
Department of
Computer Science
Adran Cyfrifiadureg

A Java/CORBA Based Visual Program
Composition Environment

Matthew Shields, David Walker, Omer Rana
Department of Computer Science, Cardiff University,

PO Box 916, Cardiff CF2 3XF, UK

David Golby
Department of Mathematical Modeling

 British Aerospace Sowerby Research Center
PO Box 5, Filton, Bristol BS12 7QW, UK

Project Objectives

A Problem Solving Environment (PSE) is a complete, integrated computing
environment for composing, compiling and running applications in a specific
problem area or domain. This poster describes a Visual Programming
Composition Environment (VPCE), the user interface for a PSE, that uses Java
and CORBA to provide a framework of tools, enabling the construction of
scientific applications from components.

The VPCE consists of a component repository, from which the user can select
off-the-shelf or in-house components, a “scratch” (graphical composition) pad
on which components can be combined, and various tools that facilitate the
configuration of components, the integration of legacy codes into components
and the design and building of new components.

The VPCE produces output using dataflow techniques in the form of a taskgraph,
annotated with a performance model plus constraints for each component,
expressed in XML. In addition the VPCE supports a domain specific Expert
System based on JESS that will guide the user in component selection and
perform integrity checking.

Figure 1

Figure 3

Figure 2

These screen shots show a simple
prototype interface that we are using as a
demonstrator. Each of the screen shots
show a small system of interconnected
components assembled from the
component repository.

Figure 1 shows the property sheet for one
of the operator components, with its two
input values and the operator that acts on
them.

Figure 2 shows the operator being
changed on one of the “operator” Beans.

Figure 3 shows the property value of a
bean being edited.

XML Connectivity
<preface>
 <name alt=OD id=OD01>Operand</name>
 <pse-type>Generic</pse-type>
 <hierarchy id=parent></hierarchy>
 <hierarchy id=child>OP01</hierarchy>
</preface>

<preface>
 <name alt=OP id=OP01>Operator</name>
 <pse-type>Generic</pse-type>
 <hierarchy id=parent>OD01</hierarchy>
 <hierarchy id=child>OD02</hierarchy>
 <hierarchy id=child>OD03</hierarchy>
</preface>

An example of the XML connectivity for the top most two
elements in the task graph.

PETPAT

NETWORK

Remote Component
Repository

 EXPERT
ADVISOR

PCT

DOMAIN SPECIFIC
KNOWLEDGE BASE

Local
Component Repository

VPCE

IRMS
CONNECTIVITY

GRAPH

Intrepid

Globus

Sun RunTime
 System

XML BASED

 ORB

THIRD PARTY
SOFTWARE

LEGACY
CODE

Wrapper Wrapper

(G-XML)

PCT: Program Composition Tool
PAT: Program Analysis Tool
PET: Program Evaluation/Execution Tool
IRMS: Intelligent Resource Management System
G-XML: Graph XML representation
C-XML: Component Description in XML

 VPCE
ARCHITECTURE

Also enables
new components
to be registered
locally

(WEB BASED)

C-XML

C-XML

<?xml version="1.0" href=URL?>

<preface>
 <name alt=DA id=DA01>Data Analyser</name>
 <pse-type>Generic</pse-type>
 <hierarchy id=parent>Tools.Data.Data
Analyser</hierarchy>
 <hierarchy id=child></hierarchy>
</preface>

<ports>
 <inportnum>2</inportnum>
 <outportnum>1</outputnum>
 <inportype id=1>float</inportype>
 <inport id=1 type=real>
 <parameter=regression value=NIL/>
 </inport>
 <inport id=2 type=float>
 <parameter=bayesian value=NIL/>
 </inport>
 <outportype> real </outportype>
</ports>

<execution id=software>
 <type>parallel</type>
 <type>MPI</type>
 <type>SPMD</type>
 <type>binary</type>
</execution>

<execution id=platform>
 <type> </type>
</execution>

<help context=instantiate>
<href name=file:/home/pse/help/data-analyser.txt
value=NIL>
</help>

XML Component Model
The XML based DTD defines the following types of tags:
• Context and header tags, used to identify a component and the types of PSE that a component may usefully be
employed in. These details are grouped under the preface tag. The hierarchy tag is used to identify parent and
child relationships between components. A parent can have a single parent and multiple children.
• Ports, used to identify the number of input and output ports and their types. An input port can accept multiple
data types, and both input and output may be from simple data types or more complex sources, such as files or
network streams. In this case the ports need to define an href tag, rather than a specific data type.
E.g. <ports>
 <inport id=1 parameter=regression type=stream value=NIL>
 <parameter=regression value=NIL/>
 <href name=http://www.cs.cf.ac.uk/PSE/ value=test.txt>
 </inport>
 </ports>

