Gateway Architecture
Gateway supposes a multi-tier (at least three) architecture with clients, servers or brokers and backend resources. The backend consists of specialized resources to service requests that can not be handled by the client or middle tier because they are either too large or require access to specialized software (e.g. a database), hardware (either a computer or instrument) or data. The middle tier contains all the “business logic” or control code necessary to either handle client requests or direct request to an appropriate backend resource. It can act as a broker choosing which of several possible backend systems are to be used. The client handles some user requests internally but otherwise directs them to the middle tier. In the simplest model, all data flows from client to middle tier to backend and back again. In the higher performance implementations, control commands are routed this way while large data transfers can be routed by specialized high bandwidth low latency channels. There are two importance interfaces:

Client – Middle Tier

Middle Tier – Backend
These can be expressed in various forms but simplest is to consider them defined in XML with this specification being for example converted to Java or CORBA IDL at the middle tier – backend interface. Again large data blocks would use a more efficient native wire format. Use of an XML specification is consistent with using Jini (a Java service) although in this case, XML is converted client side before being transmitted using Java's RMI protocol to the middle tier.

In Gateway, a given problem domain would customize their environment at both backend and client. At backend, one would define using the Gateway Interface, particular modules as distributed objects. At the client, we imagine an architecture like say Microsoft Word. There is a set of toolboxes – one for computational chemistry or astrophysics say, another for visualization, a third for job and computer monitoring etc. These toolboxes have “buttons” and “menus” expressed in XML. These are rendered as HTML by the browser and respect the client-middle tier interface. They can be interpreted pure client side or involve the other tiers. Obviously this distinction is (apart from performance) hidden from the user and is exhibited through the handler invoked by the XML parser. Each CTA develops a specialized toolbox and arranges and customizes existing toolboxes to form a particular PSE.

We see that some Gateway capabilities are very application specific – e.g. the XML button invoking the Gaussian chemistry modeling program; others such as visualization or collaboration are applicable across multiple CTA's. The Gateway core team must come up with a methodology to allow these toolboxes to be produced in a modular fashion by different groups. This requires a good architecture and well designed and supported interfaces.

Some Gateway Features and Capabilities

We comment on some NPAC experiences in categories as relevant.

1. Execution model including back-end systems. Here we assume that execution is invoked by a batch scheduler either directly from middle-tier as a service or through Globus.

2. Basic multi-tier architecture. Here Gateway has a three-tier model with client, server/broker and back-end layers. In the last year, NPAC re-implemented the middle tier using CORBA rather than the custom Java servers used in our initial WebFlow system demonstrated at SC98. One can either use commercial object brokers or NPAC's JWORB server supporting Web/XML, COM, CORBA and Java object models. This basic architecture exhibits the two interface layers discussed above and we are part of the DATORR process to define community consensus for both client-middle tier and middle tier-client interfaces. The core architecture is designed to support necessary security and authentication services.

3. The initial capability of Gateway is of course seamless access from the client to backend resources. There are also some core capabilities within basic system including status displays for backend systems supported by the usual XML standards.

4. Metacomputing Services. This has been a focus of the Globus and Legion groups and Gateway can be extended to support this. For DoD, one would like to support both classic HPCC simulations and those from the FMS and IMT CTA's. We believe that DMSO's HLA/RTI framework is an interesting approach to metacomputing where one can exploit NPAC's object Web based RTI (basically an event based messaging system) built around JWORB servers. In the Gateway architecture it is natural that metacomputing support (fault-tolerance, load balancing etc.) is built into the middle tier.

5. Collaboration services include both general collaborative tools as seen in Tango Interactive but also collaborative visualization, debugging, program preparation etc.. We have developed under Tango already, prototype collaborative visualization (for both NPAC's Java visualizer and NCSA who linked CAVE and workstation visualizations)

6. Visualization. Here we expect to work with NCSA and the ARL DICE team in analyzing WebFlow and general multi-tier portals to understand how to set up visualization services.

