
SAND99-0683 • UC-705

Unlimited Release

Printed April 1999

Distance and Distributed

Computing and Communication

Preliminary Service Model

Judy I. Beiriger

Decision Support Systems Architectures Department

Martha J. Ernest

Advanced Networking Integration Department

Ann L. Hodges and Wilbur R. Johnson

Decision Support Systems Programs Department

Robert D. Pollock

Secure Networks and Information Systems Department

Sandia National Laboratories

P. O. Box 5800

Albuquerque, NM 87185-1138

Abstract

The Preliminary Service Model describes a high-level vision of an integrated information and simulation computing environment for the nuclear weapons complex, and a concept of operations for how this integrated computing environment will be used. It is a communication vehicle for achieving a common understanding among the sites and users of the system. Another version of the Service Model that incorporates additional user interviews and issues raised in the review process will be completed in April 1999. The Service Model is a living document that, as the distributed computing environment develops in evolutionary stages, will be periodically refined and updated to reflect changing requirements, evolving technologies, and lessons learned.

Acknowledgments

The authors of this document wish to thank the teams and individuals that shared their knowledge and experience in high performance computing with us. Many individuals shared precious time to give thoughtful consideration to the user interviews, or offered helpful comments and suggestions as the model progressed. We wish to acknowledge members of the following project teams for supporting the modeling effort: the code development teams and production system teams at each of the laboratories, Tri-Lab DisCom2 management, Tri-Lab PSE/DisCom2 Distributed Resource Management, DisCom2 Distance Computing Model, DisCom2 Distance Pilots, and DisCom2 Simulation Intranet/PDO. We want to express particular appreciation for the following individuals: Jim Ang, Bob Benner, Kathy Berkbigler, Johnny Biffle, Arthurine Breckenridge, Ron Brightwell, Phil Bryson, Rupe Byers, Sharon Chapa, Gary Carlson, Brian Carnes, Mike Clover, Bob Cooper, Phil Eckert, Larry Ellis, David Evensky, Archie Farnsworth, Pat Fay, Lee Ann Fisk, Don Funkhouser, Scott Futral, Sue Goudy, Lynn Groves, Art Hale, Michael Hannah, Rena Haynes, Jim Hipp, Chris Hendrickson, Bruce Hill, Vic Holmes, Gregg Hommes, Moe Jette, Tom Klingner, Joe Kotulski, Barbara Lasinski, John Linebarger, Bruce Malm, Paula McAllister, Jerry Melendez, David Miller, George Mitchell, John Noe, Steve Plimpton, Guylaine Pollock, Tom Pratt, Art Rodrigues, Clark Streeter, Mitch Sukalski, Tom Tarman, Steve Tenbrink, Greg Tomaschke, Bob Tomlinson, Mike Vahle, Walt Vandevender, Ruthe Vandewart, Cheryl Wampler, Ken Washington, Bob Weaver, Dave Wiltzius, and Bob Wood.

Contents

61
Introduction

1.1
Purpose
6
1.2
Lessons Learned
7
1.3
Scope
7
2
Background
9
2.1
Distance and Distributed Computing and Communication
9
2.2
Product Life Cycle
10
2.3
Assumptions And Constraints
11
3
System Overview
12
4
Concept Of Operations
15
4.1
Operational Perspectives
15
4.1.1
Computation Concept of Operations
15
4.1.2
System Administration Concept of Operations
17
4.2
Application Requirements
18
4.3
User Roles
20
4.3.1
Accountant
20
4.3.2
Analyst
20
4.3.3
Code Developer
21
4.3.4
Collaborator
21
4.3.5
Decision Maker
21
4.3.6
DRM Administrator
21
4.3.7
Model Verifier and Validator
21
4.3.8
Operator
22
4.3.9
Production Engineer
22
4.3.10
Weapon Designer
22
4.4
Resources
22
4.4.1
Computing Resources
23
4.4.2
Storage Resources
23
4.4.3
Visualization Resources
23
4.4.4
Network Resources
24
4.4.5
Software Resources
24
4.4.6
Data Resources
24
4.5
Operations
25
4.5.1
Computation Definition
25
4.5.2
Code Development
25
4.5.3
Parameter Specification
27
4.5.4
Preprocessing
27
4.5.5
Configuration Management
28
4.5.6
Verification and Problem Generation
30
4.5.7
Transition to Target
30
4.5.8
Trial Run
31
4.5.9
Production Run
31
4.5.10
Post-Processing
32
4.5.11
Output and Display
33
4.5.12
Results Analysis and Comparison
33
4.5.13
Problem Retrieval
33
4.5.14
Problem Preservation
33
4.5.15
System Management
34
4.5.16
System Monitoring
34
4.5.17
User Communication
35
4.5.18
User Administration
35
4.5.19
Resource Administration
35
4.5.20
Security Administration
36
4.5.21
Policy Administration
36
4.5.22
Job Management
37
4.5.23
Computational Steering
38
4.5.24
Dynamic Expansion
38
4.5.25
Storage
38
5
Use Case Analysis
39
5.1
The Use Case Process
39
5.2
Preliminary Use Cases
40
5.2.1
Analysis And Verification Use Case
40
5.2.2
Code Development Use Case
42
5.2.3
Configuration Management Use Case
42
5.2.4
Data Migration And Manipulation Use Case
43
5.2.5
Job Computation Use Case
43
5.2.6
Job Definition Use Case
44
5.2.7
Job Management Use Case
44
5.2.8
Job Monitoring Use Case
45
5.2.9
Job Submission Use Case
45
5.2.10
Mesh Generation Use Case
46
5.2.11
Output And Display Use Case
46
5.2.12
Parameter Generation Use Case
46
5.2.13
Policy Administration Use Case
47
5.2.14
Problem Definition Use Case
47
5.2.15
Problem Preservation Use Case
48
5.2.16
Resource Administration Use Case
48
5.2.17
Security Administration Use Case
48
5.2.18
System Management Use Case
49
5.2.19
System Monitoring Use Case
49
5.2.20
User Administration Use Case
50
5.2.21
User Communication Use Case
50
5.2.22
Verification and Problem Generation Use Case
51
6
References
51
Glossary
53

Figures

10Figure 1. Product Life Cycle

Figure 2. Conceptual DOE Simulation Intranet
12
Figure 3. System Architecture Model
14
Figure 4. Computation Concept of Operations
16
Figure 5. System Administration Concept of Operations
18
Figure 6. Use Case Diagram
41

Tables

27Table 1: Mesh-Related Tools

Introduction

1.1 Purpose

The Distance and Distributed Computing and Communication (DisCom2) program will deliver key computing and communication technologies that complement the Accelerated Strategic Computing Initiative (ASCI), by providing efficient, integrated access to a diverse set of geographically distributed high-end and mid-range resources. DisCom2 will develop an integrated information and simulation computing environment — the information and simulation intranet — for the nuclear weapons complex. This represents a significant shift from the way the laboratories have historically performed scientific computing, with each laboratory operating equivalent facilities on its own campus. The Service Model helps establish a foundation for operating in the new environment of geographically distributed resources.

The Service Model is intended to provide a single, unified computing model for ASCI users and applications. It is a joint effort of the Distance Computing Model and Distributed Computing Service Model subprojects. This task coordinates closely with other DisCom2 subprojects and with other ASCI programs, especially the Problem Solving Environment (PSE). The most notable areas of coordination are distributed resource management (which also includes NEWS), security, data/simulation frameworks, and the distance pilots.

The purpose of the Service Model task is threefold: First, this document captures functional and operational requirements for the information and simulation intranet. It provides a high-level definition of the physical aspects of the system, a concept of operations for how the system will be used, and a use case analysis detailing typical user interactions with the system and the services it needs to provide. Second, the model is a communication vehicle for achieving a common understanding of the system among the different organizations. This document provides the basis for an object model describing system behavior that will be used to assess alternative approaches, particularly where the tradeoffs are not well understood or agreement has not yet been reached. Multiple paths through the system are feasible, depending on the particular application, the amount of data generated, specific tools and services (such as visualization, collaboration, or knowledge management), resource constraints, etc. Third, the model supports the evolutionary development of the information and simulation intranet. To establish requirements for each stage of system development, the model will be continually updated to reflect lessons learned from pilot and testbed activities, changing user requirements, and evolving technologies.

1.2 Lessons Learned

Some lessons learned from the Service Model task to date may help dispel some misconceptions and identify barriers.

There is a great deal of similarity among the laboratories as far as concept of operation, user interactions, and the services required of the system. The differences are manifest primarily in the implementation of resource use policy and the level of user support, leading to different organizational cultures that influence users’ expectations of system behavior. Users are primarily interested in system behavior that affects when their job runs (e.g., who gets access and when, how are resources used) and how problems are managed (e.g., who is responsible for taking action, how to get help or general information). Flexible, configurable policy mechanisms with distributed points of control will help with resource use, particularly support for both customer and owner organizational policies. Organizational and procedural mechanisms will be needed to address the disparity in the level of user support among the laboratories. Policies must be established to provide an equivalent level of service for both local and remote customers.

Most users that have been interviewed are extremely interested in using the resources at the other laboratories, and some are already doing so. The biggest barrier to using geographically distributed resources is dealing with the complexity. Learning the basics of how to get access, how to use a resource, how to get data back and forth, how to get help and information — let alone mastering optimal use of distributed resources — can be daunting. In addition to the technical complexity, cultural differences add to the confusion, as acceptable user behavior at one site may be perceived as antisocial at another. The system must be easy to use, or few users will try. Ease of use includes but is not limited to the following: transparent access to all resources from the application level, information services like resource discovery, data migration and manipulation services, work flow management, and user support services can help.

The quantities of resources required and data generated by an application, even different instances of the same application, vary tremendously. The answer to “How much?” often is, “It depends.” It depends on the purpose of the computation, the questions to be answered, the points in the product life cycle and development process, the usage that will be made of the results, individual work preferences, the availability of resources, and other factors.

1.3 Scope

The Distance and Distributed Computing and Communication (DisCom2) Service Model describes, from a user perspective, the services expected of the DOE nuclear weapons complex integrated computing environment to accomplish computation-based stewardship of the enduring stockpile. The Service Model provides a high-level view of what the system needs to do and the interactions between system components, but it does not imply a design. The term “user” is interpreted broadly to include all the various roles in which one interacts with the system, such as analyst, designer, application developer, operator, system administrator, account administrator, and others. Multiple user perspectives have been collected via interviews spanning the spectrum of user roles, problem domains, and organizational cultures. The user interactions with the system have been generalized into a set of use cases. The Service Model provides a common language for the services expected by the broad class of users, and will ensure that the DisCom2 architecture design and selected technologies meet the needs and expectations of the user communities.

The Service Model forms the basis for system design and distributed resource management technology selection, and for prototyping and simulation activities that will explore design alternatives. The system design encompasses computing and communications technologies for remote access to the ASCI platforms (including real time steering of computations), global storage, visualization systems from the NEWS program, distributed resource management systems that permit co-scheduling of critical resources, and integration of other distributed computing, database, and software resources. Coallocation of multiple resources and real-time steering of computations must be supported. Implementation of a DRM system will take an evolutionary prototype approach; that is, services will be implemented in a series of builds, with each phase building upon and learning from the previous phase. Each phase will include prototype, testing, and simulation activities. Prototype activities will implement the well-understood and agreed upon aspects of the system. Prototype services will provide early functionality for validation and feedback from the users. Testing activities will explore trade-offs between possible technology choices or design alternatives when a preferred implementation is not obvious. Simulation activities will explore the tradeoffs between multiple approaches for aspects of the system that are not well-understood or for which agreement has not yet been reached, such as network design and more flexible allocation policies. Focused simulation of alternative designs will assess the impact of proposed design decisions on user expectations, cost, performance, reliability, maintainability, and extensibility.

