
Mapping Back Propagation Algorithms onto

Web-based Parallel Systems for Feed Forward

Neural Networks

Joon-Min Gil, Youn-Hee Han, Chong-Sun Hwang, Young-Sik Jeong y

Dept. of Computer Science and Engineering, Korea Univ.
1, 5-Ga, Anam-Dong, SeongBuk-Gu, Seoul 136-701, KOREA

fjmgil, yhhan, hwangg@disys.korea.ac.kr
y Division of Computer and Communication Engineering, WonKwang Univ.

Iksan-Shi, Chollabuk-Do 570-749, KOREA
ysjeong@wonnms.wonkwang.ac.kr

Abstract. Because of the intrinsic high degree of parallelism of the
back propagation (BP) algorithms, it is necessary for the BP algorithms
to be implemented in parallel environment. Moreover, regardless of the
restriction of computational power and the e�ect on the communica-
tion, the parallelism of the BP algorithms must be developed. In this
paper, we propose a web-based parallel system which can e�ciently re-
duce the training time by solving the high degree of parallelism of the
BP algorithms in web environment. To implement the parallelism of the
BP algorithm in web environment, we use farmer-worker model. In or-
der to demonstrate the e�ciency of our system, we apply our system
to digit recognition problem. Experimental results show that our sys-
tem has much speedup as compared with the target computer on which
sequential BP algorithms run.

1 Introduction

Back propagation (BP) algorithms have been known as a suitable learning al-
gorithm to make a feed-forward neural network. So, they have been successfully
applied to various problems such as nonlinear control, signal processing, predic-
tion, pattern recognition, and so on [6].

But, the main di�culty of the BP algorithms is to require much training
time. To overcome the di�culty, some approaches have been proposed [2, 3, 7, 8,
10, 11]. They are classi�ed into two categories:

{ Modi�cation of the BP algorithms: This method is to modify learning
mechanism for the BP algorithms itself to reduce the training time. Various
BP algorithms have been developed in [2, 3, 6, 10]. They seem to reduce the
training time through the modi�cation of architecture of neural network,
the modi�cation of learning phase, the reduction of computational complex-
ity for weight-updating, and so on. However, another complexity occurs to
maintain the modi�cation of the BP algorithms consistently. Although the

exact results are obtained through the modi�cation of the BP algorithms,
the minimal training time to make a feed-forward neural network is still
required due to the intrinsic property of the BP algorithm.

{ Parallelism of the BP algorithms: This method is to carry out the BP
algorithms on parallel computers. Many algorithms have been developed so
as to parallelize the BP algorithm [7, 8, 11]. Because of the intrinsic high
degree of parallelism of the BP algorithms, parallel computers seem suitable
to accelerate the training and speedup ratio seems to increase as the num-
ber of processors increases. However, the speedup ratio strongly depends on
both parallelization methods of the BP algorithms and employed parallel
computers. So, the BP algorithms on the parallel computers may have dif-
ferent performance according to the interconnection between processors and
the number of processors. Consequently, in the parallel computers, machine-
independent implementation for the parallization of the BP algorithms is
impossible. Moreover, the parallel computers for speci�c applications are
too expensive for end users to use easily.

In order to reduce the training time of the BP algorithms without the sacri-
�ce of the exact results, it is necessary for the BP algorithms to be implemented
in general parallel environment e�ciently, regardless of the restriction of com-
putational power and the the e�ect on communication.

Recently, the World-Wide-Web (hereinafter referred as the web) has been
the largest virtual system that connects millions of computational nodes [1].
Because the scalability of the web is in�nite, the restriction of computational
power on the web may be vanished. To get a huge virtual system that can solve
the high degree of parallelism of the BP algorithms, it is the web that we choose
as platform for the parallel environment of the BP algorithms.

In this paper, we propose a web-based parallel system for the BP algorithms
that can e�ciently reduce the training time by solving the high degree of paral-
lelism of the BP algorithms. To implement the parallelism of the BP algorithms
in web environment, we use farmer-worker model. In the farmer-worker model,
a farmer supervises all workers, distributes computational tasks to each worker,
and balances the amounts of computations given to workers. The workers take
the responsibility of performing the BP algorithms. We implement the web-based
parallel system using the JAVA language and automatic mobile codes which have
the advantage of such as platform-independent, extending of scalability, easy uti-
lization, and etc.

