
ARAMIS: A Remote Access Medical Imaging

System

David Sarrut and Serge Miguet
fdsarrut,miguetg@univ-lyon2.fr

Laboratoire ERIC - Universit�e Lumi�ere Lyon 2
Bat. L - 5 av Pierre Mend�es-France

69676 Bron Cedex - France

Abstract

In Hospital services, practitioners need to access and study large data volume
(3D images) with help of speci�c, parallel, high performance processing tools.
This work describes the ARAMIS platform (A Remote Access Medical Imaging
System), which allows transparent remote accesses to parallel image processing
libraries. Such system is based on a communication protocol which takes as input
parallel libraries (written in C) and leads to Java objects, which can be combined
easily. The end-user application is thus a Java applet, allowing any common
workstation to activate, in a convivial way, time-consuming parallel processing.

1 Introduction

As a part of a project called \Health and HPC" whose goal is to bring High
Performance (HP) Computing resources in Hospital services, our team focuses
on HP image processing tools acting on large data volumes (such as 3D images).

In Hospital services, 3D images databases are distributed over several linked
services (cardiology, radiology), potentially accessible from anywhere through a
local network. Such images represent a considerable volume of distributed data
which must be acceded and visualized by the practitioners with speci�c medical
image processing tools.

For some years, the research community on parallel algorithm for image pro-
cessing has developed a large number of powerful algorithms and methods, ded-
icated to MIMD architecture (from �ne-grained to mid-grained parallelism, in-
cluding clusters of workstations). However, these tools are often very optimized
and fully eÆcient at the expense of a limited accessibility, either for end-user
practitioners or programmers who want to combine several tools and build large
and accessible applications. Moreover, powerful parallel machines are costly and
few of them could be present in a same Hospital.

Metacomputing techniques, which allow a same application to accede and
use various remote resources, appear to be especially well suited for such a
situation [FK98]. In our case, the resources are: large amount of data, powerful
image processing libraries, and parallel machines. In order to bring convivial

access to such resources, we must take into account the following constraints:
the amount of data circulating on the network must be low, the machines are
heterogeneous (both hardware architecture and system) , the libraries are written
with C language (not object-oriented) and security access to the data must be
planned.

Hence, we propose a system which allows to easily build (in Java) end-user
applications with friendly GUI and with transparent access to remote resources.
This system is called ARAMIS (A Remote Access Medical Imaging System).
Many modi�cations has occurred from the beginning of the project [Sar98].
Especially, the whole communication protocol has been fully rewritten in an
object-oriented way (section 4). Moreover, our tool allows to integrate the paral-
lel libraries in a much simpler way and the system can now manage dynamically
several remote servers. The system can be summarized with three main points:

{ in order to avoid overowing the network, the large data (3D images) stay
either on data storages or on the machines dedicated to the HP medical
image processing. The client only receives 2D images, displayable on any
common workstation (with low memory and weak computing capacities).

{ the top-level application is implemented in Java, because of the applet mech-
anism (Web access), and of the object-oriented core which allows transparent
use of remote objects.

{ a Meta Object Protocol gives programmers an easy control on remote data,
and a whole access to the HP libraries acting on these data.

This paper is organized as follows. The section 2 refers to some relation-
ship between related works and our system. In the next section, we present an
overview of ARAMIS, and more details on the architecture in section 4. We
conclude in section 5 by future works and snapshots of the current prototype.

2 Related Works

Taken as a whole, our approach follows the classical three layers architecture:
a transport protocol, an Meta Object Protocol (MOP) which supports the dis-
tributed object mechanism and a �nal API (Application Programming Inter-
face), which is the high-level series of functions that programmers can use to
build end-user application. In order to refer our project through the Metacom-
puting community, we briey present similarities and di�erences with projects
or general purpose communication schemes which have been already developed.