7. General registration and discovery services for software, data and computing resources. XML and Jini are interesting technologies. The software repository RIB offers this capability for software modules.

8. Programming models where initial Gateway offers the WebFlow capabilities with client and middle tier support for dataflow and a more object composition coarse grain programming environment.

9. Computational steering where NPAC originally developed a Java server based rapid prototyping system DARP. This involves interactive links between client and execution of the Program. In that way, it has some analogies to the portal service called "Edit, Compile, Run and Debug job" i.e. program development as opposed to execution of developed codes. Here NPAC designed and deployed some time ago a "Virtual Programming Laboratory" used for web-based programming for classes. This was for instance used in NPAC's last online computational science class at Jackson State.

10. Information services which are in fact critical in both management Intranets, training and in information components of a CTA gateway (or portal). This includes information discovery, XML standards for scientific discourse, glossaries etc.
11. Special features of a given application portal. For instance in NPACs nanomaterials work for the NCSA Alliance we supported file manipulation and a particular visualization engine Cerius.
In the following, we list some ASC projects of relevance to Gateway and comment on their relationship to the above discussion. Mostly this is still rather unclear and the core Gateway team needs (starting on May 24-25) to make it clearer to the other groups how they can contribute.

Some relevant ASC PET projects in a nutshell
IC-4: Interoperable Problem Solving Environment (IPSE) for ASC -- Demonstration of Concept

David Bernholdt (NPAC)
Summary: Development of Gateway proof of concept in collaboration together with OSC and Nicholls Corp. This will demonstrate concepts embodied in a briefings on Gateway Interface to High Performance Commodity Computing (HPcc) Systems presented by Dr. Fox at the ASC MSRC Annual PET Review on July 2, 1998 and presented at MAPINT '98 on August 26, 1998 along with outreach briefings to industry and PET partners by Dana Hoffman, ASC Academic Coordinator. This consolidated information was then brought forward to the ASC Interoperability Working Group resulting in the IPSE (Interoperable Problem Solving Environment). Central issues are: How do we build seamless interfaces to HPC resources for DoD scientists and engineers? How do we extend access to those resources to DoD personnel with little or no HPC expertise? How do we demonstrate metacomputing concepts on a small scale before we move to very large-scale problems? And how do we adapt to the HPC hardware/software marketplace of the future so that we best serve the DoD user within the MSRC and DC environments? The overall objectives of this project are to design and implement a proof of concept of the HPcc architecture. During Year 4, we expect to complete the initial version of an operational system combining the CCM PSE front-end, NPAC's WebFlow-based middle tier, and back-end computational resources at the ASC MSRC. The two leading issues for the middle tier at present are

1) Defining the WebFlow API (what services and how to access them)

2) Incorporating appropriate security throughout

which we expect to be addressed to the extent of having a working prototype system by SC99. After that we plan to investigate enhancements and generalizations, such as support for additional front-ends, security across MSRCs, robustness, fault tolerance, etc.

Notes: No discussion of the Gateway Architecture and the task of defining this in detail. This project is a core Gateway activity (Gateway categories 1 2 3 8 above)
CCM-1: CCM Problem Solving Environment (CCM PSE)

Dr. Ken Flurchick (OSC)

Summary:
This is a proof-of-concept project spanning Years 3 and 4 to develop and implement the CCM PSE and to show the efficacy of this type of environment. The development and implementation will use currently available and reliable tools at OSC. The CCM PSE is an application environment that allows the user to access HPC resources, including compute engines, database servers, application software and visualization tools. It includes a client running a Web browser, with a number of installed applets, plug-ins, and possibly other tools which assist the researcher in preparing the input, and analyzing/visualizing results. Codes under consideration for the initial implementation are the CCM CHSSI codes and GAUSSIAN.

Notes: Description not tightly integrated with Gateway. Mentions RIB and a HPC Database. Does not discuss XML although project is now using this. This falls into Gateway category 11 above but also has application specific visualization (Gateway category 6 above).

