
DOCTORAL DEFENSE

Apr 9, 1999 1:00PM at 2-216 CST

NEATTOOLS-A FINE-GRAINED DATA FLOW NETWORK PROGRAMMING ENVIRONMENT

by

Yuh-Jye Chang

ABSTRACT OF DISSERTATION

This thesis focuses on a new way of constructing a data flow visual programming environment : NeatTools. I discuss NeatTools' modeling concept, the experiments, key issues, results and future suggestions. In order to provide visual programming environment for human computer interface data flow network, I propose the abstract module model which simplifies the interactions between modules into active and reactive actions.

A programming environment has to be implemented on a programming language before the computer science experiments could proceed. In this thesis, I discuss the pros and cons between C/C++ and Java. Later on I discuss and compare NeatTools with the Object Management Environments, Modeling Language, and some commercial visual programming tools.

NEATTOOLS-A FINE-GRAINED DATA FLOW NETWORK PROGRAMMING ENVIRONMENT

By

YUH-JYE CHANG

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Information Science in the Graduate School of Syracuse University

Apr 1999

Approved _________________________

Professor Geoffrey Fox

Date _____________________________

Copyright 1999 Yuh-Jye Chang

All rights Reserved

CONTENTS

141.
Introduction

2.
Project Requirements
14
3.
C++ vs. Java
14
3.1
Java Background
14
3.2
Benchmark
14
3.3
Benchmark Analyze
14
3.4
Conclusion
14
4.
How to get JAVA without using Java
14
4.1
Architecture Issues
Error! Bookmark not defined.
4.1.1
Single Inheritance vs. Multiple Inheritance
14
4.1.2
Special Operator Method
14
4.1.3
Pointer vs. Object Reference
Error! Bookmark not defined.
4.1.4
Memory Allocation vs. Garbage Collection
Error! Bookmark not defined.
4.1.5
Build-in Thread vs. API Thread
14
4.1.6
Build-in Array vs. Template Array
14
4.1.7
Why Java is going in opposite direction?
Error! Bookmark not defined.
4.2
How to provide the missing functionality in C++
Error! Bookmark not defined.
4.2.1
Memory Management
Error! Bookmark not defined.
4.2.2
Multithreading Capabilities
Error! Bookmark not defined.
4.2.3
Fragile Superclass
14
4.2.4
Binary Distribution Problems
Error! Bookmark not defined.
5.
NeatTools Architecture Analyze
14
5.1
Module Abstraction
14
5.1.1
Data
14
5.1.1.1
The presentation
14
5.1.1.2
Access privilege
14
5.1.1.3
The desktop
14
5.1.2
Actions
14
5.1.2.1
Active (Output) action
14
5.1.2.2
Reactive (Input) action
14
5.1.3
Connections
14
5.2
Implementation Concept
14
5.3
Benchmark Information on NeatTools
14
5.4
Benchmark Analysis of NeatTools
14
5.5
Conclusion
14
6.
NeatTools and Object Management Environments
14
6.1
CORBA
14
6.1.1
Object Definition
14
6.1.2
CORBA provide Object Interoperability
14
6.1.3
OMA provide Application-Level Integration
14
6.2
COM/DCOM
14
6.2.1
Objects and Interfaces
14
6.2.2
Interface Description Language (IDL)
14
6.2.3
Service Control Manager (SCM)
14
6.3
Compare COBRA and COM/DCOM
14
6.4
Benchmark Information on CORBA
14
6.5
Benchmark Analyze on CORBA
14
6.6
Conclusion
14
7.
NeatTools and Modeling Languages
14
7.1
Colored Petri-Net
14
7.1.1
Introduction
14
7.1.2
Why use CP-nets?
14
7.1.3
Analysis of CP-nets
14
7.1.4
Design/CPN
14
7.1.5
Conclusion
14
7.2
UML (Unified Modeling Language)
14
7.2.1
Introduction
14
7.2.2
UML definition
14
7.2.3
Development Project Artifacts
14
7.2.4
Programming Languages
14
7.2.5
Conclusion
14
8.
NeatTools and Other Visual Programming Tools
14
8.1
Microsoft Visual Series on C++, Basic, J++
14
8.1.1
Introduction
14
8.1.2
Conclusion
14
8.2
Java Bean
14
8.2.1
Introduction
14
8.2.2
Conclusion
14
8.3
LabView
14
8.3.1
Introduction
14
8.3.2
Data flow Programming
14
8.3.3
Graphical Compiler
14
8.3.4
Multithreading
14
8.3.5
Conclusion
14
8.4
AVS/Express
14
8.4.1
Introduction
14
8.4.2
The Graphics Display Kit
14
8.4.3
The Data Visualization Kit
14
8.4.4
The Database Kit
14
8.4.5
Visual Programming
14
8.4.6
Conclusion
14
9.
Design Goal of NeatTools
14
9.1
Simple
14
9.1.1
Simple Usage for Data-flow Network Designer
14
9.1.2
Simple Programming Paradigm for Module Designer
14
9.2
Object-oriented
14
9.3
Network-ready
14
9.4
Robust
14
9.5
Secure
14
9.6
Architecture Neutral
14
9.7
Portable
14
9.8
High-performance
14
9.9
Multi-threaded
14
9.10
Dynamic
14
10.
NeatTools' Visual Programming Features
14
10.1
Introduction
14
10.2
Multi-Thread Features
14
10.3
Keyboard and Mouse Event Simulator/Filter
14
10.4
Networking and TCP/IP
14
10.5
Container Nest Structure (Complex Module)
14
10.6
Transfer Focus among Text Fields
14
10.7
Polymorph Data Type
14
10.8
Multimedia Features
14
10.9
Multimedia Database
14
10.10
External Module and Dynamic Link Library
14
10.11
State Machine
14
11.
Experiments/Applications
14
11.1
Case Descriptions
14
11.1.1
Eyal Sherman
14
11.1.2
Brooke Kendrick
14
11.2
Approach
14
11.3
Limitations of Early Software
14
11.4
Ideas and improvements
14
11.4.1
The mouse driver prototype
14
11.4.2
Next Generation Neat Software - NeatTools
14
11.5
Key Issues in Building a Better Neat Software
14
11.5.1
Java Like Cross Platform API in C++
14
11.5.2
Module Coordinate System
14
11.5.3
Module Event Broadcast Model
14
11.5.4
Increase Usability
14
11.5.5
Identify the Modules
14
11.5.6
Dynamic Ports
14
11.5.7
Display Feedback Mechanism
14
11.5.8
Cyclic Data Flow Network Issues
14
11.5.9
Thread and Concurrent Related Issues
14
11.6
Experiments
14
11.7
Results
14
11.8
Conclusion
14
12.
Future Development
14
12.1
Aggregate DataType.
14
12.2
Connection Visibility
14
12.3
Undo/Redo Features
14
12.4
Network Support Modules
14
12.5
Authentication Modules
14
12.6
Visualization Modules
14
12.7
Artistic Modules
14
13.
Conclusion
14
14.
Appendix
14
14.1
NeatTools Reference Manual
14
14.1.1
NeatTools Module Specification:
14
14.1.2
NeatTools Class Hierarchy:
14
14.2
NeatTools Architecture
14
14.2.1
Three-Layer Architecture
14
14.2.2
Package structure
14
14.2.3
OS and C++ runtime Package
14
14.2.4
Java-like API package
14
14.2.4.1
LANG package
14
14.2.4.2
UTIL package
14
14.2.4.3
IO package
14
14.2.4.4
NET package
14
14.2.4.5
AWT package
14
14.2.5
NeatTools application package
14
14.2.5.1
NEAT package
14
14.2.5.2
Modules package
14
14.2.5.3
External modules package
14
14.2.5.4
DESKTOP package
14
14.3
Module Programming Introduction
14
14.3.1
Module Event Broadcast Model
14
14.3.2
Basic Methods in Module
14
14.3.3
Information Methods in Module
14
14.3.3.1
JString inputTag(int n), JString outputTag(int n)
14
14.3.3.2
int inputType(int n), int outputType(int n)
14
14.3.3.3
boolean inputAllowed(int n), boolean outputAllowed(int n)
14
14.3.3.4
int inputFace(int n), int outputFace(int n)
14
14.3.3.5
JFRect inputArea(int n), JFRect outputArea(int n)
14
14.3.3.6
JFPoint inputPoint(int n, class JLinkObj& link), JFPoint outputPoint(int n, class JLinkObj& link)
14
14.3.4
Display Related Methods in Module
14
14.3.5
Module persistency related Methods
14
14.3.6
Property Related Methods in Module
14
14.3.7
About Polymorph Data Type
14
14.3.8
Use Thread in Module
14
14.3.9
Concurrency Issues when Design Module
14
15.
Bibliography
14



FIGURES

14

Figure 1: Top-level packages

Figure 2: OS and C++ runtime layer
14


Figure 3: Java like cross-platform API layer
14


Figure 4: Exceptions class diagram in Java like API layer
14


Figure 5: NeatTools application layer
14


Figure 5: Property in NEAT package
14


Figure 7: NEAT package (continue)
14




TABLES

14

Table 1: Summary of layers

Table 2: Classes of LANG package
14


Table 3: Classes of UTIL package
14


Table 4: Classes of IO package
14


Table 5: Classes of NET package
14


Table 6: Classes of AWT package
14


Table 7: Classes of NEAT package
14




1. Introduction

NeatTools is a visual programming software package with which a user can create module linkage networks for data collection, gesture recognition, control of external devices, virtual world control, remote collaboration, and perceptual modulation. Some of NeatTools' functionality is ported from Neat Software developed for Dr. Dave Warner at  the Institute for Interventional Informatics from 1993 to 1996.

In NeatTools, different modules are selected, placed in a work area, and then connected by lines. These connections indicate a data flow from one module to another.  The data flow may be comprised of various data types (e.g., integer, real number, string, MIDI event, wave stream, video stream, etc.).   NeatTools provides multi-threaded, real time support in module design which is not supported by most commercial visual programming tools. These features bring a  NeatTools user full power to access the resources inside the computer.

The software is written in C++ and built on top of a Java-like Cross Platform C++ API (application programming interface).  We decided against using Java at this time because we need the software to be capable of handling real time computationally intensive tasks like audio, video, compression, decompression, VR, etc.  We designed the graphical user interface (GUI) API after the Java API standard as all features implemented in a Java API are intrinsic to standard windows systems like Microsoft Windows and X Windows. By hiding all platform-dependent code inside the API, we achieve our goal of a cross platform application by maintaining only one code package. Currently, NeatTools can compile and run on Win95, WinNT, LINUX, Sun, and SGI. On Win95, or WinNT we use Microsoft Visual C++ 5.0. On UNIX we use GNU GCC 2.7.2.

The NeatTools environment is extensible. New modules can be added by invoking dynamic linkage libraries which specify an implementation of the module. Later, a user can use it just like any predefined module and create new module linkage networks.

2. Project Requirements

(1) General Human Interface Tool. 

(A) Can adapt to any external industry or in-house devices.

(B) Able to handle complex, real-time, and calculate intensive task.

(C) Support full multimedia function. Enable user to control, manipulate and transform different multimedia data and information.

(2) A visual programming environment. 

(A) Enable user to design and implementation complete application without the need to write any textual code.

(B) Scalability and cross platform.

(3) The most important constraint is money, we understand most disabled people could not afford to have expensive software and hardware equipment. We want this software package free and downloadable from the Web or with a -moderate license fee in special cases.

3. C++ vs. Java

NeatTools is an experimental computer science project. Before we can undertake any experiment, we need to have a tool or an environment. On top of it, we then can build and test our design concept and proceed with the experiment itself. So, the first step was to implement such a visual programming tool. The question was which language to use to implement the tool so it would meet all the requirements and has the potential for future development. Here, C/C++ is the industry standard and Java is a rapidly developing and widely adopted new language. I dedicate this section to discuss the pros and cons of these two popular languages.

3.1 Java Background

Java is an object-oriented programming language developed by Sun Microsystems, a company best known for its high-end Unix workstations. Modeled after C++, the Java language was designed to be small, simple, and portable across platforms and operating systems, both at the source and at the binary level.

Platform independence is one of the significant advantages that Java has over other programming languages. At the source level, Java's primitive data types have consistent sizes across all development platforms. Java's foundation class libraries make it easy to write code that can be moved from platform to platform without the need to rewrite it to work with another platform. Java binary files are also platform-independent and can run on multiple platforms without the need to recompile the source. How does this work? Java binary files are actually in a form called bytecodes. Unlike most other programming languages, The Java development environment has two parts: a Java compiler and a Java interpreter. The Java compiler takes Java program and instead of generating machine code from source files, it generates bytecodes. To run a Java program, a user runs a program called a bytecode interpreter, which in turn executes a Java program. The user can either run the interpreter by itself, or for applets there is a bytecode interpreter built into a Java-capable or enabled browser like Netscape or Microsoft Internet Explorer which runs the applet.

The disadvantage of using bytecodes is in execution speed. Because system-specific programs run directly on the hardware for which they are compiled, they run significantly faster than Java bytecodes which must be processed by the Java interpreter. In order to increase the performance of Java bytes, some companies are dedicated to accelerating the bytecode. JIT (just in time) interpreter is one of the technologies that is widely adapted into commercial Web browsers. JIT interpreter usually loads the Java bytecodes, preprocesses it into system-specific code in a dynamical fashion and then executes the system-specific code directly. 

3.2 Benchmark

I wrote a simple Java benchmark program:

import java.applet.Applet;

public class benchmark extends Applet {

  public int dummy(int i) { return i;}

  public void start() {

    int i, x;

    x = 0;

    System.out.println("Benchmark Start");

    long b1 = System.currentTimeMillis(), b2;

    for (i=0; i<100000000; i++) {

    }

    b2 = System.currentTimeMillis();

    System.out.println("Empty For Loop "+(b2-b1));

    b1 = b2;

    for (i=0; i<100000000; i++) {

      x += i;

    }

    b2 = System.currentTimeMillis();

    System.out.println("For Loop with + and assign "+(b2-b1));

    b1 = b2;

    for (i=0; i<100000000; i++) {

      x *= i;

    }

    b2 = System.currentTimeMillis();

    System.out.println("For Loop with * and assign "+(b2-b1));

    b1 = b2;

    for (i=0; i<100000000; i++) {

      x += dummy(i);

    }

    b2 = System.currentTimeMillis();

    System.out.println("For Loop with function call and assign "+(b2-b1));

  }

}

Translating the Java program into C++ would be:

#include <stdio.h>

#include <sys/timeb.h>

long currentTimeMillis() {

  struct _timeb tstruct;

  _ftime(&tstruct);

  return tstruct.time*1000+tstruct.millitm;

}

class benchmark {

  public:

    int dummy(int i) { return i;}

    void start() {

      int i, x;

      x = 0;

      printf("Benchmark Start\n");

      long b1 = currentTimeMillis(), b2;

      for (i=0; i<100000000; i++) {

      }

      b2 = currentTimeMillis();

      printf("Empty For Loop %d\n", b2-b1);

      b1 = b2 = currentTimeMillis();

      for (i=0; i<100000000; i++) {

        x += i;

      }

      b2 = currentTimeMillis();

      printf("For Loop with + and assign %d\n", b2-b1);

      b1 = b2 = currentTimeMillis();

      for (i=0; i<100000000; i++) {

        x *= i;

      }

      b2 = currentTimeMillis();

      printf("For Loop with * and assign %d\n", b2-b1);

      b1 = b2 = currentTimeMillis();

      for (i=0; i<100000000; i++) {

        x += dummy(i);

      }

      b2 = currentTimeMillis();

      printf("For Loop with function call and assign %d\n", 

        b2-b1);

    }

};

void main() {

  benchmark bm;

  bm.start();

}

The test data are below (Test on PC with AMD-233MHZ CPU, Win95) :

Units (ms)
for loop 108
x += i 
x *= i
x += dummy(i) 

C++, VC++
0 *
880
1810
880

JDK 1.1
29000
50420
51300
110730

JDK 1.0
43830
82340
83210
170210

IE 4.0
42400
63330
63820
175550

IE 4.0 (JIT)
0*
930
2250
9010

Netscape 4.05
940
1810
2690
8510

* Optimized and eliminated by compiler or interpreter.

Units (us/loop)
for loop
x += i 
x *= i
x += dummy(i) 

C++, VC++
0 *
0.0088
0.0181
0.0088

JDK 1.1
0.29
0.5042
0.513
1.1073

JDK 1.0
0.4383
0.8234
0.8321
1.7021

IE 4.0
0.424
0.6333
0.6382
1.7555

IE 4.0 (JIT)
0*
0.0093
0.0225
0.0901

Netscape 4.05
0.0094
0.0181
0.0269
0.0851

* Optimized and eliminated by compiler or interpreter.

3.3 Benchmark Analyze

Based on the nature of object oriented programming, the function call is a must. The class interfaces are actually functions associated with objects. From the table above we learn that the most advanced commercial browser's Java interpreter is about 10 times slower than compiled C++ code when a function call is involved in the loop. And when the Java interpreter is not equipped with JIT, the ratio becomes unacceptably slower (around 200 times slower). And this is only a very simple benchmark program. When it comes to large applications, the JIT tends toward worse performance because it has a limited buffer for compiled code. If the whole application is too large to be compiled before it executes, the JIT interpreter will have to compile section by section on the fly and will thus slow down the execution speed. I estimate the JIT would run about 20 times slower than compiled C++ code when an application is relatively large. But, Java is changing and evolving rapidly compared to C/C++; JDK itself goes through several changes and enhancements include JDK 1.1, JDK 1.2, JDBC, Java 3D, JIT; and the long awaited Java compiler, HotSpot, will be available in 1999. A lot of experts in this field believe that it is possible that Java could increase in speed, performance, and eventually exceed what C/C++ does in the future. This means that the benchmark result today may not be similar in the future, but it could state the facts from the past until now.

3.4 Conclusion

Eighteen months ago, when I started to design the forth generation of the NeatTools project, I insisted on using C++ instead of Java. The main reason for that is speed and Java's uncertainty in the future. At that time, the JIT technology was not mature. Even today the JIT Java interpreter is still not fast enough for mission critical and calculation intensive real-time tasks like compress/decompress of voice and video data. But, like I discussed before, the benchmark result could only reflect Java as an immature technology at this time. It might not be always true in the future. Today, there are some other solutions such as linking native code into Java programs or using tools to convert Java bytecode into native code. But these alternatives are still not very efficient or stable. With the urgent need to help disabled people and solve other problems in the NeatTools project, my choice to use C++ was appropriate, because, we could then focus on the unique features and strategies for the specific applications and experiments in NeatTools, not the language issue itself. In the future, when Java does become superior to C/C++, we may choose to rewrite NeatTools and adapt all the experience we have acquired towards implementing them in Java.

4. How to get JAVA without using Java

Here I would like to discuss some architecture issues. First, I will list the C++ features that Java avoids and investigate why them may not be bad. Actually, programmer could benefit from those features when those features are well understood and used properly. Secondly, Some features that Java adds could be good. I will discuss how we could implement the C++ counter part and provide the desired functionality to programmer.

4.1 C++ Features that Java avoids

4.1.1 Multiple Inheritance

Java provides single inheritance that is a subset of C++ multiple inheritance. Java class could "extends" from one super class and could "implements" multiple interfaces (abstract classes without any implementation and data member). In C++, a class could inheritance from a set of classes including abstract class (a class with one or more functions declared as abstract) or regular class.

In theory, Java could provide the functionality of multiple inheritance by implements multiple interface classes. But in practice it could lead to code reusability problems. Lets look at the following example.

In Java 1.1, the new API provide a new mechanism that could make event broadcast and listening more natural. Which is good use of object oriented programming. In AWT class, user usually extends from Canvas or Panel class to provide the windowing class with specialized functionality. In order to provide the basic action event broadcasting, user usually have to implement the following methods like addActionListener(), removeActionListener(), and broadcastEvent(). The code is following:

ActionListener actionListener = null;

public void addActionListener(ActionListener l) {

  actionListener = AWTEventMulticaster.add(actionListener, l);

}

public void removeActionListener(ActionListener l) {

  actionListener = AWTEventMulticaster.remove(actionListener, l);

}

public void broadcastEvent(ActionEvent e) {

  if (actionListener != null)

    actionListener.actionPerformed(e);

}

The code above is simple and straightforward. Because not every windowing class need to dispatch action events, these methods are not provided with the Component class (the super class for every windowing class). Now, there is no way for Java programmer to reuse the code in different classes with different inheritance paths. For example, class A and class B are derived from Component and both classes need to broadcast action events. Then, both classes need to implement the exactly same code segment and could not just inherit it from a separate interface (interface does not carry implementation, only method declarations).

By using different design pattern, we may design a separate class ActionBroadcast that handle the event broadcast and include the class as a data member. That way we can wrap the methods and the member variable could provide the actual implementation. 

ActionBroadcast broadcast = new ActionBroadcast();

public void addActionListener(ActionListener l) {

  broadcast.addActionListener(l);

}

public void removeActionListener(ActionListener l) {

  broadcast.remvoeActionListener(l);

}

public void broadcastEvent(ActionEvent e) {

  broadcast.broadcastEvent(e);

}

This solution solves the code reusable problem and, in the mean time, leads to an inefficient coding style. Cause the method wrapper always slower than a direct function call. When the underlying implementation is complex, the wrapper pattern will not count too much performance loss. For the example above, this approach does not provide any benefit in turns of code reusable or efficiency.

4.1.2 Operator Overloading

In Java, the operator overloading was eliminated completely. Though, the effects of operator overloading can be achieved by declaring a class, appropriate instance variables, and appropriate methods to manipulate those variables. I believe good use of operator overloading could actually increase the readability and sometimes the efficiency of program. 

For example, in some arithmetic class like Vector, Matrix, and Coordinate, the use of operator overloading like addition, subtraction, multiplication, and division are very natural and could lead to a much more concise syntax.  Without operator overloading, some complex calculation could become ugly and almost unreadable. Sometime, one line of program express by variables and operators has to rewrite into several lines when express by variables and methods. This situation could cause the compiler to generate less optimized code and decrease the efficiency.

Let's say we have Point3D as a 3D coordinate and we want to calculate the point rotation with angle alpha. In Java, we will need to define the mul(double) add(Point3D) methods and has the following statement:

Point3D p1 = new Point3D(1, 0, 0);

Point3D p2 = new Point3D(0, 1, 0);

p1.mul(Math.sin(alpha)).add(p2.mul(Math.cos(alpha)));

In C++, we define the operator*(double) and operator+(Point3D) methods and the statement become:

Point3D p1(1, 0, 0);

Point3D p2(0, 1, 0);

p1*sin(alpha)+p2*cos(alpha);

As you may notice, in C++, the statement is much shorter and easier to understand. Also, the notion of operators is natural to how we express the mathematics equations. For those complicate Matrix or Vector operations, the statement in Java could become very long and unreadable. I believe, for group project or for someone else to read the code, readability is a very important factor. In C++, we have the flexibility to do it by operator overloading or just by methods.

