabilities API. These classes add facilities to and refine the
control provided by the standard Java SecurityManager class.

• Access control decisions are given based on who, called
principal, is allowed to do what, called target, and the
privileges associated with the principal.

4/8/99 cps616securityjava 46

Signed Script Policy-2
• Netscape's Page Signer tool provides signing of scripts. Page

Signer associates a digital signature with the scripts on an
HTML page.

• A single HTML page can have scripts signed by different
principals

• The digital signature is placed in a Java Archive (JAR) file.
• JAR files may include the JavaScript source if one sign a

JavaScript file with Page Signer.
– (If you sign an inline script, event handler, or JavaScript

entity, Page Signer stores only the signature and the
identifier for the script in the JAR file. If you sign a
JavaScript file with Page Signer, it stores the source in the
JAR file as well.)

4/8/99 cps616securityjava 47

Signed Script Policy-3
• The associated principal allows the user to confirm the

validity of the certificate used to sign the script. The user can
ensure that the script hasn't been tampered with since it was
signed. The user may grant privileges based on the validated
identity of the certificate owner and validated integrity of the
script.

• An simpler alternative to using the Page Signer tool to sign
scripts is to serve them from a secure server. On the browser,
scripts act as though they were signed with the public key of
that server. There is no need to sign the individual scripts.

• SSL servers are particularly helpful if scripts are dynamically
generated on the server side.

4/8/99 cps616securityjava 48

Codebase Principals-1
• As does Java, JavaScript supports codebase principals. A

codebase principal is a principal derived from the origin of the
script rather than from verifying a digital signature of a
certificate. Since codebase principals offer weaker security,
they are disabled by default in Communicator.

• To enable codebase principals, end users must add the
appropriate preference to their Communicator preference file:

• user_pref("signed.applets.codebase_principal_support", true);
• If enabled, when the user accesses the script, a dialog displays

similar to the one displayed with signed scripts. The difference
is that this dialog asks the user to grant privileges based on the
URL and doesn't provide author verification. It says that the
script has not been digitally signed and may have been
tampered with.

4/8/99 cps616securityjava 49

Codebase Principals-2
• If a page includes signed scripts and codebase scripts,

and signed.applets.codebase_principal_support is
enabled, all of the scripts on that page are treated as
though they are unsigned and codebase principals
apply.

• Netscape 4 always keeps track of codebase principals
to use in enforcement of the same origin security
policy whether codebase principals are disabled or
enabled.

4/8/99 cps616securityjava 50

Scripts Signed by Different
Principals

• Since JavaScript does not have internal protection mechanisms
like Java, e.g., protected and private, and object properties
including methods can be changed at runtime, simple signing of
scripts is sometimes not secure enough.

• Different scripts from different principals on the same page can
change each other's behaviour.

• Security of the JavaScript is ensured by the following assumption:
• Mixed scripts on an HTML page operate as if they were all signed

by the intersection of the principals that signed each script.
• For example, assume principals A and B have signed one script,

but only principal A signed another script. In this case, a page
with both scripts acts as if it were signed by only A.

4/8/99 cps616securityjava 51

Principals of Windows and Layers
• In order to protect signed

scripts from tampering,
Navigator 4.0 adds a new set of
checks at the container level,
where a container is a window
or layer.

• A script, which wants to access
the properties of a signed
container, should be signed by
a superset of principals that
signed the container.

• If some scripts in a layer are
signed by different principals,
the special container checks
apply to the layer.

4/8/99 cps616securityjava 52

Determining Container Principals
• Following structure is used (by Communicator) :
• 1. If this is the first script that has been seen on the page, assign

this script's principals to be the principals for the window.
• 2. If the innermost container (the container directly including

the script) has defined principals, intersect the current script's
principals with the container's principals and assign the result
to be the principals for the container. If the two sets of
principals are not equal, intersecting the sets reduces the
number of principals associated with the container. Done.

• 3. Else, find the innermost container that has defined
principals. If the principals of the script are the same as the
principals of that container, leave the principals as is. Else
assign the current script's principals to be the principals of the
container.

4/8/99 cps616securityjava 53

Identifying Signed Scripts
• All signed scripts (inline script, event handler, JavaScript file, or

JavaScript entity) require a SCRIPT tag's ARCHIVE attribute
whose value is the name of the JAR file containing the digital
signature ; <SCRIPT ARCHIVE="myArchive.jar” ID=“a”> … </SCRIPT>

• To sign an inline script, you add both an ARCHIVE attribute and
an ID attribute to the SCRIPT tag for the script you want to sign

• To sign an event handler, you add an(only one) ID attribute for
the event handler without specifying the ARCHIVE to the tag
containing the event handler; <INPUT TYPE="button" VALUE="OK"
onClick="alert('...') onClick="alert('A signed script')" ID="b">

• To sign a JavaScript entity, you do not do anything special to the
entity. Instead, the HTML page must also contain a signed inline
script preceding the JavaScript entity.

