
presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

1

ByteCode Specialization (BCS):
A Run-time Specialization
Technique in JVM Bytecode

Hidehiko Masuhara
Dept. of Graphics and Computer Science
Graduate School of Arts and Sciences
University of Tokyo masuhara@acm.org

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

2

Overview: ByteCode Specialization

■ BCS is a run-time program
specialization technique

for Java bytecode programs
– dynamically optimizes programs

using run-time values

– may generate better code than traditional
run-time specialization techniques by
exploiting JIT compilers

– 100% Pure Java

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

3

what is Program Specialization?

a technique to generate an efficient program
from a generic program

and some parameters (e.g., partial evaluation)

example:
int power(int x, int n)

{ computes xn }
int power(int x, int n)

{ computes xn }

n=3n=3

int power_3(int x)

{ return x*x*x; }
int power_3(int x)

{ return x*x*x; }

x=9x=9

729729

specialization

efficient execution

optimized

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

4

advantages of
Run-Time Specialization

■ can optimize programs
by using run-time values

– eliminate computation that depends on
known parameters

– performs high-level optimizations
e.g., method inlining whose target class

can only be determined at run-time
e.g., loop unrolling, constant folding, ...

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

5

existing specialization techniques

■ Partial evaluation:
– source-to-source transformation

i.e., needs compilation after specialization
– interpretive (= slow) specialization

■ Run-time specialization
– code generation at binary level

i.e., very fast specialization process
– less optimized specialized code
– highly dependent on the target architecture

[Futamura71, Jones93, etc.]

[Engler94,Lee&Leone94,
Consel96,etc.]

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

6

ByteCode Specialization (BCS)

a run-time specialization technique
on Java Virtual Machine bytecode

bytecode
program
bytecodebytecode
programprogram specializerspecializerspecializer

native
code

native
code

native
code

native
code

native
code

native
code

BCS

source
program
source

program

source
program
source

program

source
program
source

program

specialized
program

in bytecode

specializedspecialized
programprogram

in in bytecodebytecode

bytecode-level
 analysis

bytecode-level
code generationexisting compilers

existing
VMs

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

7

Binding-Time Analysis in BCS

■ directly analyzes bytecode programs
(no source program is required)

■ uses a type system for basic constraints
+ flow analysis for side-effects

PpcTFBRA
pcB

TTpcP pcpc

�,,,,,
][,,

,,,][1

=≤≤
⋅=⋅⋅== +

ααγαβ
σασγβiadd

states of stack
 before & after the instructiona typing rule:

constraints

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

8

Rules for Binding-Time Analysis
(extension of Stata&Abadi’s [Stata&Abadi98])

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

9

construction of a specializer

■ specializer is a program that
– performs static instructions
– generates dynamic instructions

 iload 1 : S
 ifne L2 : S
L1:iconst 1: D
 goto L0 : S
L2:iload 0 : D
 iload 0 : D
 iload 1 : S
 iconst 1 : S
 isub : S
 :

 iload 1 : S
 ifne L2 : S
L1:iconst 1: D
 goto L0 : S
L2:iload 0 : D
 iload 0 : D
 iload 1 : S
 iconst 1 : S
 isub : S
 :

 iload 1
 ifne L2
L1:GEN iconst 1
 goto L0
L2:GEN iload 0
 GEN iload 0
 iload 1
 iconst 1
 isub
 :

 iload 1
 ifne L2
L1:GEN iconst 1
 goto L0
L2:GEN iload 0
 GEN iload 0
 iload 1
 iconst 1
 isub
 :

iload 0
iload 0

:

static
parametersanalyzed bytecode specializer

JVM
bytecode

code-code-
generating generating
instructioninstruction

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

10

Performance: specialized code

Pentium II 300MHz, Sun JDK
1.1.7+Symantec JIT, GCC 2.7.2

0 1 2 3 4 5 6 7

with JIT

no JIT

RTS in C

relative execution times of power(x,30)

unspecialized

BCS/RTS

offline

0.250.25µµss
0.21µs

0.83µs

B
C
S

• 3x faster than unspecialized
• 3x faster than traditional RTS
• close to offline specialization

•• 33x faster than unspecializedx faster than unspecialized
•• 3x faster than traditional RTS3x faster than traditional RTS
•• close to offline specializationclose to offline specialization

7.1µs

0.26µs

1.6µs

*does not include specialization time

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

11

Performance: specialization speed

■ much faster than
traditional compilers

■ overheads in
JVM class loader?

0

200

400

600

800

with
JIT

without
JIT

exec. tim
e (m

icrosec.)

specializer
misc.

Pentium II 300MHz, Sun JDK
1.1.7+Symantec JIT, GCC 2.7.2

presented at the poster session of ACM JavaGrande’99, Copyright 1999 by Hidehiko Masuhara

12

Future work

■ extend the system to
the full version of JVM

■ better integration with existing programs
(e.g., specialization classes [Volanschi97])

■ for more info:
"Run-Time Program Specialization in Java

Bytecode" in Proc. of SPA’99. (available from
http://www.graco.c.u-tokyo.ac.jp/~masuhara/BCS)