The NetSolve project [CD97] aims at bringing remote access to scienti�c
computing libraries. Even if our goal is also to o�er access to remote libraries,
the nature of the data (images) and the processing tools are very di�erent. Our
approach is speci�cally oriented to medical image processing and is not suited for
other general data types. Moreover, more general projects such as NetSolve or
Globus [CFKK98] concern Internet-wide computing, whereas in our approach,
the set of remote resources is acceded through a local network in order to keep
eÆciency.

[vLSI+99] described a software architecture, built over the Globus technol-
ogy [CFKK98], which (among other features) enables from generation to vi-
sualization of Computed Microtomography images. The system deals with Giga
Bytes data volumes and parallel algorithms (reconstruction of microtomographic
datasets from numerous slices). However, the visualization part of the project
is built over hardware-optimized libraries. As our requirements are to provide
accessibility to HP visualization tools from any common workstation (via Web
browser), this approach does not seems to be suitable in our case (even if such
hardware acceleration could also be used in the libraries standing on the servers,
see section 3.1).

There are two kinds of communication modules in our system. The �rst
is used in most of the parallel tools and is related to the classical PVM or
MPI message passing paradigm (section 3.2). The second concerns client-server
communication and deals with high-level remote object management. A Java
module on server's side has �rst being envisaged. The RMI (Remote Method
Invocation) technology provided with the JDK was used in junction with the
JNI (Java Native Interface) library, but it leads to decrease performance and
to add a supplementary amount of code in server side. Because of the hetero-
geneity of both used languages and involved machines, we think to investigate
the use of the CORBA technology in future work. However, such a choice would
imply several issues (most of our libraries are not oriented-object, does all the
browsers include ORB ?) and a large amount of code to be added to the server.
Other general framework such as the IceT project [GS97] or Nexus [FTT97] (the
communication module of the Globus project previously cited), are presently un-
der investigation in order to replace the non object-oriented part of the server
(section 4).

3 ARAMIS overview

In this section, we present the overall aspects of the framework, more details are
given in the next section.

3.1 Hardware architecture

In Hospital services, we consider several databases storages (corresponding to
di�erent services or images acquisition devices), and a few number of powerful
machines (which could be real multi-processor machines, or NOWs: Networks Of
Workstations). The parallel machines will act as powerful graphics computing
and rendering servers. A server stands also for databases management, and makes
use of the parallel server through several high-performance mechanisms [BM98].

The databases sites and the parallel machines are linked by a high-speed
network, independent of the network which links the end-user machines with
the computing resources. Hence, this scheme de�nes two levels of network (see
�gure 3.1): the �rst one (between databases and servers) supports transport
of large volume of data, and the second one could be classical low bandwidth

network, because it only sends 2D images from parallel machines to practitioner's
workstation.

End−user machines

Classical network

High speed network

Graphics server
(parallel machine)

 Database server

Fig. 1. Two levels of network

Special attention have been paid to make use of existing materials, and to
propose cheap hardware con�guration.

3.2 Java access to remote HP image processing libraries

We manage a set of libraries, each of them consisting in several image processing
algorithms. These libraries has been developed for some years (in C language)
and with the parallel communication library called PPCM [CBF+92], which al-
lows to compile the code for any de�ned target platforms (PVM, MPI, or parallel
architecture such as Cray T3E or Intel Paragon). The range of image processing
covered by these tools consists in time-consuming tasks requiring high comput-
ing capabilites (both memory and CPU usage). For instance: parallel Volume
Rendering [LM92], parallel (real-time) surface extraction with the Marching-
Cubes algorithm [MN95], parallel Z-Bu�er [CLM95], (sequential) optimized 3D
volumes registration [SM99] and so on.

According to a set of mechanisms embedding the low-level communication
details (described in section 4), we can access to these libraries with a Java
applet. The application is thus encompass in a Web browser or can also be used
as a standalone application. It should be notice that, by this way, the practitioner
do not have to change his usual work environment nor his workstation.