4/8/99 cps616securityjava 54

Using Expanded Privileges
• Signed scripts use calls to Netscape's Java security classes to

request expanded privileges.(like Java signed objects) For
example,
netscape.security.PrivilegeManager.enablePrivilege("UniversalSendMail")

• When the script calls this function, the signature is verified,
and if the signature is valid, expanded privileges can be
granted. If necessary, a dialog displays information about the
application's author, and gives the user the option to grant or
deny expanded privileges.

• Privileges are granted only in the scope of the requesting
function and only after the request has been granted in that
function. This scope includes any functions called by the
requesting function. When the script leaves the requesting
function, privileges no longer apply.

4/8/99 cps616securityjava 55

Targets
• A target typically represents

one or more system resources,
such as reading files stored on
a local disk or sending email on
your behalf.

• The Privilege Manager, with
the aid of the Communicator
client, keeps track of which
principals are allowed to access
which targets at any given time

• The Privilege Manager
enforces a distinction between
granting a privilege and
enabling a privilege. A script
that has been granted a
privilege has a potential power
that is not yet turned on.

4/8/99 cps616securityjava 56

Targets-2
• The followings are some samples of system targets and the

JavaScript methods that require privileges to check them:
• UniversalFileRead:Setting a file upload widget
• UniversalSendMail:Submitting a form to a mailto
• UniversalBrowserRead:Using an about: URL other than

about:blank
• UniversalBrowserWrite:Setting any property of event object
• UniversalBrowserRead: Getting the value of the data

property DragDrop event
• UniversalBrowserRead: Getting the value of any property of

history object
• UniversalPreferencesRead/Write: Getting setting the value of

a preference of navigatorobject using the preference method

4/8/99 cps616securityjava 57

Importing and Exporting Functions
• You might want to provide interfaces to call into secure

containers (windows and layers). To do so, you use the import
and export statements.

• Exporting a function name makes it available to be imported
by scripts outside the container without being subject to a
container test.Importing a function into your scope creates a
new function of the same name as the imported function.
Calling that function calls the corresponding function from
the secure container.

• One should be very careful to not inadvertently allow access
to an attacker

4/8/99 cps616securityjava 58

Weaknesses in the JavaScript Model
• If one have signed scripts in pages he has posted to his site, it

is possible to copy the JAR file from his site and post it on
another site. As long as the signed scripts themselves are not
altered, the scripts will continue to operate under his
signature. “Programmer should force scripts to work only
from his side.”

• When you export functions from your signed script, you are
in effect transferring any trust the user has placed in you to
any script that calls your functions.This means you have a
responsibility to ensure that you are not exporting interfaces
that can be used in ways you do not want.

4/8/99 cps616securityjava 59

Signing Scripts
• For any script to be granted expanded privileges, all scripts on

the same HTML page or layer must be signed. If you use
layers, you can have both signed and unsigned scripts as long
as you keep them in separate layers.

• The Netscape Signing Tool (signtool on the command line) is a
stand-alone command-line tool that creates digital signatures
and uses the Java Archive (JAR) format to associate them with
files in a directory. Previous versions of the signtool are known
as zigbert and signPages.

• The signtool script extracts scripts from HTML files, signs
them, and places their digital signatures in the archive specified
by the ARCHIVE attribute in the SCRIPT tag from the HTML
files. It also takes care of copying external JavaScript files
loaded by the SRC attribute of the SCRIPT tag.

4/8/99 cps616securityjava 60

Signing Scripts-2
• The SCRIPT tags in the HTML pages can specify more than

one JAR file; if so, signtool creates as many JAR files as it
needs.

• The signtool utility program helps to deal with certificate
databases; for example signtool -L -d my_test_dir list the
certificates stored in the certificate database *.db files in the
specified directory. signtool -l -k nickname verifies an object-
signing certificate with the specified nickname.

• To sign a file using the Netscape Signing Tool;
• 1. Create an empty directory: % mkdir signdir
• 2. Put script files into it
• 3. Specify the name of your object-signing certificate and sign

the directory:
• % signtool -k MySignCert -Z testjar.jar signdir

4/8/99 cps616securityjava 61

Signing Scripts-3
• Output will be
• using key "MySignCert"
• using certificate directory: /home/loginname/.netscape
• Generating signdir/META-INF/manifest.mf file..
• --> test.f
• adding signdir/test.f to testjar.jar
• Generating signtool.sf file..
• Enter Password or Pin for "Communicator Certificate DB":XXXXX
• adding signdir/META-INF/manifest.mf to testjar.jar
• adding signdir/META-INF/signtool.sf to testjar.jar
• adding signdir/META-INF/signtool.rsa to testjar.jar
• tree "signdir" signed successfully

4/8/99 cps616securityjava 62

Signing Scripts-4
• 4. Test the archive you just created:% signtool -v testjar.jar
• using certificate directory: /home/loginname/.netscape
• archive "testjar.jar" has passed crypto verification.
• status path
• ------------ -------------------
• verified test.f

• To learn more details about the signtool, visit the URL:
• http://developer.netscape.com/docs/manuals/signedobj/signtool/index.htm
• http://developer.netscape.com/docs/manuals/signedobj/zigbert/index.htm