The remainder of this document is organized as follows:

Background. This section provides program context and technical background information that may be helpful to a reader unfamiliar with the DisCom2 program or DOE’s science-based stockpile stewardship.

System Overview. This section provides a high-level description of the envisioned integrated information and simulation intranet for the nuclear weapons complex.

Concept of Operations. This section describes the operational perspectives for the two major abstractions of user interaction with the information and simulation intranet: computation and system administration. Discussion is from the perspective of what goal the end user is trying to accomplish, from which system service requirements to support the applications can be derived. User roles, resources, and operations are defined to provide a common language for discussing system services and design.

Use Case Analysis. This section describes the DisCom2 use case model resulting from the use case analysis. A use case is a model of a business process of a system; a model of a dialogue between the system and an external person or thing. The set of use cases describes the expected behavior of the system. The use case methodology, interview process, and terminology employed by the DisCom2 modeling efforts are discussed.

2 Background

2.1 Distance and Distributed Computing and Communication

A complete discussion of the DisCom2 program can be found in the DisCom2 Implementation Plan (DNT, 99). The program objectives are summarized here for the reader’s convenience. The service model task coordinates closely with other DisCom2 tasks, including the distance computing model, distributed resource management, distance pilots, security, and data/simulation frameworks, and with other ASCI program tasks, most notably PSE distributed resource management. The DisCom2 program is a DOE multi-lab program delivering key computing and communications technologies that complement the mission of DOE’s Accelerated Strategic Computing Initiative (ASCI). ASCI was established to create the computational modeling and simulation capabilities essential to shift from nuclear and nonnuclear test-based methods of assessment and certification to computation-based stewardship of the enduring nuclear stockpile. Practical considerations will limit the number of ASCI platforms available within the complex at any point in time, requiring the design and analysis experts at each of the Defense Programs (DP) laboratories to use resources that are geographically remote.

The DisCom2 program will accelerate the ability of the DP complex to remotely access the high-end and distributed computing resources by creating an information and simulation intranet. The distance computing objective is to extend the environments needed to support high-end computing at a remote site. The distributed computing objective is to develop an enterprise-wide integrated computing environment to support science-based stockpile stewardship science and engineering requirements. The intranet must be flexibly configurable, providing both capacity computing resources, where the goal is to provide some resources to a large number of mid-range computations, and capability computing resources, where the goal is to provide maximum resources to a smaller number of high-end computations. Resources to be managed include computing, communications, storage, visualization systems, data, and software such as licenses and executable modules.

2.2 Product Life Cycle

Product realization follows a three-phase life cycle: design, modeling and simulation, and manufacturing. Significant iteration may occur at each phase, as shown in Figure 1. In all of these phases, engineering information stored in a variety of formats and locations, e.g., legacy databases, may be used.

[image: image1.wmf]User

Communication

System

Management

System

Monitoring

Job

Management

User

Administration

Resource

Administration

Security

Administration

Policy

Administration

Figure 1. Product Life Cycle

The design phase consists of activities such as product conception, feasibility study, and design definition. Existing engineering information may be reviewed to see if a solution, perhaps partial, already exists. Benchmark runs, confirmation tests, and evaluations may be performed for clarification. The design phase activities may require modeling and simulation to understand customer requirements or explore design alternatives. A major aspect of preparing for a simulation is identifying crucial features and parameters and assessing whether these parameters can be determined from existing test or simulation data.

Resources that may be accessed during the design phase include numerous information databases containing documents, analyses, engineering drawing files, images, materials properties, chemical data, electrical and mechanical parts data, engineering procedures, and configuration management information. (One example is the Product Data management database at SNL.) Other resources include design tools and infrastructure resources like networks.

The simulation phase is typically motivated by a desire to understand the design’s behavior given the phenomenology that would come into play for a specified environment. The challenge of simulation problems is determining the set of models that achieves the best concurrence with experimental data at the least cost to meet the analysis task at hand. Therefore, the simulation phase may reiterate trying to discover the best representation of the model. M. Clover (1998), presents an example involving flow and material simulation. The highest level of fidelity for modeling the physics in a nuclear weapon system is solving for ~3 X 1029 particles using Dirac-Hartree-Fock equations. This is computationally infeasible. Boltzman equations can be used as approximations to the Dirac equations for subjects of interest (e.g., photons, neutrons). Increasingly simple approximations can be used (e.g., Fokker-Planck, Navier-Stokes, Euler) until a model is found at acceptable levels of fidelity and computational cost. Knowing what approximation is appropriate also involves understanding the context in which the approximation is valid. One approach is to monitor parameters which characterize the context in question. If the solution space is inconsistent with the valid context, the fidelity of the model may need to be increased; otherwise, the lower cost approximation is used. Analysts choose a starting approximation based on their best judgement, then typically check the next most expensive and the next least expensive models.

Resources that may be accessed during the simulation phase cover the whole spectrum of interest: computing, visualization, storage, communication, data, software, and infrastructure resources.

The manufacturing phase constructs the product as specified by the design. Design changes may be required given the effects of materials, produciblility, cost, or other factors. Modeling and simulation simulate materials effects, replacement components, and manufacturing processes needed to understand the impact on the product. The as-built configuration is associated with the design and manufacturing specifications, as well as with the simulation data.

Resources that are accessed during the manufacturing phase include the numerous engineering information databases and production-related transactions.

2.3 Assumptions And Constraints

Because development of the Service Model is essentially a process of gathering and documenting user requirements without regard to design or implementation issues, it is a process largely free of assumptions or constraints. Still, there were a few assumptions that guided the interview process. These are listed below.

· Because current resources are highly utilized and current applications are limited by the resources available, it was assumed that end users wished to use remote resources on a regular, routine basis in a fashion similar to the use of local resources. This assumption probably influenced the questions and direction of the interviews.

· Because interviewing all users would be impractical and costly, it was assumed that a representative sample of users, spanning the roles, problem domains, and organizations of the DP complex, would adequately capture requirements for the entire system. It is possible that some aspect of the system has been missed by the set of interviews conducted. However, a sufficient number was conducted such that the later interviews confirmed the earlier ones, rather than yielding new information or fresh insights.

3 System Overview

The DOE information and simulation intranet will integrate computing and communications systems located at geographically distant sites throughout the nuclear weapons complex, including the DP laboratories and selected plants. The envisioned integrated computing environment consists of high-end and distributed computing resources, communications technologies for remote access, storage, visualization systems, distributed resource management systems that permit co-scheduling of critical resources, and other integrated distributed resources such as engineering databases, software licenses, and executables. The sites to be connected are LLNL, LANL, SNL/NM, SNL/CA, Y-12, Pantex, and Kansas City. The information and simulation intranet is shown conceptually in Figure 2.

[image: image2.wmf]Computation

Definition

Results

Analysis &

Comparison

Code

Development

Verification

& Problem

Generation

Transition

To Target

Trial

Run

Production

Run

Post-

Processing

Output &

Display

Parameter

Specification

Preprocessing

(e.g. mesh)

Configuration

Management

Off-Shoot

Problem

Post-

Processing

Output &

Display

Problem

Preservation

Retrieve

Related

Problem

Figure 2. Conceptual DOE Simulation Intranet
Key considerations, unique to the DOE scientific computing community, guide the design of a distributed resource management system for the information and simulation intranet. These are described below.

Extremely dynamic hardware and software environments are normal. This community continually strives to develop and use state-of-the-art computing resources. As a consequence, the hardware and software environments are in a constant state of flux. Resources mature and become more stable and user-friendly, but as they do so, new, state-of-the-art resources and technologies will be integrated into the system. In this environment, a “stable” resource may be one that doesn’t see a major upgrade for 2 months. The amount of change will vary over time, but it is a fact of life that must be designed for and managed.

Distributed ownership of resources affects system design and policy decisions. Each site may have unique policies and procedures (for security, allocation, accounting, and the like (that govern resource use at that site. Agreements between sites govern remote access. In a customer role, sites set policy and priorities for the local users accessing remote resources. Individual resources may have distinct access policies, from restrictive to open; similarly, policy will vary between individual users. Policies, procedures, and agreements may change. The system should provide generalized, flexible, configurable policy mechanisms with multiple points of control, supporting distributed and/or hierarchical policy controls.

Heterogeneous components must be integrated into a cohesive system. The diverse hardware and software configurations that exist today within the DP complex must be supported for the foreseeable future. Economic, organizational, and technical considerations may preclude replacing the local resource management systems currently installed on the computing platforms as part of a single, uniform hardware and software hardware DRM infrastructure. Over time, as components of the DRM system become more integrated into the DP community, the DRM system may evolve into a more homogeneous system.

Heterogeneous user communities must be served. Diverse user communities exist throughout the DP complex. Normal variations among users, typical of any site or system, include: individual and group access privileges; level of expertise in using the system; preferences for different tools, desktop applications, and system interfaces according to problem domain and experience; and the ease with which individuals adapt to a new system. In addition, the computing environment encompasses variations among sites. Users will access resources at remote sites with different organizational cultures. Though the tasks that the users perform (and system interactions and required services (are essentially the same, each site is currently providing service in somewhat different ways. The differences are manifest primarily in the implementation of resource use policy and the level of user support. Users have expectations of system behavior that, though not strictly system requirements, should be addressed. Flexible, configurable policy mechanisms will help here, particularly support for both customer and owner organizational policies.

Security requirements must be satisfied. Each site determines its own security policy. Agreements between sites govern remote access. Security policies are agreed upon and approved separately for each pair of sites, for each direction of access, and for each level of security. Not all policies are yet approved. Due to the length of time required to obtain approval, security policies do not change frequently. Currently, the system must support DCE cross-cell authentication using Kerberos V5 certificates and GSSAPI. Other requirements are yet to be determined.

Commodity products and industry standards are desired aspects of the system solution wherever feasible. Custom solutions are costly to develop and maintain, and may be difficult to change as system requirements and technologies evolve.

[image: image3.wmf]Applications

Application-

Specific

Services

Knowledge

Management

Resource

Management

Resource

Interface

Resources

Desktop

Submission

System

Admin

Product

Webtop

Mesh

Generation

Data

Mining

Visualization

Design

Aid

Libraries

(MPI, DMF,...)

Work Flow

Tools

Collaboration

Tools

Visualization

Tools

App-Specific

Brokers

Information

Services

Data

Services

Application

Persistence

Monitoring

Services

Allocation

Reservation

Scheduling

Submission

Events

Control &

Status

Standard APIs

Viz

Network

Computing

(batch, Unix,

NT)

HPSS,

Storage

Software

(licenses,

objects,...)

Data

(databases,

files,...)

Distributed and/or Hierarchical Policy Control

(e.g., resource, owner, customer, project,

user group, user)

Authentication

Authorization

Security

Policy

To provide a vision of the desired final DRM system, an Architecture Model (Pollock et. al. 1999) is being developed in conjunction with this Service Model. The Architecture Model provides a target high-level system concept that addresses the key considerations for distributed resource management; it provides a basis for making design and technology selection decisions, evaluating alternatives, and providing an evolutionary strategy for developing the information and simulation intranet. The Architecture Model is shown pictorially in Figure 3.

