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Motivation for profiling tool

[1 Javaisincreasingly being used for large,
long-running, complex applications
* Meta-computing
e High performance numeric applications
 Parallel computing

[1 Dynamic Compiler Java virtual machines
will become ubiquitous
e native code execution + run-time optimizations
 potential to outperform statically compiled code
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Profiling DC Java is hard

Interpret Directly execute
Java AP byte-codes f Java AP native

Java dynComp VM code
Platform (OS/Arch)

[1 Java application changes form at run-time
o discover mappings to correlate data
o find size & location of native AP to measure it

[1 Run-time interactions between VM and AP
e describe VM interactions with AP native code
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Performance issues of

dynamically compiled Java

[1 When dynamically compiling doesn’t win:
e small method functions with simple CFG’s

e methods whose time not dominated by interpreti
byte-code (I/O or synchronization)

e methods whose native code form still has a lot of
iInteraction with Java VM (object creates)

[1 Simple study:

 run application kernels on ExactVM & compare
all-interpreted to dynamically compiled execution
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We need a profiling tool

[1 Dynamic compilation is not the only answer

[1 Need more information to tune application

e performance measures with native code form
and byte-code form of a method

e did run-time compilation help?

VM Interactions with native code form of a
method

e What are these interactions?

* how much do they affect the application’s
execution?
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Paradyn-J

[1 Extension of Paradyn Parallel Performance
Tools for measuring Java executions

o profiles simulation of dynamically compiled Java

e dynamically inserts native and byte-code
Instrumentation in VM & AP at run-time

[1 Provides performance data that:
e associated with AP’s multiple execution forms
» describes VM-AP interactions (see EuroPar’98)
 describes run-time compilation costs
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A method that doesn't benefit
from run-time compilation
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Why not?

VM still handles all memory management
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How can we tune the Java AP?

[1 Remove some object creates
* 10% improvement in method’s execution time

Original Total time 24.76 secs
Tuned Total time 22.23 secs

[] ExactVM'’s execution of the tuned AP

* 10% improvement in total execution time
(21.09 seconds vs. 18.97 seconds)
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How can we tune the Java VM?

[1 Tunethe VM routines responsible for
handling object creates in the Java
application

[1 Tune the dynamic compiler’s run-time
compiling heuristics

e characteristics of method that make i1t a bad
candidate?

e Incorporating profile data into the heuristic
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Conclusions

[1 Paradyn-J provides datato easily determine
how to tune application

 measure AP byte-code and native code
e measure VM interactions w/ AP native code

e measure AP transformations
e Instrument unmodified binaries and .class files

[1 AP developers can seeinside VM

[1 VM developers can characterize VM’s
performance in terms of AP code it runs
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