CEA-7: CEA Problem Solving Environment (CEA PSE)

Dr. John Nehrbass (OSC)

Summary: This is a working project spanning Years 3 and 4 to develop and implement the CEA PSE into the framework set by the CCM PSE. The development and implementation will use the tested tools at the ASC MSRC as proven by the CCM proof of concept project. The CEA PSE is an application environment that allows the user to access HPC resources, including compute engines, database servers, application software and visualization tools. It includes a client running a Web browser, with a number of installed applets, plug-ins, and possibly other tools which assist the researcher in preparing the input, and analyzing/visualizing results. Codes under consideration for the initial implementation are the PFDTD and XPATCH codes.

Notes: Builds off CCM-1 and makes only mention of Gateway middleware. There is no identification of “different” issues between CCM and CEA. There is no discussion of XML standards. This falls into Gateway category 11 above.

CEN-2: CEN workbenches and problem solving environments

Paul Sotirelis (NCSA)

Summary: The CEN PET Team is leading the DoD electronics community into the next millenium by re-engineering HPC codes into distributed applications. These distributed applications are envisioned to have a client component and an HPC computational component. The client component will be a Java user interface that connects to the HPC computational component either directly or indirectly through a middle tier. Codes have been identified and relationship set up with NSF DesCArtES center. This center is building some sort of computational infrastructure. Initially build FDTD client and in year 6 extend to computational electromagnetics.
Notes: No mention of Gateway architecture or middleware. Some discussion of security. No mention of XML. Using Java applications for performance. Unclear middle tier but emphasis on smart (i.e. complicated) clients. This falls into Gateway category 11 above.

IC-5: TangoInteractive Integration and Enhanced Authoring

David Bernholdt (NPAC)

Summary: Over the last year, experience in using TangoInteractive and study of other major activities has led to an increasingly clear picture of a good model for web based training that can be expected to be effective and well supported as the web evolves. One should link synchronous and asynchronous models so that synchronous delivery uses a subset of material (web-site) used for asynchronous training. One needs to support both structured (e.g. database backend) and unstructured material (few pages put together by harried faculty just before class). One needs to be be able to archive training sessions. We have developed in TangoInteractive collaboration system, the WebWisdomDB database system and LecCorder archiving system solutions to the key needs of training supporting the above model. Separately we are enhancing this suite of tools with a training management database. In this project, we will join ASC ARL and CEWES support to integrate these systems for greater power and ease of use. We also add a key new ingredient -- good support for dynamic HTML and XML. Note that XML is a key part of Gateway approach.

Notes: This includes substantial XML based information activity and falls into both Gateway categories 5 and 10. This is a project that links management and training with science gateways.

IC-6: TangoInteractive in Gateway and Scientific Research

David Bernholdt (NPAC)

Summary: This project integrates Gateway distributed computing infrastructure with Tango distributed collaboration infrastructure to provide a means for applications built upon the Gateway architecture to easily be made collaborative. We have often observed that TangoInteractive can be used to support collaborative computing as well as its initial focus on education and training. In this regard we have developed various initial tools including shared visualization (NCSA and NPAC), shared telnet and shared editing with emacs. However we have not been able to clearly identify a good model for this. Gateway provides an important organizing principle that will allow us to properly develop TangoInteractive as a tool in scientific and engineering research. This is the essence of this proposal. To understand technical approach, remember that Gateway is defined in terms of services that are specified through XML used to specify both resources and access to resources. These correspond to XML used either as a serialized database or as a web template language. Collaboration will also be represented as a set of XML tags in Gateway. Simplest -- given current state of Tango Interactive, are capabilities that do not interact directly with Gateway services. Here XML tags will invoke audio-video conferencing, chatrooms etc. This is still non-trivial as it involves a different TangoInteractive interface. However more interesting and harder are those capabilities where Tango Interactive interacts with Gateway. Examples include security, visualization, shared job submittal, shared results and files (both basic web pages and those dynamically created by job). In this regard, we propose to interact with core Gateway group to establish requirements for these coupled interfaces (which will of course also be specified by XML). We will interact with project visualization teams including the NCSA and DICE groups. This will build on existing collaborative visualization work by NCSA and NPAC. Finally we will address CTA specific collaboration by working with CTA teams starting with CCM to establish special capabilities of value.