Figure 3. System Architecture Model

The Architecture Model divides the system into horizontal layers and vertical partitions. A component can access other components in the same layer or in the layer below. The following features are desired in the system architecture:

· an individual user can access all resources through one application

· different users can use different applications to access the same resource

· allocation policies should not be tightly coupled with resource management; need flexibility and dynamic configuration

· policies should be settable at several independent points of control: individual user, user group, customer organization, owner organization, resource

· security services must use current DOE security policy of DCE/Kerberos, but must be able to evolve to another authentication service such as public key without significant reengineering

· resource management should use an available meta-computing or resource management technology

· resource management provides access to geographically distributed, diverse, high-end and mid-range resources

· standard interfaces isolate the user from device-specific details and the highly dynamic environment
4 Concept Of Operations

This section describes the operational perspectives for the two major abstractions of user interaction with the information and simulation intranet: computation and system administration. Discussion is from the perspective of what goal the user is trying to achieve, from which system service requirements can be derived. In general, the computation users and the administration users are disjoint communities. The user roles, system resources, and operations are defined here.

4.1 Operational Perspectives

4.1.1 Computation Concept of Operations

During a design or modeling phase, an analyst may perform many computations to answer a set of questions, and may focus many iterations of a computation on a particular question. From a system perspective, these may all be viewed generically as a computational task. The concept of operations for a typical computational task is presented pictorially in Figure 4. A computation comprises a sequence of subtasks, each of which may involve complex interactions with the system. An analyst or engineer who is expert in the computational domain directs the computation process. Other individuals or teams with varying degrees of knowledge about the problem may perform subtasks. Details of the subtasks are further described in Paragraph 4.5.

[image: image4.wmf]Figure 4. Computation Concept of Operations

The computational task begins with a definition of the computation to be performed — determining the analytical model, calculation approximations, material properties, resolution, time steps, initial and boundary conditions, and all necessary parameter values that will be used for the analysis. Once the problem is defined, it must be cast into a form suitable for computer processing: the code development, parameter specification, and preprocessing subtasks. Code development includes modification of existing code modules, development of new code, and associated compiling, debugging and testing activities. Parameter specification involves preparing the necessary input. Preprocessing encompasses computations that are preformed to generate other input needed for this computation, such as mesh generation; this can be a complex computational task in itself. Configuration management provides version control and issue tracking for the various code and input versions in existence to support the computational tasks. Verification and problem generation insures that the generated code and input perform as desired, and creates the files for the production calculation. The transition to target subtask covers any needed conversions to move the problem from the development environment to the target machine, such as resizing or porting between platforms. A trial run verifies that the code and input still perform as desired after the transition.

At this point the production computation and analysis begins. The production run subtask performs the desired computation. Post-processing performs any needed format conversions, processing, or manipulation of the output data to prepare it for presentation to the analyst. The output and display subtask includes visualization, image and plot generation, animation, printing, and capturing of desired output data. During the production run, a user may examine intermediate output and restart files, and choose to start up a related computation on an off-shoot problem, such as varying the input parameters or examining a subset of the problem at greater resolution. During results analysis and comparison, the domain expert analyzes the computation results and determines the answers to questions posed in the problem definition. Retrieving a related problem allows the analyst to perform side-by-side comparisons with the results of a different computation. Problem preservation archives important aspects of the computation task for later retrieval and comparison, such as code, input, output, restart files, images, annotations, text documents, and other information desired by the analyst.

Several of these subtasks involve executing an application, and normal job management activities are covered under the computation concept of operations. A common set of services and tasks for launching and controlling the execution, such as job submission, job management (e.g., checkpoint, kill), job monitoring (e.g., status, resource utilization), steering, etc., provide the normal job management. Certain abnormal job management functions that require administrator intervention, such as temporarily altering policy or privileges, or cleaning up wayward processes, are handled under the system administration concept of operations.

4.1.2 System Administration Concept of Operations

The concept of operations for system administration is presented pictorially in Figure 5. System administration comprises a disjoint set of subtasks, which are typically performed in response to an external event, such as the passage of time, user requests, product upgrades, undesired system behavior, etc. Individuals performing system administration tasks have varying degrees of knowledge about the system and about the computations. Details of the subtasks are further described in Paragraph 4.5.

The system administration task consists of a set of subtasks that are performed on a routine or as needed basis. System management encompasses the full range of activities necessary to maintain the operational performance of the system, including control, status, administration of individual components, preventive maintenance, upgrades, reporting, troubleshooting, and responding to requests. System management may initiate other administrative subtasks as appropriate. The communication subtask communicates current system status and events of interest to users. System monitoring is an on-going function, providing system state-of-health and usage information. The system administration

[image: image5.wmf]<<uses>>

User

Work

Mgt

Service

Queue

Service

Resource

Broker

Service

Data

Service

<<uses>>

<<uses>>

Problem

Definition

Mesh

Generation

Configuration

Management

Job Computation

Work/Request

Monitoring

Work

Management

Job Submission

Job Description

Analysis

and

Verfication

Problem

Preservation

Job Persistence

Output

and Display

Job Cleanup

Data

Manipulation and

Migration

Parameter

Generation

Code

Development

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Figure 5. System Administration Concept of Operations

 aspects of job management handle abnormal system behavior and events, and respond to requests for exceptions to policy. User administration provides the subset of the system administration task that manages the user-related components of the system — user adds, changes, and deletes; event subscription, notification, and response; status; inquiries, reports, and logs; and maintenance and upgrades. Likewise, the resource, security, and policy administration subtasks manage, respectively, the resource, security, and policy-related components of the system.

4.2 Application Requirements

The system architecture is driven by key application requirements: performance needs, scaling requirements, memory requirements, I/O requirements, and storage requirements. The load placed on the network (and hence, the bandwidth required) is dependent on concurrent access requirements to memory, CPU, and storage. Knowledge of these requirements impacts scheduling and allocation algorithms as well as the design of the physical infrastructure. Resource allocation needs to take advantage of locality (minimize communication), be sensitive to latency (such as by pre-fetching data), and optimize overall system throughput (such as by performing data migration during computation or by parallelizing data transfer). All of these key application requirements vary widely, even for a single application. For example, an application’s current debug level and position in the computation concept of operations flow (such as a code development run vs. a production run) dramatically impact resource utilization.

Some application requirements are summarized from user interviews to date.

· Problem zones: Mesh sizes range from 50,000 nodes for a small mesh to 10’s of millions of nodes. There are a few codes running today with 100 million nodes, with projected long term targets of 1 billion nodes. The generated mesh files typically are two to three orders of magnitude greater than the number of nodes, about the same size as a restart file. The generation of large meshes will have significant visualization requirements to verify the mesh geometry and materials. The mesh size (for applications using meshes) is one of the primary factors that drives the application’s resource requirements, which implies an order of magnitude increase in resource demand in the future for codes that scale linearly, and a greater increase for other codes.

· Wall Clock Time: The wall clock time can vary from hours to several months. Long-running applications typically break processing into multi-hour chunks.

· Memory: The maximum memory requirements reported for today’s applications were 100 Mbytes per processor and 80 Gbytes total.

· File Size: Today’s typical restart and mesh files are 1-2 Gbytes in size, with plot files about 20% of that. A few applications are in the 10-20 Gbyte range or larger. The largest restart file is 450 Gbytes, which is generated every 30-60 minutes. Codes which generate large amounts of data are still not generating as much as desired due to resource limitations. In these cases, restart files are overwritten rather than keeping a history of the simulation.

· Total Data: Total data generated by an application varies from 100 Gbytes to 6 Tbytes. Again, users produce less output than they would like due to resource limitations.

· I/O: One slow application writes to a parallel file system at 150 Mbytes per second. Other codes are on the order of 1 Gbyte per second.

Just as the DRM architecture is impacted by application requirements, the current resource environment impacts the application architecture. Because ASCI-class codes are typically resource-limited, the code may be sized to fit within the limits. For performance reasons, codes may try to map as closely as possible the geometry to the physical connectivity of the machine and thus become machine dependent. For example, the application may have close proximity of the elements in each processor domain with roughly the same number of elements per processor.

The application communications model also affects the resource utilization mix (such as intra-cluster vs. intersite network resources). Codes needing to share information use either run time synchronization (parallel runs) or serial linkage (output from one code is input to another). Run-time synchronization is accomplished through message passing or shared memory. Message passing predominantly uses MPI, but PVM must also be supported. Multi-platform shared memory programming may use OpenMP.

The languages used by applications include High Performance Fortran, Fortran 90, Fortran 77, C++, and C. At LLNL, it is estimated that 90% of submissions are interactive and consume 15% of the resources, while the other 85% of the resources are consumed by batch jobs. Similar interactive and batch resource consumption patterns exist at SNL and LANL.

4.3 User Roles

This section describes the different user roles that were collectively identified in several tri-Lab DisCom2 meetings. A user role is a function the user performs or an area of responsibility the user has with respect to the system. One or more people may perform the same user role. One person may perform more than one role.

4.3.1 Accountant

The accountant is concerned with the user community’s resource allocations and usage for resources of interest for both local (to the accountant’s site) and global (across sites) users. The accountant tracks resource utilization via reporting mechanisms, and conveys information of interest to management.

4.3.2 Analyst

The analyst works on a simulation problem under the technical direction of a weapon designer or production engineer. A person in this role has an in depth understanding of some aspect of the simulation problem domain of interest. The simulation is typically motivated by a desire to understand the design behavior given the phenomenology that would come into play for a specified environment. The analyst defines the simulation problem by specifying the analytical model, calculation approximations, material properties, resolution, time steps, initial and boundary conditions, and all necessary parameter values that will be used for the analysis. During the problem execution, the analyst monitors and guides the progress of the computation. The analyst directs visualization of the results to highlight attributes of interest. The analyst reports the findings and characteristics of the simulation to the weapon designer or production engineer.

4.3.3 Code Developer

The code developer designs, implements, builds, tests, and debugs the simulation software given the specification obtained from the analyst. The developer handles all aspects related to managing the code, input files, and output files. Details include compile and build scripts and configuration management of all files of interest. The developer works with the analyst during the simulation execution and monitoring activities.

4.3.4 Collaborator

A collaborator is any member of a group working cooperatively on the same problem. A collaborator may fill any other user role. Collaborators may need simultaneous access to the same computation, data, input and output files, resources, etc. Collaboration tools and services should be supported.

4.3.5 Decision Maker

A decision maker is someone who guides high end computing related activities at the programmatic level. The geographic scope of the program may be within a site, or may transcend sites. The functional scope may be at the project level (such as a simulation project), or consist of multiple projects (like the stockpile life extension program). This role interacts most with the weapons designer, production engineer, and analyst roles.

4.3.6 DRM Administrator

The DRM administrator configures and maintains the resource management environment, which includes modifying resource entries, coordinating with security administrators for resource authorization, configuring allocation policies, and performing DRM maintenance and upgrades. The DRM administrator performs selected job management duties such as responding to priority requests and handling exceptions. This role also monitors state of health at an aggregate system level (intra- and inter-site). The DRM administrator may provide user help or support. Finally, DRM administrators coordinate with other DRM administrators, system administrators, decision makers, operators, and other roles as the situation demands.