3.3 Data ow

The large 3D volumes of data are never transfered to the user's workstation. The
applet only receives 2D images, resulting from a remote processing. This is done

in a transparent way for the practitioner which seems to have a powerful parallel
machine in front of him. For example, for a simple visualization purpose, only
2D (compressed) slices of volumes are sending on request (see �gure 3), when
acting on a slider. Such a process is fast enough to provide interactive displaying
on an Ethernet local network.

Moreover, we consider three di�erent kinds of tasks:

{ the low resource-consuming tasks are done on user's machine (colors en-
hancement for instance, see Colormap Editor �gure 3).

{ the high resource-consuming tasks are done remotely and using remote data.
Typically, it concerns processes which would normally take several minutes
to complete on a monoprocessor workstation, and which are accomplished
in few seconds with this system. For example, �gure 5 shows the result of a
Volume Rendering (with transparency e�ects) algorithm which is displayed
on client machine within few seconds.

{ however, some interactive tasks (real-time 3D visualization of millions of
polygons for instance) would only be displayed at a low frame rate due to
the network overhead. Thus, instead of overowing the network with such
particular tasks and in order to keep usability for very weak end-user work-
station, we advocate the use of a two-steps method. The choice of the spatial
position of the 3D object is done locally through a simpli�ed interface, and
the full-resolution and true-color rendering is done remotely on user's request
(or when mouse releases the virtual track-ball).

This approach allows to spread tasks on remote server or local machine ac-
cording to its nature. Hence, the server is not bother by a considerable number of
di�erent tasks which can be done locally and can thus quickly serve the clients.
The next section presents the underlying communication protocol.

4 The Meta Object Protocol

This section deals with the set of mechanisms involved in the communication
management between the end-user application (Java), and the remote parallel
libraries (C language). The following protocol aims at providing, not a totally
transparent management to remote resource, but a control as simple as possible
in order to keep the full eÆciency of the HP tools. We �rst describe the steps of
connection establishment between the applet and the remote parallel server, and
then present the MOP used for creating Java objects which can then be used by
any application.

4.1 Client/Server relation

Because of the particular nature of our environment, we are concern with a non-
symmetric client/server relation because the servers do not have to act on the
client part, except for very limited tasks (sending 2D images, or 3D images char-
acteristics). On the other hand, client applications can only activate two kinds of

tasks: loading data (remotely) and activate processing on such data. Hence, we do
not provide mechanisms which allow to create remote object symmetrically from
server to client and from client to server (such as the IceT environment[GS97]
or the Do! project [LP98]).

When the applet is started on the client machine, a connection to a process
running on the server (called Aramis Daemon) is established. This connection
allows to ask for the di�erent servers available, each of them providing a di�erent
set of processing. We distinct presently three servers: a parallel one (dedicated to
time-consuming image processing), a sequential one (for processing such as slices
delivering or optimized volume registration [SM99] which is not yet parallelized),
and a database server which will allow to select and transport the images between
servers.

Each connection to a server provide a set of objects embedding the commu-
nication details and allowing remote access and control.

4.2 Providing simple objects to control remote resources

The proposed protocol is build with classical object-oriented methods, but is
adapted for our purpose and particularities with the goal of reducing as most as
possible the network overhead. Our system stands between two kind of develop-
ers: those who provide HP parallel tools, and those who build end-user applica-
tions dedicated to the speci�c needs of practitioners. The former should depose
their libraries on a repository and provide as few as possible supplementary code
to integrate their tools into the system. The latter should only manipulate some
high-level objects which interact transparently with the remote processes.

At the lowest-level of the protocol (Transport layer), we use TCP/IP as data
transport with the classical socket interface, because of the integration with the
C language and the Unix architecture used on most of the parallel machines.
At a higher level (Remote Reference layer), we choose to developed a speci�c
purpose stub-skeleton scheme (�gure 4.2).

On server's side, several entry points are extracted from each libraries and
are inserted into the system by adding simple functions. This step is presently
done manually by the library's developer but require very few lines. Because
of the very limited set of data types (3D matrix of voxels [Mig92], or lists of
polygons), a true IDL (Interface De�nition Language) is not yet provided.

