WebWisdom NT

Version 3.02

Database for Distance Learning

[image: image1.png]
KTI
[image: image2.png]
NPAC

Department of Information Technology

The Poznan University of Economics

Mansfelda 4

60-854 Poznan, Poland

tel. (48)(61) 848-0549

fax (48)(61) 848-3840
Northeast Parallel Architectures Center

Syracuse University

111 College Place

Syracuse, N.Y. 13244-4100

tel. (315) 443-1722

fax (315) 443-1973

May 1999

Table of Contents

61. Introduction

2. Concepts
8
2.1. Glossary
8
2.2. Organization of Data
10
2.3. Properties
12
3. WebWisdom NT System Description
15
3.1. Features
15
3.2. System Architecture
15
3.3. WebWisdom Manager Tools
17
4. WebWisdom Manager
20
4.1. Login Window
20
4.2. Modifying advanced connection parameters
21
4.3. User privileges
22
5. Presentation Manager
23
5.1. General Description
23
5.1.1. Introduction
23
5.1.2. User Interface
23
5.2. Foilworld Menu Functions
31
5.2.1. Creating New Foilworlds
31
5.2.2. Creating New Presentations
31
5.2.3. Creating New Scripts
32
5.2.4. Refreshing the Foilworld Tree
32
5.3. Presentation Menu Functions
32
5.3.1. Creating New Foils
32
5.3.2. Cloning Presentations
33
5.3.3. Exporting Presentations to XML
33
5.3.4. Sorting Presentations – Slide Sorter
34
5.3.5. Changing Presentation Library Attributes
38
5.3.6. Changing Presentation Properties
38
5.3.7. Copying Presentations between Foilworlds
38
5.3.8. Moving Presentations between Foilworlds
39
5.3.9. Deleting Presentations
40
5.4. Foil Menu Functions
40
5.4.1. Changing Library Attributes of Foils
40
5.4.2. Changing Properties for Foils
42
5.4.3. Inserting annotations
42
5.4.4. Hiding Foils
43
5.4.5. Editing PowerPoint Foils
44
5.5. Annotation Menu Functions
47
5.5.1. Editing Annotations
47
5.5.2. Deleting Annotations
48
5.6. Editing Script Presentations
49
5.7. Preview Menu Functions
52
5.7.1. Overview of the Preview Menu Functions
52
5.7.2. Adding Sound to Foils
52
5.7.3. Adding Add-Ons to Foils
53
5.7.4. Adding External Links to Foils
53
5.7.5. Adding HTML Pages to Foils
54
5.7.6. Editing Foil Image
54
5.7.7. Saving Foil Image File
56
5.7.8. Removing Foil Image
57
5.7.9. Removing Foil Text
57
5.7.10. Editing Foil Add-ons
57
5.7.11. Removing Foil Add-ons
58
5.7.12. Editing External Links
58
5.7.13. Removing External Links
59
5.7.14. Removing Foil Sound
59
5.7.15. Displaying Presentation Manager Information
60
5.8. Printing
61
5.8.1. Foil Printing
61
5.8.2. Presentation Printing
63
5.8.3. PowerPoint Foil Printing
64
5.8.4. PowerPoint Presentation Printing
64
5.9. Statistics and Maintenance Tool
65
5.10. Buttons
67
5.11. Purge
67
6. Presentation Loader
68
6.1. HTML Presentation Loader
68
6.2. Quick Loader
77
6.3. PowerPoint Presentation Load Wizard
78
6.4. XML Presentation Importer
78
7. Image Manager
82
8. User Manager
86
9. Property Manager
89
9.1.1. Property Editor
89
9.1.2. Property Editor Context
89
9.1.3. Editor Concepts
92
9.1.4. Navigation buttons
94
9.1.5. Property Management Functions
94
9.1.6. Property Panels
97
10. Foilworld Manager
107
10.1.1. Creating Foilworlds
108
10.1.2. Deleting Foilworlds
110
10.1.3. Changing Foilworld Name
110
10.1.4. Granting privileges to foilworlds
110
10.1.5. Changing foilworld owner
111
10.1.6. Moving foilworld to another place in the hierarchy
112
11. Event Manager
113
12. HTML Importer
116
12.1. General Description
116
12.2. Principle of operation
116
12.3. Usage
117
12.3.1. Phase I – URL panel
117
12.3.2. Page Loader panel
119
12.3.3. Preview
121
12.3.4. Finalization
123
13. Dynamic HTML Exporter
124
13.1. TDLServlet System
124
13.1.1. Servlet architecture
126
13.1.2. Initialization Module
128
13.1.3. Main Module
128
13.1.4. Template Loader
129
13.1.5. Template Cache
131
13.1.6. XML Parser
131
13.1.7. Interpreter
131
13.1.8. Sender
132
13.1.9. Output Cache
132
13.1.10. Remote Configuration
133
13.1.11. Using TDLServlet with XML Presentations
138
13.2. TDL - Template Definition Language
140
13.2.1. Expressions
140
13.2.2. Conditional statements
143
13.2.3. Assigning values to variables
144
13.2.4. Inserting values
144
13.2.5. Connecting to database
144
13.2.6. Invoking another template file
145
13.2.7. Inline command
145
13.3. Getdata Servlets
146
14. Examples of Template Collections
149
14.1. WebWisdom NT 2.01 „CPS” Template Collection
149
14.1.1. Tag definitions
149
14.1.2. Template files
155
14.1.3. Template Usage
165
14.2. WTC3 Template Collection
170
14.2.1. Description of template tags
170
14.2.2. Template files
175
14.2.3. Template properties file
188
15. WebWisdom NT Installation Procedure
189
15.1. WebWisdom Manager Installation Procedure
189
15.2. WebWisdom PowerPoint Extension Installation Instructions
189
15.3. Servlet Installation Procedure
189
15.3.1. Installation for Netscape Enterprise Server
190
15.3.2. Installation for Apache Web Server
190
15.4. TDLServlet Configuration Files
193
15.5. Getdata Configuration Files
194
16. WebWisdom PowerPoint HTML Exporter
196
Appendix A. Application Programming Interface of the TDLServlet
199
A.1. API Functions of TDLTag Class
199
A.2. Example implementation of methods for control tags
201
Appendix B. XML Zip File Format
207
Appendix C. File Format Exported by WebWisdom PowerPoint Extension
210
Appendix D. WebWisdom PowerPoint Extension Technical Description
213
Local
213
Global
213
How to remove all WWNT Add-Ins from the system
213
Files Used by WWNT Add-In
214
WebWisdom PowerPoint Add-In uses the following files:
214
Extra files:
214
WWNT Add-In commands
214
Command syntax
214
Implemented commands
215
WWNT Add-In return codes
216
VBExt.dll export table
216
Wwnt2auto.dll export table
217
Java Native interface to PowerPoint
218
Registry Entries
218
Appendix E. Formats Accepted by the WebWisdom NT Importer
219
16.1. The Compiled WebWisdom format
219
16.1.1. Directory Structure
219
16.1.2. File Contents
219
16.2. The WebWisdom NT format
221
16.2.1. Directory Structure
221
16.2.2. File Contents
221
Appendix F. Installation of WebWisdom NT Database Account
223
16.3. Creation of Oracle User Account
223
16.4. Creation of Database Schema
223
16.5. Initial database filling
224
Appendix G. Importing WebWisdom Presentations
226
Phase 1 - Copying WebWisdom presentation to temporary directory
226
Phase 2 - Compiling WebWisdom presentation to HTML format
228
Phase 3 - Incorporating contents of the temporary directory to the database
235
Appendix H. Database Schema
236