4.3.7 Model Verifier and Validator

A model verifier and validator is concerned with checking that the right product is being built (validation), by running test cases and various analyses to assure that the software model conforms to system and software requirements and produces credible results; evaluating the model(s) to determine whether they adequately represent the intended physics and phenomena; and comparing results to alternate calculations or experimental data. This role also checks that the product is being built “right” (verification), by determining that products in each life cycle phase adhere to and are traceable to prior life cycle phase requirements, adhere to standards and practices as specified for that phase, and form an adequate foundation for the next life cycle phase. This role interacts mainly with code developer, analyst, and decision-maker roles.

4.3.8 Operator

The operator manages the day-to-day operations of the computing platforms and network infrastructure. An operator may submit jobs that have been defined by another user, but generally have little knowledge of the actual computation. This role also monitors hardware and software for job throughput and problems, focusing on state of health. File system availability is monitored. Operators monitor security aspects, such as intersite connections, login attempts, password expiration, and DCE cell activity. Operators may also serve as the first point of contact during off hours.

4.3.9 Production Engineer

A production engineer is an engineer at a production facility or agency. This role is responsible for production, manufacturing, or procurement aspects of product fabrication in conformance with design specification. The product design may need to be adapted to a manufacturing system. This role typically interacts with weapon designer and analyst roles.

4.3.10 Weapon Designer

A weapon designer typically focuses on the initial DOE-DoD weapon development phases, which include conception, feasibility study, design definition, and development, as well as later phases concerning stockpile maintenance and life cycle extension. This role typically interacts with analyst and product engineer roles.

4.4 Resources

This section describes resources that have been identified as resources to be shared and managed in the ASCI community. Some items on this resource list aren’t usually considered as resources to be administered; data and executable resources are not “consumed”, but they do need access control. Resource utilization should be consistent with job priority structure; a lower priority job should not hinder the progress of a higher priority job through its resource usage. The end-to-end requirements and resource allocation tradeoffs must be considered, including computation requirements versus platform performance, data generation and migration needs versus network bandwidth and storage resources, real-time versus deferred visualization and archiving. Resources to be managed included computing, storage, visualization, network, software, and data resources.

4.4.1 Computing Resources

 Computing resources comprise both the high-end ASCI platforms (the “capability” machines (and distributed mid-range platforms and clusters (the “capacity” machines. The hardware platforms and clusters include SGI Origin 2000, IBM SP2, Compaq alpha, Compac NT DEC 8400, DEC 5800, IBM F50, and Sun Sparcstations. The current computing environments include Load Sharing Facility, LoadLeveler, NQS, DPCS, PBS, Codine, yod, Unix, and Windows NT. The different platforms may have different usage policies, access control, and sharing agreements. The memory, cache size, temporary storage, and I/O capabilities available vary from platform to platform, and are important attributes that must be considered during resource allocation. An individual user should be able to view and access all the resources, wherever they reside, to which access is authorized.

4.4.2 Storage Resources

Massive amounts of data generated by the ASCI-class simulation applications in a multi-site distributed environment presents performance and capacity challenges for storage resources and for management of resources and jobs more generally. Storage size, data transfer rate, numbers of files to be stored, file sizes, and geographically scattered sites contribute to storage and job management complexity. Storage resources of concern in the DRM environment vary in visibility scope: global file systems shared across the laboratories, such as the Distributed File System (DFS), and local (to a machine or a local area network) storage. DRM must also consider the form of I/O, such as sequential or parallel, and the related impact. The High Performance Storage System (HPSS), which is one of the storage resources of concern to DRM, supports both sequential and parallel I/O. It is also desired to manage temporary file space and interim storage needed for data migration and manipulation.

4.4.3 Visualization Resources

Achieving a high level of confidence in simulations for ASCI applications requires the analysis of extremely high-fidelity models, which may contain billions of cells. ASCI's success is dependent on the ability to comprehend, debug, and analyze this data. The NEWS program is developing high performance data visualization corridors and resources that are key to comprehending and communicating simulation results. Visualization resources include

· SGI Onyx2 visualization servers at each site with multiple Infinite Reality graphics buffers (IR pipes) using switched video and remote rendering distributed to the analysts' desktops,

· immersive environments, such as visualization caves and virtual reality devices,

· other rendering tools and visualization displays, such as the user’s desktop.

4.4.4 Network Resources

Network bandwidth is an expensive resource that must be allocated effectively for efficient usage and optimize the overall throughput of computations. Massive amounts of data can be generated during a single simulation job. A high priority job at one site in the ASCI complex may need to migrate data to another site during its lifetime, including during real time, and should not be hampered by network utilization of a lower priority job elsewhere in the complex. The size of simulation problems and their input and output will increase in the future, adding to network congestion. Increasing bandwidth in the Wide Area Network (SecureNet, for example), is not trivial in terms of cost and effort. The traditional “best-effort” service, where all traffic is treated equally, is not sufficient. Therefore, the network infrastructure needs to be treated as a consumable shared resource that is appropriately managed and allocated through bandwidth brokering and/or quality of service capabilities. Ideally, the location of resources and use of the network should be transparent to the user.

4.4.5 Software Resources

Some software resources, such as licenses, may be considered as a consumable shared resource. Licenses of concern in the DRM environment may include software development tools. Software executables, such as a file format conversion routine or a distributed simulation module or object, aren’t “consumed”, but must be managed with respect to access and authorization control. Multiple versions of executables may exist, such as different development and production versions, and these must be managed appropriately. These executables or code modules could be made available to higher level applications as resources to be scheduled or services to be provided; for example, renderers, linear solvers, or format converters could be made accessible in this way.

4.4.6 Data Resources

Similar to the software resources, data resources are not necessarily consumable, but must be managed with respect to access control and need-to-know requirements. Data resources of interest to DRM include files and databases. Numerous legacy engineering databases reside in a variety of formats and locations. There may be versions or configurations associated with data resources, such as a specific setup for a simulation run or a particular platform.

4.5 Operations

An operation describes a particular objective that a user is trying to accomplish. The operations are described strictly from the user perspective, with the system treated like a black box. This section focuses on goals, related attributes, and system impacts for each operation. This provides an operational context for the use cases presented later in this document.

A use case represents a typical interaction between a user and a system, and can ultimately involve knowledge and discussion of system design details. Use cases are generalized abstractions of system interactions, and can be as detailed or as abstract as necessary to describe the interaction between user and system. An operation may entail a particular flow or subflow through a use case (a scenario), or a complex sequencing of multiple use cases. Additionally, use cases may not capture functional requirements such as performance: qualitative (how well), quantitative (how much), or periodicity (how often, how long). Understanding the motivation behind the set of use cases provides a better context for comprehending system requirements and ascertaining completeness of use cases.

4.5.1 Computation Definition

Computation definition is typically performed by an analyst, designer, or engineer. System interaction may involve no more than the user desktop and editor. The goals are to determine the aspects of the problem space to be addressed in the computation given a programmatic need, the strategy for taking on those chosen areas, and the requirements for the computation.

For a simulation computation, requirements include the algorithms and models to be used, approximations, materials, and mesh attributes and size (assuming the simulation involves a mesh). The challenge with some simulation problem domains is determining the lowest fidelity model that is good enough for the analysis task at hand. Model attributes include materials, geometry and topology, physics approximations, and code options. Mesh sizes vary with the problem being solved and the development phase (e.g. code development vs. trial run vs. production run).

4.5.2 Code Development

Code development is typically performed by a code developer or software engineer under the guidance of a domain expert, or by the domain expert directly. The goal of code development is to produce software that adheres to the requirements reflected in the computation definition. Codes generally are written in High Performance Fortran, Fortran 90, Fortran 77, C++, and C.

Code development is typically done on computing resources local to the developer, ranging from the developer’s workstation to mid-range clusters or other capacity resources. Some users or problems require code development and debugging on the large ASCI platforms at some point in the code development cycle. Storage and visualization requirements are, in general, significantly less than for production jobs, though debugging may entail copious amounts of data. During code development, the vast majority of time is spent in the interactive mode. Policies governing interactive use are of prime concern for debugging, as the number of nodes may reveal scalability issues and time may reveal algorithmic or parametric problems. It is estimated by one individual that up to 99% of development run time is spent fine tuning the problem.

For performance reasons, codes try to map as closely as possible the problem geometry to the physical connectivity of the machine. The problem decomposition typically tries to achieve proximity of elements in each processor domain with roughly the same number of elements per processor.

Codes needing to share information use either run-time synchronization (parallel runs), or serial linking (output from one code is input to another). Run-time synchronization is accomplished with MPI or PVM. PVM is less common, but must be supported for legacy codes. OpenMP is also used for multi-platform shared memory programming.

Codes usually store elements, faces, and nodes, though sometimes edges are supported.

In order to use remote capability and capacity machines, knowledge about the development environment, points of contact, and support or help capability is needed. Either a transparent way to access the environment or a set of standards is needed. There are ongoing efforts to identify and develop a Common Basic Environment (CBE) for the tri-lab community. A common code infrastructure (formats, name space, and tools) enhance code development, portability, and collaboration across sites. A common tool suite across sites would include debuggers, compilers, performance analysis tools, and libraries such as message passing and math libraries. Users need parallel performance tools for cache performance monitoring, message and memory system interactions (e.g. malloc running an order of magnitude slower than calloc), and profilers (not too verbose) for messages and code. To optimize performance, users need to understand the nuances of each machine, e.g. compiler differences and cache sizes. Users want a standard directory architecture or global file system as well. These issues are closely related to the work environment management activity described in Configuration Management, paragraph 4.5.5.

4.5.3 Parameter Specification

The objective of this operation is to create the input parameters required by the code according to the computation definition. Parameters are dependent upon the problem domain and the code. Parameters typically include initial conditions of the geometry, materials properties, opacities, physics approximations, mesh parameters, problem decomposition, and code options.

4.5.4 Preprocessing

The goal of preprocessing is to generate, via computation, verified information that is input to a simulation code. The typical example is a mesh. The mesh geometry and materials mapping is verified usually via visualization. Input to mesh generation preprocessing may be a structural representation, such as a solid model. Mesh packages are shown in Table 1.

Table 1. Mesh-Related Tools

Code Name
Description
Site

FASTQ
Builds 2D meshes. Predecessor of CUBIT. Still heavily used.
SNL

CUBIT
Builds 3D meshes. Uses solid modeler – ASIS
SNL

TrueGrid
Originated from LLNL Ingrid. Interactive capability. Provides visualization of mesh for verification of mesh geometry.
LLNL

Pmesh
Parallel mesh generator. GUI isn’t as good as TrueGrid. Pmesh will be enhanced with CUBIT.
LLNL, SNL

Linker
Maps data from one computational mesh to another. Handles different kinds of 2D meshes – e.g. LaGrange implosion -> Eulerian.
LLNL

MeshTV
Visualization of mesh and materials superimposed on mesh. Interactive.
LLNL

Meshes will be illustrated using the finite element model (FEM) domain. A FEM is a finite number of elements that describe a physical object. An element is a collection of nodes. A node is a vertex of a finite element. A mesh element may be two dimensional (e.g., triangle, square) or three dimensional (e.g., wedge, tetrahedron, hexahedron).