The remainder of this paper is organized as follows: In section 2, we de-
scribe the parallelism of the BP algorithms in web environment. We propose a
web-based parallel system for the BP algorithms in section 3. Experiments and
results, which shows the e�ciency of our system in terms of speedup and the
optimization of the number of workers, are presented in section 4. Finally, our
conclusions are given in section 5.

2 Parallelism of the BP Algorithms

2.1 BP Algorithms

A theoretical study of a general feed-forward neural network model is proposed
in [4]. It shows that the BP algorithms can adapt to feed-forward neural net-
work. The BP algorithms are based on the gradient descent method on the error
surface:

E(wij ; wjk) =
1

2

X
p

X
i

(di
p � oi

p)2 (1)

oi
p = s(

X
j

wijs(
X
k

wjkzk
p)))

where, di
p and zk

p are the input and the desired output in the training pattern
p, and oi

p is the output of neural network for the training pattern p. wjk and wij

are the weights of the neurons in the output and the hidden layers, respectively.
Each neuron's output is transformed by the non-linear transformation function
s (In general, sigmoid function is used). The weight changes �wjk and �wij are
calculated for every training pattern iteratively using the following gradient:

�wij = ��
@E

@wij

(2)

where, � is a learning rate. The weights are updated as follows:

wnew
ij = wold

ij +�wij : (3)

There are two weight-updating methods, i.e., batch training and on-line train-
ing. In the on-line training, the equation (3) is calculated for every training pat-
tern. It is more e�cient than the batch training because it needs less iterations
for the training convergence. Moreover, it can be simply implemented. So, it is
preferred over the batch training.

On the contrary, in the batch training, �wij and �wjk are averaged for all
the training patterns, and the equation (3) is calculated after all the training
patterns are presented in neural network. From the viewpoint of training time,
the batch training requires less training time than the on-line training for one
epoch because weight-updating is performed only a time for one epoch. The
batch training requires the local storage to save the weight changes for each
training pattern. It makes for the equation (2) to calculate independently. So,
the batch training can be easily used for parallel environment.

To make the BP algorithms to parallel, a tradeo� between on-line training
and batch training must be carefully considered. Next, we describe the par-
allelization of the BP algorithms so that each advantage for two methods is
maximized.

2.2 Parallelization of the BP Algorithms

As described in previous subsection, batch training seems to be a suitable method
to model the BP algorithms to parallel environment. However, it has the dis-
advantage of increasing the iteration for the training convergence. Also, it is
important to consider the number of message passing which causes to increase
communication cost between processors. In particular, in web environment, the
communication cost is higher than parallel computers. Therefore, the implemen-
tation of parallel computation on the web leads to modify the parallel algo-
rithm implemented on a speci�c parallel computer or to develop new parallelism
method.

The parallelization of the BP algorithms can be divided into two methods
[8]:

{ Pattern partitioning: The batch training can be used in this method. In
this method, all the training patterns are divided into some pattern blocks.
The pattern blocks are allocated to each processor. All processors execute
equation (2) for allocated pattern blocks independently. After one epoch,
weights are updated on the average for the weight changes calculated in
each processor. This method is a kind of the coarse-grained methods.

{ Network partitioning: The on-line training can be used in this method.
This method is applied to large neural networks. Its e�ciency mainly de-
pends on the density of the neural network connections. But, it is di�cult
to be implemented in parallel environment with the high communication
costs because it needs communication between processors for every training
pattern. This method is a kind of the �ne-grained methods.

In general, the processors interconnected in the web have higher communica-
tion cost than that of parallel computers. So, it may be suitable for the pattern
partitioning method in the web-based parallel system. However, the pattern
partitioning based on batch training requires much training iteration than the
on-line training. Therefore, it is requires that the parallelization of the BP algo-
rithms in web environment be more e�cient so that the communication between
processors does not a�ect the overall performance and the simple implementa-
tion of the BP algorithms itself is maintained.