4.1.3 Pointer

The main reason Java eliminate pointer is that pointer are one of the primary features that enable programmers to inject bugs into their code. But, to my understanding, object oriented design could avoid class user's pointer usage completely. Also, good use of pointer could increase the efficiency and simplify the code generation. 

In Java, the only way that a method could return primitive data type value in its parameters is through the use of Array. 

int arg[] = new int[1];

foo(arg);

In C++, the same code could be expressed as:

int arg;

foo(&arg);

Obvious, the implementation in C++ is much better then Java. In Java, it require more memory space (both reference for arg reference and int[] array class instance) and also it need to implicitly initialize the internal Array class instance (which has unavoidable error checking code in Java API.) for "arg" as an array of integers.

For those situations that pointer exposure is unwanted, we could use object class to hide the pointer and, in the mean time, provide the functionality needed. For example, to avoid user handle pointer directly, we could design IntArray class:

class IntArray {

    int *data;

  public:

    IntArray(int size);

    ~IntArray();

    int operator[](int index);

};

The IntArray class could encapsulate the integer pointer inside the class. It keeps the class user from using the pointer directly. In the mean time, it could allocate and de-allocate the memory properly in constructor and destructor. So, we don't have to worry about the pointer usage and memory allocation all together.

4.1.4 Memory Allocation

In the Java white paper, it states:

"Java completely removes the memory management load from the programmer. C-style pointers, pointer arithmetic, malloc, and free do not exist. Automatic garbage collection is an integral part of Java and its run-time system. While Java has a new operator to allocate memory for objects, there is no explicit free function. Once you have allocated an object, the run-time system keeps track of the object's status and automatically reclaims memory when objects are no longer in use, freeing memory for future use."

In theory, human can always design better algorithm in compiler or interpreter to optimized the performance for high-level language programmer. But Assembly language is still there to maximize the performance for some mission critical tasks in specialized computer industry. The most advance-programming wizard could create quite a functional skeleton source code, but when it comes to specific requirements, an experienced programmer could still do a better job. Here, I try to express the idea that human factor could never be eliminated in some decision making process. In the memory management case, according the different requirements and constraints, we can decide to implement a garbage collector in C++ or use object oriented programming to hiding the memory management inside an object and distributing the memory management efforts into object hierarchy. Programmer could use the class and never have to deal with the memory management problems directly. We can also decide to implement a reference count to eliminate unnecessary memory duplications, speed up the performance and minimize the space requirement. In shorts, with proper set of classes support, C++ could become robust and free of memory leak problems. There are a great deal of different algorithms and implementation that we can choose in C++ or other object oriented programming language that provide memory management primitives, but in Java we lose the right to choose. In C language's design spirits, it trusts programmers that they could do their job right. In Java, it only trusts the system designer. When a system designer fails to make good implementations, Java programmers have no choice but to use it anyway. For example, in Java3D, the API itself is still in beta test and has several bugs. One of the most complained issues is that it consumes too much memory even when user only constructs a fairly simply scene. I believe part of the reason lie on Java's memory management implementation. The garbage collector could automatically reclaim the unused memory. But programmer's convenient comes with a price - we could nullify a class reference right away, but we don't know when it will be collected and reclaimed. For those big chunk of memory blocks (texture map, image buffer, or z buffer), they need to be claim and reclaim in the right order and in the right time. In this case, the garbage collector could not perform well and usually cause memory usage problems.

4.1.5 Fragile Super Class

Fragile super class problem happens when a programmer modify the header file of a base class, all the derived class which use this header file will need to be recompiled, or the executable linkage problem could happen. I believe this problem is inherited in the implementation of the C/C++ compiler, not in the language itself. The current C/C++ compiler tends to parse the method name and data member identifier into an internal address. When the structure or the order of the identifier changed in the header file, the internal address and the lookup table changed also. Without recompile the derived class's source code, the internal address of the methods or data members will not match. Thus, the fragile super class problem occurs - programmer have to re-compile the super class before it could be linked to the derived classes. With a proper naming lookup protocol, this problem could be solved. On the other hand, a better way to solve the problem is to avoid changing the super class's interface. I believe, before coding draft, a detailed class design and analysis will make sure a proper interface of a super class. Thus, we could avoid modifying the base class header file and prevent the fragile super class from happen.

4.2 Some Features that Java Adds

4.2.1 Build-in Thread and Synchronization primitives

By using object oriented programming, multithreading capabilities could be add in C++ easily. The usage could be similar to what Java has. In the Thread class, we can have a class that use Thread primitive (In Microsoft Windows, the Win32 already has build-in thread support. In most UNIX system, the pThread is an add-on package to support the POSIX thread) to create a new Thread and store its handle in the data member of Thread class. Later on when thread is ready to start, we can redirect the thread process flow to the run() method. Thus, when user derive class from Thread class or Runnable class, it could then override the run() method and implement its thread loop. In the "Java Like Cross Platform API", I follow the Java API standard and implement the JThread class in C++. It was proved that the API could hide the platform dependent implementation nicely and programmers could have multithreading capabilities without noticing its underlying implementation difference.

To deal with concurrent problems, Java defines a new method modifier to integrate the thread synchronization into its language. I believe this is a good move. But in C++, we can implement the mutex and critical section control into utility classes to help us handle the thread synchronization problems. In this case, we could have more flexibility about how we want our process flow to be guarded by those synchronization primitives and make suitable adjustments to adapt to the needs of different situations.

4.2.2 Build-in Array

In Java, the Array class was created implicitly. The "new Data_Type[size]" allow user to create Array of any data type. And it is vary convenient, there is no need to make the type casting for the returned index elements. In the old-fashion C++ design, the only way to make an Array is using the pointer of object pointer to implement the object array:

class ObjectArray {

    int length;

    Object **data;

  public:

    ObjectArray(int size);

    ~ObjectArray();

    Object* operator[](int index);

};

Here, the polymorphism in C++ allows us to use ObjectArray to store any class that derived from Object class. But the element returned by operator[] could only return a pointer of Object which need to be cast before it could be use properly. Also, it could not store primitive data type and other classes which does not derived from Object class. So, in practice, it is not a good solution for a universal array.

Fortunately, C++ now include "template" which could embed the data type as a parameter into the class declaration and solve the problem for an easy usage universal array. The template could be declared like the following:

template <class DataType>

class ObjectArray {

    int length;

    DataType *data;

  public:

    ObjectArray(int size);

    ~ObjectArray();

    DataType& operator[](int index);

};

Now, the same template could apply to any class and primitive data type as well. Also the elements returns by operator[] will return the desired data type. So, the use of template could provide the exact the same functionality that Java's build-in array provides.

4.2.3 Cross platform and Windowing API

In C++, the windowing related task is never easy. I remember, in the early books that talks about how to open a simple window and display "Hello World!" in any Window system is fairly complex. The sample program was usually more than 100 lines. Since the C++/C was design for environments for only text input/output, the windowing is not so natural and straightforward.

Later on, as the windowing environments become more and more popular. Most of the C/C++ compiler not only provide the IDE (integrate development environment) with graphics user interface running on a windowing environment. Also, they provide all sort of API (like OWL, MFC, and MOTIF) that assist programmer to create their own graphics user interface. The problem was all APIs are different. Also for different windowing system, there are all sort of different APIs.

As the Internet become the hottest topic. The inter-reaction between different host running different operation system and different location become more and more common and hence more and more important. Java was the first language, which support the cross platform development in the language level. Java's virtual machine and byte code system is the natural result of the language specification to be a cross platform language. I have been discussed the cons and pros of this design. My solution to cross platform for C++ is an API that provides uniform support to basic utility and abstract windowing operations. It also encapsulates the underlying implementation, which base on the windowing environment. So application's dependency to windowing environment is eliminated and the goal of cross platform in C++ could be easily achieved.

4.3 Conclusion

In this section, I re-examine the C++ features that Java avoid and think about how to avoid the pitfalls. In stead of eliminate them, we could try to understand them, make good use of them and benefit from those features. Overall speaking, the C++ is more flexible. It provides multiple inheritance, operator overloading, and pointer. It could add code reusability, readability, and efficiency. For those good features that Java adds, I propose a practical way to provide them in the C++. So C++ programmer could get Java's features without using Java. My conclusion is: the object oriented programming in C++ is so powerful that we could use it to avoid commonly seen problems and also could use it to extend language itself with all kinds of new functionality. 

5. NeatTools Architecture Analyze

In NeatTools, the most important concept is module abstraction. The module abstraction simplifies and models all the interactions between modules into active actions and reactive actions. Later in this section, I will discuss the implementation concept and present some benchmark information and analyze it.

5.1 Module Abstraction

In NeatTools, module abstraction is offered as a set of class methods that provides inter-module communication functionality. Functional components (implemented as class objects) of a concurrent system are written as encapsulated modules that act upon local data structures, or objects inside object classes, some of which may be broadcast for external use. Relationships among modules are specified by logical connections among their broadcast data structures. Whenever a module updates data and wishes to broadcast the change, and make it visible to other connected modules, it should implicitly call an output service function which will broadcast the target data structure according to the configuration of logical connections. Upon receiving the message event, the connected modules execute an action engine according to the remote data structure. Thus, output is essentially a byproduct of computation, and input is handled passively, treated as an instigator of computation.

This approach simplifies module programming by cleanly separating computation from communication. Software modules written using module abstraction do not establish or effect communication, but instead are concerned only with the details of the local computation. Communication is declared separately as logical relationships among the state components of different modules.

This programming model has its roots in the formal Input / Output automaton model of Lynch and Tuttle [1]. An I/O automaton is a state machine with a signature consisting of a set of input actions and a set of locally controlled actions. The locally controlled actions could divide into output actions and internal actions. Locally controlled actions are under the control of the automaton, while input actions may occur at any time. Automata may be composed such that when an output action of one automaton occurs, all automata having a same-named action as an input action make a state transition simultaneously. A behavior of an I/O automaton is a sequence of input and output actions that may occur in an execution of that automaton. The module abstraction programming model is designed to benefit from the useful characteristics of the I/O automaton model that are helpful in reasoning formally about distributed systems.

Module abstraction is based on three fundamental concepts: data, actions, and connections. It is difficult to discuss these concepts in detail without reference to particular mechanisms for supporting them. Therefore, we present them in the context of NeatTools, a software package, run-time system and visual programming environment we have designed to support the development of data flow network applications using module abstraction.

5.1.1 Data

Data (the components of a module's state, could be data structures or objects) may be kept private or they may be broadcast when needed so that other modules may access the data. NeatTools provides a base abstract class object that declares the basic data structure and service procedures (or methods). Every module object should inherit from this class object and override some of  the predefined procedures to serve the different computational and presentational needs of each module. NeatTools provides a library of data types for declaring data that may be broadcast. These include but are not limited to integer, real, string, block, byte array, midi event, voice stream, and video stream. The module programmer may define others.

5.1.1.1 The presentation

Each NeatTools module has a presentation that presents itself to the user as the visual feedback. It could be graphics images, shapes, or text. The presentation may change dynamically according to the current state. Associated with each data item are a public name, property, access privileges, and data type. This information helps a user understand its presentation. The data type and access privileges also permit type check and privilege match of logical connections. 

5.1.1.2 Access privilege

Access privileges include input, output, insert, and connect. Output access allows connected modules to observe the value of the data when broadcast as an event message. Input access allows a module to change the state of the target module. Insert access allows a new connection to be inserted into an aggregate item of a module. Connect access allows a module to relate the data item to a data item of some other module. All those access privileges are controlled by a set of class methods (already defined in the base abstract class). By overriding those methods, modules could change the behavior or dynamically control access behavior according to the current state of module.

5.1.1.3 The desktop

A NeatTools module interacts with a desktop and a collection of other modules that may be unknown to this module but that read and modify the data item in its presentation when permitted by the access privileges. The desktop also works as a graphical user interface front end that provides a user with a set of layout service functions, including move, resize, copy, delete, group, ungroup, connection management, object persistency management and file input/output.

5.1.2 Actions

The action portion of a module defines how its state changes over time or responds to an environment. Insulated from the structure of its environment, a NeatTools module interacts entirely through the broadcast service procedure and reactive execution engine procedure. A module may autonomously modify its local state, and also it may react to the incoming events and then change its local state. This suggests a natural division of the actions into two parts: active action and reactive action.

5.1.2.1 Active (Output) action

The active action carries out the ongoing computation of the module. For example, in a discrete event simulation, the active action would be iterative computation that simulates each event. External updates of simulation parameters could affect the course of future iterations, but would not require any special activity at the time of each change. Modules with only active action can be quite elegant since input simply steers the active computation without requiring a direct response. Active action is analogous to the locally controlled actions of an I/O automaton.

5.1.2.2 Reactive (Input) action

The reactive action carries out activities in response to input from the environment. A module with primarily reactive action simply reacts to input from the environment, updating its local state and presentation as dictated by the input change. For example, a data visualization module could be constructed so that each time some data element changes, the visualization is updated to reflect the change. In the above discrete event simulation, one might add reactive action to check the consistency of simulation parameters that are modified by the environment. Reactive action is analogous to the input actions of an I/O automaton.

5.1.3 Connections

Relationships between data items of different modules are declared with logical connections between those data items. These connections define the communication pattern of the system. Connections are established by a special NeatTools module, called a desktop, that enforces type compatibility across connections and guards against access protection violations by establishing only authorized connections.

Connections are declared separately from modules so that one can design each module with a local orientation and later connect them together in various ways. Connections are designed to accommodate all kinds of data types varying from integer, real to audio and video. The run-time system could handle the communication requirements automatically according to the module abstraction of the module.

If we liken the data items of a NeatTools module to the actions in the signature of an I/O automaton, then just as like-named actions in automaton signatures define the sharing of actions, connections define the sharing of state change information. Currently, a simple synchronous data transmission algorithm is used by the broadcast service procedure. The reactive action engine of a connected module will be invoked and executed automatically. However, if asynchronous data transmission is needed, a user could construct a data queue inside the module and react to the data queue later. This way, we can keep the general communication structure simple and efficient.

5.2 Implementation Concept

The NeatTools' design concept is based on a special aspect of application design which provides visual programming capacity. In traditional textual programming design, lines of code are the rough measure of program size. In a visual programming design like NeatTools' data flow networks, number of connections and modules become the major indicators. Thus, how NeatTools provides an efficient way to broadcast and process message events between modules become the most important issue. In NeatTools, all modules are already class objects. The only object interoperability is simplified into active and reactive actions, or connections. In order to increase the application throughput, the connections in NeatTools are just logical references. The message broadcasts are actually perform by direct function call to ensure the performance of NeatTools' data flow network. For those remote messages passing between NeatTools and a remote computer running NeatTools, they are performed by Socket and ServerSocket modules (just like regular modules, but they perform different tasks) to handle all the remote data communication tasks (usually on top of TCP/IP which is slow compared to direct function call). Connections between Socket and other modules are still the same efficient function call. So, instead of network connection oriented design (like CORBA), NeatTools uses direct function call oriented design and so eliminates all possible overhead and layers.

5.3 Benchmark Information on NeatTools

I wrote a special benchmark module in NeatTools, which has two inputs and one output. The one on top can be enabled and start the benchmark. The one on the left can receive message events from other benchmark modules but do nothing. When the module is enabled, it will start the benchmark by broadcasting events through its output port in a 106 loop and then display the time interval in the debug dialog box. The benchmark here is focused on the overhead of message broadcasting in NeatTools.

The engine method of  the benchmark module was implemented as following:

void JBenchmarkObj::engine(int n, JLinkObj& link) {

  if (!n) {

//    link.access(JIntegerData(v[0]));

  } else {

    int oldv = v[1];

    link.access(JIntegerData(v[1]));

    v[1] = (v[1] != 0);

    if ((v[1] != oldv) && !v[1]) {

      int time = JSystem::currentTimeMillis();

      for (int i=0; i<1000000; i++) 

        broadcast(0);

      time = JSystem::currentTimeMillis()-time;

      JComponent::debug(JInteger::toJString(time)+" ms");

    }

  }

}

The NeatTools benchmark data flow networks are arranged as follows:



The five test modules are instances of a benchmark module. One of them connects its enabled input from a button and its output connects to the rest of the test modules.

5.4 Benchmark Analysis of NeatTools

The benchmark data for this particular data flow network running on my PC (AMD-233MHZ CPU, Win95) is 2200 ms, because the output has four connections and the broadcast processes are repeated for 106 times. So 2200 ms / 4 / 106 becomes 0.55 us per connection broadcast which is just 6.25 times slower compared to the direct function call with only one statement. In other words, NeatTools is capable of  dispatching around 1,800,000 messages in one second. At this speed, I believe NeatTools could handle most real-time or computationally intensive tasks on the data flow network level.

5.5 Conclusion

The purpose of this section was to focus on how I proposed an abstract module model. Base on this model, I introduced a simplified and high performance way to implement the module connections and how we map the connections into direct function call without much overhead or layers. This model proved successful as implemented in the NeatTools project. Currently, we have a lot of NeatTools data flow networks on data collection, gesture recognition, control of external devices, virtual world control, remote collaboration, and perceptual modulation. With the scalable design of the NeatTools project, I believe NeatTools could be widely adapted to most real world problems and provide complete and fast solutions.

6. NeatTools and Object Management Environments

6.1 CORBA

Object Managements Group [20] (OMG)'s Object Management Architecture (OMA): the multi-vendor standard for object-oriented distributed computing. This includes CORBA -- the Common Object Request Broker Architecture -- which most people associate with OMG; the CORBAservices and CORBAfacilities.

6.1.1 Object Definition

Objects are discrete software components -- they contain data, and can manipulate it. Usually, they model real-world objects, although sometimes it's useful to create objects specifically for things we want to compute. Other software components send messages to objects with requests; the objects send other messages back with their responses.

6.1.2 CORBA provide Object Interoperability

In order for objects to plug and play together in a useful way, clients have to know exactly what they can expect from every object they might call upon for a service. In CORBA, the services that an object provides are expressed in a contract that serves as the interface between it and the rest of our system. The interfaces are expressed in OMG Interface Definition Language -- OMG IDL -- making them accessible to objects written in virtually any programming language, and the cross-platform communications architecture is the Common Object Request Broker Architecture -- CORBA.

6.1.3 OMA provide Application-Level Integration

Based on CORBA architecture, the OMA specifies a set of standard interfaces and functions for each component. Different vendors' implementations of the interfaces and their functionality then plug-and-play on customers' networks, allowing integration of additional functionality from purchased modules or in-house development.

The OMA is divided into two major components: lower-level CORBAservices and intermediate-level CORBAfacilities. The CORBAservices provide basic functionality that almost any object might need: object lifecycle services such as move and copy, naming and directory services, and other basics. The CORBAfacilities architecture has two major components: one, horizontal, including facilities such as compound document services which can be used by virtually every business; and the other, vertical, standardizing management of information specialized to particular industry groups.

6.2 COM/DCOM

COM (Component Object Model) is a software architecture that enables a program to be built from smaller binary components. It is a binary standard for component interoperability and is independent of any programming language.

COM supports a client/server model between the user of some object's services and the implementers of that object and its services. COM's role is to establish the connection between the client and the server which offers the desired object. Once the connection has been made, COM is out of the picture and all communication goes directly from server to client and vice versa. 

6.2.1 Objects and Interfaces

In COM an object is an instance of a class which as in standard OO terminology is a set of data and related functionality. Unlike most other OO models, COM provides no direct access to object data. Instead, users have to access member functions of an associated interface.

An interface is a set of functions that can be invoked on a given object. Interfaces do not contain any implementation what so ever, but merely define the expected behavior of an object. When an object implements an interface, it provides implementations for every function in that interface, and provides pointers of those functions to COM.

6.2.2 Interface Description Language (IDL)

COM's Interface Description Language (IDL) is based on the Open Software Foundation (OSF) Distributed Computing Environment (DCE) specification for describing interfaces, operations, and attributes to define remote procedure calls.

A designer can define a new custom interface by writing an interface definition file. The interface definition file uses the IDL to describe data types and member functions of an interface. The interface definition file contains the information that defines the actual contract between the client application and server object.

6.2.3 Service Control Manager (SCM)

The SCM is a COM component that is able to locate a given server and launch it. The SCM contains a database of class information. When a client requests the COM library to create an object, the SCM is launched, the server located and run. Here SCM provides the object interoperability.

6.3 Compare COBRA and COM/DCOM

From the communication point of view, COM is a little bit different from CORBA. In CORBA, ORB is always the gateway between its object client and server. The client and server in CORBA never communicate with each other directly. In COM, SCM locates and launches the object server for the application client and then the client communicates directly with the server. Also COM has different mechanisms for in-process, cross-process, and remote object server. In in-process cases, the SCM will locate and load the object server as a DLL. So in this situation, the object server will be executed in the client's process space which is much faster than COBRA's mechanism. In cross-process cases, the SCM will locate and load the object server as an executable. The object server will be executed in a separate process space. So it is slower than the DLL but still faster then the COBRA's mechanism. Even in remote object server cases, the SCM will contact the remote SCM and later on build a remote proxy server which can forward requests directly to the remote SCM via the RPC connection. So, in general, COM/DCOM has better performance than COBRA. But COBRA has better sense based on system and structure concerns. For example, a COBRA's object server will only deal with its local ORB. But a DCOM's object will have to deal with local SCM directly, or in-process client, cross-process client, and remote client through an interface wrapper.

From the application point of view, COM is lacking in application integration packages. COBRA's CORBAservices and CORBAfacilities components provide the application-level integration which provide lower-level and intermediate-level services for industry and business applications.

6.4 Benchmark Information on CORBA

The most important advantage that Object Management Environments like CORBA, and COM/DCOM is has object interoperability. Object interoperability allows objects which plug and play together in a useful way to become possible. But the advantage comes with the price -- speed. For example, in CORBA, when an object client issues a function call to a remote server object, it has to go through the IDL Stub (created by IDL), Object Request Broker (ORB), remote ORB, IDL Skeleton, and finally reach the remote server object implementation. And in most cases it goes through the network communication layer like TCP/IP at least twice (forward the request and send back the result message) to complete a function call.

I visited one of the ORB vender sites which has a web page dedicated to the performance information. URL for this page is http://www.orl.co.uk/omniORB/omniORBPerformance.html. From this page, one of the table is below:

Performance of omniORB2 on various platforms.