A mesh may be represented in a scientific data standard format, such as EXODUS. The format typically contains nodes, connectivity, and material attributes. The future tri-lab scientific data format is Data Models and Formats (DMF), which will make it easier to share data between codes and sites. DMF is based on vector bundles, which describe discrete geometry and apply to fields via mappings. DMF is problem domain independent and contains mesh state information over time.

Mesh generation and verification can entail significant computation and visualization requirements, requiring interactive access to high-end ASCI resources. Policies governing interactive use are of prime concern for mesh verification, as the number of nodes and the amount of time involved can be quite large. Mesh sizes vary with the problem being solved. Generally speaking, a 50,000 node mesh is a small or low fidelity mesh. 20 million nodes are required for some ASCI-class problems, and in the future a billion nodes won’t be unusual. Examples of mesh sizes include a 700 megabyte file for a 17 million node mesh and a 10 gigabyte file with 13 million nodes.

4.5.5 Configuration Management

The goal of configuration management is to provide tracking and reproducibility of results. Configuration management (CM) is performed independently by each individual code team.

The literature identifies four classical configuration management goals (McCornack, 1998):

· Identification: The process of specifying the configuration at discrete points in time. This function includes designating configuration items and their components and defining and establishing baselines. A configuration item is any element that is subject to CM procedures.

· Control: The process of governing and directing the product as it progresses through the life cycle. The control function is concerned with the version control of files; the control of a change(for example, what components are impacted to implement a new requirement; and the control of a configuration (for example, what changes will be incorporated into a new release of software. Furthermore, the goal of the control function is to monitor not only change in a system, but also the implementation of a change.

· Auditing: The process of configuration verification and validation. The verification process determines whether the configuration is what it has been defined to be. Verification looks for traceability from baseline to baseline. The validation process determines whether the configuration fulfills the function to be performed for the intended milestone. In formal CM systems, audits are part of the baselining process, and they are used to ensure changes are incorporated as intended.

· Status Accounting: The manner in which output and information about the other three CM functions are recorded and reported upon. Status accounting provides the means for assessing the current state of the product. This function may be highly integrated with control and auditing.

Various CM activities which support the goals include:

· Version Control: Identifying, maintaining, and tracking revisions of components of a product and versions of the product itself.

· Change Control: Tracking and controlling changes to components of a product and changes to the product. This is closely related to version control.

· Requirements Management: Establishing processes to define and track product requirements and requirement changes and the impact to the development of the product.

· Work Environment Management: Establishing and maintaining the work environments needed to develop and deliver a product. For software this includes tasks such as defining directory structures to support the version and change control and defining life cycle related environments such as development, testbed, and production networks. This activity is similar to the Common Basic Environment (CBE) work referred to in the Code Development section.

· Build Process: Defining, developing, and documenting the steps, whether automatic or manual, to build a product.

· Issue Tracking: Tracking issues related to the development of a product throughout the product life cycle. Issues can be product problems or defects, enhancement requests, action items, requirement changes, testing results, and so forth.

· Release Management: Establishing processes for releasing or distributing a product to customers.

· Product Work Flow: Defining the matrix of roles and responsibilities crossed with stages of a product through its life cycle.

Version control of ASCI codes and data is typically done at the project level. Some projects need code, input data, expected results, and actual results in version control. Some projects manage versions of files by using a file archive utility, such as tar. Other projects use a version management system like CVS. Sierra, an SNL project, is working on providing an integrated software development system, targeted at finite element modeling codes that provides version control, building, and distribution of code packages.

The build process may benefit from an experiment configuration tool, where different configurations of separate experimental runs could be tracked. Depending on the code’s resource usage, the different configurations could potentially be run in parallel and perhaps automated. A related topic is access to prior job results; problem configuration is necessary to support analysis and comparison. Refer to the Results Analysis and Comparison section for a description of the requirements for this issue.

Issue (bug) tracking is needed to support the development process and user help support activities. It documents problems and issues for the system under development, and tracks their resolution. By documenting decisions, it provides a historical record of the system.

The correct code version needs to be propagated to each platform where it will be used. This is related to the build process and release management CM activities.

4.5.6 Verification and Problem Generation

The goal is to check that the implementation of the computation definition, that is, the code development, parameter specification, and mesh generation, is correct. This is done using a variety of techniques: examining parameters, running a test suite that proves out some aspect of the code (such as testing features or verifying the control and data flow), collecting metrics on the mesh, or visualizing the output. This step is generally performed on the capacity resources at the local site.

4.5.7 Transition to Target

The goal of this operation is move the input files needed for a production run (such as the restart file and the parameter specification) to the target computational resource. Any platform portability modifications would be made at this time. The problem parameter specification and problem decomposition are resized to the desired production goal. The associated test suite, if available, may be moved as well.

4.5.8 Trial Run

The goal of this operation is to check the simulation run setup before submitting a long running production job. The simulation is run for a few time steps. Short debugging runs potentially using an interactive debugger (like TotalView) may be required, which need interactive use and require a lot of memory. Debugging runs may have large memory and computational requirements. Some codes have associated test suites, which may be run as well. The resources used at this step are the desired target resources, which may be either the high-end capability resources or the mid-range capacity resources.

4.5.9 Production Run

The goal of this operation is to generate results for analysis of the problem space that the computation is addressing. The resources used at this step are the desired target resources, which may be either the high-end capability resources or the mid-range capacity resources. Production run issues that were discussed during user interviews are included in the remainder of this section.

 Most production runs are currently submitted to batch systems with no further user interaction. Some codes, however, will want interactive access to the production runs, including production jobs on the ASCI platforms. Most long-running codes will need user access to output files and steering mechanisms. A few codes have interpreted shells that bind to compiled computation algorithms; these are especially suited to interactive access.

Computations can be long running, spanning days or months. Some long running jobs are broken up into intervals of time steps, where the application generates restart files and terminates, and a job execution script resubmits itself for the next set of time steps. Long jobs are anticipated to run 400-600 hours , which may not be continuous but spread out over a longer period of time. Queue wait times can be on the order of days or weeks. Synchronized, integrated access to resources among a parallel job’s processes and time-sharing is needed during the job’s execution. This means accounting for and managing these processes as a single entity. Time-sharing is required to provide good responsiveness for development work while permitting long execution times for production work. LLNL utilizes gang scheduling to control fine-grained processor scheduling. Various academic environments utilize dynamic co-scheduling or gang scheduling to accomplish the same purpose.

ASCI-class codes consume considerable computational, storage, and I/O resources. These codes are typically resource-limited; the code is sized to fit within the available limits. As resources grow, these codes will grow to consume the available resources.

 Remeshing may be needed during execution. For example, remeshing occurs during adaptive mesh refinement or when transitioning between Lagrangian and Eulerian codes. When remeshing occurs, the problem decomposition may need to be adjusted to balance the elements among the processors. Ideally, resources could be dynamically requested by, allocated to, and released by executing applications.

Some meshless codes (such as SNL’s SPH) and adaptive element codes (ALEGRA) require time-step load balancing. The meshless codes must maintain a nearest neighbor structure (pseudo-topology) to perform the physics interactions and domain decompositions efficiently.

Restart files are typically generated periodically (the frequency is job dependent), or in response to a signal sent to a code. Extremely large codes do not generate restart files as often as desired due to storage limitations. A restart file contains an image of data structures that describe the current state of the simulation, and can be around the size of a mesh file or larger; one code generated a restart file that was an order of magnitude larger than the mesh file. Today, a restart file (or the collection of all restart files across all processors for a job) may be between .5 and 2 GB. This size is expected to grow by an order of magnitude. Users prefer to keep all restart files if possible, but at least one extremely large LANL code only keeps the last restart file and the restart file prior to that, overwriting the older file.

Message passing and memory requirements must be factored into resource allocation. Some jobs exchange a large amount of data for each simulation time step: 30 to 40MB per iteration. Some jobs require modest amounts of memory during execution: 100 MB per processor. This amount of memory is not available on some capability machines (e.g. ASCI Red).

4.5.10 Post-Processing

The objective of post-processing is to migrate data to the appropriate destination for output and display, converting from one format to another if necessary. Post-processing typically is done by the destination machine. For many codes, data is handled through DMF so an external converter is not necessary. Users would like to automatically gather files for post-processing. Post-processing may need interactive access. Because the amount of data generated by a production run can be quite large, traditional data migration may not be desirable. Alternatives include data reduction, selective retrieval, rerunning the job at the desired destination, visualizing at the site where the job was run, parallelizing file transfers, and data migration during computation.

4.5.11 Output and Display

Visualization is one of the most important activities for understanding the results of the computation. Visualization and rendering tools are required to evaluate multi-dimensional output, with time step history displayed. Ensight is a commonly used visualization package. The focus may be on the time history of quantities of interest in the simulation. Various kinds of output may be produced for comparison against experimental results, such as an image or spectra, extracted features, text, a plot, or a movie. Currently, visualization of large 3D problems is considered unworkable due to the file sizes; the full volume in this case is not rendered. It was one user’s opinion that today there is no world class 3D image of a world class calculation.

4.5.12 Results Analysis and Comparison

The goal of a simulation is to answer a particular question. Often, multiple runs are performed with different parameter sets or with modifications to the code. Access to prior job runs may be necessary to support analysis and comparison. Comparison may be done across platforms, code versions, different sets of parameter values, or different models for validation purposes. In one example, a user needed runs that were 1.5 years old. However, how long the data is required to be readily accessible depends on the problem. More than one user indicated that storing data with convenient retrieval for at least 6 months to 1 year would typically be required. Storing data with less convenient, off-line archival mechanisms may be required for up to ten years.

Tools for comparing different data sets, such as actual vs. expected results, would be useful. Feature extraction is an important capability. A visualization “difference” tool that highlights the differences in a side-by-side display to simplify comparison might be helpful.

4.5.13 Problem Retrieval

Problem retrieval extracts information from archival storage for a specified problem that has run at some point in the past. The information of interest potentially includes the code version, parameter specifications, input and output files, interim restart files, generated images, and textual annotations.

4.5.14 Problem Preservation

Problem preservation stores aspects of interest in the problem, which potentially includes the executable version, parameter specifications, input and output files, interim restart files, generated images, and textual annotations. The problem must be retrievable at a later date.

4.5.15 System Management

The objective of system management is to manage the DRM system that covers multiple resources and sites. Each site will have administrative duties for their aspects of the DRM system, which includes:

· Respond to customer calls - troubleshoot, identify errors. Refer to knowledge base of trouble tickets, troubleshooting procedures. Corrective action is usually taken by problematic resource’s system administrator.

· Act proactively to minimize resource problems and prevent or manage resource outages.

· Update and configure DRM system. This includes modifying user access and privileges.

· Coordinate/communicate among system administration personnel in the DP complex environment: identify points of contact, email list, system administration status, estimated time to recovery for resources, coordinating user administration, system topology.

· There are issues to resolve for intersite coordination: Who has authority to make decisions or take action? How timely will the actions be? System administration tools were described as primitive and needing improved toolkit – what are requirements?

Support is needed for both on- and off-hours use of resources. Computing personnel that are available on site need to have the training to provide support for the high end computing (HEC) resources. This staff should be trained to perform some level of problem recognition, troubleshooting and fixing. These folks should have points of contact to call if they can’t fix the problem condition.

