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Summary1

Current software environments used to support parallel processing on

Cluster of Workstations (COW) are not satisfactory, do not provide

complete transparency and are not specifically designed for parallel

processing. In particular, the establishment of a parallel processing

environment and the initialisation of parallel processes suffer from poor

performance. Each parallel process of an application is created

sequentially and in many cases the logon operation must be completed

before remote resources could be acquired. These operations are also

performed manually. We present in this paper an original approach that

addresses the problem of parallel process creation. The remote

workstations are acquired completely transparently and dynamically, and

parallel processes are created concurrently. To demonstrate the feasibility

of this approach we show a system based on RHODOS (a client/server and

microkernel based distributed operating system), specifically designed to

improve the performance of process instantiation and therefore able to

improve the overall execution performance of parallel programs, in

particular parallel process creation.

Keywords: Parallel Processing on COWs, Operating Systems, Concurrent

Process Creation, Performance Evaluation.
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1 Introduction

Current attempts to harness the computational resources of Clusters of Workstations

(COWs) for parallel processing have generally followed the approach of building an

environment on top of an existing operating system such as Linux (Beowulf [1]),

Solaris (NOW [2]), SunOS (Paralex [3]). These systems run PVM [4] or MPI [5] in

order to exploit the collection of workstations, and provide middleware packages such

as GLUinx [6], LSF [7], Condor [8] or LoadLeveler [9] to locate processes. This

approach of using off-the-shelf operating systems is attractive from the initial

investment point of view. Unfortunately, such solutions lack transparency which

increases the programming burden on the user, require the parallel processes of an

application to be created sequentially, and in many cases need the logon operation to be

manually completed before remote resources could be acquired. The overheads of such

solutions are also increased due to the duplication of services within the environment

and the operating system as it was demonstrated in [10]. The reasons is that parallelism

is managed poorly.

In order to manage parallelism to achieve high performance and to make COW based

parallel systems easy to use and parallel applications easy to program, a distributed

operating system should be employed. Such an approach has been advocated and

demonstrated that it is feasible in both [11][18], where MOSIX based load balancing

and process migration services were used to allocate processes to workstations in order

to support PVM applications; and [12], where RHODOS based load balancing and

remote process creation services were used to allocate processes to workstations and

load balancing and process migration to dynamically balance load. However, in both

cases each parallel process was created individually that generated huge costs.

A variety of parallel processing models exist that are applicable to the execution on

COWs. Owing to the relatively high overheads of the networks used to interconnect

workstation (when compared to bus based systems), COWs are more suited to coarse

grained parallelism such as program based parallelism. Two processing models exist at

this level: the data parallelism model, also called the Single Program Multiple Data
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(SPMD) model; and the functional model, also called the Multiple Program, Multiple

Data (MPMD) model [13]. The focus of this work is on the SPMD model of

parallelism as it is simpler and more commonly employed.

The goal of this paper is to present a new system specifically designed to support

parallel processing, in particular SPMD parallel processing and which is based on a

distributed operating system. In particular, the concurrent process creation services

provided within this system are to be presented, their operation detailed and the

performance study results shown.

To achieve this goal, this paper is organised as follows. Section 2 presents the

important issues relating to the execution of SPMD parallel applications on COWs and

related systems. Furthermore, this section shows the logical design of a process

creation service specifically designed to support SPMD based parallel processing.

Chapter 3 introduces the RHODOS distributed operating system and details the

identification of suitable, idle or lightly loaded, workstations. Furthermore, the

implementation issues encountered when developing the concurrent process creation

service are elaborated. Chapter 4 presents the experimental environment that was used

to investigate the performance of the RHODOS creation service the performance

results obtained, and a summary of the results. A conclusion that highlights the

achievements of this research and their assessment are presented in Chapter 5.

2 The Design of a Concurrent Process Creation
Service

The goal of this section is to identify the problems experienced when executing SPMD

based applications on COWs and to provide the background for the logical design of a

concurrent process creation service.