• Execution, a component may have execution specific details associated with it , such as whether it contains
MPI code, if it contains internal parallelism etc. If there is only a binary version of the component available, then
this must be specified. Such component specific details may be contained within any number of type tags. The
execution tags are divided into a software and a platform part. The former identifies the internal properties of the
component, while the latter identifies a suitable execution platform.
• Help, a user can specify an external containing help about a component. The help tags contain a context option
which enables the association of a particular file with an option. The option can be used to specify certain help
files at certain points in a components use. If no help file is specified then the XML definition of the interface is
used to display the component properties.
• Configuration, used to identify a configuration file or utility that enables the component to be initialised or
customised using predefined vales. This enables a component to be pre-configured given a context or allows the
state of a component to be preserved. This is particularly useful when the same component needs to be used in
different applications, enabling a user to share parts of the hierarchy, while defining local variations.
• Performance Model, each component has an associated performance model specified in a file. This may range
from being a numerical cost of running the component on a given architecture , to being a parameterised model
that can account for range and types of data it deals with, to more complex models that are specified
analytically.
• Event Model, each component supports an event listener. If a source component can generate an event of type
Xevent, then any listener (target) must implement an Xlistener interface. Listeners can either be separate
components that perform a well defined action - such as exception handling, or can be more general and support
methods that are invoked when a given event occurs. We use an event tag to bind an event to a method identifier
on a particular component.
E.g. <event target="ComponA" type="ouput" name="overflow" filter="filter">
 <component id=XX> ... </component>
 </event>

The target identifies the component to initiate when an event of a given type occurs on component with identity
id, as defined in the preface tag of a component.

Main Features and Technologies
 JavaBean Model
•A JavaBean is defined as a reusable software component that can be manipulated visually in a builder tool.
•A bean has exposes

• Properties, internal states that can be set and queried externally by another program.
• Methods, public methods that can be accessed by another program.
• Events. A bean may generate or receive events. A bean defines an event if it provides methods for
adding and removing event listeners from a list of interested objects.

•Builder tool
• used to manipulate beans.
• must be able to dynamically load an arbitrary class.
• use introspection/reflection to discover a components properties, methods and events.
• provide a mechanism for dynamically creating the connections between components.

VPCE Event Model
•Each component supports an event listener.

• separate components that perform a well defined action -- such as handling exceptions.
• general, support methods that are invoked when the given event occurs.

<event target="ComponA" type="output" name="overflow" filter="filter">
 <component id=XX> ... </component>
</event>

• target, identifies the component to initiate.
• type, when an event of a given type occurs.
• component id, source of the event.
• name, tag is used to differentiate events of the same type
• filter, tag is a place-holder for JDK1.2 property change and vetoable property change event
support, or a specific method in the listener interface.

• Event handling may be performed internally within a component, an event listener for each component.
• For legacy codes wrapped as components, separate event listeners may be implemented as components.
• Component listeners may be shared between components within the same PSE.
• Components that contain internal structure, and support hierarchy, must be able to register their events at
the highest level in the hierarchy, if separate event listeners are to be implemented.

<preface>
 <name alt=DA id=DA02>Data Extractor</name>
 <pse-type>Generic</pse-type>
 <hierarchy id=parent>Tools.Data.Data_Extractor</hierarchy>
 <hierarchy id=child></hierarchy>
</preface>

<event type="initialise" name="start" filter="">
 <script>
 <call-method target="DA01" name="bayesian">
 </script>
</event>

• The script tags are used to specify the method to invoke in another component, when the given event
occurs.

Objectives:

1. Provides assistance to users in selecting components.
Bases criteria on questions asked from the user, and on
component properties expressed in C-XML.

2. Each component has constraints on the types of data
it can handle, the internal data distribution that is supported,
on licensing and other restrictions. The EA is used to check
these constraints before the the data flow graph is constructed
and handed to the resource manager

A user is required to provide rules that could be added to
the EA’s knowledge base, usually maintained locally to the
VPCE.

Knowledge is expressed using a frame based representation.

KNOWLEDGE BASE

INFERENCE
 ENGINE

MEMORY
WORKING

Constraints related to a component can be expressed either as
a collection of facts, or through specialised rules, using
RULE TEMPLATES supported within the VPCE.

Rule Integrity has to be checked manually -- we do not
provide any support for maintaining knowledge integrity
at present

3. A database of known facts is used to infer possible
components that may be suitable within a particular application
or library

Updating and Maintaining Rules

Rule
Expression:

(deftemplate
 slot
 comp id,
 slot
 opA ...)

(defrule ...)
(defrule ...)

a) Laplace b) Helmholtz c) Possion d) Self Adjoint e) Mixed Derivs
f) General

Choose Operator: 1.

2. Equation?
a) Analytic b) Entire c) Const_Coeff d) Oscillatory e) Singular f) Peaked

3. B-conditions:
a) Homogeneous b) Dirichlet c) Neumann d) Mixed e) Const_Coeff

Using Operating Type for Categorisation:

EXPERT ADVISOR USING JESS (Java Expert
 System Shell)

USER INTERFACE

VPCE Component
Every VPCE Component is represented in the system as a
JavaBean, with a well defined interface specified in XML.
The Java component provides the visual representation, and
means of manipulation, to an underlying component.
The interface for a component describes :-
• the identifying name of the component
• the types of PSE that the component may be used in.
• In the case of components in a hierarchy, the interface
identifies the parent component and any children.
• The type and number of input and output parameters.
• The executable underlying component, if applicable.
• A help file or documentation, components will be self
documenting within the system.
• An optional configuration file or utility that can be used to
customise a component, or preserve a component state.
• A performance model. Each component has an associated
cost which can be simple numerical cost to a complex
analytical model.

Compound Components
Components can be combined within the VPCE to form
new, more complex, components that can be stored and
then reused as a “black box”. To facilitate this a
component has information, about the hierarchy it is part
of, encoded in its interface. Each component has a tag that
identifies the single parent component and any child
components. The hierarchy naming convention is similar
to the Java package definition. A component with no
children indicates the bottom of the hierarchy.