Consequently, it is necessary to be hybridized for both pattern partitioning
and network partitioning so as to parallel the BP algorithms in web environment.
To achieve such aim, a single neural network must be divided into multiple neural
networks so that an individual neural network takes the responsibility for spe-
cializing a speci�c part among training patterns. And, weight-updating executed
in the individual neural network inuences only itself and is not averaged for all
the training patterns as the batch training. Thus, the hybrid method of both
pattern partitioning and network partitioning does not required the communi-
cation between processors and has the possibility to remove the communication
overhead.

The neural network model described above is known as OCON (One Class
One Network) [6, 9]. In the OCON model, the number of neural networks is equal

Pattern Block 1

Individual
Neural Network 1

Processor 1

Pattern Block 2

Individual
Neural Network 2

Processor 2

Pattern Block 3

Individual
Neural Network 3

Processor 3

Pattern Block 4

Individual
Neural Network 4

Processor 4
N

eural N
etw

ork
P

atterns

Fig. 1. Parallelization for the BP algorithms

to the number of output neurons. An OCON designed to recognize the digits,
for example, has ten neural networks. Kung [6] and Tsay et al. [9] reported
that an OCON may even require fewer overall hidden layer nodes. Also, in the
simulation for pattern recognition, the OCON performed favorably in terms of
training convergence and accuracy. In this paper, we use OCON as the neural
network model to parallel the BP algorithms in web environment.

2.3 Mapping of the BP Algorithms onto Parallel Environment

In this subsection, we describe a strategy for mapping the BP algorithms onto
parallel environment. Let N = fn1; n2; : : : ; nog be an OCON and ni be a feed
forward neural network in the OCON. Let D = fd1; d2; : : : ; dog be the training
patterns and di be a pattern block. Let M be a mapping of an OCON, (N;D),
onto a processor, pi. The mapping is de�ned by

pi =M(nj ; dj) (4)

where, i = 1; 2; : : : ; P and j = 1; 2; : : : ; o. P and o are the number of processors
and the number of output neurons, respectively.

In equation (4), an individual neural network and a pattern block are al-
located to a processor. Each processor performs training for the weight of the
allocated neural network using the allocated pattern block. After the weights of
all the individual neural networks are trained in each processor, the construction
of OCON for a given problem is completed. Figure 1 shows that an individual
neural network and a pattern block are mapped onto each processor. Pattern
partitioning and network partitioning are combined in this parallelization for the
BP algorithms.

3 A Web-based Parallel System for the BP Algorithms

3.1 Architecture

The web-based parallel system for the BP algorithms consists of the following
major components:

Browser Browser Browser

Worker

· weight-updating

Worker

· weight-updating
...

Farmer
· manageworkers

· scheduler

· prepare individual neural
networks and pattern blocks

Parallel Server

Light-
weight

Server
Web

Worker

· weight-updating

Fig. 2. Web-based parallel system for the BP algorithms

{ Farmer: It takes the responsibility for registering and managing workers
in each browser and prepares both individual neural networks and pattern
blocks to be allocated to workers. Also, it maintains the communication
relation between the farmer and each worker. A scheduler balances compu-
tational loads imposed on each worker.

{ Worker: It makes the environment for executing the BP algorithms in its
browser. Each worker performs weight-updating for an allocated individual
neural network.

{ Light-weight Web Server: It sends the HTML document embedding the
worker to browsers on request. It implements the essential functionality
needed to serve the worker, but it makes it possible for the worker process
to run on any computer connected to the web.

Figure 2 shows what the components do and how they are related. In our
web-based parallel system, each individual neural network and pattern block
is allocated to a di�erent worker, and weight-updating for the allocated pat-
tern block is performed in each worker independently. In initial step, the farmer
prepares individual neural networks and pattern blocks for allocating them to
workers. According to the performance of each worker, a di�erent number of
individual neural networks and pattern blocks can be allocated to workers. In
training step, a scheduler embedded in the farmer monitors the processing time
of each worker periodically. After one epoch, the scheduler balances computa-
tional loads imposed on each worker by reallocating individual neural networks
and pattern blocks to workers. A browser in each worker receives the mobile ob-
ject, which includes an individual neural network and a pattern block, from the
farmer. The browser on each worker performs weight-updating (equation (3)) for
allocated individual neural networks and pattern blocks. By this way, training
process in a worker is iteratively executed until all mapping examples from the

pattern block allocated in the worker are learned within an acceptable overall
error. After all workers �nish training, the overall training process is completed.