Platform
Transport
Protocol
us/call

Linux Pentium Pro 200 MHz
IP/intra-machine
IIOP
340


IP/ethernet (ISA)
IIOP
1000


IP/ATM
IIOP
440


AAL5/ATM
IIOP
350

Windows NT Pentium Pro 200 MHz
IP/intra-machine
IIOP
360


IP/ethernet (ISA)
IIOP
1000

Digital Unix 3.2 Alpha DEC 3000
IP/intra-machine
IIOP
750


IP/ethernet
IIOP
1050

Windows '95 Pentium 166 MHz
IP/intr-machine
IIOP
1000


IP/ethernet (PCI)
IIOP
1250

Solaris 2.51 Ultra 1 167 MHz
IP/intra-machine
IIOP
540


IP/ethernet
IIOP
710

6.5 Benchmark Analyze on CORBA

From the table above, to make a function call, even the function call is made within the machine (the IP/intr-machine), it takes about 360 us on a Pentium Pro 200MHz machine. If we compare the benchmark information with the previous section, making a direct function call in compiled C++ code only takes 0.0088 us which is about  41,000 times faster than making function calls on this particular ORB. For those calls that are made remotely by direct network card connection (the IP/ethernet), it takes 1,000 us to make a function call. In that case it is about 114,000 times slower than the compiled C++ code.

6.6 Conclusion

CORBA and COM/DCOM provide object interoperability which is a great feature for object plug and play and object reusability. In CORBA, it especially tries very hard to separate the object server from object client to ensure the encapsulation and increase the object interoperability by using ORBs. But this approach comes with a big draw back -- decreased performance in a great degree. In COM/DCOM, the performance problem is less severe. Because COM/DCOM provides direct access to the object server when an object server is loaded as in-process DLL. But, even though COM/DCOM is independent of the programming language, some of the higher level control mechanisms involve registry operations in Microsoft Windows like Win95 or NT which we try to avoid in NeatTools for cross platform concerns. 

It is possible that for the NeatTools project to be built upon a CORBA architecture. A NeatTools module designer will be able to put the modules on line and let user access them remotely. But, NeatTools will have to limit data flow design with modules that do not require a lot of message event passing. For those fine-grained modules such as digital logic, number, and real number operation module, decreasing the message passing speed will hurt the performance much. In this case, we won't be able to build data flow networks in NeatTools complex enough to meet the requirements as a general human interface tool. Other than the performance concern, every component in CORBA or COM/DCOM needs to dedicate some efforts and space on the interfacing, because the interfacing is where object interoperability comes from. NeatTools has simplified broadcast models, as the interface is actually fixed and derived from the JModuleObj class. That means we have to dedicate identical interfacing by using IDL for each module which is actually a redundant layer and could be eliminated. Thus, based on the space and speed constrains, I would suggest not using CORBA or COM/DCOM to develop NeatTools.

7. NeatTools and Modeling Languages

7.1 Colored Petri-Net

The following material regarding Petri-Net is extracted from web page at http://www.daimi.aau.dk/PetriNets/.

7.1.1 Introduction

Colored Petri-Net (CP-nets or CPN) is a graphical oriented language for design, specification, simulation and verification of systems. It is in particular well-suited for systems for which communication, synchronization and resource sharing are important. Typical examples of application areas are communication protocols, distributed systems, imbedded systems, automated production systems, work flow analysis and VLSI chips.

7.1.2 Why use CP-nets?

CP-nets are used for three different - but closely related - purposes. First of all, a CP-net model is a description of the modeled system, and it can be used as a specification (of a system to be built) or as a presentation (of a system to be explained to other people, or ourselves). By creating a model we can investigate a new system before we construct it. This is an obvious advantage, in particular for systems where design errors may jeopardize security or be expensive to correct. Secondly, the behavior of a CPN model can be analyzed, either by means of simulation (which is equivalent to program execution and program debugging) or by means of more formal analysis methods (which are equivalent to program verification). Finally, it should be understood that the process of creating the description and performing the analysis usually gives the modeler a dramatically improved understanding of the modeled system - and it is often the case that this is more valid than the description and the analysis results themselves.

7.1.3 Analysis of CP-nets

CP-nets can be analyzed in three different ways. 

The first analysis method is simulation. It is very similar to debugging and program execution. This means that we can execute a CP-net model (e.g., to get statistics about the behavior of the modeled system). It is possible to set breakpoints and to display the simulation results by means of different kinds of business graphics. 

The second analysis method is occurrence graphs (also called state spaces or reachability graphs). The basic idea behind occurrence graphs is to construct a directed graph which has a node for each reachable system state and an arc for each possible state change. Obviously, such a graph may become very large, even for small CP-nets. However, it can be constructed and analyzed totally automatically, and there exist techniques which makes it possible to work with condensed occurrence graphs without losing analytic power. These techniques build upon equivalence classes. 

The third analysis method is place invariants. This method is very similar to the use of invariants in ordinary program verification. The user constructs a set of equations which is proved to be satisfied for all reachable system states. The equations are used to prove properties of the modeled system (e.g., absence of deadlock).

7.1.4 Design/CPN

Design/CPN is a tool package supporting the use of CP-nets. The Design/CPN tool is now distributed free of charge to all kinds of users (including commercial companies). Version 3.0 was released May 1996. It has three integrated parts: 

(1) The CPN Editor supports construction, modification and syntax check of CPN models. 

(2) The CPN Simulator supports interactive and automatic simulation of CPN models. 

(3) The Occurrence Graph Tool supports construction and analysis of occurrence graphs for CPN models (also known as state spaces or reachability graphs/trees).

Design/CPN supports CPN models with complex data types (color sets) and complex data manipulations (arc expressions and guards) - both specified in the functional programming language Standard ML. The package also supports hierarchical CP-nets (i.e., net models that consist of a set of separate modules with well-defined interfaces).

7.1.5 Conclusion

From what I have observed, CP-nets as a good tool to simulate and verify software or hardware projects. But according to one of the Design/CPN introduction articles on the Web, Design/CPN could do around 1,000 message broadcast per second, which compare to NeatTools' 1,800,000 message per second is around 1,800 times slower. As a simulation tool, it is OK to have the speed at this level. For real-time application, Design/CPN may not be the proper choice. The key difference is in the broadcast model itself not implementation. CP-nets use asynchronous message broadcast between modules as the default. It could avoid the cyclic deadlock problem and be much like the real world condition. But in the mean time, it decreases the performance much. NeatTools uses synchronous message broadcasting and simplifies the broadcast into the direct function call. Also, it uses a simple mechanism to avoid the cyclic deadlock problem without a great deal of overhead.

In "An Introduction to the Practical Use of Colored Petri Nets", by Kurt Jensen, [19], he gives the following description

"CP-nets have an explicit description of both states and actions. This is in contrast to most system description languages which describe either the states or the actions -- but not both. Using CP-nets, the reader may easily change the point of focus from states to actions, or vice versa."

In my opinion, actions and states could all be expressed and manipulated by message events, because message events could stand for expressions of current states or actions. Actually, in NeatTools, I did implement the state as a module into NeatTools. User could layout state machine visually and use it for complex state analysis. CP-nets' choice of separate the modules into states and actions may have some advantage on theory analysis. But it could make the model itself become more complex and hard to understand for those users who have no formal theory analysis training. 

7.2 UML (Unified Modeling Language)

The following material regarding UML is extracted from Rational's [21] web page at http://www.rational.com/ and OMG's [20] web page at http://www.omg.org/.

7.2.1 Introduction

The Unified Modeling Language (UML) is a language for specifying, visualizing, constructing, and documenting the artifacts of software systems, as well as for business modeling and other non-software systems.  The UML represents a collection of the best engineering practices that have proven successful in the modeling of large and complex systems.

7.2.2 UML definition

The UML definition consists of the following documents:

(1) UML Semantics : defines the rich semantics and expressive syntax of the Unified Modeling Language. The UML is layered architecturally and organized by package. Within each package, the model elements are defined in terms of their abstract syntax (using the UML class diagram notation), well-formedness rules (using text and Object Constraint Language expressions), and semantics (using precise text). Two appendices are included: UML Glossary and Standard Elements.

(2) UML Notation Guide : defines notion and provides supporting examples. The UML notation represents the graphic syntax for expressing the semantics described by the UML metamodel.

(3) UML Extension for the Objectory Process for Software Engineering and UML Extension for Business Modeling : These UML extensions includes process-specific and domain-specific extensions to the UML, in terms of its extension mechanisms and process-specific diagram icons.

The UML uses OCL, defined separately in the Object Constraint Language Specification document.

7.2.3 Development Project Artifacts

The choice of what models and diagrams one creates has a profound influence upon how a problem is attacked and how a corresponding solution is shaped. Abstraction, the focus on relevant details while ignoring others, is a key to learning and communicating. Because of this :

(1) Every complex system is best approached through a small set of nearly independent views of a model; No single view is sufficient.

(2) Every model may be expressed at different levels of fidelity.

(3) The best models are connected to reality.

In terms of the views of a model, the UML defines the following graphical diagrams: use case diagram, class diagram, behavior diagrams, and implementation diagrams. These diagrams provide multiple perspectives of the system under analysis or development. The underlying model integrates these perspectives so that a self-consistent system can be analyzed and built. 

7.2.4 Programming Languages

The UML, a visual modeling language, is not intended to be a visual programming language, in the sense of having all the necessary visual and semantic support to replace programming languages. The UML is a language for visualizing, specifying, constructing, and documenting the artifacts of a software-intensive system, but it draws the line as you move toward code. Some things, like complex branches and joins, are better expressed in a textual programming language. The UML does have a tight mapping to a family of OO languages, so that user can get the best of both worlds.

7.2.5 Conclusion

Since UML is not intended to be a visual programming language, it is very clear that it has no conflict with the NeatTools application and its design concepts as a visual programming environment. On the contrary, we can use UML to help in specifying, constructing, and documenting the artifacts of the development of NeatTools system or module design. The Rational Rose, a visual modeling tool that allows developers to define and communicate a software architecture, could be used to speed up the development of future module design for NeatTools. In this sense, UML could indeed be very useful to NeatTools development.

8. NeatTools and Other Visual Programming Tools

8.1 Microsoft Visual Series on C++, Basic, J++

The following material regarding Microsoft [8] Visual Series is extracted from Microsoft's web page at http://msdn.microsoft.com/visualj/, http://msdn.microsoft.com/visualc/, and http://msdn.microsoft.com/vbasic/.

8.1.1 Introduction

Microsoft Visual Series uses the same Developer Studio environment that comes with Microsoft's Visual C++. Microsoft has done a good job incorporating its existing tools into VJ++ and Visual Basic. For example, to create dialog boxes, developers use the same dialog box editor found in VC++'s Developer Studio. 

Windows developers will like the COM integration in VC++, VB, and VJ++. COM, Microsoft's component object model, is the core of ActiveX, and developers can incorporate existing ActiveX controls and COM-based technologies into their VC++, VB and VJ++ applications.

Developers can also build their ActiveX controls for use with Visual Basic, VC++, and Delphi. This is a fairly complex process, but the final release of VJ++ is expected to include an ActiveX Wizard that will make it easier to convert applets into ActiveX controls.

Developers could use application (or applet in VJ++) Wizard to create a small application. After they respond to the Wizard's few simple questions, it creates a commented source-code skeleton (and an HTML file in VJ++) to host application (or applet). Thus, user could start from the there without the need to start from scratch.

8.1.2 Conclusion

Basically, I would consider Microsoft's visual series as a textual programming environment with some visual tools (like dialog box editor), ActiveX Wizard, and application Wizard to help a programmer integrate their application with resources, ActiveX components, or to create skeleton source-code, etc. Conceptually, this is not relevant to the visual programming environment that NeatTools provides.

8.2 Java Bean

The following material regarding Java Bean is extracted from JavaSoft's [24] web page at http://www.javasoft.com/beans/index.html

8.2.1 Introduction

The goal of JavaBean is to define a software component model for Java, so that third party ISVs can create and ship Java components that can be composed together into applications by end users.

What is a Bean? A Java Bean is a reusable software component that can be manipulated visually in a builder tool. The builder tools may include web page builder, visual application builders, GUI layout builders, or event server application builders. Or it may simply be a document editor that includes some beans as part of a compound document.

Some Java Beans may be simple GUI elements such as buttons and sliders. Other Java Beans may be sophisticated visual software components such as database viewers, or data feeds. Some Java Beans may have no GUI appearance of their own, but may still be composed together visually using an application builder.

Individual Java Beans will vary in the functionality they support, but the typical unifying features that distinguish a Java Bean are:

(1) Support for "introspection" so that a builder tool can analyze how a bean works.

(2) Support for "customization" so that when using an application builder a user can customize the appearance and behavior of a bean.

(3) Support for "events" as a simple communication metaphor that can be used to connect up beans.

(4) Support for "properties", both for customization and for programmatic use.

(5) Support for persistence, so that a bean can be customized in an application builder and then have its customized state saved away and reloaded later.

While beans are primarily targeted at builder tools they are also entirely usable by human programmers. All the key APIs such as events, properties, and persistence, have been designed to work well both for human programmers and for builder tools.

8.2.2 Conclusion

The most important difference between NeatTools' module model and Java Bean's component model are the initial design goals. NeatTools' goal is dedicated only to high performance visual programming environments. Java Bean's design is for general programming component models for both visual and textual programming. Other than introspection, customization, events, properties, and persistency support, NeatTools modules always have to support display features. And there are many efforts put in to de-couple modules from the desktop's central control. For example, a modules has reference to its logical connections and could directly send events (by direct function call) to connected modules without interacting with desktop. Also, NeatTools has simplified the event broadcast model into only three methods (please reference appendix: Module Programming Introduction). In theory, a Java Bean could follow the NeatTools' module interface and become a NeatTools compatible module. But the problem here is not just the Java Bean or NeatTools module, it is about an environment that could provide a user the usability and functionality to build applications with ease and give a way to implement unique features and strategies for the specific applications in the NeatTools project. In this case, it is almost impossible for us to use the commercial Java Bean Building Tools, because those tools would not always fit in to the special needs of the specific programs we face in the NeatTools project. My conclusion is that: Java Bean is a good way to build components, but if we ever decide to use Java Bean for the NeatTools project, we have to implement the Java Bean Builder as well to ensure the specific needs and requirements of this project.

8.3 LabView

The following material regarding LabView software package is extracted from National Instruments' [23] home page at http://www.natinst.com/.

8.3.1 Introduction

LabView is a graphical programming development environment based on the G programming language for data acquisition and control, data analysis, and data presentation. LabView gives a user the flexibility of a powerful programming language without the associated difficulty and complexity because its graphical programming methodology is inherently intuitive to scientists and engineers.

With LabView, a user builds VIs (virtual instruments) instead of writing programs. Users can create front panel user interfaces, giving them the interactive control of the software system. To specify the functionality, a user assembles block diagrams - a design notation for engineers and scientists.

8.3.2 Data flow Programming

LabView implements a patented data flow programming model, called G, that frees the user from the linear architecture of text-based languages. Because the execution order in LabView is determined by the flow of data between blocks, and not by sequential lines of text, users can create diagrams that have simultaneous operations. LabView is a multitasking and multithreaded system, running multiple execution threads and multiple VIs.

8.3.3 Graphical Compiler

In many applications, execution speed is critical. LabView provides the compiler that generates optimized code with execution speeds comparable to compiled C programs. With the build-in Profiler, a user can analyze and optimize time-critical sections of code.

8.3.4 Multithreading

In new version of LabView, the multithreading is built into VI, or LabView programs, thus it is not necessary for users to learn new programming techniques. In fact, the user can benefit from multithreading without even knowing what it is. However, for expert users who want to have specific control over threads, such as changing thread priorities, the flexibility is available in a straightforward dialog box option.

8.3.5 Conclusion

NeatTools and LabView are both visual programming environments. NeatTools is based on the abstract module model and LabView is base on G programming language. The abstract module model tries to generalize and simplify the module and event broadcast model from a pure visual programming perspective, while the G programming language tries to have the graphical representation of traditional textual programming. For example, you can see the "while loop" and "for loop" structures in G programming language. In NeatTools, we do not define "while loop" or "for loop" structure in module specification. All modules are logically equal and they all derive from the same module base class. In one word, NeatTools users could use Timer or ClockDivider module to provide the same functionality. Timer and ClockDivider are just regular modules. Basically, a NeatTools user could design and use anything he likes to accomplish the desired tasks.

LabView's graphical compiler provides the optimized code with execution speeds comparable to compiled C programs. This indicates that the simulated version in LabView is slower and much bigger than the compiled version. In NeatTools, as I discussed in previous sections regarding NeatTools' performance, its data flow network is already comparable to compiled C/C++ programs. Also, NeatTools executables only include the core modules, thus the user could just add the functionality by including the external module DLLs needed to meet the space constraint. Hence, the compiler is actually not needed in NeatTools.

Recently in the multithreading section, the new LabView version started to support multithreading. The thread itself is associated directly in the VI. A user can change the thread's priority through a dialog box. I do not think this kind of add-on threading could provide a user all the power and flexibility of threading. In NeatTools, every module could start their own thread (or multi-threads) depending on the tasks it needs to perform. By using connections, several modules could share threads together, or modules could use internal threads for calculation intensive tasks, etc.

LabView has a very strong user group and history going back over ten years. NeatTools was born just around 2 years ago. NeatTools has some technology advantages over LabView owing to its fairly new structure and design. And most of all, NeatTools is free and downloadable from the Web. I don't think LabView could beat that price.

8.4 AVS/Express

The following information regarding AVS/Express is extracted from Advanced Visual System Inc.'s [22] home page at http://www.avs.com/.

8.4.1 Introduction 

AVS/Express is a tool for developing data visualization applications. It enables users to explore datasets of any dimension or complexity using visualization capabilities.

AVS/Express offers the same benefits as other advanced client/server development tools. It provides a multi-platform, multi-OS development environment that allows broad-based application building. It enables developers to spend their time adding value to applications instead of trying to solve non-productive, costly system-level issues.

8.4.2 The Graphics Display Kit

The AVS/Express Graphics Display Kit is a set of objects that contain the data structure and function to develop data-intensive, interactive graphcis applications. It provides the following graphics-component technology essential for rendering and manipulating text, 2D images, and 2D and 3D geometric objects. These components can be reconfigured, customized and replaced easily to provide custom views for end-user applications.

8.4.3 The Data Visualization Kit

The Data Visualization Kit contains objects, data structures and libraries needed to visualize and analyze datasets. The data model within this kit defines how data is represented, how functions access it, and how it is communicated between functions and processes. The AVS/Express data model could handle the data frequently found in data and graphics intensive applications, including image, volume, finite element, scattered and geometric data. The visualization components in this kit contain computation methods that are key to turning abstract datasets into graphics.

8.4.4 The Database Kit

The Database Kit provides interfaces to the most popular SQL-based relational database management systems (RDBMS), including Oracle, Sybase and Informix. In addition, the data kit contains an Open Database Connectivity (ODBC) interface. A library of configurable visual objects provides connections to one or more relational databases, and enables display of database tables and assembly of SQL expressions.

8.4.5 Visual Programming

In AVS/Express, users construct applications as a connected, hierarchical network of objects, create and modify data structures with "drag-and-drop" ease, manipulate widgets directly to create GUI layouts, set up GUI callbacks through visual connections between widgets and application methods, examine application state and data with integrated debugging tools, and integrate external functions with encapsulated C, C++ and FORTRAN routines.

8.4.6 Conclusion

NeatTools is meant to be a generic visual programming tool for human computer interface. NeatTools' focus is on how we could increase the information flow throughput between humans and computers. Thus, the key issues are on how we provide more information paths from humans to computers through sensors, devices, and broaden all kinds of feedback from computers to humans through graphics, audio, video, touchware, etc. Data visualization and acquisition is just one of the forms by which humans could acquire feedback from the computer. It is possible that we could write AVS/Express modules to provide the functionality specific to the NeatTools project. But, we never could change AVS/Express itself to meet some special constrains and solve the problems specific to the NeatTools project. Also, NeatTools is meant to be an affordable solution for all disabled people. If we have to bundle AVS to solve their problems, the price would become a major problem between users and their solution.

9. Design Goal of NeatTools

The design goal of NeatTools is to make it simple, object-oriented, network-ready, robust, secure, architecture neutral, portable, high-performance, multi-threaded, and dynamic.

9.1 Simple

9.1.1 Simple Usage for Data-flow Network Designer

We want to build a system that could be visually programmed without a lot of formal training in computer science and we did achieve this goal. In SigGraph conference 98', we have a very large booth in SigKids area that demo and provide the computers for kids (around 10-12 years old) to freely use NeatTools interactively as there experiment tool. Most kids could pick up the concepts of NeatTools in a very short time and start to explore on their own. One of the kid who is definitely best of the best. He pick up all the major ideas in half hour and start to design his own data-flow networks range from "metal dictator" to "mouse position finder". It proves that our visual programming environment design is naturally simple to even a kid.

I added several concept which is base on purely visual programming aspect instead of the traditional textual programming. For example, most visual programming language like AVS/Express and LabView, they have distinct mode for data-flow network editing and execution which is quite naturally accepted in traditional textual programming. Because every textual program source code need to be edited and compiled before it could execute. Also, from the design point of view, make editing and execution mode exclusive will make the system design task easier. Cause the mixture between editing and execution mode will cause a lot of technical difficulties especial in a multi-threaded system. In NeatTools, it provide non-stop execution. So user could layout, execute, and debug data-flow networks at the same time without been interrupted.

9.1.2 Simple Programming Paradigm for Module Designer

In module design, programmer will first identify the module object which will be used by data-flow network design as the basic building block. Usually, this portion is most difficult because it will require a very broad knowledge of object oriented programming and visual programming environment design. After the module object has been identified, the programmer could proceed to create a class which derived from the module base class or other module (when need to inherit the common behavior). In terms of the process of creating a NeatTools module is very simple and straightforward.

9.2 Object-oriented

Object-oriented design is very powerful because it facilitates the clean definition of interfaces and makes it possible to provide reusable software ICs. By software ICs, it means the design hiding the implementation and information and only provide the interfaces as the communication media to the outside world. So designer could focus on the design and implementation on software ICs without mess up with other concerns in different aspects.

In NeatTools, we design each module as a special object unit. In the object unit it define the module's visual representation, connection channel, connectivity of each channel, attribute, etc. All the interaction between modules are handle by module's base class and NeatTools system. So designer could focus on each module as an independent unit and may improve the algorithms or debug inside the module.

9.3 Network-ready

NeatTools integrate extensive library of TCP/IP protocol routines into the visual programming building blocks. Like the SocketObj and ServerSocketObj modules could be drop into the desktop and create network connection by just make connections which is much easier than in traditional textual programming environment. In the future, to complete the network functionality, we will add more modules that could handle HTTP, FTP, and other network related protocols. 