4.5.16 System Monitoring

The goal of system monitoring is to check on the state of health of the underlying infrastructure and resources and the DRM system on a 24x7 basis. The status of individual jobs should be available to the system monitoring view, but the focus is on system health. The monitoring requirements include:

· Integrated, standard interface for obtaining results of monitoring

· Network monitoring, including functionality of nodes and switches

· Movement of jobs through the system

· Resource availability, state of health, utilization, queue length, and wait times

· Integrated, high level perspective with tunnel down (view details) capability

4.5.17 User Communication

The goal of user communication is to notify the user of system status, planned upgrades, maintenance activities, scheduled downtimes, problems, outages, and other events of interest. Users need to know about resource availability. When resources aren’t available, an estimated time of restoration should be communicated. Events of interest to users include:

· Job: start, termination, and error events

· System: problems, state of health, upcoming system changes

4.5.18 User Administration

The user administration operation provides typical administration services for individual users. This includes maintaining the set of current users and relevant administrative attributes, configuring user allocation and security policies, communicating and responding to user events, determining status of individual users, and performing inquiries on user information. There needs to be a convenient reauthorization mechanism across sites, such as for expired accounts.

4.5.19 Resource Administration

The resource administration operation provides typical administration services for individual resources. This includes maintaining the set of current resources and relevant administrative attributes, configuring resource allocation and security policies, communicating and responding to resource events, determining status of individual resources, and performing inquiries on resource information.

Accounting is focused on resource utilization (not “money”). Allocation policies can be implemented only to the extent that they are supported by usage metrics. Accounting must be near real-time rather than upon process termination. This is required to insure fairness while supporting jobs that execute for extended periods of time. Users want fairness and consistency in resource allocation. Note that allocations are not necessarily fixed and should be flexible. Users want a consistent view of resource management, regardless of whether the resource is an intrasite or intersite resource. As the heterogeneous resources are unified in a common system, care must be taken to avoid an approach that results in the intersection of available functionality, i.e. the “lowest common denominator”.

 Concurrent use of resources by jobs needs to be carefully managed so as to avoid interference between jobs (e.g. cache voiding interfering with another job’s cache usage).

4.5.20 Security Administration

The security administration operation provides typical administration services for security services. This includes: maintaining the set of current users and relevant administrative attributes, configuring user allocation and security policies, communicating and responding to user events, determining status of individual users, and performing inquiries on user information.

Security administration seeks to protect information and resources from unauthorized access. Authentication and authorization management and monitoring activities try to fulfill this goal. Requirements that users specified include:

· Security monitoring

· Connections — local and remote

· Authentication – number of login attempts, password expiration

· On site security – log files

· DCE cell monitoring

· Single logon for authentication and authorization

4.5.21 Policy Administration

The policy administration operation provides typical administration services for allocation policies. This includes maintaining the set of current policies and relevant administrative attributes, configuring user allocation and security policies, communicating and responding to policy events, determining status of individual policies, and performing inquiries on policy information.

Policy mechanisms should be configurable without rebuilding any part of the DRM system. Multiple points of control are desired, especially individual user, user group, customer organization, owner organization, and resource. However, complexity may increase with configurability. A balance between configurability and complexity is needed.

4.5.22 Job Management

Users want seamless and coordinated access to remote resources; that is, users want access to all resources to which they are entitled through their application of choice (which may be different from another user’s application of choice). The geographic location of resources should be as transparent to the user as possible.

Users want to understand the rules of resource allocation policies. Rules of thumb, usage patterns, and performance estimation for resources, focusing on turnaround time as opposed to job execution speed, are desired. For example, would a request for 2 hours execution on 64 processors get satisfied sooner than a request for 1 hour of execution on 128 processors?

Users want to have priority management features. The priority levels that have been identified are emergency (immediate preemption of resources), urgent (temporary exception to normal policy), and normal fair-share priority. Users want the capability to juggle jobs within a priority level. Users don’t want lower priority jobs to interfere with their job via conflicting resource needs. If a higher priority job is introduced to the system, recoverable preemption — where a job is checkpointed, saved, and scheduled for a later time — is preferred to killing the lower priority job outright. The capability to suspend, resume, or terminate a job is needed.

It is acceptable that an application must cooperate with preemption, responding to a signal by dumping a restart file and terminating. OS-level checkpointing is the easiest for users, but difficult to achieve; besides, applications have best knowledge of attributes and information that must be saved periodically. In addition, the job may be restarted on a different resource.

Job specification should support specific resource requests as well as general or parameterized requests from which the DRM system infers resource requirements and allocation. Some users don’t want to provide resource requirements ahead of time. Some level of inference from a job’s profile or default parameters for average users are desirable. Job specification should support diverse applications. Work flow management (controlling a sequence of job steps, such as production run, file storage, data migration, post-processing, and output generation (should be supported. A submission checking capability — anything about the job specification that can be checked prior to or at submission time (e.g. file existence) — is needed.

Job persistence and fault tolerance are needed. A job, once in a “queue”, should survive a resource crash.

Job monitoring is needed. Users want to have distributed job process information (processes’ CPU and other resource utilization), comparison of job’s resource utilization to other jobs (similar to the Unix top command), resources requested and used, process state, high water marks for resource utilization, where processes are running, and what happened to the job without digging through distributed logs. Users want simple “yes/no”, “red/green” type of monitoring information. For jobs that aren’t currently running, users want to understand why their job isn’t running and to estimate when it will run. Multiple users may want to look at job output during execution. The ability to selectively view or report status and output is needed.

4.5.23 Computational Steering

For a production run, steering is typically accomplished by examining plot and dump files, modifying parameter files, and if necessary, suspending and restarting the job. Sometimes a new job is submitted as an off-shoot problem to explore some aspect in more detail . For an interactive development run, interpreted codes can perform steering “on-the-fly” by executing interactive commands (e.g., Basis, Uric, and Python languages). Minimally, users want to view stdout or known output files, or “query” the job for predefined attributes recognized and reported by the code, such as reporting on the current time step or an interactive visualization of in-progress results.

4.5.24 Dynamic Expansion

It is desired that executing jobs could interact with the system in real time to request and release resources for dynamic expansion and contraction. Codes could switch between high and low resolution models during different stages of the simulation, expand to take advantage of additional resources as they came available, or contract as the resource demand increased.

4.5.25 Storage

The goal of the storage operation is to save data for later retrieval. This includes temporary storage on the compute machine, archival storage, interim storage for data migration, data servers for file access, and permanent user storage. Temporary storage space has been problematic, and purging or moving files is currently a mix of manual and automatic operations. It is desirable that file access and storage be automated. Currently, users need to be able to easily move data into and out of various kinds of storage (e.g. archives), and be informed of the expected transaction time and the current state of a storage request. It would be preferable to have the data available when and where it is needed, relieving the user of the burdensome task of manually moving data. Thus, the system should provide directory creation and file migration or a global common file system so users don’t have to be aware of location.

5 Use Case Analysis

5.1 The Use Case Process

The process for identifying use cases includes the following steps.

1. Interview LANL, LLNL, SNL, and plant users representing the complete range of user roles and system operations. Interviews are primarily conducted by DisCom2 team members, but other sources will be leveraged where possible, such as LLNL’s interviews of Alliance users. The information that the interviewing team is seeking includes role(s) of interviewee, current work flow, desired future work flow, aspects that could make their job easier, bottlenecks, difficulties, and other areas of concern. The interviewees are asked open-ended questions so that topics discussed aren’t hindered by a rigid set of questions, thus enabling more useful information to be gathered. It is sometimes difficult to anticipate what kind of information may be obtained, even with prior knowledge of the interviewee’s role(s). The interviews adapt to the experience, knowledge, concerns, and interests of the interviewees.

2. Analyze and interpret the information gathered into abstract sets of users, resources, operations, outcomes, and operational scenarios.

3. Derive system requirements and integrate with requirements from sources other than user interviews.

4. Validate the model by:

· Flipchart pages are used to record the issues during the interview. This allows the interviewee to give real time feedback during the interview.

· The interview notes are distributed to the interviewees after being converted to electronic form. The interview notes are contained in a separate document (Beiriger, et. al., 99).

· The use cases and the service model document are reviewed by the Tri-Lab DRM community and DisCom2 management.

· A traceability analysis between the interview notes and use cases is performed to make sure that the use cases are complete.

5.2 Preliminary Use Cases

A use case is a representation of a typical interaction between a user and a system. The set of use cases help identify the functional requirements of the system. The methodology the project has adapted for describing use cases is Unified Modeling Language (UML) (Quatrani, 1998), which combines several popular object oriented modeling methods of the late ‘80s and early ‘90s.

The use cases contain several facets, each of which is explained below.

· Actor: A user is referred to as an “actor” in the use cases appearing later in this section. An actor represents a role a user is playing in connection with the system. An actor may be one of the user roles identified in paragraph 4.3 or an external system that may exchange information with the DRM system.

· Resources: The resources utilized in the use case are listed.

· Inputs: Inputs used by actions in the use case are identified.

· Begins when: Specifies the preconditions necessary for the use case to be initiated.

· Actions: A bulleted list of activities performed by the use case. One or more activities can occur during a “flow” (or scenario) through the use case.

· Outcomes: The outcomes define the outputs, events, and side effects generated by the use case’s actions.

· Ends when: Identifies the termination conditions for the use case.

A use case can be referred to by another use case. In UML, this is a “uses” link and is depicted as “UseCaseName Use case” with potentially other descriptive text. The computation use case diagram is shown in Figure 6.

5.2.1 Analysis And Verification Use Case

Actor: Analyst

Resources: Servers (Compute, Data, Storage, Viz) and/or desktop

Inputs: display files(s), job name/label, subset of object (computation output, results from other runs, rendered files, images, plots, etc)

Begins when output has been displayed and gathered for analysis

· Data Migration Use case to retrieve data

Retrieve inputs such as results from other runs

[image: image6.wmf]Design

Simulate

Manufacture

Figure 6. Computation Use Case Diagram

· Analyze results

· Validate

· Verify

· Interpret

· Data migration Use case to store

Outcomes: Interpreted results

Ends when analyst has interpreted results

5.2.2 Code Development Use Case

Actor: Developer

Resources: Desktop, Servers (Compute, Data, Storage, Viz), Development environment—configuration management, editor, compiler, linker, debugger, libraries, test suites

Inputs: Code requirements, domain knowledge, coding standards

Begins when specific code change/addition/enhancement requirements are specified

· Design

· Develop/code

· Build

· Debug

· CM Use case

· Test

· Parameter Specification Use case

· Problem reports

Outcomes: executable/module/subroutine, documentation, make files, scripts, test results, problem report

Ends when code is ready for verification.