This requirement activity will come up with an initial design, which we will implement, test and evaluate in an ongoing fashion. We will ensure that there will be an interesting demonstration capability for SC99.

Notes: This falls into Gateway category 5 and like visualization is an important challenge to both Gateway and collaboration groups to come up with the right API's to allow modular integration of collaboration. Note Gateway is built around distributed objects, which are implicitly shared asynchronously. TangoInteractive involves synchronous sharing of distributed objects.

SCI-4: Object Web Visualization

Polly Baker (NCSA)

Summary: This initiative will develop strategies for accomplishing visualization within a component- based system. Visualization services, constructed as a Web-accessible set of distributed objects, can supply visualization capabilities for custom visualization tools, or to application- specific workbenches and problem-solving environments. As back-end services installed at an MSRC, visualization objects can be built to utilize large-memory machines and high- performance graphics hardware. Multi-platform client applications, either as stand-alone visualization tools or embedded within a problem-solving environment, request service from these objects, providing a way for remote users to make use of centralized high-performance resources. Visualization objects can also provide services for virtual environments such as the ImmersaDesk, integrating these platforms into a Post-Web (Alliance-speak for Object Web) applications environment. Visualization back-end services can be enhanced and upgraded over time with minimal disruption to front-end client applications or the user. Thus this architecture is intended to provide a forward-looking framework that can accommodate new or improved visualization techniques or implementation algorithms, speeding technology transfer to the user community.

This work will be done in cooperation with Dr. Geoffrey Fox, to develop visualization service capabilities for commodity-based Web computing environments such as the WebFlow/Gateway architecture. We will also work closely with the CTA's as they advance their development of Problem-solving Environments. Finally, we are communicating with Jerry Clarke, team lead for ARL's DICE effort, to provide mutual support and leverage and to insure that our components can work together in a plug-and-play fashion. We are also surveying visualization personnel in the national visualization community to determine if and where similar efforts exist.

Notes: this is naturally in Gateway category 6 and has an approach that is headed in correct direction. We need to quantify this.

PRG-3: NetSolve and Repository in a Box Integration with the Integrated Problem Solving Environment (IPSE)

Graham Fagg (University of Tennessee)

Summary: This project will integrate two existing tools that are already in use by a number of HPC organizations into the ASC Integrated Problem Solving Environment (IPSE). These tools will facilitate easy access to networked hardware and software resources and will allow interoperation with other HPC sites already using these tools. NetSolve is a client-server system for accessing computational resources over a network. NetSolve will be integrated into all three tiers of the IPSE Gateway architecture to provide access from the user's familiar workstation environment to mathematical software and other scientific libraries running on HPC platforms. The Repository in a Box (RIB) toolkit provides web-based interfaces for maintaining and accessing information about software resources including deployment, evaluation, and performance information. RIB can also be used to catalog other types of resources besides software and to express relationships between the various resources. RIB will be integrated with the CTA PSEs that are being developed, starting with the CCM PSE, to help organize and provide access to CTA software and other resources.

Notes: This proposal has two distinct projects. RIB is a special case of resource registration and discovery (Gateway Category 7), which is a critical property of the Gateway and indeed of any Object Web environment. Sun's Jini system is an elegant approach to use. We could get a lot of valuable experience if the RIB was implemented with the general issues of this category in mind. It could then be generalized to a registration and discovery service covering more than software.

NetSolve falls into Gateway Category 8 and it is an interesting new programming model. It would be nice to present it to user as one of a suite of programming models. Another one many users need is support of parametric studies -- running the same job with multiple data sets.