9.4 Robust

Most dynamic languages like LISP, TCL and Smalltalk are often used for prototyping. One of the reasons for their success at this is that they are very robust: you don't have to worry about freeing or corrupting memory. In Java, programmer can be relatively fearless about dealing with memory because they don't have to worry about it getting corrupted. In C/C++, the pointer and memory management are the most problematic issues. So how could we make the NeatTools become robust and still using C/C++? I believe proper usage of object oriented programming is the key issue to achieve this goal. By hiding the pointer and memory management inside the data members, constructor, destructor, and assignment operator methods, the interface of object class could be free of pointer and eliminate the need of complex memory management - it becomesdistributed into each object class implementation.

9.5 Secure

NeatTools is intended to be used in a network/distributed environments. By using Socket/ServerSocket modules, NeatTools running on different computers could collaborate each other through the data exchange and events. Recently, a lot of emphasis has been placed on security. To enable the secure visual programming environment, we plan to add the authentication module that are based on public-key encryption. So user could use the authentication module to encrypt or decrypt event and closes the door on most the tamper activities.

9.6 Architecture Neutral

In the present computer market, application writers have to produce versions of their application that are compatible with the IBM PC, Apple Macintosh, and other high-end workstations. With the PC market (through Windows/NT) diversifying into many CPU architectures, Apple moving off the 680x0 toward the PowerPC, and all the different brand named workstations base on different CPU architectures, production of software that runs on all platforms becomes nearly impossible. 

In Java, the same version of the application run on all platforms. But the Java bytecode rely on the Java runtime that provide the Java virtual machine to run the byte code. As the demands comes from all of the different industries, the Java runtime revise constantly and become bigger and bigger. Because of that the browser that carry the Java virtual machine become huge and it waste a lot of space when different Java runtime is needed by several different browser or Java development toolkids.

Some existing solutions, like the Win/U from Bristol Technology, provide the bias implementation that favor a particular platform. For example, a lot of Microsoft windows applications were written base on Microsoft Foundation Class (MFC) which is build on top of Win32 API. Win/U provides a layer that simulates the Win32 layer on UNIX platform. So applications base on MFC could be compiled and run on UNIX platform. This solution is base on the facts that lots of existing applications already written for Microsoft windows platform. But it introduced unnecessary layer into UNIX platform and decrease application's performance.

NeatTools is build upon of the Java Like Cross Platform API. In this API, it define the basic language, networking, input/output, utility, and abstract window classes. It hides all platform dependent implementation detail into the classes, provide the unified class interface to the applications that base on this API and does not favor any of the platforms. By using this architecture neutral API, we only have one very thin layer between application and the operation system it running on. It guarantee that the application become cross-platform and also high performance.

9.7 Portable

Being architecture neutral is a big chunk of being portable, but there's more to it than that. All the platform dependent details are hiding in the object implementation. What the object interface provided is unify to all platforms. This is the classic usage of object oriented feature to build a clean portability boundary between the C/C++ POSIX subset, operation system, and applications.

9.8 High-performance

The architecture neutral, portable, Java like cross-platform API did provide the thin layer that ensure the high-performance of the NeatTools that build upon it. NeatTools' visual programming environment design is base on the module abstract modal which simplify the object interaction into input and output actions. To provide the highest performance, NeatTools use distributed message broadcast and direct function call to implement the event broadcast between modules. Unlike AVS, which use the AVS kernel to provide the centralized control over the inter-modular communication and use IPC data-flow protocol's RPC call to implementation the channel event broadcast and data exchange, NeatTools do have much superior performance over AVS on event broadcasting. According the benchmark to NeatTools, NeatTools is capable of broadcast 1,800,000 events in one second. Which is not even possible for an application that use AVS.

9.9 Multi-threaded

There are many things going on at the same time in the world around us. Multithreading is a way of building applications with multiple threads. Unfortunately, writing programs that deal with many things happening at once can be much more difficult than writing in the conventional single-threaded C and C++ style. By using Java like cross platform API, it provide a sophisticated set of utility classes that provide the thread operations and synchronization primitives. In Microsoft windows, the underlying implementation is base on Win32 Thread API. In UNIX, the underlying implementation is base on MIT POSIX Thread software package.

In NeatTools, the interactive responsiveness and real-time behavior is very good. All threads inside modules will not interrupted or suspended by user operations like layout modules or making connections between modules. Everything is working concurrently and smoothly even when user is trying to group, resize, or move a set of modules. The multi-threaded feature in NeatTools did increase the productivity, functionality and usability.

9.10 Dynamic

To adapt to an evolving environment, NeatTools was designed to be extensible. External module could be added into system at runtime which could extent the system by modules with new functionality. In NeatTools, Each module is distinct object class which could be put in system statically as build-in module or could be linked into Dynamic Linkage Library (DLL) and, later on, loaded by NeatTools system as an external module. The Polymorphism feature in Object Oriented Programming make the NeatTools extensible possible. The virtual function provides a way that enable a proper method implementation pointed by a base class's virtual function table. So when a module is been dynamically linked. We could create an instance of the module and later on express its behavior through the common virtual functions inside the module base class. 

10. NeatTools' Visual Programming Features

10.1 Introduction

Developing an application in NeatTools is very easy. Here is an example that shows how you could use mouse clicks to light up the LED. First, you launch NeatTools, and set desktop in "Edit" mode by pressing on the "ED" button on the left column. Open the "Display" tool box by pressing on the "DS" button and you are ready to start programming.

Now, move your mouse over the button module and drag it into desktop. Then, move mouse over the LED module and drag it into desktop also. Lastly, move mouse over the output area of the button and drag it to the input area of LED module. You will see a new connection build between button and LED modules. Your first NeatTools program is ready and running. If you click on the button module, you will see the LED module light up. (Like the following picture)



You can save your program by press the "SF" button and assign it to a file with .NTL extension. You always could load your program by pressing the "OF" button and selecting your NTL file to bring it back.

10.2 Multi-Thread Features

A NeatTools module can initiate its own threads depending on its design. A NeatTools user could just use it without notice. For example, you put in Time and Date Display modules on the desktop, and connect them. Now, you see the Data module is showing the current time and update every one second. Then, you put in the Timer, ClockDivider, and LEDs into the desktop, and connect them. You see the LEDs light up and cycle through each other. Right now, two threads are running at the same time inside the desktop area. By sharing the events, modules may share the same thread. For example, the 4 LEDs and ClockDivider share the same thread inside the Timer module.



10.3 Keyboard and Mouse Event Simulator/Filter

NeatTools could receive keyboard or mouse events through Keyboard or Mouse modules' outputs. In the following example, we use the keyboard "1" to control the LED and use 1DViewer to display the mouse X position.



NeatTools could generate keyboard or mouse events through Keyboard or Mouse modules' inputs. The computer will "think" that someone is typing the keyboard or moving the mouse, but actually those events are generated by NeatTools. The following example uses mouse X position and 1DViewer to fire the keyboard module when mouse X position is in the right area. If a user launches an editor like Notepad or Word and puts it in the foreground, you will see a "1" character appear when you move the mouse from left to right.



This function is very important and useful. For example, if we want to help a disabled person to use a sensor to surf the Web, we can use NeatTools to pick up the signal and process it into the mouse or keyboard simulated events. Or, if we want to make NeatTools work with an existing application and can not change the application itself, we can program NeatTools to generate keyboard or mouse events to use and control the application. For the fast prototyping purpose, this function is extremely useful because we always could connect and control an external application in no time.

10.4 Networking and TCP/IP

Transferring information to remote computers is very easy, after you layout the socket server and socket client, set the IP address, connection port, and enable both of them; you already built a invisible duplex connection between these two modules. The socket and server socket pair can be put in to different NeatTools processes or in a remote computer as long as the IP address is correct. With these Networking modules, a user can transmit any NeatTools data type to any computer running NeatTools. The data could be an integer, floating point, bytes, wave, or video data. Laying out an internet phone using NeatTools is very easy also.



10.5 Container Nest Structure (Complex Module)

NeatTools could do the visual modular design by hiding data flow networks inside a container module and become a complex module. Inside the container module, you can put in complex modules of other data flow networks. So a user could design an application using several layer. Each layer will handle different levels of complexity. This feature is rarely seen in most visual programming languages.



10.6 Transfer Focus among Text Fields

How we provide the full functional graphical user interface visually is always an interesting topic. For example, we need a text field module which could let a user type in characters and compose them into a character string. Usually, most applications will have several text fields for a user to type in. How do we provide a mechanism which enables a user to transfer focus among text fields? Using mouse clicks to set the current focus would be an obvious way to do it. But for user's convenience, we need to provide some short cuts for the user to toggle or cycle through all the text fields or GUI components. To implement the short cut feature, I added an input called editFocus which could trigger and set to current focus by other modules. I also added an output called nextFocus which will send out a true event when it is in focus and the user presses the TAB key. By connecting the nextFocus output into the next text field's editFocus input, we could build a form with several text fields and a user could use TAB key to cycle through the fields.



10.7 Polymorph Data Type

NeatTools is a strong typed visual programming language. Usually, it is desirable that to connect input and output ends only when they are of the same data type. The NeatTools system guards that very well, but sometimes, it is not so convenient to implement all the different modules for each different data type. The ControlObj module is one of the modules that needs the polymorph data type. ControlObj module works as a switch controlled by enabling input signals on the top, which is very useful for all kind of data. With polymorph data types, the ControlObj input/output pairs could connect to any data type. For example, after connecting the data input to an integer port, the input/output pair all adapts itself into the integer data type. So now the corresponding output port could now accept integer data. With the polymorph data type, we make balance between strong typed and weak typed checking and make NeatTools more convenient and efficient. In the following example, I use ControlObj to control integer, date, and real number at the same time.



10.8 Multimedia Features

NeatTools has added most of the multimedia features into modules including Mixer, Wave Input and Output devices, MIDI Input and Output devices. Now, a signal comes in from any device or even from a remote computer can control the CD volume, play MIDI song, hear sound wave, etc. The information perception could be anything we ever think of; we could "hear" the image, or "see" the sound. We plan to add more modules in to NeatTools to handle the graphics visualization and data processes. In the information age what we need is not just information, we need all kinds of different ways to observe information and abstract the patterns and features we want.

The following is an example which we use NeatTools to visualize the sound wave intensity. 



10.9 Multimedia Database

Most people consider a database belonging to a textual programming API layer, but I personally think to provide a visual database is a very interesting concept. Different databases could use connections to build the relation between databases and become a visual relational database network. The relation between databases could be indexing, key word match, or condition match. The indexing relation is quite straights forward, users just connect an integer field value to the index input of another database. Whenever the integer field value changes, it will locate the connected database into the correspond record. The keyword match and condition match relation work likewise. 

In the following example, the Session database file contain several fields including patient's SSN and therapist's Reference Number. Session data use SSN field to build a relation with Patient database by connecting from its SSN output to Patient database's search on SSN input. Session data use Therapist_Ref field to build a relation with Therapist database by connect from its Therapist_Ref output to Therapist database's search on Ref_No input. Therefore, when we navigate the Session database by changing its index, the Patient and Therapist_Ref database will move to the correspond record.



10.10 External Module and Dynamic Link Library

In NeatTools, modules can be build-in or external module. The external module will be a dynamic link library. NeatTools could load the external module in run time. The external module could be compiled separately, so NeatTools becomes scalable. Users could expand NeatTools' functionality by adding their own modules. Also, some device manufacturers provide their own API in DLL. If we make an external module DLL that includes manufacturer's API, we could reduce the NeatTools system's dependency on the manufacturer's DLL and keep the NeatTools system core compact and small.

The following picture shows the dialog box that NeatTools uses to load the external modules.



10.11 State Machine

In many control-based applications, the state diagram is the dominant aspect of the model that can capture the dynamic behavior. The major concepts of dynamic modeling are events, which are the stimuli, and states, which are configurations of object behaviors. In NeatTools, events are conducted by connections between modules, and states are represented by a special State module which can hold a single named state and can stimulate the connected state modules when conditions are matched. A State module can have several outgoing connections to other state modules. Each connection can only connect to one state module and can be stimulated by one condition pulse input event. 

The following is a very simple example of state machine. There are 3 states, A, B, and C. Each state could trigger by a condition and stimulate the next connected state module. A state module could be setup to trigger by several conditions and connect to several other state modules. I will put a detailed example in next section.



11. Experiments/Applications

11.1 Case Descriptions

11.1.1 Eyal Sherman

When he was a boy of 5 years, Eyal Sherman suffered from a stroke. After surgery, Eyal was a quadriplegic, with severely limited movement. Communication was restricted to yes and no questions or lip-reading. It had been 10 years since this tragedy, and life had settled into a kind of norm for the Shermans. Eyal attends public schools, where he is enrolled in New York State Regents classes, a program for advanced students.

11.1.2 Brooke Kendrick

Brooke is a delightful 7 year old who is diagnosed with spastic quadriplegia due to cerebral palsy. She functions at a pedal gross motor level. She uses a power wheelchair with a joystick control which she is presently practicing. Brooke is non-verbal but does make her desires known by smiling, laughing, crying and saying yes and no. She is a social little girl who appears well aware of what is going on around her. She continues to demonstrate a strong startle reflex when loud or unexpected noise is heard. Brooke attends an integrated First Grade program at Lakeland Elementary School. This is a full day program which integrates her educational and therapeutic activities. She has a one-on-one teaching assistant.

11.2 Approach

The NeatTools project team has been working with Eyal Sherman closely since 96'. The approach was divided into hardware and software portions. The hardware team developed the EMG (electromyograph) detector known as TNG and did experiments with all kinds of headsets and mounting systems for Eyal. They also tried a lot of sensor technologies including photocells, displacement potentiometers, Hall Effect transducers (magnetic sensors), pressure transducers, bend sensors, etc. The software was mainly developed by Jo Johanson who constructed Neat DOS, and later on briefly experiment on a Windows and Java version. TNG devices pick up the signal from the sensors on the headset and transmit them into the computer. The Neat software keeps receiving the signals, processing them, and later on mapping the signals onto actions of external devices.

11.3 Limitations of Early Software

The old design, especially the DOS version, is a great tool to receive the signal from external devices, change the configuration dynamically by making connections, and then do logic operations on the buttons. The major draw back was that modules have a some what limited layout. The format is fixed and could not re-layout as a user needed. For example, a user could add new buttons. After button creation, a user would see a new button appear at the end of the button area. A user could add connections to a button, but could not move the button or resize the button itself. Also DOS does not support multi-process, multi-thread, TCP/IP, and multi-media as there are many limitations inherent to the DOS operating system.

The Java version improved the layout mechanism. Users could create new modules and put them anywhere on the desktop. This version used Native method to implement the COM port related function and runs under Java enabled browsers. But, as the JDK changed, the new browsers prevented Native methods from low level COM port access for security reasons. Without COM port access, the Neat software could not read the signals from the TNG device and so would sit in the dark. Other than the COM access problem, there is no simple way of communication with other existing applications. For example, to enable the user to employ a TNG signal to control a Java Tetris game, the software team member has to find out the source code, download it and rewrite the code. Thus, Neat software could create and control the game directly, but when it comes to commercial software applications like Netscape and Word, there is no way we could acquire the source code and try to modify a huge application and combine it into Neat software. This approach is not feasible at all.

11.4 Ideas and improvements

At this point, the group tried to find a Java programmer to solve the problems. On one evening, when Eyal had a session with the NeatTools project team, I came by to visit them and tried to understand the nature of the project and the problems they were facing.

11.4.1 The mouse driver prototype

The first thing I noticed is that to try to modify the source code of applications in order to control them is not realistic. There are hundreds and thousands of applications out there. How could we modify them all? Also, most commercial applications will not release their source code. Then how do we provide a way for disabled persons like Eyal to use them? Second, Java is changing so fast and its future is still not certain yet. Right now, the new browsers prohibit us from the COM port access in the native method, and JDK itself does not provide the functionality to access the COM ports, (and will not in the future, because it is meant to be a cross platform language). Why should we limit ourselves by using Java? I happened to have the knowledge about how to simulate mouse events and how to install the mouse event filter in the Windows environment, so I decided to give it a try.

Three days later, I came out with a very small C windows program (executable around 60k). It has some simple controls and property settings on its front panel. After it connects to the COM port, the signal from TNG will come in and display in its client area. By changing the signal, it could generate mouse events, change mouse position, and the simulate mouse click. When we put this small program into the background and brought other applications to the foreground, we were able to use the signal from a TNG to control any application without having to rewrite it!

This prototype mouse program solved some of the major problems, but it was still not good enough to generally adapt to changing situations. For example, I hard coded the mapping between a user gesture signal and the mouse events. But, if a patient could not do some of the predefined gesture actions and needed to change it into other gesture actions, then I would have to expand the program to make the random gesture actions/mouse events mapping possible. Also, TNG is just one of the input devices, there are many different devices out there, thus how could I provide a generic way for a user to configure all of them easily?

11.4.2 Next Generation Neat Software - NeatTools

To make it adapt to changing situations, the data flow network with a visual programming environment is the way to go. This time, I wanted to make it general and powerful. I devote the next section to discussing the key issues in building a better Neat software.

11.5 Key Issues in Building a Better Neat Software

11.5.1 Java Like Cross Platform API in C++

The Java Like Cross Platform API in C++ is actually a very thin layer which is provided as an interface to the operating system, C++ runtime library, and Windows system. This API hides the platform dependent implementation and unhooks the application's dependency from the operating system and Windows system. 

Other than following the JDK standard, the challenge was actually in how we map the Windows handle, related operations and Window messages into the object that represent the window object; not only to provide an efficient way to associate the window events into object's methods, but also how to provide a unified way to map the same object into window objects of different windows system like Microsoft Win95/NT and UNIX X Windows. 

Usually, programmers of Microsoft Windows will use the MFC to ease the complex process of registering windows class, setup parameters, create windows, and finally display it and start to process window events, by using MFC on UNIX which means we have to provide a layer to simulate Win32 API on top of X Lib (and MOTIF sometimes). The Win/U product by Bristol Technology was one of the products that provided the cross platform solutions on UNIX. But this solution has a bias on UNIX platforms, because an application will have two layers between itself and X Lib which needless to say will decrease the application's performance on UNIX platforms. So, to be fair to both major windows operating systems and in the meantime to provide the unified thin layer that interfaces between applications and the lowest level of windows API like Win32 and X Lib, Java-like Cross Platform API in C++ is the key for NeatTools to become a cross platform and high performance application.

11.5.2 Module Coordinate System

Most visual programming environments use integers to represent the current position and dimension. They can not scale the desktop, or scale only in limited settings. Eventually, when data flow networks become complex, a user could use up all the space and have to overlap the modules and connections. I proposed to use the floating point instead. This change enabled the desktop to have a arbitrary scale. A user could have a layers design, where each layer has different visibility and could handle the complexity locally. A module will know its current screen dimension and position in integer pixel units only when its repaint or update method got invoked. In NeatTools, it not only supports a scaling system that could scale a design to arbitrary scale, it also provides rulers and scroll bars to help users locate or reposition a design without limitations by the screen resolution.

11.5.3 Module Event Broadcast Model

As I discussed in previous section about NeatTools' implement concept, the most important key to a high performance fine grain visual programming environment is how we increase the event broadcast performance. 

In NeatTools, the module abstraction ensures that there is almost no dependency of one module on another, except for the data objects that flow in and out of a module, software modularity and reusability is enforced and highly preserved in the system. The same idea was presented in most visual programming environments, but different implementation architectures could lead to dramatic performance differences base on the same idea. For example, in AVS, the AVS kernel provides the centralized control over the inter-modular communication. Restricted by the AVS kernel and its IPC data-flow protocol, any communication between two parallel modules has to go through the sequential host-node channel and the module-module pipeline on the control processor. In this sense, the current AVS kernel serialized parallel channels. This could become a performance bottleneck. Not to mention the IPC data-flow protocol's RPC call is much slower then the direct function call. AVS kernel design has its basis in the distributed nature of AVS modules. But this design limited AVS as a coarse grain visual programming tool. All the fine-grained operations and functionality have to be implemented inside the module and can not be utilized by the user directly through the visual programming environment.

In contrast to AVS kernel's centralized broadcast control model, NeatTools has a centralized storage for all logical connections but every NeatTools module has a local reference to its logical connections (including input and output connections). When broadcasting events, NeatTools modules can make direct access to logical connection information and invoke the destination module's engine method directly. Different modules could issue parallel events under different threads. This is the distributed broadcast model in NeatTools and how it could meet the high performance requirements as a fine grain visual programming environment.

11.5.4 Increase Usability

In most visual programming systems including LabView and AVS/Express, when in edit mode, a user could put in new modules, make connections, copy, or delete modules, etc. When editing is finished, user will have to press a button or select an option to tell the system to enter the execution mode, observe the execution and later stop it and resume edit mode for next development cycle. When the program is in execution mode, a user can not change the layout, connections, or modules. From a programmer's point of view, it is always technically easier to separate the operations into edit and execution mode exclusively. Thus, the implementation could concentrate on a single scenario without having to worry about the interactions between the different modes . Yet, from user's point of view, somehow this kind of distinction increases the time of development. It is quite often that a user makes some changes in edit mode and starts the execution mode. Then he observes the problem or bugs and can not modify the network right away. He has to stop the execution and start the edit mode again. Just like traditional textual programming, the user has to use the editor to modify the source code, then compile it, run it, and eventually get back to the editor to modify again. I personally think that a good visual programming environment should not make edit and execution mode exclusively. Instead, the designer should use the user's prospect and try to make it truly user friendly when time and space constraints are allowed. 

NeatTools provides the non-stop execute mode, and users could turn edit mode on and off as they wish. This is actually a difficult task even for an experienced programmer, because, each module could start its thread and the following concurrent situations could happen: a user tries to delete a connection but the source module is broadcasting messages through this connection. Or, a user tries to delete a module, but this module is still updating itself through graphics context. It is usually very hard to find bugs inside a multi-threading system, because the bug will not always occurs. There are always possibilities for it to occur, but you never know exactly when it will. This makes debugging in multi-threading systems sometimes almost impossible. Thus, how we implement the functionality and make it thread-safe is a most important topic. In NeatTools, the technique I use is: First, identify the critical sections inside operation implementation sections. Critical sections are usually operations involving those resources shared by more than one thread. Second, carefully analyze the critical sections and add exclusive mutex only when it is necessary. Theoretically, this process looks simple, but to identify critical sections, bring out a thread-safe design and to still provide high performance one needs knowledge and experience on the  multi-threading systems and concurrency issues.