5.2.3 Configuration Management Use Case

Actor: Developer/Analyst/Others

Resources: desktop, repository, CM tools, Servers (Compute, Data, Storage, Viz)

Inputs: New version of an entity i.e. Environment, compiler, code, data, documents

Begins when an entity that is controlled undergoes a change of state

· Create controlled entity

· Check out

· Edit/modify

· Check in

· Label

· Report

· Issue tracking

· Build/propagate change

· Release

· Administration procedures and policies

· Change notification

Outcomes: New controlled version of entity, user notification, propagation, release notes

Ends when repository is updated and systems are consistent, and users are notified

5.2.4 Data Migration And Manipulation Use Case

Actor: Job Management Service, Data Service,

Resources: desktop, Servers (Compute, Data, Storage, Viz), Network

Inputs: Data, Job specification

Begins when data is available and resource(s) are allocated

· Input data migration/retrieval (optional)

· Translation/Conversion of data (optional)

· Aggregation of files (optional)

· Reduction/Compression of data (optional)

· Process data (optional)

· Output data Staging/migration (optional)

Outcomes: Data

Ends when the data is in the requested format and location

5.2.5 Job Computation Use Case

Actor: Resource service, Queue service

Resources: Servers (Compute, Data, Storage, Viz), Network, Database

Inputs: binaries, input parameters, restartfile, resource requirement/job specifications, stdin, signals

Begins when the job is selected to run on the resource

· Computation of job

Time step activities

· Respond to signals

· Respond to Steering

· Respond to Monitoring

· Data Migration and Manipulation Use case

· Attach to User Interface

Outcomes: Event notification, data files, restart files, stdout, stderr, usage statistics, status

Ends when all resources are released (or resource limit is reached)

5.2.6 Job Definition Use Case

Actor: User

Resources: Desktop, User Interface tools, Server(s)

Inputs: input files, binaries, credentials, environment

Begins when user is ready to request system services

· Define the sequence of “chunks” (e.g. computation) (DAG) (optional)

· Define the attributes for each “chunk” (inputs, resource constraints/qualifiers, binaries, output, etc.)

· Verify the definition (optional)

· Save definition of Job (optional)

· Recall definition of Job (optional)

· Modify definition of Job (optional)

· Label Job (optional)

· Submit request (optional)

Outcomes: Job name, job specification, event notification

Ends when user submits request or exits

5.2.7 Job Management Use Case

Actor: System Management Service, User (Analyst or Operator)

Resources: System Management Server

Inputs: Job Specification (input files, binaries, etc), Signals, Stderr, Stdin

Begins when a request is submitted to the system

· Job Submission Use case

· Job Monitoring Use case

· Job Flow Management

· Data Migration and Manipulation Use case

· Output and Display Use case

· Job Computation Use case

· Modify Active Job Specification (e.g. priority)

· Job Cleanup Use case

· Kill/Suspend/Check point Job

send signal to resource

· Problem Preservation Use case

· Attach to User Interface

Outcomes: Event Notification, data (files, logs, db, status, message queue, restart files), stdout

Ends when Job Cleanup is complete or time limit on cleanup is exceeded

Notes: Collaboration—Consider in Job specification, additional services, collection of services

5.2.8 Job Monitoring Use Case

Actor: Job Management Service

Resources: Resource Management Server, network, Allocated resources

Inputs: Submitted Job specification

Begins when job is submitted

· Monitor job submission

Request

Queue

· Attach to user interface

· Monitor job computation

Resource utilization

Stdout, stderr

Output files

Message passing

Resource state

· Threshold Monitoring

· Monitor data Migration and manipulation

· Monitor framework and Viz job output—come back to this and the one previous

Outcomes: Log entries, event notification, status output

Ends when job exits

Notes: Types of monitoring—Resource, Job, System

5.2.9 Job Submission Use Case

Actor: Analyst, Developer, Operator, others

Resources: Servers (Compute, Data, Storage, Viz), license(s), network, desktop

Inputs: input files, binaries, and job specification

Begins when job is ready for submission to the “Simulation Intranet”

· determine resource requirements

· performance estimation

· Negotiation of resources

· allocate resources

· data migration/movement

· launch job/schedule/submit to resource

· job status and monitoring

· reshuffle job queue

· cancel job

Outcomes: job receives resources for work, status and monitoring, event notification

Ends when job is released to run or cancelled

5.2.10 Mesh Generation Use Case

Actor: Code developer

Resources: desktop, servers (Compute, Data, Storage, Viz), mesh tools, materials libraries

Inputs: Mesh specification, materials libraries, and model

Begins when mesh requirements are specified

· Generate mesh (Job Submission Use cases)

· Visualize mesh (Output & Display Use case)

· Verify geometry

· Verify materials mapping

· Create binary

· Data Migration and Manipulation Use case

· Material library generation

Outcomes: binary mesh

Ends when mesh is ready to use

5.2.11 Output And Display Use Case

Actor: Analyst, Code Developer, Operator

Resources: Servers (Compute, Data, Storage, Viz) and desktop

Inputs: Output data

Begins when output data is in the right format, at the right place, and the right time (resource is available)

· Create display file(s) (image, text, plot)

· Generate spectra or other appropriate processing

· Extract features

· Create movie

· Save (image, text, plot, movie)

· Print (image, text, plot)

· Visualize the data

Manipulate the visualization objects

Run time step sequence

· Selecting/extracting subset of object/image of interest

· Data Migration and Manipulation Use case

Outcomes: Display file(s), movie, subset of object/image

Ends when resources are released

5.2.12 Parameter Generation Use Case

Actor: Analyst

Resources: Desktop

Inputs: Parameter requirements

Begins when problem parameters requirements are specified

· Gather data (material library, etc.)

· Determine

Time steps

Equation of state

Initial conditions

Boundary Conditions

Convergence conditions

Distribution Specification

Decomposition

· CM Use case

Outcomes: Input deck and parameter specifications

Ends when problem input is generated and ready to use

5.2.13 Policy Administration Use Case

Actor: DRM Administrator

Resources: Resource Management Service

Inputs: Admin Request Specification (Request, Actor designation, Request options)

Begins when an Admin request is received

· Policy Discovery/Inquiry

· Policy Status

· Event Notification and Subscription

· Modify policy attributes

· View policy attributes

· Help

Outcomes: Response to Admin request

Ends when Admin request is fulfilled or denied

5.2.14 Problem Definition Use Case

Actor: Analyst, Engineer, Designer

Resources: Desktop

Inputs: Program request/requirements, domain knowledge

Begins when programmatic need is identified

· Define computation

Analysis to be done. What is required to be implemented, i.e. Algorithm, code change, steering output needed—statistics, graphs, Viz, model, etc.

· Determine tools to be used

· Determine requirements for input deck

· Determine grid/mesh requirements

· Determine resource Requirements

Nodes

Storage

Steering/monitoring

Viz

Outcomes: Parameter requirements, mesh requirements, materials requirements, experiment set, resource needs

Ends when requirements are fully understood and requirements to proceed are communicated

5.2.15 Problem Preservation Use Case

Actor: Compute Service, Analyst, Code Developer, Operator

Resources: Servers (Data, Storage)

Inputs: restart files, output files, display files

Begins when preservation is requested

· Data Migration and Manipulation Use case

· Selection of “stuff” to be saved

Levels of preservation (i.e. default, laundry list)

· Annotate “stuff” to be saved

label

Outcomes: Record of the job

Ends when desired data is preserved

5.2.16 Resource Administration Use Case

Actor: Resource owner, System Administrator; User

Resources: Resource Management Service

Inputs: Admin Request Specification (Request, Actor designation, Request options)

Begins when an Admin request is received

· Resource Discovery/Inquiry

· Resource Status

· Event Notification and Subscription

· Modify resource attributes

· View logs/files/queues/resource attributes

· Help

Outcomes: Response to Admin request

Ends when Admin request is fulfilled or denied

5.2.17 Security Administration Use Case

Actor: DRM Administrator; System Administrator

Resources: Resource Management Service

Inputs: Admin Request Specification (Request, Actor designation, Request options)

Begins when an Admin request is received

· Security Discovery/Inquiry

· Security Status

· Event Notification and Subscription

· Modify security attributes

· View security attributes

· Help

Outcomes: Response to Admin request

Ends when Admin request is fulfilled or denied

5.2.18 System Management Use Case

Actor: Operator, DRM Administrator, System Administrator; User

Resources: Desktop, All managed resources

Inputs: Credentials, environment, input files (e.g. system monitoring scripts)

Begins when user is ready to request system management services

· Job Management Use case

· System Monitoring Use case

· User Communication Use case

· User Administration Use case

· Resource Administration Use case

· Security Administration Use case

· Policy Administration Use case

Outcomes: See referenced use cases

Ends when system management service completes or error condition occurs

5.2.19 System Monitoring Use Case

Actor: Operator, DRM Administrator, Other Users

Resources: Desktop, All managed resources

Inputs: Submitted Monitoring Request Specification

Begins when a monitoring request is submitted to the system

· Attach to User Interface

· Attach to resource “log”

· Monitor resource

Resource is monitored as directed in the Monitoring Request Specification.

· Output and Display Use case

· Write to monitoring log

· Threshold monitoring

· Flush monitoring log

Outcomes: Event Notification, data (as directed in the Monitoring Request Specification e.g. files, logs, database, reports, status), stdout

Ends when monitoring duration has elapsed or error condition occurs

5.2.20 User Administration Use Case

Actor: DRM Administrator

Resources: Resource Management Service

Inputs: Admin Request Specification (Request, Actor designation, Request options)

Begins when an Admin request is received

· User Discovery/Inquiry

· User Status

· Event Notification and Subscription

· Modify user attributes

· View user attributes

· Help

Outcomes: Response to Admin request

Ends when Admin request is fulfilled or denied

5.2.21 User Communication Use Case

Actor: User (all user roles), System Management Service, Job Management Service

Resources: Desktop, Servers (Resource Management, Data), Network

Inputs: User communication entry

Begins when user communication request is submitted to the system

· Attach to User Interface

· Create user communication entry

System-generated user communications include posted monitoring results (system- and job-level).

Administrative user-generated user communications include notices (e.g. system or compiler upgrades, scheduled outages), policy.

Non-administrative users generate communications e.g. problem reporting, system questions.

· Read user communication entry

· Update user communication entry

· Delete user communication entry

Outcomes: Event Notification, user communication entry processed (as directed in the user communication request), status, stdout

Ends when user communication entry has been processed or error condition occurs

5.2.22 Verification and Problem Generation Use Case

Actor: Analyst

Resources: Servers (Computer, Data Storage, Viz), Network, Database and desktop

Inputs: Mesh (or other preprocessing data), problem input, code

Begins when mesh, code and problem input is available

· Job Definition Use case

· Job Management Use case

Outcomes: See Job Definition and Job Management use cases

Ends when Job Cleanup is complete or time limit on cleanup is exceeded

6 References

DOE Office of Defense Programs, 1998, Distance and Distributed Computing and Communication Implementation Plan, DNT-98-1117-DR1.

J. Beiriger, M. Ernest, A. Hodges, 1999, DisCom2 Model User Interviews, SAND99-xxxx, Sandia National Laboratories, Albuquerque, NM.

M. Clover, 1998, Verification and Validation in X-Division, LA-UR-98-5570, Los Alamos National Laboratory, Los Alamos, NM.

P. Ferguson. and G. Huston, 1998, Quality of Service – Delivering QoS on the Internet and in Corporate Networks, John Wiley and Sons, Inc., New York, NY.

M. Fowler and K. Scott, 1997, UML Distilled: Applying the Standard Object Modeling Language, Addison Wesley Longman, Inc., Reading, MA.

V. Holmes, J. Linebarger, D. Miller, and R. Vandewart, 1999, The Simulation Intranet Architecture, in 1999 International Conference on Web-Based Modeling & Simulation, held in San Francisco, CA, January 17-20, 1999, sponsored by The Society for Computer Simulation International.

T. Klingner, et.al, 1998, ASCI Distributed Resource Management Requirements, Request for Information.
Statement by M. McCornack, software engineer, in a presentation “Configuration Management Overview” at Sandia National Laboratories, Albuquerque, NM, October 16, 1998.

