Performance Measurement
of Dynamically Compiled
Java Executions

TiaNewhall and Barton P. Miller

{newhal | *, bart}@s.w sc. edu
Computer Sciences
University of Wisconsin
1210 W. Dayton St.

Madison, WI 53706

http://www.cs.wisc.edu/~newhall

* Swarthmore College Computer Sciences Department




Motivation for profiling tool

[1 Javaisincreasingly being used for large,
long-running, complex applications
* Meta-computing
e High performance numeric applications
 Parallel computing

[1 Dynamic Compiler Java virtual machines
will become ubiquitous
e native code execution + run-time optimizations
 potential to outperform statically compiled code

© 1999 Tia Newnhalll —2of 13- Performance Measurement of Dynamically Compiled Java




Profiling DC Java is hard

Interpret Directly execute
Java AP byte-codes f Java AP native

Java dynComp VM code
Platform (OS/Arch)

[1 Java application changes form at run-time
o discover mappings to correlate data
o find size & location of native AP to measure it

[1 Run-time interactions between VM and AP
e describe VM interactions with AP native code

© 1999 Tia Newnhalll —3o0f 13- Performance Measurement of Dynamically Compiled Java




Performance issues of

dynamically compiled Java

[1 When dynamically compiling doesn’t win:
e small method functions with simple CFG’s

e methods whose time not dominated by interpreti
byte-code (I/O or synchronization)

e methods whose native code form still has a lot of
iInteraction with Java VM (object creates)

[1 Simple study:

 run application kernels on ExactVM & compare
all-interpreted to dynamically compiled execution

© 1999 Tia Newhall — 4 of 13— Performance Measurement of Dynamically Compiled Java




I/0
—— oObjects

small

—

-

o
|

A interpreted

e dynamically
compiled

b9 )

N
2]
>
C
O
QO
D
0]
N’
v
c 10—
-
C
Q
)
-
QO
D
>
n

&
—
|

100 1,000 10,000 100,000 1,000,000
iterations




We need a profiling tool

[1 Dynamic compilation is not the only answer

[1 Need more information to tune application

e performance measures with native code form
and byte-code form of a method

e did run-time compilation help?

VM Interactions with native code form of a
method

e What are these interactions?

* how much do they affect the application’s
execution?

© 1999 Tia Newnhalll — 6 of 13— Performance Measurement of Dynamically Compiled Java




Paradyn-J

[1 Extension of Paradyn Parallel Performance
Tools for measuring Java executions

o profiles simulation of dynamically compiled Java

e dynamically inserts native and byte-code
Instrumentation in VM & AP at run-time

[1 Provides performance data that:
e associated with AP’s multiple execution forms
» describes VM-AP interactions (see EuroPar’98)
 describes run-time compilation costs

© 1999 Tia Newhall — 7 of 13— Performance Measurement of Dynamically Compiled Java




(J
e 00 &S O source coae ASS T11ES
C afe ]
ara
File Actions View v
Phase: Glohal

CPuUs
0.06
0.05
0.04 - M
0.03 £

I 0

O
0.02 M
0.01
0.00 , , , ,
2:40 3:00 3:20 3:40
Min:sec
cpu <fAPCodeffArtificial HeuralMetworklLeamer.classfupdateWeights interp{Lml. My Hashtahle;)V=
cpu =fAPCodeflibannl_g.sofJava_ ArtificialMeuralMetworkLeamer updateWeights 1native:
PAH

© 099 A > A



A method that doesn't benefit
from run-time compilation

Time Histogram Display

File Actions Yiew

Phase: Global

/\ n _'| ’f 2

| I I
1:40 £:00 Z:20 40
Min:sec
cpu_inclusive <fAPCode/ArtificialMeuralMetworklLeamer.class/calculateHiddenLayer_interp( V=

cpu_inclusive </APCodeflibannl_g.sofJava ArtificialMeuralMetworklLeamer calculateHiddenLayer 1nati
PAN

© 1999 Tia Newnhalll —9of 13- Performance Measurement of Dynamically Compiled Java




Why not?

VM still handles all memory management

Time Histogram Display
File Actions

Phase: Globhal

opsfsec
30

23

20 -

13

| I
1:40 g 2:20 Z:40
Min:sec
num obj create <fAPCodefArtificialMeuralHetworkLeamer.classfcalculate HiddenLayer interp( V=

num_ohj_create =/APCodeflibannl_g.sofJava_ArtificialMeuralMetvworklLeamer_calculateHiddenLayer_1na
PAM

© 1999 Tia Newnhalll — 10 of 13- Performance Measurement of Dynamically Compiled Java




How can we tune the Java AP?

[1 Remove some object creates
* 10% improvement in method’s execution time

Original Total time 24.76 secs
Tuned Total time 22.23 secs

[] ExactVM'’s execution of the tuned AP

* 10% improvement in total execution time
(21.09 seconds vs. 18.97 seconds)

© 1999 Tia Newnhalll —11 of 13- Performance Measurement of Dynamically Compiled Java




How can we tune the Java VM?

[1 Tunethe VM routines responsible for
handling object creates in the Java
application

[1 Tune the dynamic compiler’s run-time
compiling heuristics

e characteristics of method that make i1t a bad
candidate?

e Incorporating profile data into the heuristic

© 1999 Tia Newnhalll — 12 of 13- Performance Measurement of Dynamically Compiled Java




Conclusions

[1 Paradyn-J provides datato easily determine
how to tune application

 measure AP byte-code and native code
e measure VM interactions w/ AP native code

e measure AP transformations
e Instrument unmodified binaries and .class files

[1 AP developers can seeinside VM

[1 VM developers can characterize VM’s
performance in terms of AP code it runs

© 1999 Tia Newnhalll — 13 of 13- Performance Measurement of Dynamically Compiled Java