11.5.5 Identify the Modules

How we identify the module as a functional and reusable object unit is the most important and complex task. If we liken the NeatTools system to the human body, then the modules are the different organs that work together. 

For example, in the previous section, the mouse driver prototype was a small program that performed the data acquisition, process, and action mapping. In NeatTools, the desktop provides the visual programming environment where users can create, manipulate modules, and make connections. We still have to identify and design the module in order to restore the functionality provided in the mouse driver. In the mouse driver's case, we could have COM port, TNG, Calibrator, Viewer, Mouse Simulator, and some logical operation unit to provide the gesture recognition. The module could be a unique entity in the computer like COM ports that represent the physical hardware ports and the software functions related operations like open, close the COM, input, and output byte stream, etc. It could be a protocol, like the TNG that receives the byte stream from COM and implements the TNG protocol that extract the signal information from the byte stream. Or, it could be a calculation unit that provides computational service, like AND, OR, XOR, Calibrator, etc. Identifying modules is important because the requirements specification and design will use them as the building blocks. Mistakes in properly identifying them will affect the extensibility and maintainability of the data flow network.

11.5.6 Dynamic Ports

Most visual programming environments do not provide dynamic ports for their modules. By dynamic ports, I means the input and output ports of a module could be changed in run time. For example, a database module could have several input and output ports for its fields in a database. When a database module is assigned to a different database file, its port configurations (like number, data type, and tags) change dynamically.

11.5.7 Display Feedback Mechanism

NeatTools is meant to be a tool that can apply in HCI (Human Computer Interface) and the tele-medicine field. The display feedback lag time should be minimized when possible. Usually, the display procedure inside a module will involve operations to windows graphics contexts which are relatively slow compared to most other non-display operations. In some situations, especially in fine-grained data flow network design, high frequency events may trigger a sequence of display refresh in modules. Sometimes, it could slow down the system a great deal or even hang the system completely.

There are two approaches that could be combined to provide a better solution. First, decrease the overhead of module display. In NeatTools, modules could be resized or overlapped by users. When a module requests a display refresh to itself, a graphics context has to be created and a region has to calculated before the module's update method could be invoked. Region is a logical sets of pixels or rectangles that could associate with a graphics context to determine the region that could apply or prohibit the graphics operations. Region can be a simple rectangle or very complex shape because of overlap by several other modules of different dimensions. It is an O(n) operation for a desktop with n modules to calculate the logical region that modules associate with a graphics context. This could be a very expensive operation, especially when the number of modules become large. It becomes even worse when a module needs to update itself frequently. To eliminate the region calculation associated with each module display update, I add a region data member inside the module and make the region calculation when it needs to be done like create, move, duplicate, or resize the modules. This change makes the module display refresh an O(1) operation with much less overhead. Second, eliminate some repeated display refresh when possible. In modern windows systems, they usually have some mechanisms to decrease the need of window redraw. In Microsoft Windows, when an application sends out several invalidation requests to the window system, it will combine the invalidate regions into a bigger region and send out less paint requests back to the application. In X Windows it has the similar mechanism. But, this is not good enough for NeatTools. Because a paint request from the Windows system will cause the desktop to trigger an O(n) calculation to determine which modules need to be updated. To decrease the paint requests from windows system when a module try to update itself, it calls a utility method that puts itself into a queue. Later, when the system is idle, a procedure will pick up the queue, delete the repeated request and refresh the modules only once. The module itself has to cooperate with this mechanism so that it should be able to make incremental updates without trouble by missing refresh requests. These two approaches proved to increase the module refresh rate a lot and they increase the efficiency by utilizing the CPU idle cycle.

11.5.8 Cyclic Data Flow Network Issues

In a data flow network with synchronized event dispatching mechanisms, a cyclic data flow network could cause a system to hang by infinite loop. So, instead of avoiding cyclic networks, NeatTools allows cyclic data flow network to exist without hanging itself. The speed is always the key concern in NeatTools. Thus, how we could propose an approach to detect the cyclic network efficiently and prevent the infinite loop was quite a headache.

In NeatTools, a module notifies the connected modules that an event needs to be processed by invoking the broadcast utility method, so it is true that when a module's broadcast method on a particular port get invoked recursively more than once, a cyclic situation was found. By using this observation, we could add a counter associated with each output port and identify the cyclic without extra analysis methods. But, when it comes to multi-threaded environments like NeatTools, this approach will not always work. For example, a module issues a broadcast and at the same time another module uses a different thread and issues an event that flows thought the same broadcast port. The counter that associates with the broadcast port will detect a cyclic situation but it isn't. In this case, adding a mutex inside the broadcast method would be enough to prevent the error cyclic detection. But adding the mutex as default could decrease the parallelism in the event broadcasting a great deal. And, depending on the module design, not every port would always have the multi-threading events flow through. Here, I leave it to the module designer's hand to determine where are the critical sections that need to add the mutex to avoid the concurrent problems. The users who design data flow networks just use the modules and make connections. They do not have to know what is going on under the hood.

11.5.9 Thread and Concurrent Related Issues

Using threads properly could increase the system utilization by eliminating unnecessary busy waiting loops. For example, in the receiving portion of a Socket module, we never know when the next event will come in through the network. The traditional way was to use a busy waiting loop and use non-blocking sockets to keep reading on the socket or use select function to check the socket status. These loops will usually cause busy waiting and waste CPU cycle. By initiating a thread and using a regular blocking socket to read the socket in the thread, when no data comes in, the socket will block the thread. The application's main thread is still working without having been blocked by the socket read operation. That way, we could maximize the performance without complex implementation and time sharing inside the application and leave the problems to the operating system that provided the threads.

In NeatTools, each module is allowed to have its own threads, yet it depend on the module designer's decision. But there are some issues that have to be taken care of. For example, deleting a module without destroying the associated threads could lead to a crash, waste system resources, or cause a memory leak. Destroying a working thread without join operation could cause a event broadcast to be interrupted abnormally and cause problems. So, in the appendix, I dedicate some discussion to focus on the guide lines and tips to use threading in the NeatTools module efficiently and correctly. But, even if module designers follow the guide line to create, run, join, and destroy the thread properly, deadlock still could happen in some special situations. For example, a module initiates and starts a thread. In this thread, it broadcasts events in a loop. Eventually, one of the events caused the module itself to close. Now the problem comes, when the module's close method got invoked, it will try to use the waitFor method to join the thread so the loop inside the thread will have a completed cycle and exit successfully. In this case, the waitFor method will never return because the loop is stuck in the event broadcast process which is stuck in the waitFor method itself. Now the deadlock happens and the system hangs forever. To prevent this particular situation, a user could use mutex and some extra counter variable to keep track of the possible deadlock. My suggestion to the thread issue is, use it only when necessary and always use it with care.

11.6 Experiments

During the NeatTools' construction stage, I kept improving the functionality by putting in more modules and increasing the usability by providing more services in the desktop area. I kept a working page at http://www.pulsar.org/ej/work.html and put in descriptions and experimental data flow networks with screen dumps. Thus, in parallel to the hardware team's effort on the headset, improving sensor technology, and TNG device, I cooperated with hardware team by team work on developing the new TNG protocol, new modules, and sample data flow networks for them to learn and design more applications for Eyal and Brooke.

After I finished the basic functionality of the mouse driver prototype level, I laid out a network for experimental purposes. At this point, NeatTools could do exactly what the old mouse driver prototype could do, and we could start to make all kind of different network designs to improve it and make it more useful, not just a fixed, hard coded program.



Later on, I proposed more prototype networks for Eyal to control the mouse. This time, I used signal gesture to control the mouse direction, movement and mouse button click.



I laid out another network that would let Eyal control the highlighted column and row of a keyboard module and use it to type characters into other applications like Word, Notepad, etc. By using this network, Eyal was able to type characters into a computer the first time in his life. Later on, we added an assistant program that could read the words he typed.



We keep improving the software and hardware. For example, the hardware team used photo cells a great deal. It is cheap and sensitive to light and is very good at picking up the signals which come from facial expressions. But photo cells change their signal level when an environment's brightness changes. To accommodate this situation, the team member in the session has to keep calibrating once in a while. Sometimes, it is too much trouble for the family member who is not quite familiar with computer operations, so, the hardware team keeps trying something that has more steady signal output. They tried micro switches and, eventually, come across a special joystick that has a soft rubber at the end of the stick. Eyal could use his mouth to control the joystick very well. Around the same time, Dr. Edward Lipson laid out a very complex and sophisticated data flow network in NeatTools called Joy-Mouse.



In the Joy-Mouse data flow network, a user could precisely position the mouse cursor under the control of a joystick. This can be either a standard computer joystick, or a custom one (e.g. small chin joystick for Eyal) that delivers XY signals to analog inputs of a computer interface module such as TNG-3. The adjustable nonlinear profiles in the quadratic and cubic modes provide precise control of the cursor for small joystick deflections, while allowing rapid movement for large deflections. For more information please reference URL: http://www.pulsar.org/neattools/edl/joymouse_docs/JoyMouseManual.html

Dr. Edward Lipson happened to come across a commercial product called FITALY. The small application provide a keyboard interface. A user could use mouse clicks to generate virtually any key stokes. The most important aspect is that the keyboard interface is arranged according to the character frequency analyzed by huge sets of documents, so, it ensure to minimize the mouse movements when trying to use FITALY to generate key stokes.



11.7 Results

By using Joy-Mouse, NeatTools, FITALY keyboard, TNG-3 device, Headsets, and sensors, we started to provide a feasible way for Eyal to surf the web, use applications, and send e-mail to his friends. For Brooke, the hardware team designed a series of  foot pedals and hand devices. Combined with Joy-Mouse, NeatTools, and TNG-3 device, she could now use her hands and feet to control commercial educational applications, learning from the courses inside applications, and get her progress evaluated.

11.8 Conclusion

In my experiments, NeatTools did provide a powerful and affordable way to improve the life of disable people like Eyal and Brooke. But, there is always room to improve our approaches. For example, using facial express to control mouse and type characters by using Joy-Mouse and FITALY keyboard is still very slow compared to normal people typing by hand. How could we provide a more sophisticated method to map customized facial expressions directly into characters, words, or event sentences? How we could add more AI support in helping them self correct and increase the human computer interface throughput? Those are great ideas for future development.

12. Future Development

I have worked on NeatTools for around 18 months. Right now, I have already finished most of the core structure and functionality, but, scaleable software development like NeatTools usually never comes to an end. There is always plenty of room to make some adjustments and improvements.

12.1 Aggregate DataType.

The Aggregate DataType is an interesting concept. NeatTools already provides a way to extend new data types and register them into the system. If a user could aggregate different data types into a single complex data type, later on, provided the mechanism to construct nested complex data types visually, it would be very useful for some application needed to handle several data members at the same time. For example, instead of handling X, Y, and Z in a 3D plotting module, if we could provide aggregate data types that has X, Y, and Z data members inside and use it as a single 3D point data type, it would increase the readability and efficiency of data flow network.

12.2 Connection Visibility

When data flow networks become more and more complex over time, the connections and modules are all over the desktop area and become very hard to tell apart. Even worse, some connections may overlap partially or even completely, or they may be covered by some modules. How we could provide a method to solve this situation did take a lot of effort. Currently, NeatTools has a highlight mechanism which will highlight the current closest connection or module and display the related information in a status bar. Thus, users can make some operation on the highlighted connection or module. But it still could not handle the overlap or covered connections very well. I wish I could have an efficient algorithm to arrange all the connections and minimize the overlap between connections, so the connections would always be very clear and easy to read.

12.3 Undo/Redo Features

Although undo is a common and rather simple feature in word processors and spreadsheets, undo in a graphical programming language is a very sophisticated and challenging utility. An extensive, versatile undo/redo feature in NeatTools will take a lot of time to implement. This feature is extremely important to the NeatTools user. I wish I were able to add this feature in the near future.

12.4 Network Support Modules

Currently, the Socket and ServerSocket modules already support the TCP/IP protocol. To enable the future NeatTools users with the full power of processing the vest information from the Web, FTP sites, and news servers. We will need to develop the WWW, FTP, and NEWS modules to provide the service and serve as a information source that could be processed and visualized by NeatTools.

12.5 Authentication Modules

To enable the secure visual programming environment in a network/distributed environment. We will need authentication modules that facilitate public-key encryption to protect the network communication between NeatTools from tamper activities.

12.6 Visualization Modules

Visualization modules always play an important role in the human computer interface tools. As an human computer interface visual programming tool, NeatTools will need more visualization modules in the future. Currently, what we have is just some standard 1D viewer, 2D viewer, sliders, LED, etc. The 3D viewer, Space-time viewer, 3D surface visualization modules are yet to come. Those visualization modules will provide the key functionality to facilitate the future human computer interface activities.

12.7 Artistic Modules

Currently, I design the modules emphasizing on their functionality. So, sometimes, the appearance is not so appealing. In the future, we could consider adding more artistic modules in NeatTools. It could provide the functionality as well as the overall look and feel. About the artistic aspect, we would need people who has a computer graphics training and also a good sense of artistic design. A lot of commercial applications including LabView do a very good job on this aspect. NeatTools needs to work on this more.

13. Conclusion

The focus of this thesis is my work on proposing a new way of constructing a fine-grained data flow network visual programming environment - NeatTools. I have detailed descriptions about module abstraction which forms the module event broadcast model in NeatTools. I also identify and specify some of the related systems and ideas. During the experiments for Eyal and Brooke, several key issues about building the visual programming environment are explored and discussed. 

Our major findings are:

(1) The same idea could have variant performance based on different design concept and implement architectures. For example, both AVS and NeatTools are provided as data flow visual programming environments. The AVS kernel provided the centralized control over the inter-modular communication and hence serialized parallel channels. On the contrary, in NeatTools, different modules could issue parallel events under different threads and become a distributed event broadcast system. So, NeatTools has higher performance on event broadcasting and could meet the requirements as a fine-grain data flow visual programming environment.

(2) The coarse-grained data flow model is well suited for combining subsystem and providing integrative solutions. But, all the fine-grain operations and functionality have to implement inside the modules and can not be utilized by users directly through the visual programming environment. It could reduce the function reusability and increase the implement redundancy. In this sense, a fine-grained data flow model would be a better choice for a designer to identify the reusable objects as the building blocks.

(3) Use of commercial application frame works like MFC to construct windows applications seems to be obvious for managing the complexity of a low level API like Win32 API. But it could cause an application to become native to a specific platform and become very hard to port to other platform like X Windows. Without modifying the application itself, one could build a simulated Win32 layer on top of UNIX and X Lib (and MOTIF) to provide the cross platform solution (Like Win/U by Bristol Technology). But this solution could introduce extra layers and decrease the application's performance. If we could add a unifying thin layer between a Windows operating system and an application, cross platform and high performance could be achieved at the same time.

(4) To increase the user development speed, defining the distinct and exclusive modes like edit and execution is not desirable; it is necessary in traditional textual programming environment, because source code needs to be compiled before it can be executed. In visual programming environment, if we could keep the data flow network in constant running mode without interrupt by edit mode. Also, keep the maximum performance and solve all possible concurrent problems. Then, users could design, execute, and debug at the same time and increase the development throughput.

14. Appendix

14.1 NeatTools Reference Manual

14.1.1 NeatTools Module Specification:


 
Name: NOTObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate the bit wise NOT operation on the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical (1-bit) NOT operation. When it is 16, it will become the 16 bit wise NOT operation.



Name: ANDObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate the bit wise AND operation on the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical (1-bit) AND operation. When it is 16, it will become the 16 bit wise AND operation.



Name: ORObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate the bit wise OR operation on the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical (1-bit) OR operation. When it is 16, it will become the 16 bit wise OR operation.



Name: XORObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate the bit wise XOR operation on the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical (1-bit) XOR operation. When it is 16, it will become the 16 bit wise XOR operation.



Name: GreaterThanObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is larger "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).



Name: GreaterEqualObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is greater or equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).



Name: EqualObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).



Name: NotEqualObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is not equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).



Name: AddObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate the sum of all the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: MultiplyObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Multiply all the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: SubstractObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate "input-1" - "input-1" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: DivideObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate "input-1" / "input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: AbsObj

Input: "input" integer port on the left with maximum one connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate ABS("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: PowObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate "input-1" ^ "input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: MaxObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Choose the maximum input value and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: MinObj

Input: "input" integer port on the left edge with unlimited connections.

Output: "output" integer port on the right edge with unlimited connections.

Function: Choose the minimum input value and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RemainObj

Input: "input-1" integer port on the left edge and "input-2" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate "input-1" % "input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RandomObj

Input: "control(logical)" integer port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: When detecting a raise edge signal event (from false to true) on the "control(logical)" port, this module will generate a random integer number and broadcast the result value to "output" port.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).



Name: ControlObj

Input: "N(1-512)" and "control(logical)" integer port on the top edge and "in-0", "in-1", ..."in-(N-1)" polymorph ports on the left edge with maximum one connection.

Output: "out-0", "out-1", ..."out-(N-1)" polymorphs port on the right edge with unlimited connections.

Function: "N(1-512)" will determine the number of input-output pair. When detecting a raise edge signal event (from false to true) on the "control(logical)" port, this module will connect the input-output pairs. So when there are input events presented on say "in-k", this module will transmit them into the corresponding "out-k" output port.

Properties: "moduleColor" set the background color. "N(1-512)" set the number of the input-output pair.



Name: SampleObj

Input: "N(1-512)" and "control(logical)" integer port on the top edge and "in-0", "in-1", ..."in-(N-1)" polymorph ports on the left edge with maximum one connection.

Output: "out-0", "out-1", ..."out-(N-1)" polymorphs port on the right edge with unlimited connections.

Function: "N(1-512)" will determine the number of input-output pair. When detecting a raise edge signal event (from false to true) on the "control(logical)" port, this module will sample the current input value from input port say "in-k" and transmit into the corresponding "out-k" output port.

Properties: "moduleColor" set the background color. "N(1-512)" set the number of the input-output pair.



Name: PulseObj

Input: "input(logical)" integer port on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: When receiving an input event, this module will generate an true-false event pair to the "output" port.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).



Name: DelayObj

Input: "input(logical)" integer port on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: When receiving an input event, this module will hold the value and broadcast the value when next input event comes in.

Properties: "moduleColor" set the background color.



Name: AccumulatorObj

Input: "enable(logical)" integer port on the top edge and "clock(logical)" integer port on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: When receiving a raise signal (from false to true) event on "clock" port and current value of "enable" port is true, this module will increase the internal integer accumulator and broadcast the value to the "output" port. If receive a drop signal (from true to false) event on "enable" port, the internal integer accumulator will reset to zero and broadcast the value to the "output" port.

Properties: "moduleColor" set the background color.



Name: MultiplexerObj

Input: "N(2-512)" and "select" integer port on the top edge and "in-0", "in-1", ..."in-(N-1)" polymorph ports on the left edge with maximum one connection.

Output: "output" polymorphs port on the right edge with unlimited connections.

Function: "N(2-512)" will determine the number of input port. When receiving an input event on "select" port say k, this module will connect the selected "in-k" input port to "output" port. So when there are input events presented on "in-k" port, this module will transmit them into the "output" port.

Properties: "moduleColor" set the background color. "N(2-512)" set the number of the input port. "select (0-(N-1))" set the current selected input port.



Name: DeMultiplexerObj

Input: "N(2-512)" and "select" integer port on the top edge and "input" polymorph ports on the left edge with maximum one connection.

Output: "out-0", "out-1", ... "out-(N-1)" polymorphs port on the right edge with unlimited connections.

Function: "N(2-512)" will determine the number of output port. When receiving an input event on "select" port say k, this module will connect the selected "input" input port to "out-k" port. So when there are input events presented on "input" port, this module will transmit them into the "out-k" port.

Properties: "moduleColor" set the background color. "N(2-512)" set the number of the output port. "select (0-(N-1))" set the current selected output port.



Name: EncoderObj

Input: "N(2-32)" integer port on the top edge and "in-0", "in-1", ..."in-(N-1)" integer ports on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: "N(2-32)" will determine the number of input port. When receiving an input event on input port, this module will encode all the output value, encode it into an integer and transmit them into the "output" port. For example, when N = 4 and the input value from "in-0", .."in-3" are 1, 0, 0, 1, this module will encode 1001 binary value into output integer value 9.

Properties: "moduleColor" set the background color. "N(2-32)" set the number of the input port.



Name: DecoderObj

Input: "N(2-32)" integer port on the top edge and "input" integer ports on the left edge with maximum one connection.

Output: "out-0", "out-1", ..."out-(N-1)" integer port on the right edge with unlimited connections.

Function: "N(2-32)" will determine the number of input port. When receiving an input event on input port, this module will decode the input value into the decoded bit value and transmit them into the corresponding output port. For example, when N = 4 and the input value is integer 9, this module will decode it into 1001 binary value and send out 1, 0, 0, and 1 into "out-0", "out-1", "out-2", and "out-3" output ports.

Properties: "moduleColor" set the background color. "N(2-32)" set the number of the output port.



Name: ClockDividerObj

Input: "N(2-512)" integer port on the top edge and "clock(logical)" integer ports on the left edge with maximum one connection.

Output: "out-0", "out-1", ..."out-(N-1)" integer port on the right edge and "value" integer port on the bottom edge with unlimited connections.

Function: "N(2-512)" will determine the number of output port. When receiving an raise signal (from false to true) on "clock(logical)" port, this module will increase an internal counter say k (k = 0..(N-1)) and transmit a true signal to the corresponding "out-k" output port. So when N=10, the output frequency will be 1/10 of the input frequency.

Properties: "moduleColor" set the background color. "N(2-32)" set the number of the output port. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).



Name: TimeObj

Input: None.

Output: "output" date port on the right edge with unlimited connections.

Function: will send out date event every one second. Use the DateObj to show the current time and get the seconds, minutes, etc.

Properties: "moduleColor" set the background color.



Name: TimerObj

Input: "enabled(logical)" and "interval" integer port  on the top edge with maximum one connection.

Output: "output" integer port on the right edge and "interval" integer port on the bottom edge with unlimited connections.

Function: When "enabled" is true (default is true), this module will send out integer pulse to "output" port event every "interval" millisecond. The "interval" input and output ports are for two way communication to external integer objects. So the value will keep consist when user modify the interval by property dialog box.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF). "delay" set the interval value in millisedond.



Name: CalibrateObj

Input: "calibrate(logical)", "lower" and "upper" integer port  on the top edge and "input", "feedback" integer port on the left edge with maximum one connection.

Output: "output" and "decalibrate" integer port on the right edge and "lower",  "upper" integer port on the bottom edge with unlimited connections.