2.1 SPMD Based Parallel Processing on COWs

As presented in the introduction, the course grained SPMD model of parallelism is

ideal for execution on COWs due to the high ratio of computation to communication.

An SPMD parallel program can be divided into three distinct phases, the initialisation,
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execution and termination phases, as shown in Figure 1. The initialisation phase

involves the instantiation of a set of identical child processes and the distribution of the

data (work) to each of these child processes. The next phase involves each of the child

processes executing in parallel on their allocated data. It is during the execution phase

that the actual work on the problem data is performed, and increasing the number of

child processes executing in parallel on the problem data can improve the overall

execution time. Finally, in the termination phase each child completes the work on

their data and then returns the result back to the parent process before exiting. The

focus of this work relates to the initialisation phase of the parallel program, more

specifically, the process creation method of instantiating the set of child processes.

The overall execution time of a parallel program is limited by the amount of sequential

processing it contains. The sequential processing within an SPMD parallel program is

commonly dominated by the initialisation phase and more specifically the instantiation

(creation) of the child processes.

[Figure 1: Structure of an SPMD Based Program]

Process creation is the invocation and execution of a child process from an executable

image located on disk. A process is an entity that has a number of physical and logical

resources associated with it. The physical resources relate primarily to the memory

usage, communication end points and buffers. The logical resources relate primarily to

the execution state of the process. The process creation service is an operation that

requires substantial computation in order to marshal the various memory, process and

communication resources that combine to form a child process. This service is even

more time consuming if a process is created on a remote workstation. The situation

worsens whenn child processes are sequentially created onn workstations of a virtual

machine. It is clear that if the overhead of process creation is reduced the program

enters the parallel execution phase more quickly and thus enabling the overall

execution time to be improved with higher levels of parallelism.
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2.2 Related Systems

A number of currently available systems provide support for the execution of SPMD

based parallel programs on COWs. The most common approach taken with these

systems is to provide a support environment that executes on top of an existing

network operating system. These environments take the form of specialised libraries

and server processes, the most well known of these systems is Parallel Virtual Machine

(PVM) [4]. The PVM system is the result of a long running project to provide an

environment that uses a collection of (possibly heterogeneous) workstations and

presents the programmer with a set of consistent communication, execution and

synchronisation primitives.

An improvement to the common approach of the PVM system executing on top of an

existing operating system is through the extension and enhancement of the underlying

operating system to provide services and features supporting parallel processing. This

approach has been taken by the Beowulf [1], Paralex [3], NOW [2] and MOSIX [11]

systems.

The Beowulf system exploits distributed process space (BPROC) [14] in order to

manage parallel processes. There are two basic issues of BPROC supporting

distributed processes, ghost processes that represent remote processes on remote

computers, and the method of starting processes. Processes can be started on remote

computers if the logon operation into that remote computer was completed

successfully. Starting processes in Beowulf is only done viarsh, sequentially, although

these two features are hidden from the user by PVM and MPI. Another weakness of

Beowulf is that BPROC does not address resource allocation or load balancing. The

project does not attempt, at this stage, to provide transparent process migration.

Paralex [3] is a complete parallel application programming environment with run-time

support features and a simple to use graphical interface allowing programmers to

define, edit, execute and debug parallel applications. Paralex automatically generates

code for distributing computation; and process replication. The Paralex system

employs passive replication to support fault tolerance within a parallel application and
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as a method to support run-time based dynamic load balancing. Paralex is built as a set

of daemon and controlling processes, that execute on existing operating systems. Since

Paralex has been developed at the user level, no modifications are required to the

operating system.

The NOW system is based on the Solaris operating system from Sun Microsystems and

combines specialised libraries and server processes with enhancements to the kernel

itself in the form of the scheduling and communication kernel modules. The

enhancements to the operating system have been in the form of a global operating

system layer (GLUnix) to provide network wide process, file and virtual memory

management [6]. The services of the current GLUnix version have been built at the

user level through the support of a master process, daemon processes and GLUnix

libraries. The limitations of running the system in user mode were identified in [6], and

relate to the loss of transparency introduced when executing processes remotely. To

remove this problem, it is intended that future versions of GLUnix take advantage of

the dynamically loaded kernel modules associated with process management, memory

management, scheduling and I/O services, such that processes are provided with a

complete, transparent and global view of the network of workstations.