Moreover, parallel image processing techniques often need to spread data
over the di�erent processors for eÆcient load-balancing. Thus, between two ex-
ecutions of di�erent treatments, data must be redistributed. This is expected to
be done automatically with help of the ParList data redistribution algorithm
[FMP98], which allows well balanced workload while keeping the overcost of the
redistribution at a small value. Hence, before each parallel algorithm execution,
a simple and automated call to this library will allows to distribute the data
in an eÆcient way for the process. Such a strategy is currently not yet fully
integrated into ARAMIS, but we actively pursuing this goal.

On client's side, simple object (which act as stub) are then provided. They
embed the communication details and allow to activate and wait (asynchronously

...

...
Application (Java Applet)

Proxy

ARAMIS

Data type

network

...

Stub

Library

Skeleton

Reference

Fig. 2. Overview of ARAMIS. The grey part depicts the hidden protocol which allows
to connect Java objects to remote libraries

with use of Java thread) for remote processing. The data remote references on
client's side are also lightweight objects.

Such communication scheme is thus a speci�c purpose implementation of
classical mechanisms. The next step will be to compare it with available ORB
included in some browsers.

5 Conclusion

We have proposed in this work a system called ARAMIS (A Remote Access
Medical Imaging System) which allows practitioners to activate HP medical
images processing with a friendly GUI in their Web browser. The system is built
with a communication protocol taking as input parallel libraries (written in C)
and leading to Java objects, which can be combined in order to build end-user
applications.

A previous prototype of ARAMIS has already being presented in [Sar98], but
the core of the system has being fully rewritten in order to integrate classical
object-oriented metacomputing techniques (stub-skeleton, Remote Reference).
This project is still in development and integration of all the parallel libraries
are in progress. Nevertheless, in order to show the feasibility of this approach,
a prototype is currently functional and is daily used in our laboratory. In or-
der to demonstrate the suitability of the system, a limited applet is accessible

through our Web page1. It allows to activate remote loading of 3D volumes, and
displaying 2D slices on request.

Several issues are still under investigation. For instance, we plan to study the
system described in [GGMS98] which aims at providing an interface from Java
to C libraries. Such an approach could be used in order to produce automatically
the skeleton part of our design. However, data types conversion (a critical issue
in image-purpose applications) seems to be a diÆcult task if we want to keep
full eÆciency in the system. Moreover, the remote I/O used in our approach are
rather basic and we think other paradigms for access to distributed data should
be investigated [FKKM97].

As futur improvements, we investigate the use of a fully Java communication
protocol (both client and server's side), with help of general framework such
as [LP98]. Moreover, reective protocol such as Reective RMI [TTK98] seems
to be a interesting way which should allows us to dynamically build remote
reference object. In the short term, we will start a collaboration with researchers
on parallel database systems [BM98] in order to make HP algorithms for medical
image mining (parallel request optimizer, distributed execution support and so
on) accessible with ARAMIS.

Acknowledgment

This work is supported by the R�egion Rhône-Alpes under the grant \Sant�e et
Calcul Haute-Performance" (Health and High Performance Computing).

Snapshots

(see next pages)

References

[BM98] L. Brunie and E. Mayer. Distributed Systems and Databases. In 4th Inter-
national Euro-Par Conference, Southampton, volume 1470. LNCS, Septem-
ber 1998.

[CBF+92] H.P. Charles, O. Baby, A. Fouilloux, S. Miguet, L. Perroton, Y. Robert, and
S. Ub�eda. PPCM: A Portable Parallel Communication Module. Technical
Report 92-04, LIP-IMAG, ENS-Lyon, 46 all�ee d'Italie, 69364 Lyon CEDEX
07, 1992.

[CD97] H. Casanova and J. Dongarra. NetSolve: A Network-Enabled Server for
Solving Computational Science Problems. The International Journal of
Supercomputer Applications and High Performance Computing, 11(3):212{
223, 1997.

[CFKK98] K. Czajkowski, I. Foster, N. Karonis, and C. Kesselman. A Resource Man-
agement Architecture for Metacomputing Systems. Lecture Notes in Com-
puter Science, 1459:62{81, 1998.