K. Minuzzo, T. Edmunds, L. Roche, V. Boyd, and E. Powell, 1998, The Application of System Simulation for Engineering the Technical Computing Environment of the Lawrence Livermore National Laboratories, in a personal communication of the DRAFT document from T. Quinn.
R. Pollock, J. Beiriger, A. Hodges, and W. Johnson, 1999, Architecture Model for DisCom2 Distributed Resource Management, SAND99-xxxx, Sandia National Laboratories, Albuquerque, NM.

T. J. Pratt et.al., 1998, DISCOM2: Distance Computing The SP2 Pilot FY98 Final Report, SAND98-xxxx, Sandia National Laboratories, Albuquerque, NM.

T. Quatrani, 1998, Visual Modeling with Rational Rose and UML, Addison Wesley Longman, Inc., Reading, MA.

G. von Laszewski, ed., 1998, Notes of the 1st International Workshop on Desktop Access to Remote Resources, http://www-fp.mcs.anl.gov/~gregor/datorr, October 8-9, 1998, Argonne National Laboratory, Argonne, IL,

Glossary

DisCom2
Distance and Distributed Computing and Communications (formerly known as Distance Computing and Distributed Computing) program to accelerate the ability of the Defense Programs complex to remotely access the high-end and distributed computing resources by creating a simulation intranet. Distance computing emphasizes remote access to the ASCI-class supercomputers for capability computations, where the goal is to provide maximum resources to a single computation. Distributed computing emphasizes remote access to other distributed resources for capacity computations, where the goal is to provide some resources to the maximum number of computations.

Information and Simulation Intranet
The integrated information and simulation computing environment for the nuclear weapons complex.

Use Case
A representation of a typical interaction between an actor and the system.

Distribution:

3
Department of Energy

1000 Independence Ave. SW

Washington, DC 20585-0420

Dave Luginbuhl
DOE/DP-51

Paul Messina
DOE/DP-50

Gil Weigand
DOE/DP-50

18
Los Alamos National Laboratory

PO Box 1663

Los Alamos, NM 87545

Kathy Berkbigler
LANL B265

Stephany Bouchier
LANL B294

Mike Clover
LANL F663

Pat Fay
LANL B272

Tom Klingner
LANL B294

3
Jerry Melendez
LANL B294

Mitch Sukalski
LANL B255

Steve Tenbrink
LANL B255

Bob Tomlinson
LANL B272

Manuel Vigil
LANL B294

Cheryl Wampler
LANL B294

Bob Weaver
LANL B220

16
Lawrence Livermore National Laboratory

PO Box 808

Livermore, CA 94551-0808

Gary Carlson
LLNL L098

Brian Carnes
LLNL L561

Bob Cooper
LLNL L098

Phil Eckert
LLNL L061

Scott Futral
LLNL L098

Lynn Groves
LLNL L170

Chris Hendrickson
LLNL L098

Bruce Hill
LLNL L098

Gregg Hommes
LLNL L061

3
Moe Jette
LLNL L061

Barbara Lasinski
LLNL L039

George Mitchell
LLNL L073

Terri Quinn
LLNL L061

Art Rodrigues
LLNLL016

Clark Streeter
LLNL L061

Greg Tomaschke
LLNL L069

Dave Wiltzius
LLNL L060

Bob Wood
LLNL L061

1

0316
P. F. Chavez, 9204

1

0316
R. L. Davis, 8920

1

0318
A. Breckenridge, 9215

1

0318
R. A. Haynes, 9215

1

0318
P. D. Heerman, 9215

1

0318
V. P. Holmes, 9215

1

0318
C. J. Pavlakos, 9215

1

0321
J. A. Ang, 9224

1

0321
A. L. Hale, 9224

1

0443
H. S. Morgan, 9117

1

0449
G. M. Pollock, 9224

1

0449
R. D. Pollock, 6237

1

0449
R. S. Tamashiro, 6237

1

0451
R. E. Trellue, 6238

1

0469
J. F. Jones, Jr., 4600

1

0469
M. A. Tebo, 4603

1

0470
G. M. Ferguson, 2903

1

0507
S. C. Roehrig, 2608

1

0660
W. D. Swartz, 4619

1

0661
D. S. Cuyler, 4825

1

0741
S. G. Varnado, 6200

1

0806
C. D. Brown, 4621

10

0806
M. J. Ernest, 4616

1

0806
G. D. Machin, 4621

1

0806
T. J. Pratt, 4616

1

0806
J. A. Schutt, 4616

1

0806
T. D. Tarman, 4616

1

0806
M. O. Vahle, 4616

1

0807
R. K. Byers, 4418

1

0807
S. P. Goudy, 4418

1

0807
M. J. Hannah, 4418

1

0807
P. L. McAllister, 4418

1

0807
J. P. Noe, 4418

1

0807
W. H. Vandevender, 4418

1

0819
J. S. Peery, 9231

1

0826
J. D. Zepper, 9136

1

0820
A. V. Farnsworth, 9232

1

0835
S. N. Kempka, 9113

1

0836
J. H. Biffle, 9121

1

0836
L. M. Taylor, 9121

1

1109
R. E. Benner, 9224

1

1110
R. B. Brightwell,9223

1

1110
L. A. Fisk, 9223

1

1111
S. J. Plimpton, 9221

1

1137
S. D. Kleban, 6534

1

1137
J. M. Linebarger, 6534

1

1137
J. L. Mitchiner, 6534

1

1137
K. E. Washington, 6534

1

1138
J. I. Beiriger, 6532

1

1138
S. K. Chapa, 6533

20

1138
L. J. Ellis, 6531

1

1138
D. R. Funkhouser, 6532

1

1138
J. R. Hipp, 6532

1

1138
A. L. Hodges, 6531

1

1138
W. R. Johnson, 6531

1

1138
B. N. Malm, 6532

1

1138
D. J. Miller, 6532

1

1138
R. L. Vandewart, 6532

1

1140
J. K. Rice, 6500

1

1152
J. D. Kotulski, 9542

1

9003
D. L. Crawford, 5200

1

9011
P. W. Dean, 8903

10

9011
D. A. Evensky, 8980

1

9011
A. C. Gentile, 8980

1

9011
P.S. Wyckoff, 8980

1

9012
J. E. Costa, 5203

1

9012
K. R. Hughes, 8990

1

9012
J. C. Laroco, 8980

1

9012
R. A. Whiteside, 8920

1

9201
M. M. Johnson, 8114

1

9214
B. A. Allan, 8980

1

9214
R. C. Armstrong, 8980

1

9214
R. L. Clay, 8980

1

9214
E. J. Friedman-Hill, 8920

1

9214
W. P. Kegelmeyer, 8130

1

9214
M. L. Koszykowski, 8950

1

9214
C. F. Melius, 8130

1

9214
N. M. Nachtigal, 8980

1

9214
L. M. Napolitano, 8130

1

9214
A. B. Williams, 8980

1

9018
Central Technical File,

8940-2

2

0899
Technical Library, 4916

1

0619
Review & Approval

Desk, 15102, For

DOE/OSTI

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED Word.Picture.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

[image: image7.wmf]
Sandia is a multiprogram laboratory operated by Sandia Corporation, a
3/25/1999

Lockheed Martin Company, for the United States Department of Energy

under Contract DE-AC04-94AL85000.

[image: image8.wmf]Computation

Definition

Results

Analysis &

Comparison

Code

Development

Verification

& Problem

Generation

Transition

To Target

Trial

Run

Production

Run

Post-

Processing

Output &

Display

Parameter

Specification

Preprocessing

(e.g. mesh)

Configuration

Management

Off-Shoot

Problem

Post-

Processing

Output &

Display

Problem

Preservation

Retrieve

Related

Problem

[image: image9.wmf]Applications

Application-

Specific

Services

Knowledge

Management

Resource

Management

Resource

Interface

Resources

Desktop

Submission

System

Admin

Product

Webtop

Mesh

Generation

Data

Mining

Visualization

Design

Aid

Libraries

(MPI, DMF,...)

Work Flow

Tools

Collaboration

Tools

Visualization

Tools

App-Specific

Brokers

Information

Services

Data

Services

Application

Persistence

Monitoring

Services

Allocation

Reservation

Scheduling

Submission

Events

Control &

Status

Standard APIs

Viz

Network

Computing

(batch, Unix,

NT)

HPSS,

Storage

Software

(licenses,

objects,...)

Data

(databases,

files,...)

Distributed and/or Hierarchical Policy Control

(e.g., resource, owner, customer, project,

user group, user)

Authentication

Authorization

Security

Policy

[image: image10.wmf]User

Communication

System

Management

System

Monitoring

Job

Management

User

Administration

Resource

Administration

Security

Administration

Policy

Administration

[image: image11.wmf]<<uses>>

User

Work

Mgt

Service

Queue

Service

Resource

Broker

Service

Data

Service

<<uses>>

<<uses>>

Problem

Definition

Mesh

Generation

Configuration

Management

Job Computation

Work/Request

Monitoring

Work

Management

Job Submission

Job Description

Analysis

and

Verfication

Problem

Preservation

Job Persistence

Output

and Display

Job Cleanup

Data

Manipulation and

Migration

Parameter

Generation

Code

Development

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

[image: image12.wmf]Design

Simulate

Manufacture

_982581867.ppt

Computation

Definition

Results

Analysis &

Comparison

Code

Development

Verification

& Problem

Generation

Transition

To Target

Trial

Run

Production

Run

Post-

Processing

Output &

Display

Parameter

Specification

Preprocessing

(e.g. mesh)

Configuration

Management

Off-Shoot

Problem

Post-

Processing

Output &

Display

Problem

Preservation

Retrieve

Related

Problem

_982582454.ppt

User

Communication

System

Management

System

Monitoring

Job

Management

User

Administration

Resource

Administration

Security

Administration

Policy

Administration

_983245733.ppt

User

Work Mgt

Service

Queue

Service

Resource

Broker

Service

Data

Service

<<uses>>

<<uses>>

<<uses>>

Problem

Definition

Mesh

Generation

Configuration

Management

Job Computation

Work/Request

Monitoring

Work

Management

Job Submission

Job Description

Analysis

and Verfication

Problem

Preservation

Job Persistence

Output

and Display

Job Cleanup

Data

Manipulation and

Migration

Parameter

Generation

Code

Development

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

_980080355.ppt

Design

Simulate

Manufacture

_980914992.ppt

Applications

Application-

Specific

Services

Knowledge

Management

Resource

Management

Resource

Interface

Resources

Desktop

Submission

System

Admin

Product

Webtop

Mesh

Generation

Data

Mining

Visualization

Design

Aid

Libraries

(MPI, DMF,...)

Work Flow

Tools

Collaboration

Tools

Visualization

Tools

App-Specific

Brokers

Information

Services

Data

Services

Application

Persistence

Monitoring

Services

Allocation

Reservation

Scheduling

Submission

Events

Control &

Status

Standard APIs

Viz

Network

Computing

(batch, Unix,

NT)

HPSS,

Storage

Software

(licenses,

objects,...)

Data

(databases,

files,...)

Distributed and/or Hierarchical Policy Control

(e.g., resource, owner, customer, project,

user group, user)

Authentication

Authorization

Security

Policy

_975208221.doc
[image: image1.png]

� EMBED Word.Picture.8 ���

[image: image2.png]_968504331.doc

[image: image1.png]