The current version of the MOSIX system is a result of the extension and modification

of the Linux operating system to produce a fully distributed operating system. The

MOSIX system provides enhanced and transparent communication and scheduling

services within the kernel, and also employs PVM to provide the high level parallelism

support. MOSIX is based on the Unique Home-Node (UHN) model [15], where all of

users processes appear to be run on the local workstation, but due to load imbalances,

process migration may transparently migrate processes to a remote workstation. Once

migrated, the process is divided into two parts, the deputy component which remains

on the local workstations or UHN, and a remote component which encapsulates the

running process on the remote workstation. The deputy component provides a method

of handling all UHN dependent functions such as communication, signals and site

dependent system calls.
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A common and serious problem exists with the PVM, Beowulf, NOW and MOSIX

systems, which is amplified when they attempt to support parallel processing. Each of

these systems only supports the creation of single processes. Although the primitives

provided by each of these systems enable the user to request multiple processes to be

created, internally they are only created one at a time. This problem is the result of the

reliance each of these systems have on the underlying network operating systems,

which were designed and implemented to only support the creation of single processes.

Therefore, if a given SPMD parallel program requires 100 child processes to be

created, then the single creation service needs to be called 100 times. Another major

problem of these systems is that they do not provide complete transparency with the

exception of MOSIX, and a virtual machine is not set up automatically and

dynamically.

2.3 Process Creation Service

To design a process creation service specifically for SPMD based parallel processing, a

number of requirements need to be addressed, including:

• Multiple Creation of Processes — it must be possible to create concurrently many

instances of a process on a workstation or over many workstations;

• Scalability — the proposed service, to take full advantage of available parallelism,

must be scalable to many workstations; and

• Complete Transparency — the proposed service must hide from the user all

location and management elements, such that the user (programmer) is unaware of

the location of the parent and child processes.

The SPMD model of parallel processing has two main characteristics which simplify

the provision of these requirements. The first and most important characteristic is that a

SPMD parallel program is composed of multiple identical copies of the one child

process. Each of these child processes begins execution at the same point within the

program. Secondly, each of the child processes within a SPMD parallel program do not

interact with each other, simplifying the provision of the transparency requirement.
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With the traditional single process creation service, the executable image of the child

process is required to be downloaded from disk for every instance of the child. The fact

that each child is identical and that many child processes may be instantiated on a

given workstation, enables memory sharing between the child processes to be

employed and thus reducing the creation time and improving memory usage. The text

regions of the child processes can be shared “read only”, while the data regions can be

shared “copy on write”.

[Figure 2: SPMD Based Parallel Program on a COW]

It may also be necessary to create multiple instances of the child process on many

workstations remote to the workstation on which the parent is executing. Therefore the

creation service provided must not only be capable of creating many processes on a

single workstation, but must also be able to create them on many workstations. This

situation is illustrated in Figure 2, wheren child processes are created onn

workstations. The placement of the child processes on the various workstations within

the COW can greatly influence the performance of the overall program due to load

imbalances [16]. If child processes are mapped to workstations that are heavily loaded

whilst other workstations are lightly loaded or idle the overall performance obtainable

from the program will be diminished. It is desirable for the child processes to mapped

to a set of workstations such that the overall load of the COW remains balanced. When

distributed evenly across the COW each child process is provided with an equal share

of the available computational resources and thus capable of achieving higher

performance. The mapping of processes to workstations is therefore closely linked to

the process creation service since it is at this time that the new child processes are

brought into existence.

2.4 Logical Design of a Process Creation Service

A process is composed of memory and process related resources. For this reason each

of these resources could be managed by separate servers [17]. Furthermore, a process

creation server could also be provided to marshal the allocation of each of the

resources to form a new child process. We propose here that to improve the flexibility,
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modularity and implementability of a process creation service the client/server model

should be employed, where different services (management of resources) are provided

by different server processes.