Function: When "calibrate" is true, this module will adjust to the current input range of "input" and re-map the value into N bits value and broadcast it to "output" port. When "calibrate" is false, this module will not adjust to the current input range, but keep re-map the value by using the current lower and upper value. If the N bits value comes in from the "feedback" port, this module will map it back to the input range (the reverse mapping). The "lower", "upper" input and output ports are for two way communication to external integer objects. So the value will keep consist when user modify the "lower" and "upper" value by property dialog box.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF). "fraction" set the current blank display area (on the top and bottom of display area) in percent. percent. For example, fraction=0 will use all display area, fraction=25 will have 25% blank area on the top and bottom of display area. "upper" and "lower" set the current input range set.



Name: AvgFilterObj

Input: "input" on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: When event comes into "input" port,  this module will calculate the average value of last N input value (include the current value) and broadcast the value through the "output" port. Basically, it works as a low-pass filter.

Properties: "moduleColor" set the background color. "N" set the number of  contiguous input values to average.



Name: DelaySustainObj

Input: "input" on the left edge with maximum one connection. "sampling-clock", "delay", and "sustain" on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections. "delay" and "sustain" on the bottom edge with unlimited connections.

Function: When there is a raise (false to true) event detected in "input" port,  this module will delay the input value for "delay" ticks (Tick marks come from sampling-clock). When there is drop (true to false) event detected in "input" port, this module will sustain last  value for "sustain" ticks. The "delay", "sustain" input and output ports are for two way communication to external integer objects. So the value will keep consist when user modify the "delay" and "sustain" value by property dialog box.

Properties: "moduleColor" set the background color. "delay" set the number of  delay ticks. "sustain" set the number of sustain ticks.



Name: RtoIObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections. 

Function: Convert the "input" port's real number into integer (with rounding) and broadcast the result to "output" port.

Properties: "moduleColor" set the background color.



Name: ItoRObj

Input: "input" integer port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections. 

Function: Convert the "input" port's integer into real number and broadcast the result to "output" port.

Properties: "moduleColor" set the background color.



Name: RGreaterThanObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is larger "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).



Name: RGreaterEqualObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is greater or equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).



Name: REqualObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).



Name: RNotEqualObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Compare the value of "input-1" and "input-2" and broadcast the result value to "output" port when receiving an input event. Result value is true when "input-1" is not equal "input-2", false otherwise.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it becomes the logical operation (true=1, false=0). When it is 16, it will become the 16 bit operation (true=0xFFFF, false=0x0000).



Name: RAddObj

Input: "input" real number port on the real number edge with unlimited connections.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate the sum of all the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RMultiplyObj

Input: "input" real number port on the left edge with unlimited connections.

Output: "output" real number port on the right edge with unlimited connections.

Function: Multiply all the input values and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RSubstractObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate "input-1" - "input-1" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RDivideObj

Input: "input-1" real port on the left edge and "input-2" real port on the top edge with maximum one connection.

Output: "output" real port on the right edge with unlimited connections.

Function: Calculate "input-1" / "input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RAbsObj

Input: "input" real number port on the left with maximum one connections.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ABS("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RPowObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" integer port on the right edge with unlimited connections.

Function: Calculate "input-1" ^ "input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RMaxObj

Input: "input" real number port on the left edge with unlimited connections.

Output: "output" real number port on the right edge with unlimited connections.

Function: Choose the maximum input value and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RMinObj

Input: "input" real number port on the left edge with unlimited connections.

Output: "output" real number port on the right edge with unlimited connections.

Function: Choose the minimum input value and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RSinObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate SIN("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RCosObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate COS("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RASinObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ASIN("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RACosObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ACOS("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RTanObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate TAN("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RATanObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ATAN("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RExpObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate EXP("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RLogObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate LOG("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RSqrtObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate SQRT("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RRoundObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ROUND("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RCeilObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate CEIL("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RFloorObj

Input: "input" real number port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate FLOOR("input") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RModObj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate the reminder of "input-1"/"input-2" and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RATan2Obj

Input: "input-1" real number port on the left edge and "input-2" real number port on the top edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: Calculate ATAN2("input-1", "input-2") and broadcast the result value to "output" port when receiving an input event.

Properties: "moduleColor" set the background color.



Name: RPIObj

Input: None.

Output: "output" real number port on the right edge with unlimited connections.

Function: Return PI value when requested.

Properties: "moduleColor" set the background color.



Name: REObj

Input: None.

Output: "output" real number port on the right edge with unlimited connections.

Function: Return e value when requested.

Properties: "moduleColor" set the background color.



Name: RRandomObj

Input: "control(logical)" integer port on the left edge with maximum one connection.

Output: "output" real number port on the right edge with unlimited connections.

Function: When detecting a raise signal (from false to true) on the "control" port, this module will prepare a real random number (0-1.0) and broadcast the value to "output" port.

Properties: "moduleColor" set the background color.



Name: RCalibrateObj

Input: "calibrate(logical)" integer, "lower" and "upper" real number port  on the top edge and "input" real number, "feedback" integer port on the left edge with maximum one connection.

Output: "output" integer and "decalibrate" real number port on the right edge and "lower",  "upper" real number port on the bottom edge with unlimited connections.

Function: When "calibrate" is true, this module will adjust to the current input range of "input" and re-map the value into N bits integer value and broadcast it to "output" port. When "calibrate" is false, this module will not adjust to the current input range, but keep re-map the value by using the current lower and upper value. If the N bits value comes in from the "feedback" port, this module will map it back to the input range (the reverse mapping). The "lower", "upper" input and output ports are for two way communication to external integer objects. So the value will keep consist when user modify the "lower" and "upper" value by property dialog box.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF). "fraction" set the current blank display area (on the top and bottom of display area) in percent. percent. For example, fraction=0 will use all display area, fraction=25 will have 25% blank area on the top and bottom of display area. "upper" and "lower" set the current input range set.



Name: SKeyboardObj

Input: "input" string port on the left edge with maximum one connection.

Output: "output" string number port on the right edge with unlimited connections.

Function: This module will generate string event with exact one character when user press a key. It works even NeatTools is minimized or in the background. If user supply a string event into the "input" port, it will simulate the keyboard event (just like someone is typing the keyboard) to the windows system. This function will only work when NeatTools is in background to avoid feedback problems.

Properties: "moduleColor" set the background color.


 
 
 
 
 
 
  etc.

Name: KeyboardObj

Input: "stroke(logical)" integer port on the left edge and "depress(logical)" integer port on the top edge with maximum one connection.

Output: "output" string number port on the right edge with unlimited connections.

Function: This module will generate integer event when a key that match this module pressed. It works even NeatTools is minimized or in the background. If user supply a true integer event into the "stroke(logical)" port, it will simulate a stroke keyboard event (just like someone press and then release the key) to the windows system. If user supply a raise integer event (from false to true ) into the "depress(logical)" port, it will simulate a depress keyboard event (just like someone press the key) to the windows system. If user supply a drop integer event (from true to false) into the "depress(logical)" port, it will simulate a release keyboard event (just like someone release the key) to the windows system. These functions will only work when NeatTools is in background to avoid feedback problems.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).


 
 
 
 
 

Name: MixerObj

Input: "input-L/Mono" integer port on the left edge and "input-R" integer port on the top edge with maximum one connection.

Output: "output-L/Mono" integer port on the right edge and "output-R" integer port on the bottom edge with unlimited connections.

Function: This module is designed to couple the windows' multimedia control components. The "Output Volume" module will accept mono or stereo input value to change the volume level of a sound source. It also will feedback with output value that indicate the volume level of a particular sound source. It will couple the exist mixer applications. So when user change the level value in other mixer application, this module will reflect the change by send out events from output ports. When the module show gray text, it indicate that your system does not support this type of sound source.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).


 
 
 
 
 

Name: MixerObj

Input: "input " integer port on the left edge with maximum one connection.

Output: "output" integer port on the bottom edge with unlimited connections.

Function: This module is designed to couple the windows' multimedia control components. The "Output Mute" module will accept input value to change the state (Mute or not) of a sound source. It also will feedback with output value that indicate the state of a particular sound source. It will couple the exist mixer applications. So when user change the state of a sound source in other mixer application, this module will reflect the change by send out events from output port. When the module show gray text, it indicate that your system does not support this type of sound source.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).


 
 
 
 
 

Name: MixerObj

Input: "input-L/Mono" integer port on the left edge and "input-R" integer port on the top edge with maximum one connection.

Output: "output-L/Mono" integer port on the right edge and "output-R" integer port on the bottom edge with unlimited connections.

Function: This module is designed to couple the windows' multimedia control components. The "Input Volume" module will accept mono or stereo input value to change the recording level of a sound source. It also will feedback with output value that indicate the recording level of a particular sound source. It will couple the exist mixer applications. So when user change the level value in other mixer application, this module will reflect the change by send out events from output ports. When the module show gray text, it indicate that your system does not support this type of sound source for recording.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).


 
 
 
 
 

Name: MixerObj

Input: "input " integer port on the left edge with maximum one connection.

Output: "output" integer port on the bottom edge with unlimited connections.

Function: This module is designed to couple the windows' multimedia control components. The "Input Mute" module will accept input value to change the state (Mute or not) of a sound source's recording. It also will feedback with output value that indicate the state of a particular sound source's recording. It will couple the exist mixer applications. So when user change the state of a sound source in other mixer application, this module will reflect the change by send out events from output port. When the module show gray text, it indicate that your system does not support this type of sound source's mute operation.

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).



Name: MIDIOutObj

Input: "input" MIDI port on the left edge and "enabled(logical)" integer port on the top edge with maximum one connection.

Output: None.

Function: When "enabled" is true, this module will open the assigned MIDI device and start to wait for MIDI event coming from the "input" port. When receive a MIDI event, this module will transfer it into the assigned and opened MIDI device.

Properties: "moduleColor" set the background color. "device" set the destination MIDI device. Depend on windows' setting. It could be internal FM or external MIDI port. If it is internal FM, send in MIDI events will generate sound. If it is external MIDI port, send in MIDI events could control external MIDI instrument which connected to this hardware MIDI port.



Name: MIDIInObj

Input: "enabled(logical)" integer port on the top edge with maximum one connection.

Output: "output" MIDI port on the right edge with unlimited connections.

Function: When "enabled" is true, this module will open the assigned MIDI device and start to send out MIDI events (which coming from the hardware MIDI port or the internal MIDI device) to the "output" port. 

Properties: "moduleColor" set the background color. "device" set the destination MIDI device. Depend on windows' setting. It could be internal MIDI devise or external MIDI port. If it is external MIDI port, play notes or playback on external MIDI instrument will send in MIDI events and broadcast through "output" port.



Name: MIDIObj

Input: "midi-in" MIDI port on the top edge with maximum one connection. 127 notes inputs (from "Octave[0] C" to "Octave[10]G"), "channel(0-15)", "channel_pressure", "program(0-127)", "volume", "pan", "damper" and "pitch" integer port on the left edge with maximum one connection.

Output: "midi-out" MIDI port on the bottom edge with unlimited connections. 127 notes outputs (from "Octave[0] C" to "Octave[10]G"), "channel(0-15)", "channel_pressure", "program(0-127)", "volume", "pan", "damper" and "pitch" integer port on the right edge with unlimited connections.

Function: In order to generate MIDI event from integer event, user can use this module to create almost all type of MIDI events. When receive a MIDI event through "midi-in" port, this module will decompose the MIDI event into integer event into the related output ports. 

Properties: "moduleColor" set the background color. "N Bits" set the operation width. When it is one, it will  generate only logical (1-bit) value (true, or false). When it is 16, it will generate the 16 bit wise value (from 0 to 0xFFFF).



Name: MIDIChannelObj

Input: "midi-in" MIDI port on the top edge with maximum one connection. "ch1-in", "ch2-in", ..., "ch15-in", and "misc-in" MIDI port on the left edge with maximum one connection.

Output: "midi-out" MIDI port on the bottom edge with unlimited connections. "ch1-out", "ch2-out", ..., "ch15-out", and "misc-out" MIDI port on the right edge with unlimited connections.

Function: There are 16 channel in the MIDI signal. When receive MIDI event from the "midi-in" port, this module can separate the event into the correspond output channel port. If user want a MIDI event change to anther channel, he can feed the MIDI event to say the "ch1-in" port. Then the even coming out from the "midi-out" port will have MIDI signal with channel 1 assigned. 

Properties: "moduleColor" set the background color.



Name: MIDIFileObj

Input: "record(logical)" integer, "play(logical)" integer, "pause(logical)" integer, "filename" string, "sequence" integer, "pos" integer, "N(1-128)" integer, and "ratio" integer port on the top edge with maximum one connection. There are MIDI ports (name and number of the MIDI ports determined by MIDI file user assigned) on the left edge with maximum one connection. 

Output: "count", "total", and "tempo" integer port on the bottom edge with unlimited connections. There are MIDI ports (name and number of the MIDI ports determined by MIDI file user assigned) on the right edge with unlimited connections.

Function: This module could load in a MIDI file with "MID" extension and play it back or recording(Recording portion is not complete yet). When "record(logical)" receive a raised event (from false to true), it will start to recording MIDI events into assigned file. When "play(logical)" receive a raised event, it will start to play back the content of the current MIDI file. When "pause" is true, it will pause the current recording or playback action. The "filename" and "sequence" combine could use to assign the MIDI filename. When "sequence" is zero, the "filename" is the assigned filename. If "sequence" not equal to zero, say 1, the assigned filename will become "filename_1". Just change the sequence number and user could record on sequences of different files. The "pos" is the current begin event count. So user could playback from any starting position. The "N" set the 

Properties: "moduleColor" set the background color.