3.2 Optimization of the Number of Workers

In the parallelization for the BP algorithms shown in �gure 1, the speedup
depends on the number of workers. The time saving rate through the parallel
processing increases as the number of workers increases. In digit recognition, for
example, if ten workers take part in training, our parallelization method can save
ten times of the sequential processing.

The web-based parallel system is intended for enlarging overall computational
performance using the workers, that have a di�erent computational performance
and are used with a low cost. It provides us with a virtual computational sys-
tem that has the same computational performance as a target computer with
powerful computational capability. To maximize the e�ciency of the web-based
parallel system, it is important to measure how many workers are used for ob-
taining the same performance as the target computer.

To compare the processing time of our system with that of the target com-
puter, we consider the following parameters:

W : The number of workers.
Tw: The processing time for one pattern in the worker w.
Tt: The processing time for one pattern in a target computer.
Iw: The number of iterations for the convergence of an individual

neural network in the worker w.
It: The number of iterations for the convergence of a neural network

in target computer.
Pw: The number of patterns in the pattern block allocated to the

worker w.

Pt: The number of all the training patterns. Here, Pt =
PW

w=1 Pw.

The condition that the web-based parallel system for the BP algorithms has
less processing time than the target computer, is de�ned byPW

w=1(Tw � Pw)

W
� Iw � Tt � Pt � It: (5)

To simplify the equation (5), we assume that Iw = It. Also, if the number of
patterns in all pattern blocks is the same, we can obtain the following relation:
Pt = W � Pw. Under these assumptions, we can obtain the number of workers
which is correspondent to the performance of the target computer as follows:

W �

sPW

w=1 Tw

Tt
: (6)

In web environment, each worker has various processing time. In this case,
the overall performance of our system depends largely on the worker which

Table 1. Parameters

Parameters Value

Number of neurons in input, �rst and second hidden layer 96, 200, 40

Tolerant error 0:1 � 10�5

Learning rate 0.1

Number of learning iteration 2000

Number of training patterns 333

Number of tasks (output neurons) 10

has maximal processing time. Thus, the number of workers is optimized by the
following equation:

W �
maxWw=1fTwg

Tt
�

sPW

w=1 Tw

Tt
: (7)

To predict the number of works through equation (7), the processing times of
both target computer and workers must be measured. However, it is impossible
to measure the processing times previously. In this paper, we obtain approxima-
tive processing time of both target computer and workers through benchmark
program, which is similar in computation to the training of neural network.

3.3 Load Balancing

In the web, workers may have a di�erent performance. Thus, the web-based par-
allel system for the BP algorithm must have the load balancing scheme so that
the various computing power of workers does not a�ect overall performance. In
our system, the farmer distributes tasks to workers in proportion to the perfor-
mance of workers and the number of patterns in pattern blocks. Through the
load balancing scheme, the di�erent number of tasks may be distributed to a
worker. So, each worker has almost the identical processing time for training,
regardless of the di�erent performance of workers.

4 Experiments and Results

In order to show the performance of the web-based parallel system, we applied
our system to digit recognition problem, in which an input pattern consist of 8
by 16 bitmaps. The parameters used in the experiments are summarized in table
1.

The farmer, which was run on Pentium II 300, divides training pattern into
ten pattern blocks corresponding to ten digits. It prepares an individual neural
network per pattern block. The workers run in Internet Explorer 5.0 on hetero-
geneous computer, such as Pentium 166, 233, and 266. For the comparison of
the performance, we used Pentium II 333 as target computer.