Figure 3 illustrates the interaction between the servers involved in the creation of a

child process, including the Memory Server, Process Server and File Server. Also

presented in this figure is the Process Mapping Server which is required to map

processes to workstations at their creation, thus assisting to maintain a COW wide

balanced load.

The process creation service presented shows the traditional single process creation. It

was stated earlier that to efficiently support SPMD parallel processing on COWs more

advanced services are required. The single process creation service can be extended

using memory sharing operations to allow many child processes to be created on the

same workstation with the executable image only being downloaded once. The

multiple process creation service involves the allocation of the required number of

child process entries and the first child process being created following the single

process creation method. After completing this operation, each successive child

process is produced as a copy of the memory of the first child. The text regions are

shared “read only”, while the data regions are shared “copy on write”. This

enhancement offers the benefits of reduced creation time due to the executable image

only being downloaded once and improves memory utilisation due to the sharing of

physical memory.

[Figure 3: Server Interaction to Create a Single Process]

When many processes are required to be created on many workstations, the multiple

process creation operation can then be performed on each workstation selected by the

Process Mapping Server. Using this method, the executable image is required to be

downloaded for each workstation involved in the multiple process creation. As with the

single process creation, it is possible to enhance the multiple process creation method

to reduce the overall creation time and therefore improve the overall execution

performance. To enhance the multiple process creation service when many
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workstations are involved requires the employment of group communication. Instead

of the executable image being sent from the File Server to each participating Process

Creation Server, group communication can be used and with a single message the

image can be sent to all servers, resulting in group process creation.

3 The Implementation of an Advanced Process
Creation Service

This section demonstrates the feasibility of the logical design of the advanced process

creation service proposed to improve the overall execution of SPMD applications on

COWs.

3.1 RHODOS Parallelism Management System

The design of the process creation service presented in Section 2 has been

implemented within the RHODOS distributed operating system [17]. Unlike the

current approaches of building environments on top of existing networked operating

systems or the partial extension to an existing network operating system, the approach

taken here was to build the process creation service as inherent part of a purpose built

distributed operating system.

[Figure 4: RHODOS Parallelism Management System]

The RHODOS process creation service is a component of the RHODOS Parallelism

Management System [13], [16], the structure of which is presented in Figure 4. As

identified in Section 2.3, the process mapping and process creation servers are

embodied in the RHODOS Global Scheduler and RHODOS Execution Manager

(REX), respectively. These two server processes form the core of the RHODOS

Parallelism Management system but rely on the services of the Inter Process

Communication (IPC), Process, Space (Memory) and File Managers to perform the

required operations.

The role of the Global Scheduler is to ensure the load of the entire COW remains

balanced, and in particular, it provides a process allocation role when mapping
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processes to workstations at their instantiation. To achieve this the Global Scheduler, if

centralised, uses load information collected about the load conditions of each of the

workstations within the COW on which it bases its mapping decisions, or if distributed,

exchanges information about computational load among peer Global Schedulers

running on each workstation of the COW. The current implementation of the

RHODOS Parallelism Management System employs a single, centralised Global

Scheduler that uses event notification to record the current loads of the workstations

within the COW. The events here relate to load changes on a workstation, where a

process enters an executable state (created) or leaves an executable state (exits).

The Global Scheduler cooperates with the REX Manager to collect computational load

information and to enact the process creation decisions. The REX Manager exists on

each workstation within the COW and provides the interface between the user (parent)

process and the RHODOS Parallelism Management System. The parent process sends

the REX Manager a request to create a given number of child processes. The REX

Manager obtains from the Global Scheduler the location of the workstations on which

these child processes should be created. The REX Manager then cooperates with it’s

peer REX Managers on the selected remote workstations to perform the process

creation.

As indicated in Section 2.1, it is necessary to create multiple instances of a child

process on a workstation and/or multiple workstations. The REX Manager is capable

of creating many copies of a child process on a workstation with the support of the

Process and Space Managers, and with the use of group communication is able to

concurrently create child processes over many workstations using a single message.