14.1.2 NeatTools Class Hierarchy:

+-JObject

    |

    +-JClipboard

    |

    +-JColor

    |

    +-JDimension

    |

    +-JEvent

    |

    +-JFontMetrics

    |

    +-JInsets

    |

    +-JLayoutManager

    |   |

    |   +-JBorderLayout

    |   |

    |   +-JFlowLayout

    |   |

    |   +-JGridLayout

    |

    +-JPoint

    |   |

    |   +-JRect

    |       |

    |       +-JComponent

    |           |

    |           +-JCanvas

    |           |   |

    |           |   +-JLabel

    |           |   |   |

    |           |   |   +-JButton

    |           |   |   |   |

    |           |   |   |   +-JPushButton

    |           |   |   |   |   |

    |           |   |   |   |   +-JThumb

    |           |   |   |   |   |

    |           |   |   |   |   +-JTriangleButton

    |           |   |   |   |

    |           |   |   |   +-JToggleButton

    |           |   |   |   |

    |           |   |   |   +-JModuleButton

    |           |   |   |

    |           |   |   +-JTextField

    |           |   |

    |           |   +-JListBox

    |           |   |

    |           |   +-JRuler

    |           |   |

    |           |   +-JScroller

    |           |   |

    |           |   +-JSeparator

    |           |   |

    |           |   +-JAbout

    |           |   |

    |           |   +-JModuleCanvas

    |           |

    |           +-JDialog

    |           |

    |           +-JModal

    |           |   |

    |           |   +-JMessageBox

    |           |       |

    |           |       +-JColorBox

    |           |       |

    |           |       +-JInputBox

    |           |       |   |

    |           |       |   +-JFileBox

    |           |       |   |

    |           |       |   +-JIntegerBox

    |           |       |

    |           |       +-JIntegerListBox

    |           |       |

    |           |       +-JPropertyBox

    |           |

    |           +-JPanel

    |           |

    |           +-JWindow

    |

    +-JBlockInputStream

    |

    +-JBlockOutputStream

    |

    +-JFile

    |

    +-JFilterInputStream

    |   |

    |   +-JBufferedInputStream

    |

    +-JFilterOutputStream

    |   |

    |   +-JBufferedOutputStream

    |

    +-JPipedStream

    |

    +-JBoolean

    |

    +-JCharacter

    |

    +-JDouble

    |

    +-JFloat

    |

    +-JInteger

    |

    +-JLong

    |

    +-JMath

    |

    +-JPObject

    |   |

    |   +-JObjectPtr

    |

    +-JReference

    |   |

    |   +-JFont

    |   |

    |   +-JGraphics

    |   |

    |   +-JImage

    |   |

    |   +-JRegion

    |   |

    |   +-JBlock

    |   |

    |   +-JCriticalSection

    |   |

    |   +-JDescriptor

    |   |   |

    |   |   +-JColor

    |   |   |

    |   |   +-JFileInputStream

    |   |   |   |

    |   |   |   +-JFileIOStream

    |   |   |

    |   |   +-JFileOutputStream

    |   |   |

    |   |   +-JSocket

    |   |   |   |

    |   |   |   +-JServerSocket

    |   |   |

    |   |   +-JSocketInputStream

    |   |   |

    |   |   +-JSocketOutputStream

    |   |

    |   +-JProcess

    |   |

    |   +-JString

    |   |

    |   +-JThread

    |   |

    |   +-JArray

    |   |

    |   +-JList

    |       |

    |       +-JDList

    |

    +-JSystem

    |

    +-JThrowable

    |   |

    |   +-JError

    |   |

    |   +-JException

    |       |

    |       +-JIOException

    |       |   |

    |       |   +-JEOFException

    |       |   |

    |       |   +-JInterruptedIOException

    |       |   |

    |       |   +-JClassReferenceException

    |       |   |

    |       |   +-JSocketException

    |       |   |

    |       |   +-JUnknownHostException

    |       |

    |       +-JRuntimeException

    |           |

    |           +-JArithmeticException

    |           |

    |           +-JIllegalArgumentException

    |           |

    |           +-JNullPointerException

    |           |

    |           +-JProcessCreateException

    |           |

    |           +-JThreadCreateException

    |

    +-JDataType

    |   |

    |   +-JBlockData

    |   |   |

    |   |   +-JBytesData

    |   |   |

    |   |   +-JVideoData

    |   |   |

    |   |   +-JWaveData

    |   |

    |   +-JIntegerData

    |   |   |

    |   |   +-JColorData

    |   |   |

    |   |   +-JDateData

    |   |   |

    |   |   +-JMIDIData

    |   |

    |   +-JRealData

    |   |

    |   +-JStringData

    |

    +-JFDimension

    |

    +-JFPoint

    |   |

    |   +-JFRect

    |       |

    |       +-JViewObj

    |           |

    |           +-JGuideObj

    |           |

    |           +-JLineObj

    |           |

    |           +-JModuleObj

    |           |   |

    |           |   +-JColorObj

    |           |   |

    |           |   +-JLEDObj

    |           |   |   |

    |           |   |   +-JLabelObj

    |           |   |   |   |

    |           |   |   |   +-JDateObj

    |           |   |   |   |

    |           |   |   |   +-JIntegerObj

    |           |   |   |   |

    |           |   |   |   +-JRealObj

    |           |   |   |

    |           |   |   +-JNBitsObj

    |           |   |       |

    |           |   |       +-J1DMeterObj

    |           |   |       |   |

    |           |   |       |   +-J1DViewerObj

    |           |   |       |

    |           |   |       +-J2DMeterObj

    |           |   |       |

    |           |   |       +-JBtnObj

    |           |   |           |

    |           |   |           +-J1DSliderObj

    |           |   |           |

    |           |   |           +-J2DSliderObj

    |           |   |           |

    |           |   |           +-JFocusObj

    |           |   |           |

    |           |   |           +-JPushBtnObj

    |           |   |           |

    |           |   |           +-JSwitchObj

    |           |   |

    |           |   +-JRAddObj

    |           |   |   |

    |           |   |   +-JRAbsObj

    |           |   |   |   |

    |           |   |   |   +-JItoRObj

    |           |   |   |   |

    |           |   |   |   +-JRACosObj

    |           |   |   |   |

    |           |   |   |   +-JRASinObj

    |           |   |   |   |

    |           |   |   |   +-JRATanObj

    |           |   |   |   |

    |           |   |   |   +-JRCeilObj

    |           |   |   |   |

    |           |   |   |   +-JRCosObj

    |           |   |   |   |

    |           |   |   |   +-JRDivideObj

    |           |   |   |   |   |

    |           |   |   |   |   +-JRAtan2Obj

    |           |   |   |   |   |

    |           |   |   |   |   +-JRModObj

    |           |   |   |   |   |

    |           |   |   |   |   +-JRPowObj

    |           |   |   |   |   |

    |           |   |   |   |   +-JRSubtractObj

    |           |   |   |   |

    |           |   |   |   +-JRExpObj

    |           |   |   |   |

    |           |   |   |   +-JRFloorObj

    |           |   |   |   |

    |           |   |   |   +-JRLogObj

    |           |   |   |   |

    |           |   |   |   +-JRRandomObj

    |           |   |   |   |

    |           |   |   |   +-JRRoundObj

    |           |   |   |   |

    |           |   |   |   +-JRSinObj

    |           |   |   |   |

    |           |   |   |   +-JRSqrtObj

    |           |   |   |   |

    |           |   |   |   +-JRTanObj

    |           |   |   |   |

    |           |   |   |   +-JRtoIObj

    |           |   |   |

    |           |   |   +-JRMaxObj

    |           |   |   |

    |           |   |   +-JRMinObj

    |           |   |   |

    |           |   |   +-JRMultiplyObj

    |           |   |   |

    |           |   |   +-JRPIObj

    |           |   |       |

    |           |   |       +-JREObj

    |           |   |

    |           |   +-JTimeObj

    |           |   |

    |           |   +-JAddObj

    |           |       |

    |           |       +-JAbsObj

    |           |       |   |

    |           |       |   +-JDelayObj

    |           |       |   |

    |           |       |   +-JDivideObj

    |           |       |   |   |

    |           |       |   |   +-JAccumulatorObj

    |           |       |   |   |

    |           |       |   |   +-JPowObj

    |           |       |   |   |

    |           |       |   |   +-JRemainObj

    |           |       |   |   |

    |           |       |   |   +-JSubtractObj

    |           |       |   |

    |           |       |   +-JNodeObj

    |           |       |

    |           |       +-JAvgFilterObj

    |           |       |

    |           |       +-JBtoIObj

    |           |       |

    |           |       +-JCOMObj

    |           |       |

    |           |       +-JComplexObj

    |           |       |

    |           |       +-JConvertObj

    |           |       |

    |           |       +-JDataBaseObj

    |           |       |

    |           |       +-JDaviconObj

    |           |       |

    |           |       +-JDeMultiplexerObj

    |           |       |

    |           |       +-JDecoderObj

    |           |       |

    |           |       +-JDelaySustainObj

    |           |       |

    |           |       +-JEncoderObj

    |           |       |

    |           |       +-JExclusiveObj

    |           |       |

    |           |       +-JItoBObj

    |           |       |

    |           |       +-JLPTObj

    |           |       |

    |           |       +-JMIDIChannelObj

    |           |       |

    |           |       +-JMIDIOutObj

    |           |       |   |

    |           |       |   +-JMIDIInObj

    |           |       |

    |           |       +-JMaxObj

    |           |       |

    |           |       +-JMinObj

    |           |       |

    |           |       +-JMultiplexerObj

    |           |       |

    |           |       +-JMultiplyObj

    |           |       |

    |           |       +-JRecorderObj

    |           |       |   |

    |           |       |   +-JMIDIFileObj

    |           |       |   |   |

    |           |       |   |   +-JRMIDFileObj

    |           |       |   |

    |           |       |   +-JWaveFileObj

    |           |       |

    |           |       +-JSampleObj

    |           |       |   |

    |           |       |   +-JControlObj

    |           |       |

    |           |       +-JSocketObj

    |           |       |   |

    |           |       |   +-JServerSocketObj

    |           |       |

    |           |       +-JWaveOutObj

    |           |       |   |

    |           |       |   +-JWaveInObj

    |           |       |

    |           |       +-JANDObj

    |           |           |

    |           |           +-JCalibrateObj

    |           |           |

    |           |           +-JClockDividerObj

    |           |           |

    |           |           +-JJoyStickObj

    |           |           |

    |           |           +-JMIDIObj

    |           |           |

    |           |           +-JMixerObj

    |           |           |

    |           |           +-JNOTObj

    |           |           |   |

    |           |           |   +-JCHObj

    |           |           |   |

    |           |           |   +-JDGreaterThanObj

    |           |           |   |   |

    |           |           |   |   +-JDEqualObj

    |           |           |   |   |

    |           |           |   |   +-JDGreaterEqualObj

    |           |           |   |   |

    |           |           |   |   +-JDNotEqualObj

    |           |           |   |

    |           |           |   +-JGreaterThanObj

    |           |           |   |   |

    |           |           |   |   +-JEqualObj

    |           |           |   |   |

    |           |           |   |   +-JGreaterEqualObj

    |           |           |   |   |

    |           |           |   |   +-JNotEqualObj

    |           |           |   |

    |           |           |   +-JKeyboardObj

    |           |           |   |

    |           |           |   +-JMouseBtnObj

    |           |           |   |   |

    |           |           |   |   +-JMousePosObj

    |           |           |   |

    |           |           |   +-JMouseObj

    |           |           |   |

    |           |           |   +-JPulseObj

    |           |           |   |

    |           |           |   +-JRGreaterThanObj

    |           |           |   |   |

    |           |           |   |   +-JREqualObj

    |           |           |   |   |

    |           |           |   |   +-JRGreaterEqualObj

    |           |           |   |   |

    |           |           |   |   +-JRNotEqualObj

    |           |           |   |

    |           |           |   +-JRandomObj

    |           |           |   |

    |           |           |   +-JSGreaterThanObj

    |           |           |       |

    |           |           |       +-JSEqualObj

    |           |           |       |

    |           |           |       +-JSGreaterEqualObj

    |           |           |       |

    |           |           |       +-JSNotEqualObj

    |           |           |

    |           |           +-JORObj

    |           |           |

    |           |           +-JOxfordObj

    |           |           |

    |           |           +-JRCalibrateObj

    |           |           |

    |           |           +-JTNGObj

    |           |           |   |

    |           |           |   +-JTNG3Obj

    |           |           |

    |           |           +-JTimerObj

    |           |           |

    |           |           +-JXORObj

    |           |

    |           +-JViewSet

    |               |

    |               +-JFocusSet

    |               |

    |               +-JLinkObj

    |

    +-JProperty

    |   |

    |   +-JColorProperty

    |   |

    |   +-JIntegerListProperty

    |   |

    |   +-JIntegerProperty

    |   |

    |   +-JRealProperty

    |   |

    |   +-JStringProperty

    |       |

    |       +-JFileProperty

    |

    +-JInetAddress

    |

    +-JAssociation

    |

    +-JDataBase

    |

    +-JDate

    |

    +-JFileArray

    |

    +-JHashTable

    |   |

    |   +-JDictionary

    |

    +-JRandom

14.2 NeatTools Architecture

The NeatTools architecture defines the complete structure for implementing NeatTools' cross-platform, extensive module unit, usability, and functionality features by using UML (Unified Modeling Language).

14.2.1 Three-Layer Architecture

The NeatTools' implementation model is defined as a three-layer architecture. This architecture is necessary for cross-platform design. There are several advantages associated with this approach:

(1) It separates the application design from platform dependent detail by providing abstract windows and a system resource layer for building the application upon the abstract layer. 

(2) Based upon the well defined interfaces in the class, a system programmer can refine the design and algorithms later without needing to change the dependent layer. 

(3) The current commercial windows abstract layers, like Microsoft MFC, Borland OWL, and OSF MOTIF tend to be fat in design and fixed on one specific platform.

The conceptual framework for NeatTools is based on an architecture with three layers:

(1) Operating system and programming language layer 

(2) Java like cross-platform API layer 

(3) NeatTools application layer

Functions of the layers are summarized in the following table:

Layer
Description

Operating system and programming language
the service and resources provided by operation systems and programming language itself.

Java like cross-platform API
a set of abstract classes that provide the windows and basic service for application construction needs.

NeatTools application
provides the actual implementation of usability and functionality which meet the general requirement as a real-time visual programming tool.

Table 1: Summary of layers

The operating system and programming language layer provide all the basic system service and resources. This layer includes Win32 API, X11 API, and C++ run time library. The Win32 API and X11 API provide the generally required functionality of windowing, graphics context, objects and memory management in a platform dependent fashion. The C++ run time usually comes with the actual compiler implementations. There are even some standards proposed for the C++ language itself.  However, there are still some significant differences between companies and platforms.  Hence, it is desirable to have an abstract layer which provides standardized interfacing between the application layer and the operating system layer.

The Java-like cross platform API layer is the abstract layer that works between the operating system and the application. It releases the application's dependency on the operating system and provides a higher level utility class object support. Usually, the API is a collection of procedures. It is usually very difficult for a programmer to:  find out the relevant procedures in an API; know its capability and usage; know how it interacts with other procedures; not to mention putting them together in order to accomplish a required task. In this sense, a cross-platform API layer is necessary and desirable. 

Now comes the second question: why Java-like. "Java-like" means it defines the class and interface according to a Java API specification. NeatTools needs to be fast and efficient to handle the real-time and computationally intensive task (s). By implementing a Java-like API in C++, we gain Java’s ability to run on different platforms as well as the high performance of C++.  The application layer is where we build the actual NeatTools implementation in cross platform fashion. Different applications will eventually need some special classes which could perform the usability and functionality needed for the particular applications. So the presence of this layer is natural.

14.2.2 Package structure

The NeatTools implementation is moderately complex. It is composed of approximately 100 classes in a Java-like cross platform API layer and approximately 120 classes in a NeatTools application layer. The complexity of the classes is managed by organizing them into logical packages. The NeatTools implementation is decomposed into the top-level packages shown in Figure 1:



Figure 1: Top-level packages

14.2.3 OS and C++ runtime Package 

The Operating system and C++ runtime package is further decomposed as show in Figure 2:



Figure 2: OS and C++ runtime layer

14.2.4 Java-like API package 

The Java-like cross platform package is further decomposed into NET, AWT, UTIL, IO, and LANG packages as show in Figure 3:



Figure 3: Java like cross-platform API layer



Figure 4: Exceptions class diagram in Java like API layer

14.2.4.1  LANG package

The LANG package contains the classes that make up the core of the Java-like API layer. The classes of the LANG package are summarized in the following table:

Class
Description

JBlock
Memory block class

JBoolean
Object wrapper for Boolean values

JCharacter
Object wrapper for char values

JCriticalSection
Exclusive object for critical section

JDescriptor
Generic descriptor manipulate object

JDouble
Object wrapper for double values

JFloat
Object wrapper for float values

JInteger
Object wrapper for integer values

JLong
Object wrapper for long values

JMath
Object wrapper for math functions

JObject
Generic object class, at top of inheritance hierarchy

JObjectPtr
Object wrapper for object pointer

JPObject
Object wrapper for object reference

JProcess
Generic behavior for process

JReference
Generic handle manipulate object

JString
Character strings

JThread
Class for managing threads

JThrowable
Generic exception class; all object thrown must be a Throwable

Table 2: Classes of LANG package

14.2.4.2  UTIL package

The UTIL package contains various utility classes, including random numbers, system properties, and other useful classes. Classes of the UTIL package are summarized in the following table:

Class
Description

JArray
A array of objects

JAssociation
Association object that associate two objects

JDList
A double link list

JDictionary
A class that maps between keys and values

JFileArray
A massive array that store content in file system

JHashTable
A hash table

JList
A link list

JRandom
A random number generator object

Table 3: Classes of UTIL package

14.2.4.3  IO package

The IO package provides input and output classes and classes for streams and files. The classes of IO packages are summarized in the following table:

Class
Description

JBlockInputStream
An input stream from a memory block

JBlockOutputStream
An output stream from a memory block

JBufferedInputStream
A buffered input stream

JBufferedOutputStream
A buffered output stream

JFile
Represents a file on the file system

JFileIOStream
A input/output stream from  and to a file

JFileInputStream
An input stream from a file

JFileOutputStream
An output stream to a file

JFilterInputStream
A class which provides a filter for input stream

JFilterOutputStream
A class which provides a filter for output stream

JInputStream
An abstract class representing an input stream

JOutputStream
An abstract class representing an output stream

JPipedStream
An piped input/output stream

Table 4: Classes of IO package

14.2.4.4  NET package

The NET package contains classes for performing network operations, such as sockets and URLs. Classes of the NET package are summarized in the following table:

Class
Description

JInetAddress
An object representation of an Internet host

JServerSocket
A server-side socket

JSocket
A socket

JSocketInputStream
An input stream from a socket connection

JSocketOutputStream
An output stream to a socket connection

Table 5: Classes of NET package

14.2.4.5  AWT package

The AWT package contains the classes that make up the Abstract Windowing Toolkit. This package contains the window abstraction and graphics abstraction related classes. The classes of AWT package are summarized in the following table:

Class
Description

JBorderLayout
A layout manager for arranging items in border formation

JButton
A UI button

JCanvas
A canvas for drawing and performing other graphics operation

JClipboard
An object wrapper for clipboard buffer

JColor
A representation of a color

JColorBox
A dialog box that could change color setting

JComponent
The generic class for all UI components

JDialog
A window for brief interactions with users

JDimension
width and height

JEvent
An object representing events caused by the system or based on user input

JFileBox
A dialog box that could select a file in file system

JFlowLayout
A layout manager that lays out objects from left to right in rows

JFont
A representation of a font

JFontMetrics
A class for holding information about a specific font's character information

JGraphics
The generic behavior for representing a graphics context, and for drawing and painting shapes and objects

JGridLayout
A layout manager with rows and columns; elements are added to each cell in the grid

JImage
A representation of a bitmap image

JInputBox
A dialog box for input text

JInsets
Distances from the outer border of the window; used to layout components

JIntegerBox
A dialog box for input integer values

JIntegerListBox
A dialog box for select integer values

JLabel
A text label for UI components

JLayoutManager
A generic class for all layout manager

JListBox
A scrolling list

JMessageBox
A dialog box that display a message to users

JModal
A specialized dialog box that will interact with users

JPanel
A container that is displayed

JPoint
x and y coordinates

JPushButton
A UI pushbutton

JRect
x and y coordinates for the top corner, plus width and height

JRegion
A logical region defined in graphics context

JRuler
A UI ruler

JScroller
A UI scrollbar

JSeparator
A UI separator

JTextField
A fixed-size editable text field

JThumb
A UI thumb in scrollbar

JToggleButton
A UI toggle button

JTriangleButton
A UI triangle button in scrollbar

JWindow
A top-level window

Table 6: Classes of AWT package

14.2.5 NeatTools application package

The NeatTools application package is further decomposed into NEAT, DESKTOP, Modules, and External Modules packages as show in Figure 5:



Figure 5: NeatTools application layer

14.2.5.1  NEAT package



Figure 5: Property in NEAT package



Figure 7: NEAT package (continue)

The NeatTools modules could define internal properties which could be modified through a property dialog box. Each property will become an item in a property list box. A user could select and modify them. Taking advantage of the object oriented programming technique, the Property class becomes the generic property representation.  And all other properties will be derived from Property class and will benefit the unified process and editing procedures.
Just as the LANG package is the core of Java-like API layer, the NEAT package is the core of the NeatTools application layer. It defines the basic object structure of how JViewObj aggregates into JVewSet. It also defines the basic module behavior which includes input group and output group (an aggregation of JFocusSet. Here, JFocusSet is the composition of JLinkObj that represents the input and output links of a module object). Because of the polymorph feature of object orient programming, the JViewSet could become the composition of any object which derived from JVewObj. This structure forms a container-component relationship pattern.

The classes of NEAT package are summarized in the following table:

Class
Description

JANDObj
A NeatTools module that handle AND operation

JAbout
A banner that shows the NeatTools

JColorProperty
A property that represent color values

JFDimension
width and height in floating point format

JFPoint
x and y in floating point format

JFRect
A rectangle in floating point format

JFileProperty
A property that represent files

JFocusSet
A composition of JViewObj reference

JGuideObj
A guide line in NeatTools desktop area

JIntegerListProperty
A property that represent a list of integer values

JIntegerProperty
A property that represent integer values

JLineObj
A line representation in NeatTools desktop area

JLinkObj
A link between two NeatTools modules

JModuleButton
A UI button that display NeatTools modules

JModuleCanvas
A UI canvas that display NeatTools modules

JModuleObj
A generic class of all NeatTools modules

JProperty
A generic class of all properties

JPropertyBox
A dialog box that could change the property settings

JRealProperty
A property that represent the floating point values

JStringProperty
A property that represent the string values

JViewObj
A generic class of all display object in NeatTools desktop area

JViewSet
A composition of JViewObj objects

Table 7: Classes of NEAT package

14.2.5.2  Modules package

All NeatTools modules are derived directly or indirectly from JModuleObj. Currently, there are around 100 different modules in NeatTools. Each modules works like a black box, or Ics, which could handle one or several functions in a particular field.  As AND module is the AND gate in digital logic, OR module is the OR gate in digital logic. Please see section 3 for more detailed information on NeatTools module structure.

14.2.5.3  External modules package

The external modules are just like a normal NeatTools module. The only difference is how it is complied and linked into the system. Follow the special instructions in "NeatTools external module development kit" and it will guide you through the creation of an external module and into a dynamic linkage library (DLL).  NeatTools will load the external modules in startup when it can locate them in the NeatTools directory. Or they could be loaded in runtime by pressing "Load Module" button in NeatTools. If an external module is used in a NeatTools network and the module was not loaded in memory yet, NeatTools will popup a dialog box for the user to specify the location of the particular external module.

14.2.5.4  DESKTOP package

The DESKTOP package contains a very complex class called JView which is a UI canvas as well as the NeatTools desktop area. It contains the aggregation and composition of all the NeatTools modules, links between modules, guide lines, and focus objects selected by users. It also handles all the user and system events, such as mouse events, keyboard events, and system notify events. It represents and implements module display, module layout, grid snapping, thread operation exclusive, module persistency, module creation, data flow network construction, clipboard buffer operations, and event broadcast initialization.

14.3 Module Programming Introduction

14.3.1 Module Event Broadcast Model

By using module abstraction, I simplify the module event broadcast model into a process involve only three methods and directly function call between these methods. There three method include engine, broadcast, and access. Usually, programmer will have to override engine and access method to define the module's behavior. The behavior here means how module react to external events and change its internal state to respond to the event. Also, some module could change its state or broadcast message without external trigger by using its own thread.

How those three method methods work together? and how NeatTools system involve in the process? First, I have to mansion the Link Object which NeatTools use to record the logical connection between modules. The object defined as follow (Programmer always could find all the header files under http://www.pulsar.org/ej/work/oop/oop.html :

class

JLinkObj : public JViewSet {

    ...

public:

    ...

    JLinkObj();

    ...

    void access(const JDataType& data);

    void engine();

    ...

    JModuleObj *from, *to;

    int fn, tn;

};

In this object, I defined the public data member include the Module pointer 'from' and 'to', and Interger 'fn' and 'tn'. Pointer 'from' reference the source module and Pointer 'to' reference the destination module. 'fn' stand for the output port number of the source module and 'tn' stand for the input port number of the destination module. In NeatTools module, programmer can define the number of input or output by fixed number or dynamically change the number of input or output port. Each port could accept one or more connections depend on the behavior of module. I will discuss that later on. So what happen when user make connection between two modules? NeatTools will initiate a link and put it in a link list of links and then each module on the particular port will have separate link list which has the reference to the link itself. (for performance reason, so module could direct access to the link object without search).

Now, lets get back to the broadcast model again. Module programmer could decide to broadcast event on a particular port at any time. It could happen in its thread loop or just respond to incoming event from other modules. When broadcast(fn) is been called, NeatTools will invoke all the connected module's engine(tn, link). When a module's engine method got invoked, it knows an event occur and it comes from which module, which output port, and it goes into which input port by access the data member of the link parameter. When programmer implement the engine method, he will first use tn to identify which input port got event and then use link.access(data) to access the event content. the link.access(data) will translate into call source module's access(fn, link, data) method. So before call broadcast, programmer should prepare the value in data member so when the destination module call its access method, it could provide the value right on time. Why, we have this trouble to have the engine call the access in order to get the data? Because, in some situation, like AND gate, its input port could accept any number of connections. And when an event occur through one of the connection, the AND has to go through all the input connection to figure out the result value. In this case, The AND gate call module's access even when that module did not call broadcast. So, programmer should keep it in mind that access should always provide current value.

In order to see how it works, let see a simple example on a module which calculate X2 as an output when integer event going in. We will just focus on the broadcast related methods at this time.

// JSquareObj.h

class JSquareObj : public JModuleObj {

  protected:

    virtual void writeContent(class JOutputStream& os);

    virtual void readContent(class JDictionary& dict);

  public:

    virtual const char* className() const;

    virtual JObject* clone() const;

    JSquareObj();

    virtual void draw(JGraphics g, int x, int y, int w, int h);

    virtual void access(int n, JLinkObj& link, const JDataType& data);

    virtual boolean inputAllowed(int n);

    virtual boolean outputAllowed(int n);

    virtual void engine(int n, JLinkObj& link);

  protected:

    int value;

};

#include "JSquareObj.h"

#include "JLinkObj.h"

#include "JIntegerData.h"

char* theJSquareObj = JSquareObj().Register();

void JSqureObj::writeContent(JOutputStream& os) {

  JModuleObj::writeContent(os);

  putInteger(os, "value", value);

}

void JSquareObj::readContent(JDictionary& dict) {

  JModuleObj::readContent(dict);

  value = getInteger(dict, "value");

}

const char* JSquareObj::className() const { return "JSquareObj";}

JObject* JSquareObj::clone() const { return new JSquareObj(*this);}

JSquareObj::JSquareObj() { igm = 1; value = 0;}

void JSquareObj::draw(JGraphics g, int x, int y, int w, int h) {

  JRect rect(x, y, w, h);

  drawText(g, JString("Sqr"), rect);

}

void JSquareObj::access(int n, JLinkObj& link, const JDataType& data) { INT(data) = value;}

boolean JSquareObj::inputAllowed(int n) 

{ return !inputSet(n).last();}

boolean JSquareObj::outputAllowed(int n) { return true;}

void JSquareObj::engine(int n, JLinkObj& link) {

  int nv;

  link.access(JIntegerData(nv));

  nv *= nv;

  if (value != nv) {

    value = nv;

    broadcast(0);

  }

}

Here, we start our focus on engine method. In this method, we declare a temporary integer variable nv. the link.access(JIntegerData(nv)) will first create JIntegerData (a derived class of JDataType) instance and use it as a media to transfer integer value into nv. Every data type are derived class of JDataType. I will discuss the data type polymorphism later. Because of polymorphism, we can use the same access method to transfer all kind of different data type. After this statement, the input value will assign on variable nv. So we calculate the square of nv. If nv and value are different, we update the value and call broadcast(0). Here we only have one output port, so the only valid broadcast number would be zero. When process broadcast method, the destination module's engine method will get invoked and eventually it will call source module's access method. Here, in access method, we have only one statement: INT(data) = value. INT is a macro defined in JIntegerData.h to type cast JIntegerData into int&. So we can use it and assign new value. Programmer also could use data.assign(JInteger(value)). JInteger is a wrapper class for int data (Like the Integer class in Java). But the first implementation is faster.

14.3.2 Basic Methods in Module

Almost every object class in NeatTools are subclass of JObject directly or indirectly. There are some method which always need to be take care of or override to ensure the basic object behavior works correctly.

In the previous example module, after invoke some header files, you will see a strange line : 

char* theJSquareObj = JSquareObj().Register();

What this line does is: it will call the Register method and register the module into NeatTools system. So later on, NeatTools could duplicate or recreate object instance by using this registered copy. If you fail to define this line, your module will become invisible to NeatTools system.

Programmer also need to override the className() and clone() methods. In NeatTools, I use the character string return by className() method to identify different objects. Please make sure not to define different class with the same name return by className(). The clone method will new and return a object instance. If you fail to define these methods, NeatTools could not generate the module you designed.

The constructor is an option. But usually you will initialize your data member or set the default input or output port number. 'igm' and 'ogm' are the variable represent the current input and output port number. In this example, I set 'igm' to 1 and the default value of 'ogm' (defined in JModuleObj) is 1 also. So here, this module has only one input and one output port. If you try to change the number of input or output port respond to property or input event, there are some complex issues on layout refresh problem. Please reference the source code in NeatTools Module develop kit and find out how to implement this feature.

14.3.3 Information Methods in Module

NeatTools need more information on each input and output port. For example the data type, the attached edge, the tag, etc. The following methods will need to be override: (If you have some module which has common behavior, you can use one of the class as base class and use it to derive other class. This way, we could save time and space.)

14.3.3.1 JString inputTag(int n), JString outputTag(int n)

NeatTools use these methods to display the tag or description for a particular input or output port. The default behavior in Module is following:

JString JModuleObj::inputTag(int n) { 

  char* tag[] = { "input", "enable(logical)"};

  return tag[n];

}

JString JModuleObj::outputTag(int n)

{ return "output";}

So when user move to the port area, NeatTools system will display the tag by using the return value of this method.

