ByteCode Specialization (BCS):
A Run-time Specialization
Technique in VM Bytecode

%

Hidehiko Masuhara

Dept. of Graphics and Computer Science
Graduate School of Arts and Sciences

University of Tokyo masuhara@acm.org

presented at the poster session of ACM

g
o)

rande’99, Copyright 1999 by Hidehiko Masuhara

- Overview: ByteCode Specialization

BCS is a run-time program
specialization technique
for Java bytecode programs
— dynamically optimizes programs
using run-time values

— may generate better code than traditional
run-time specialization techniques by
exploiting JIT compilers

— 100% Pure Java

HHHHH presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

_

- what Is Program Specialization?

a technigue to generate an efficient program
\mm froma generic program
and some param eters (e.g., partial evaluation)

example:

i nt power(int x, int n)
{ computes x" }

> | | specialization
int power 3(int x) /ODtlmlzed
{ return X*X*X;4} |

> ﬁ efficient execution

HHHH‘ presented at the poster session of ACM JavaGrande'99, Copyright 1999 by Hidehiko Masuhara

e

_

advantages of
| RU n_TI me SpeC| al | Zatl on

can optimize programs
by using run-time values

— eliminate computation that depends on
known parameters

— performs high-level optimizations
e.g., method inlining whose target class
can only be determined at run-time
e.g., loop unrolling, constant folding, ...

HHHH‘ presented at the poster session of ACM JavaGrande'99, Copyright 1999 by Hidehiko Masuhara

. existing specialization techniques

Pal‘tla| evaluat|0n [Futamura7l, Jones93, etc.]

— source-to-source transformation

l.e., needs compilation after specialization
— Interpretive (= s/ow) specialization
[Engler94,Lee& L eoned4,

Run-time specialization ¢ e o)

— code generation at binary level
l.e., very fast specialization process

— less optimized specialized code
— highly dependent on the target architecture

5

_

HHHHH‘ presented at the poster session of ACM JavaGrande'99, Copyright 1999 by Hidehiko Masuhara

source
program

BCS

bytecode-level

analysis

sourcexA

program| *

Specialized

bytecode / Al
or ogram |ﬁ> Speci |zer|ﬁ> program

/'
source

program

_

In bytecode

native
code
native

. ByteCode Specialization (BCS)

a run-time specialization technique
on Java Virtual Machine bytecode

7 code

~.| native

existing compilers

presented at the poster session of ACM

bytecode-level

code

existing

code generation VMs

JavaGrande'99, Copyright 1999 by Hidehiko Masuhara

- Binding-Time Analysisin BCS

_

directly analyzes bytecode programs
(no source program is required)

uses a type system for basic constraints
+ flow analysis for side-effects

states of stack
atyping rule: before & after the instruction

Pl pc] =i add, T, =40 [, Tmﬂ:awq
L<a, y<a,a=B[pc]

constraints
ARB,F, T,pc>P y

N

HHHHH presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

- Rulesfor Binding-Time Analysis

(extension of Stata& Abadi’s [Statas. Abadiog])

Plpc| = iadd
HH HHHHHHHH ”HHHHHHHH Plpc|] = iconst n Fpe € Fpein Plpc] = iload x P[pc] = istore x

j‘:h‘" - pr"+l Tpe: :U-”B’PCI’J Fpr: C pr‘+| ch[IHB[PG” - ch-l—l
pr +1 = k- Tp:’ Tpf +1 = -’3 T Tpf 1 — & - Tpr - .Tpr.'—kl = Ter "
Blpe] < Fyela] = Blpe] < a < B[pc]

MﬁlR B, FTpc*I—PA R, B, FTp(*I—P AR B, F.T,pct+ P AR B FT, pct P

P|pec| = invoke m n

_ Plpc] = ifne L Fpe C Fpeis P[pc] = ireturn
Foe € Fpey1, Fpe CFL Tpe = Apn—1]---Ap[0] -0 Tpe = - €
a-Tp =a Ty =Ty Toey1 = o a < R[m|
o < B[pc] Rim| < « pe = (m, 1)
AR B, F,T pck P AR B, FT pct P AR B, F T, pct P

presented at the poster session of ACM JavaGrande'99, Copyright 1999 by Hidehiko Masuhara

_

construction of a specializer

specializer Is a program that
— performs static instructions
— generates dynamic instructions

. static
analyzed bytecode ecializer \ parameter
iload 1 iload 1
| fne L2 S i fne L2
L1:1const 1: D L1: GEN i const 1
goto LO : S |—N goto LO VM
B 202 0 DfLzGaniToad 0 X bytecode
Iload O : D GENlIoadO 1 oad O
iload 1 : S e o
lconst 1 : S ' I 1 0a
| sub S i _ :
generating

INStruction g

_

) Performance: specialized code

4 e
 3x faster than unspecialized

« 3x faster than traditional RTS

* close to offline specialization)

B withdT = T0251S
M oA l
nodt —1.6us 7.1us Dulnspecialized
| ® L] offline

1 2 3 4 5 6 7
reI ative execution times of power(x,30)

* does not include specialization time ﬁ?ﬁ&%ﬁﬂ”ﬁ cssugé][z)};z 10

HHHHH‘ presented at the poster session of ACM JavaGrande'99, Copyright 1999 by Hidehiko Masuhara

_

much faster than
traditional compilers

_ ® 800
overheads in 3 500
JVM class loader? 'g-
D 400
?3'200
o
8 0
2!

Pentium 11 300MHz, SundDK~ JI' T
1.1.7+Symantec JIT, GCC 2.7.2

presented at the poster session of ACM JavaGrande'99,

. Performance: specialization speed

[specializer
[misc.

with without

JT

Copyright 1999 by Hidehiko Masuhara

. Future work

extend the system to
the full version of JVM

better integration with existing programs
(e.g., specialization classes [volanschior)

for more info:

"Run-Time Program Specialization in Java
Bytecode" in Proc. of SPA’99. (available from
http://www.graco.c.u-tokyo.ac.jp/~masuhara/BCS)

12

presented at the poster session of ACM JavaGrande'99, Copyright 1999 by Hidehiko Masuhara