The remainder of this section is devoted to showing how processes are created in

RHODOS using, single, multiple and group methods; for both local and remote

creation.

3.2 Single Local and Remote Process Creation

The standard method available to create processes is through single process creation

[12]. The child process, depending on the mapping decision of the Global Scheduler,
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can be created on the same workstation as the parent, ‘Local Creation’; or on a

different workstation, ‘Remote Creation’. The RHODOS Parallelism Management

System ensures that the location of the child process is hidden from the parent process,

all interaction (communication and coordination) between the parent and child process

is completely transparent.

The interaction between the parent process, REX Manager, Global Scheduler, Process

Manager, Space Manager involved in the creation of a new, single, child process on the

same workstation as the parent (local) is presented in Figure 6. This figure also shows

the relative order of the messages required to create a process with the RHODOS

Parallelism Management System. The Global Scheduler and File Server are shown on

a separate (dedicated) workstation.

The interaction (and order of messages) between the parent process and the respective

managers involved in the remote creation of a single process is presented in Figure 6.

In this case the Global Scheduler responds to the location request of the local REX

Manager with the address of a remote workstation. The REX Manager on the local

workstation forwards on the request to its peer REX Manager on the selected

workstation. The actions undertaken by the REX Manager on the remote workstation

are identical to that of a local process creation. The only difference is that the

acknowledgment of the completed creation is sent back to the REX Manager on the

local workstation, which registers the new remote child process with the local Process

Manager and then replies with the creation result back to the parent process.

[Figure 5: Order of Events in the Single Local Process Creation]

[Figure 6: Order of Events in the Single Remote Process Creation]

3.3 Multiple Local and Remote Process Creation

The basic single process creation service was extended in the RHODOS Parallelism

Management System to support the creation of multiple child processes on one

workstation by employing memory sharing. Figure 6 shows the interaction and order of

messages involved in the creation ofn multiple child processes on two workstations.
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These workstations are selected by the Global Scheduler and in this case are the local

workstation which is required to havem child processes created and a remote

workstation which is required to haven-m child processes created (wheren > m). The

order of operations are similar to the single process creation, although after the first

child has been created, the remaining child processes are formed from duplicates of the

first child’s memory. This involves an extra call to the Space Manager to duplicate the

remaining children’s memory.

[Figure 7: Order of Events in the Remote Multiple Process Creation]

It is important to note here that for each workstation selected by the Global Scheduler

as a recipient of a child process, the File Server is contacted with a request to download

the executable image of the child process. As the number of workstations increases, it

is possible that the File Server can form a bottle neck within the process creation that

limits the performance of the operation.

3.4 Group Process Creation

The limitation found with the multiple process creation service was solved with the

employment of group communication between the File Server and the REX Managers

involved in the process creation operation. Each REX Manager and the File Server join

a communication group where a message sent to the group is received by all members

of the group. In the group creation method, the local REX Manager acts as a

coordinator for the overall creation and is the only REX Manager that requests the

image of the child process to be downloaded. In this case, the File Server responds by

sending the executable image to the REX Managers group, rather than to the local

(requesting) REX Manager. Therefore, the image of the child process is received by all

participating REX Managers with the sending of a single message. Although the

communication in the RHODOS COW is based on a reliable message passing protocol,

messages may be delayed due to lost packets. In the case of a delayed message, if the

image of the child process is received by the remote workstation before the forward

create message is received it is held for a short period of time waiting for the forward

create message to be received. If the forward create message is received, the group
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creation continues normally, otherwise an error message is generated and passed back

to the local workstation and the process creation cancelled.

The interaction and order of the messages involved in the group creation of a set of

child processes is shown in Figure 6. The distinction between this operation and the

multiple creation operation shown in Figure 6 is that only one request is issued to the

File Server and only one message of the executable image is sent in a reply. Therefore,

the bottleneck problem faced with the previous method is avoided here as the number

of workstations increases.