0

1

2

3

1 2 3 4 5 6 7 8 9 10

Number of Workers

S
p

e
e

d
u

p

LB

NO_LB

Fig. 3. Speedup of our system for target computer

Figure 3 shows the speedup of our systems for the target computer according
to the change of the number of workers. In this paper, the speedup is de�ned
as the processing time of the target computer divided by the processing time
of our system using the given number of workers. The dashed line in �gure 3
represents the threshold of the speedup. As shown in �gure 3, as the number
of workers increases, the speedup become more enhanced on the whole and the
speedup curve become more remote from the dashed line.

Another goal of this paper is to predict the number of workers to be used
in the web-based parallel system. In order to measure appoximative processing
times of both target computer and workers, LINPACK benchmark [5] is used
in our experiment. From the execution results of the LINPACK, we obtained
that the approximative processing times of both target computer and workers
are 0:0728 and 0:2474 seconds, respectively. Using equation (7), the number
of workers which is correspondent to the performance of target computer, is
calculated as

W �
0:2474

0:0728
= 3:398: (8)

From the result of equation (8), we can obtain the computational systems
corresponding to the performance of target computer if more than four workers
are participated in training. This result closely agrees with the result of �gure 3
(see the dashed line in �gure 3).

In �gure 3, NO LB represents the web-based parallel system which does not
use load balancing. On the contrary, LB represents the web-based parallel system
which balances loads for given tasks in proportion to the performance of workers
and the number of patterns in pattern blocks. As shown in �gure 3, the LB has
a steady increase. However, the NO LB does not always increase as the number
of workers increase. The reason is that the performance of the NO LB depends
on the worker whose processing time is maximal.

5 Conclusions

In this paper, we proposed a web-based parallel system for the BP algorithms
that can e�ciently reduce the training time by mapping the BP algorithms onto
parallel environment. The farmer-workermodel was used as the parallelism of the
BP algorithms in web environment. Based on this model, we drove the number
of workers which is correspondent to the performance of target computer. Also,
in the web-based parallel system, the mapping of the tasks onto workers and
the load balancing scheme were presented. Experiments for digit recognition
problem were carried out on various computational resources in the web and the
speedup of the proposed system for target computer increased steadily as the
number of workers increases. Additionally, the number of worker obtained from
the experiment well agreed with that obtained from theoretical derivation.

References

1. T. Brecht, H. Sandhu, M. Shan, and J. Talbot. ParaWeb: Towards world-wide su-
percomputing. In Proc. of the 7th ACM SIGOPS European Workshop: 181{188,
1996.

2. W.L. Buntine and A.S. Weigend. Computing 2nd derivatives in feed-forward net-
works - A review. IEEE Tran. on Neural Networks, 5(3): 480{488, 1994.

3. L. Fletcher, V. Katkovnik, F.E. Ste�ens. Optimizing the number of hidden nodes of
a feedforward arti�cial neural network. In 1998 IEEE Int'l Joint Conf. on Neural

Networks Proc.: 1608{1612, 1998.
4. R. Hecht-Nielsen. Theory of the backpropagation neural network. In Proc. Int'l

Joint Conf. on Neural Networks, 1: 593{611, 1989.
5. K. Kant and M.M. Srinivasan. Introduction to Computer System Performance Eval-

uation. McGraw-Hill, 1992.
6. S.Y. Kung. Digital neural networks. Prentice Hall, 1993.
7. S.B. Nikola. Simulating arti�cial neural networks on parallel architectures. IEEE

Computer, 29(3): 56{63, 1996.
8. A. P�etrowski. Choosing among several parallel implementations of the backpropa-

gation algorithm. In Proc. ICNN: 1981{1986, 1994.
9. S. Tasy, P. Hong, and B. Chieu. Handwritten digit recognition via OCON neural

network by selective pruning. IEEE Proc. 11th Int'l Conf. Pattern Recognition: 656{
659, 1992.

10. N. Weymaere and J.-P. Matens. A fast and robust learning algorithm for feedforwad
neural networks. Neural Networks, 4(3), 1991.

11. M. Yasunaga and E. Yoshida. Optimization of parallel BP implementation: Train-
ing speed of 1,056 MCUPS on the massively parallel computer CP-PACS. In 1998

IEEE Int'l Joint Conf. on Neural Networks Proc.: 563{568, 1998.