1 http://eric.univ-lyon2.fr/�dsarrut/aramis

Fig. 3. The Java applet embedding a Slice deliver: the 3D volumes remain on server, the
2D slices are sent to the client on request. The two oating windows are : a Colormap
Editor and an other Slice deliver.

[CLM95] H.P. Charles, L. Lefevre, and S. Miguet. An Optimized and Load-Balanced
Portable Parallel ZBu�er. In SPIE Symposium on Electronic Imaging: Sci-
ence and Technology, 1995.

[FK98] I. Foster and C. Kesselman. The globus project: A status report. In
IPPS/SPDP '98 Heterogeneous Computing Workshop, pages 4{18, 1998.

[FKKM97] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Remote I/O: Fast Access
to Distant Storage. InWorkshop on I/O in Parallel and Distributed Systems
(IOPADS), pages 14{25, 1997.

[FMP98] F. Feschet, S. Miguet, and L. Perroton. ParList: a Parallel Data Structure
for Dynamic Load Balancing. Journal of Parallel and Distributed Comput-
ing, 51:114{135, 1998.

[FTT97] I. Foster, G. K. Thiruvathukal, and S. Tuecke. Technologies for Ubiqui-
tous Supercomputing: a Java interface to the Nexus communication system.
In G. C. Fox, editor, Java for Computational Science and Engineering |
Simulation and Modeling: Workshop | Syracuse, KS, volume 9:6, pages
465{476. John Wiley and Sons, December 1997.

[GGMS98] V. Getov, P. Gray, S. Mintchev, and V. Sunderam. Multi-Language Pro-
gramming Environments for High Performance Java Computing . In Java
for High Performance Network Computing. EuroPar'98, September 1998.

Fig. 4. Result of a remote Volume Rendering

[GS97] P.A. Gray and V.S. Sunderam. IceT: Distributed Computing and Java. In
ACM Workshop on Java for Science and Engineering Computation, volume
9:11, November 1997.

[LM92] J.J. Li and S. Miguet. Parallel Volume Rendering of Medical Images. In
Q. Stout, editor, EWPC'92: From Theory to sound Practice, pages 332{343,
Barcelone, 1992.

[LP98] P. Launay and J.L. Pazat. Generation of Distributed Parallel Java Pro-
grams. Technical Report RR-3358, INRIA, February 1998.

[Mig92] S. Miguet. Voxcube: a 3D imaging package. Technical Report 92-05, Ecole
Normale Sup�erieure de Lyon, 1992.

[MN95] S. Miguet and J.M. Nicod. An Optimal Parallel Iso-Surface Extraction
Algorithm. In Fourth International Workshop on Parallel Image Analysis
(IWPIA'95), pages 65{78, December 1995.

[Sar98] D. Sarrut. ARAMIS: an \on line" Parallel Platform for Medical Imaging. In
H. R. Arabnia, editor, International Conference on Parallel and Distributed
Processing Technique and Applications, pages 509{516. CSREA Press, July
1998.

[SM99] D. Sarrut and S. Miguet. Fast 3D Images Transformations for Registra-
tion Procedures. In 10th International Conference on Image Analysis and
Processing. IEEE Comp. Society Press, September 1999. To appear.

[TTK98] G. K. Thiruvathukal, L. S. Thomas, and A. T. Korczynski. Reective
Remote Method Invocation. In ACM 1998 Workshop on Java for High-
Performance Network Computing, February 1998.

[vLSI+99] G. von Laszewski, M.H. Su, J. A. Insley, I. Foster, J. Bresnahan, C. Kessel-
man, M. Thiebaux, M. L. Rivers, S. Wang, B. Tieman, and I. McNulty.
Real-Time Analysis, Visualization, and Steering of Microtomography Ex-
periments at Photon Sources. In Ninth SIAM Conference on Parallel Pro-
cessing for Scienti�c Computing, April 1999.