[Figure 8: Order of Events in the Group Process Creation]

4 Experiments and Performance

The implemented system presented in the previous section was tested on the RHODOS

COW. This cluster is composed of 13 Sun 3/50 workstations interconnected by a

shared 10 Mb/s switched ethernet network. One of the workstations within the COW is

dedicated as a File Server and the remaining 12 workstations are used for normal user

computation. The structure of the RHODOS COW is presented in Figure 9.

We present in this section the performance results obtained from testing each of the

three creation methods available within the RHODOS Parallelism Management

System. To examine the performance of these services a sample SPMD based parallel

program was developed and the time to instantiate a number of child processes was

measured. The experiment was performed with the number of child processes being

varied from 1 through to a total of 20 child processes. The number of workstations

involved was also varied from 1, 2, 4, 8 and 12. Each experiment was performed 20

times and the average result presented.

[Figure 9: The RHODOS COW]

The performance results obtained from using the single process creation service is

presented in Figure 10. From these results it is clear that the single process creation

service provides, as expected, the worst performance. This can be attributed to the



16

Submitted to Concurrency: Practice and Experience 24/5/99

extremely high overhead of having to repeatedly call the process creation code for each

child created. Therefore, a linear performance result is observed as the number of child

processes created increases. A slight overall increase can be observed when the number

of workstations increases which can be attributed to the overhead required to forward

on the creation request from the local REX Manager to the peer REX Manager on the

remote workstation.

A considerable performance improvement is observed when memory sharing between

multiple child processes on the same workstation is employed (Figure 11). This is

shown in the results of the multiple process creation service. Here, a dramatic levelling

off is obtained when more than one process is created on a given workstation. These

results highlight the performance improvement obtained from memory sharing over

downloading the image form disk. As the number of workstations used in the

experiment increases, the execution time also increases which can be attributed to the

downloading the image to each new workstation.

The group process creation service provides the best performance results obtained

from the three different services (Figure 12). The overall performance is inherently

linear with only a slight step found when two or more workstations are used. This step

can be attributed to the change from a local process creation to a remote process

creation and therefore the need to forward on the remote process creation request to

each of the remote workstations.

[Figure 10: Single Process Creation]

[Figure 11: Multiple Process Creation]

[Figure 12: Group Process Creation]

5 Conclusion

If a set of parallel processes of an application executing on a COW can be created

automatically and transparently, application programmer will be relieved from time

consuming, error prone and irrelevant activities. If the overhead of creating this set of
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parallel processes executing on a COW can be reduced, the overall performance

obtainable form the parallel program can be improved. This can be achieved if

parallelism management is addressed and provided.

We presented in this paper a number of prominent systems including, PVM, Beowulf,

Paralex, NOW and MOSIX, which attempt to address the management of parallelism

on COWs, with the aim of harnessing the vast computational resource they hold.

Unfortunately, each of these systems relies on an existing network operating system to

create the instances of the child process. These operating systems only support the

creation of single processes, which can severely limit the performance of a parallel

programs, especially as the number of child processes and workstations increase.

Furthermore, some of the systems (e.g., Beowulf) require the logon operation on

remote computers to be completed before parallel process creation could be performed.

We demonstrated that the RHODOS Parallelism Management System addresses these

problems by employing services of a distributed operating system. The RHODOS

Parallelism Management System, presented in this work, provides a number of

effective services that were developed specifically with SPMD parallel processing in

mind. First of all, the system identifies the available (lightly loaded or idle) computers

and allows them to be used to create remote processes transparently. Furthermore, this

system supports the multiple creation of processes on a given workstation and provides

group process creation over a number of workstations. Process images are distributed

in parallel to all workstations of the virtual machine involved with the execution of the

SPMD parallel program. These operations are carried out completely transparently and

automatically, thus they relieve the application programmer from irrelevant activities.

It is evident from the performance results that the RHODOS group process creation

service provides dramatic performance improvements over the standard single process

creation service, especially as the number of workstations increases.
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