14.3.3.2 int inputType(int n), int outputType(int n)

Each input or output port could associate with different data type. Here we can return different data type identify for each different port. Or just return one data type identify for every port. The default behavior is following:

int JModuleObj::inputType(int n) { return JIntegerData::id;}

int JModuleObj::outputType(int n) { return JIntegerData::id;}

Here, it define every input and output port are all integer type. If you want to use other data type, please see the header files in NEAT directory. If you want to set different data type for each different port, you can write something like this:

int JTestObj::inputType(int n) {

  switch (n) {

    case 0: return JIntegerData::id;

    case 1: return JStringData::id;

    case 2: return JWaveData::id;

  }

  return JIntegerData::id;

}

14.3.3.3 boolean inputAllowed(int n), boolean outputAllowed(int n)

This two methods define the accessibility of a input or output port. When it return true, NeatTools could add new connection to it. When it return false, NeatTools will indicate this port already been occupied. The default behavior is following:

boolean JModuleObj::inputAllowed(int n) { return false;}

boolean JModuleObj::outputAllowed(int n) { return false;}

So if you derive your module directly from JModuleObj, you will have to override these methods to ensure your input or output port could accept new connections. If you want input port accept only one connection, you can do something like this:

boolean JSquareObj::inputAllowed(int n) 

{ return !inputSet(n).last();}

The inputSet(n) will return the link list of the input port number n. So if link is empty, its last() method will return null. So inputAllowed() will return true and NeatTools could accept new connection for this port. Otherwise, NeatTools will not accept new connection. Programmer could apply the outputSet(n) to the outputAllowed() method.

14.3.3.4 int inputFace(int n), int outputFace(int n)

These two method decide the attach face that a connection would connect to. For inputFace(n), you could return either LEFT or TOP. For outputFace(n), you could return either RIGHT or BOTTOM. The default behavior is following:

int JModuleObj::inputFace(int n) { return (!n)? LEFT : TOP;}

int JModuleObj::outputFace(int n) { return RIGHT;}

It means inputFace(0) will return LEFT and inputFace(1) will return TOP. and outputFace() always return RIGHT. So connection to the first input port will attach on left edge, but the second input port will attach on top edge.

14.3.3.5 JFRect inputArea(int n), JFRect outputArea(int n)

These two methods decide the area that a port will accept connections. When user's mouse move within the area defined by JFRect (A floating point rectangle with x, y, with, height data member), NeatTools will show the inverse rectangle to indicate the port area. Module itself is derived from JFRect also. So itself has the x, y, with, and height data member which define the current position and dimension of the module. By using module's with and height value you can define inputArea or outputArea like this:

JFRect JModuleObj::inputArea(int n) { 

  if (!n) return JFRect(0, height/4, width/6, height/2);

  return JFRect(width/4, 0, width/2, height/6);

}

JFRect JModuleObj::outputArea(int n)

{ return JFRect(width*5/6, height/4, width/6, height/2);}

But, I found out, it is too much trouble for most module with several input port and some of the module need to change the number of input or output port dynamically. So I wrote some utility method which will calculate the rectangle automatically. The default behavior is following:

JFRect JModuleObj::inputArea(int n) { 

  if (!n) return leftArea(n, 0, 1);

  return topArea(n, 1, 1);

}

JFRect JModuleObj::outputArea(int n)

{ return rightArea(n, 0, 1);}

The leftArea, topArea, rightArea, and bottomArea method are defined in JMoudleObj.

JFRect topArea(int n, int start, int N, 

  double from = 0.25, double delta = 0.5, int factor = 6);

JFRect bottomArea(int n, int start, int N, 

  double from = 0.25, double delta = 0.5, int factor = 6);

JFRect leftArea(int n, int start, int N, 

  double from = 0.25, double delta = 0.5, int factor = 6);

JFRect rightArea(int n, int start, int N, 

  double from = 0.25, double delta = 0.5, int factor = 6);

The 'n' stand for the port number. 'start' means start from which port number. 'N' means for how many port. 'from' stand for the relative position that area start. 'delta' stand for the relative distance that 'N' port will occupy. 'factor' stand for the divide factor of area. If 'factor' is 6, it means area will have height/6 or width/6 dimension. So leftArea(n, 0, 3) means start from port 0 to port 2 (total 3 ports) will occupy area JFRect(0, height/4, width/6, height/2) and divide it into 3 portions from top to down are port0, port1, and port2.

14.3.3.6 JFPoint inputPoint(int n, class JLinkObj& link), JFPoint outputPoint(int n, class JLinkObj& link)

These two method is pretty much like the inputArea and outputArea. But the only different is it will return the final attachment point of the connection to a particular port. You will see the link become one of the parameter. It is because, for those port could accept more than one connection, each connection will going to have different attachment point event they are belong to the same port. But using this parameter, we could decide its order and calculate the attachment point when necessary. Again, I wrote the following utility methods. The usage is exactly the same to area utility methods. Only you have to put in the extra link parameter.

JFPoint topPoint(int n, class JLinkObj& link, int start, int N, 

  double from = 0.25, double delta = 0.5);

JFPoint bottomPoint(int n, class JLinkObj& link, int start, int N, double from = 0.25, double delta = 0.5);

JFPoint leftPoint(int n, class JLinkObj& link, int start, int N, double from = 0.25, double delta = 0.5);

JFPoint rightPoint(int n, class JLinkObj& link, int start, int N, double from = 0.25, double delta = 0.5);

14.3.4 Display Related Methods in Module

Display is a very important issue in NeatTools. I have been change the display mechanism several time to increase to through put especially for high frequency events that involve repaint modules. But there are only a few method that related to display. That's talk about paint, update, and repaint method:

void paint(JGraphics g, double dx, double dy, JRegion& rgn, double scale);

void update(JGraphics g, double dx, double dy, JRegion& rgn, double scale);

void repaint();

NeatTools will call paint method where there is a need to refresh the graphics contents of module. For example, when user do resize, scroll, scale, etc. operations on the NeatTools windows could cause a module's paint method get invoked. If module itself decide refresh itself to respond to its internal state's change (like LED receive a true event and decide to turn itself on), it could call the repaint() method. Eventually, NeatTools could invoke module's update method. (Depend on the situation, cause module could covered by other module or out of desktop's scope.) Usually, when receive paint, module will draw everything include frame and contents. But when received update, module could only draw the contents. To save space, usually, in paint method we will only draw frame and call the update to draw the contents. But basically, programmer could whatever he want depend on the situations. The following is an example on LED object:

void JLEDObj::paint(JGraphics g, double dx, double dy, JRegion& rgn, double scale) {

  JRect rect = getIExtent(dx, dy, scale);

  g.setJColor(moduleColor);

  if ((rect.width > depth2) && (rect.height > depth2))

    g.draw3DJRect(rect, depth);

  update(g, dx, dy, rgn, scale);

}

void JLEDObj::update(JGraphics g, double dx, double dy, JRegion& rgn, double scale) {

  JRect rect = getIExtent(dx, dy, scale);

  if (value == 0) g.setJColor(bkgnd);

  else g.setJColor(color);

  if ((rect.width > depth2) && (rect.height > depth2)) {

    g.fillJRect(rect.shrink(depth, depth));

  } else g.fillJRect(rect);

}

The JGraphics object is the graphics context that module could make their graphics operations or setup parameters. It works like a media between program and actual devices. In this case, the JGraphics is always an area on screen, if user make some operation by calling JGraphics' methods, it will reflect the change to screen.

Here, in paint, first we use getIExtent to get the current module extent in integer screen unit. Cause NeatTools could display module in any scale. So, module will not know its current size on screen until its paint or update method get invoked. After this statement, the rect will store the current module size in pixel unit. Then, depend on the value itself, if value is false, we set the current color to background color, otherwise we set it to foreground color. If current size is large enough to draw the frame, we call g.draw3DJRect to draw the 3d frame. Then we call update to draw the contents.

In update, we follow the same process and later on fill the LED module with the proper color by using g.fillJRect methods.

void JLEDObj::engine(int n, JLinkObj& link) {

  if (!n) {

    int iv;

    link.access(JIntegerData(iv));

    setValue(iv);

  } else processColor(n, link);

}

boolean JLEDObj::setValue(int _value) {

  if (_value != value) {

    value = _value;

    broadcast(0);

    repaint();

    return true;

  }

  return false;

}

So, when will LED decide to update itself and make visual feedback to user? Let's look at the engine method. If n is equal to zero (the input port on the left edge, in this case), it will use link.access to assign the integer value into iv variable. And call setValue(iv). In setValue method, we will check if the value need change, if it does, we update the value first and call broadcast(0) and repaint() to refresh its display. Later on, NeatTools will invoke it's update method to fill the color when necessary.

The default behavior of display methods in JViewObj (JViewObj is the base class of all objects that could display itself on screen) are:

void JViewObj::paint(JGraphics g, double dx, double dy, JRegion& rgn, double scale) {}

void JViewObj::update(JGraphics g, double dx, double dy, JRegion& rgn, double scale) 

{ paint(g, dx, dy, rgn, scale);}

Here the paint draw nothing and update call paint directly. So derived class could just override paint for their simple display need.

The default behavior of display methods in JModuleObj are:

void JModuleObj::draw(JGraphics g, int x, int y, int w, int h) {

  JRect rect(x, y, w, h);

  drawText(g, JString("Mod"), rect);

}

void JModuleObj::paint(JGraphics g, double dx, double dy, JRegion& rgn, double scale) {

  g.setJColor(moduleColor);

  JRect rect = getIExtent(dx, dy, scale);

  g.fill3DRect(rect.x, rect.y, rect.width, rect.height, 2);

  g.setJColor(moduleColor.darker());

  draw(g, rect.x+3, rect.y+3, rect.width-8, rect.height-8);

  g.setJColor(moduleColor.brighter());

  draw(g, rect.x+5, rect.y+5, rect.width-8, rect.height-8);

  g.setJColor(JColor::black);

  draw(g, rect.x+4, rect.y+4, rect.width-8, rect.height-8);

}

Here, I define a new method for user who only need simple display on their module. When system need module's display, it will call paint. In paint, we use color and offset to create the 3D look and feel. So, if user only override draw method and draw some simple text or shapes, it will have the 3D look without repeat the process three times.

14.3.5 Module persistency related Methods

One important thing that NeatTools system does is provide user the capacity to layout modules and make connections between modules. But the other task that NeatTools does is equally important - module persistency. That means, NeatTools provide a way to let module store its current state and connections into secondary storage space like hard disk. And later on, retrieve the information and reconstruct every module, restore their state and rebuild their connections. So, how NeatTools do that? NeatTools rely on two methods in module to accomplish this requirement.

protected:

    virtual void writeContent(class JOutputStream& os);

    virtual void readContent(class JDictionary& dict);

The implementation in LED looks like this:

void JLEDObj::writeContent(JOutputStream& os) {

  JModuleObj::writeContent(os);

  putObject(os, "color", color);

  putObject(os, "bkgnd", bkgnd);

  putInteger(os, "value", value);

}

void JLEDObj::readContent(JDictionary& dict) {

  JModuleObj::readContent(dict);

  JObject *obj = getObject(dict, "color");

  if (obj) color = *(JColor*)obj;

  obj = getObject(dict, "bkgnd");

  if (obj) bkgnd = *(JColor*)obj;

  value = getInteger(dict, "value");

}

'writeContent' method will be invoked when NeatTools want a module to write its current states into output stream. Programmer has to call base class's writeConnect method first. Cause every module will only handle the data member that declare in its object scope. Some times a data member is just for temporary usage, we could decide not to write their current state. readContent is the opposite to writeContent. When we try to 'put' a variable, we assign a string name to identify the variable. Later on, the readContent provide user a dictionary object which contain all the available variables. Programmer could use string name as a key to retrive the variables. All the putX and getX method are defined in JObject class. The only tricky thing is that, getObject could return null. In that case, we could check for that situation and assign object only when the return object is not null.

14.3.6 Property Related Methods in Module

The property related methods are:

JArray getProperties();

boolean updateProperty(JProperty& prop);

When user right click on a module, NeatTools will call the getProperties method first to get all the properties that belong to this module. Later on, if user decide to change one of the property, after property have been changed and user pressed the OK button, NeatTools will invoke updateProperty with a property parameter. The JProperty is the base class for every property. Currently, NeatTools has JIntegerProperty, JIntegerListProperty, JStringProperty, and JFileProperty. All you need is include the header files and look at the header file itself or copy the usage from other module's source code.

The default behavior is following:

JArray JModuleObj::getProperties() { 

  JArray properties;

  properties.append(JColorProperty("moduleColor", moduleColor));

  return properties;

}

boolean JModuleObj::updateProperty(JProperty& prop) { 

  if (prop.getName() == JString("moduleColor")) {

    moduleColor = ((JColorProperty*)&prop)->color;

    repaintView(*this);

    return true;

  }

  return false;

}

All module has a moduleColor property that define the base color of module. In getProperties, we initialize a properties array and append a JColorProperty instance with name of "moduleColor". When NeatTools call updateProperty, we have to check the property's getName method and make sure we are handling the right property. Then we proceed the needed operations. If we process the property, we should return true. So NeatTools knows this property has been processed. Otherwise, we return false.

In case we derived from other module, for example, JLEDObj derived from JModuleObj. The implementation is a little bit different:

JArray JLEDObj::getProperties() {

  JArray properties = JModuleObj::getProperties();

  properties.append(JIntegerProperty("value", value, -limit-1, limit));

  properties.append(JColorProperty("color", color));

  properties.append(JColorProperty("bkgnd", bkgnd));

  return properties;

}

boolean JLEDObj::updateProperty(JProperty& prop) {

  if (JModuleObj::updateProperty(prop)) return true;

  if (prop.getName() == JString("value")) {

    setValue(((JIntegerProperty*)&prop)->value);

    return true;

  } else if (prop.getName() == JString("color")) {

    color = ((JColorProperty*)&prop)->color;

    repaintView(*this);

    return true;

  } else if (prop.getName() == JString("bkgnd")) {

    bkgnd = ((JColorProperty*)&prop)->color;

    repaintView(*this);

    return true;

  }

  return false;

}

When we derive class from other module class, in getProperties method, we usually call base class' getProperties first and get its property array. Then, we append properties that belong to the derived class. In updateProperty method, we call the base class' updateProperty method first, if it return true, it means the property belong to the base class and the property is already been processed. In this case, we return true also. Otherwise, we proceed to check the property and use the new property value to setup module's internal state or operations needed.

14.3.7 About Polymorph Data Type

The polymorph data type is a special data type that could connection to any data type. NeatTools query the data type by invoke inputType or outputType. When programmer dealing with polymorth data type, he will use the inputSet and outputSet to get the connected module's inputType or outputType to recursively get the current data type. But care should be taken on the cyclic situation. Basically, we use counter for each port to make sure the cyclic situation does not happen. When access method been call, we redirect it to the access of the connected module. Cyclic could happen, so programmer need to do some extra code to avoid that. Their are several module use polymorph data type like JMultiplexer and JDeMultiplexer. Please reference their source code for more information.

14.3.8 Use Thread in Module

In some situations, programmer will need to handle or process something without hanging the NeatTools system. For example, in JSocketObj, after the socket and server socket are connected, how we know a socket package is arraived? We can use non-blocking socket to test if package is ready for read. But how long should we check the socket input? If we use the blocked socket to read package, it could happen that no package is coming in and NeatTools got stuck by your module. In this case, if we dedicate a separate thread loop to execute the socket read, even the thread is block by the socket read procedure, the NeatTools still can proceed without stopped by modules.

How we use thread in module? Lets look at the code from JTimeObj module.

JTimeObj::~JTimeObj() { close();}

void JTimeObj::run() {

  valid = true;

  updateTime();

  while (valid) {

    while (!isTimeChanged() && valid)

      JThread::sleep(10);

    updateTime();

    if (!valid) break;

    JThread::sleep(900);

    broadcast(0);

  }

}

void JTimeObj::reset() { valid = false;}

void JTimeObj::startup() {

  thread = JThread(this);

  thread.start();

}

void JTimeObj::close() {

  if (!valid) return;

  valid = false;

  thread.waitFor();

}

When NeatTools prepare a new  instance of module, it will first call the startup method. So, this method could be a good place to start a new thread. Here, we first initialize a new thread and assign it into thread variable. After that, we call thread.start method. If everything went well, a thread will start to running begin by invoke run method. Usually, we will have a loop inside run method. If we exit the run method, the thread stopped and removed by system. If the module's instance been remove by system, it will call the ~JTimeObj and eventually call the close method. In close method, we mark the valid to false and wait for thread to exit. Do not delete thread directly. Use waitFor method instead to avoid the memory leaking problem. Now, their is one problem left, the valid is true to indicate their is a thread running inside JTimeObj module. But it could happen that user duplicate an active module. After duplicate operation, the new JTimeObj instance has true value in valid variable but it actually does not has a thread running. So, the reset method come into action. When user try to duplicate module, NeatTools will try to invoke the reset method on the new module. So if we set valid to false in reset method, everything will going to be perfect.

14.3.9 Concurrency Issues when Design Module

Because NeatTools allow module use their own threads, the concurrency problems could happen. Programmer should keep it in mind that it's engine and access method could be called by other modules at the same time. For example, lets look at the following situation in engine method:

void JTNG4Obj::engine(int n, JLinkObj& link) {

  switch (n) {

    case IN_COM: {

      JBlock _data;

      link.access(JBytesData(_data));

      csb.lock();

      buf+=_data;

      csb.unlock();

      break;

    }

    ...

  }

}

In JTNG4Obj module, I use a JBlock variable 'buf' in it. Because, the engine method could be invoke by more than one thread at the same time, it could happen that they execute the buf+=_data statement almost at the same time. What could happen? Information lost could happen. Or worse, NeatTools could crash. Here, I use a instance of JCriticalSection class to guard the statements from access by more than one thread. The lock method will allow only one thread enter. And the unlock will turn off the critical section lock. To determine where you should use JCriticalSection to guard your critical section statements need experience and knowledge of your module design. I will leave the concurrent problems to programmer themselves.

15. Bibliography

[1] Nancy A. Lynch and Mark R. Tuttle. An introduction to Input / Output Automata. CWI-Quarterly, 2(3), 1989.

[2] Myers, Brad A. "User Interface Software Tools", ACM Transactions on Computer-Human Interaction, 2(1): 64-103, March 1995.

[3] Myers, Brad A. and Mary Beth Rosson. Survey on User Interface Programming. In Proceedings of SIGCHI'92 Human Factors in Computing Systems, May 1992.

[4] Myers, Brad A. "Challenges of HCI Design and Implementation", ACM Interactions 1, 1(1994), to appear.

[5] X Business Group, Inc. Interface Develop Technology. 3155 Kearney Street, Suite 160, Fremont, CA 94538. (510) 266-1075, 1944.

[6] Wilson, David. "Programming with MacApp pages", Addison-Wesley Publishing Company Reading, MA, 1990.

[7] Linton, Mark A., John M. Vlissides and Paul R. Calder. "Composing User Interfaces with InterViews". IEEE Computer 22(2): 8-22, February 1989.

[8] Microsoft Corporation. Visual C++, Visual Basic, Visual J++. PO Box 72368, Roselle IL 60172-9900. (800) 426-9400, 1997.

[9] Szekely, Pedro. Separating the User Interface from the Functionality of Application Programs. Ph.D. Thesis. Carnegie Mellon University School of Computer Science technical reports CMU-CS-88-101, January 1988.

[10]  Laura Lemay and Charles L. Perkins. "Teach Yourself Java in 21 Days", Sams Net, 201 West 103rd Street, Indianapolis, Indiana 46290.

[11]  Richard C. Lee and William M. Tepfenhart. "UML and C++, A Practical Guide To Object-Oriented Development", AT&T Lucent Technologies, Prentice Hall, Upper Saddle River, NJ 07458.

[12]  Richard J. Simon, Tony Davis, John Eaton, and R. Murray Goertz. "Windows 95 Multimedia & ODBC API Bible", Waite Group Press, 200 Tamal Plaza, Corte Madera, CA 94925.

[13]  Charles Petzold. "Programming Windows 3.1" Third Edition, Microsoft Press, A Division of Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052-6399.

[14]  Jon Siegel. "CORBA, Fundamentals and Programming", Wiley Computer Publishing, John Wiley & Sons, Inc. Professional, Reference and Trade Group, 605 Third Avenue, New York, NY 10158-0012

[15]  Oracle Corporation. "Oracle7 Server Concepts Manual", Oracle7 Server Documentation Manager, Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065.

[16]  Matt Pietrek. "Windows Internals, The Implementation of the Windows Operating Environment", Addison-Wesley Publishing Company (800)358-4566.

[17]  Bradford Nichols, Dick Buttlar & Jacqueline Proulx Farrell. "Pthreads programming", O'Reilly & Associates, Inc. 101 Morris Street, Sebastopol, CA 95472-9902.

[18]  Nabajyoti Barkakati. "X Window System Programming, Your Complete Guide to Developing X and Motif Applications!", Sames Publishing, 201 W. 103rd Street, Indianapolis, Indiana 46290.

[19]  Kurt Hensen "An Introduction to the Practical Use of Colored Petri Nets", Department of Computer Science, University of Aarhus, Ny Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark

[20]  Object Managements Group, home page http://www.omg.org/, 492 Old Connecticut Path, Framingham. MA 01701, USA. (508)820-4300.

[21]  Rational Software Corporation, home page http://www.rational.com/, 4900 Perl East Circle, Suite 106, Boulder, CO 80301, USA. (303)444-3464.

[22]  Advanced Visual Systems Inc. home page http://www.avs.com/, 300Fifth Avenue, Waltham, MA 02154, USA. (781)890-4300.

[23]  National Instruments Corporation. home page http://www.natinst.com/, 11500N. Mopac Expwy, Austin, TX 78759-3504, USA. (512)794-0100.

[24]  JavaSoft, home page http://www.javasoft.com/, (888)543-5282.

VITA

NAME OF AUTHOR: Yuh-Jye Chang

PLACE OF BIRTH: Wen-Lin, Taiwan

DATE OF BIRTH: Feb 22, 1966

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
Stevens Institute of Technology, Hoboken, New Jersey

National Taiwan University, Taipei, Taiwan

DEGREES AWARDED:
Master of  Computer Science, 1991, Stevens Institute of Technology

Bachelor of Mechanical Engineering, 1988, National Taiwan University

AWARDS AND HONORS:
Creative Entertainment Choice, 1997

Java Cup International Winner, 1996

National Taiwan University Symphony Vice-leader, 1987

PROFESSIONAL EXPERIENCE:

Research Engineer, Bell Labs, Lucent Technologies, 1998
Research Assistant, Northeast Parallel Architectures Center, Syracuse University, 1997
Teaching Assistant, Department of Computer Information Science, Syracuse University, 1996

Project Leader, NewTek Corp, 1992

Robot Lab Assistant, Department of Mechanical Engineering, National Taiwan University, 1987