1. Introduction

Public, mass education becomes nowadays one of the most important issues, not only for schools and for universities, but also for companies and their continuous education programs. The education process should be as cheap as possible, as effective as possible, and as fast as possible. As it is widely known, with standard teaching techniques it is not possible to teach a large group of people effectively, fast and cheap. Moreover, as teaching material evolves, the teachers must continuously learn a lot.

A solution to this problem can be distance teaching, by the use of Internet and its modern technologies. To this goal, on one hand effective synchronous network transmission and end-user graphical user interfaces must be provided. On the other hand, as the teaching material keeps growing, becomes increasingly complicated and user interfaces become more multimedia oriented, an essential issue of a distance teaching system becomes a data repository. Such repository must guarantee efficient storage of various types of data, multi-user access for authoring and retrieval, possibility to define user access privileges, ease of preparation of new courses, which employ old and new educational material.

Usually, teaching material in the repository is divided into presentations. A presentation is an ordered set of foils followed by a description. There are two kinds of descriptions: a global one - for all the foils (author name, presentation goals, keywords, abstract, purpose, etc.), and a local one - separately for each foil (title, contents, header and footer, etc.). A foil could be an image (of any type), an unformatted text (plain text or in HTML format), formatted text (list of bullets and/or points), a program (e.g., an applet), etc.

Key issues, which should be fulfilled by a modern system for preparing and displaying teaching material for courses and classes, are the following:

· preparing presentations in an efficient way, with full graphical user interface, formatting wizards, support for templates, clip-arts, icons, etc.,

· displaying prepared presentations locally and remotely, by the use of intranet and Internet,

· editing and reusing previously prepared presentations,

· creating a directory (hierarchy) of presentations,

· search tools,

· storing presentations in one place and in a uniform way,

· storing presentation meta-data, i.e., author name, creation and last modification dates, purpose, keywords, etc.,

· storing additional data for presentations: add-ons (i.e., addresses of repositories with additional information about presented topics), sounds, programs, applets, examples, etc.

Only the first requirement is fulfilled by existing systems, to mention for example Microsoft PowerPoint application, CorelDraw!, and Lotus Notes. The other issues mentioned above, however, up to now were not fully fulfilled by any existing software. The new WebWisdom NT system meets these requirements. The key characteristics of the system are the following:

· use of an object-relational database as a repository for presentations,

· importing presentations prepared by a presentation-editing tool, for example Microsoft PowerPoint,

· use of sets of images and/or texts prepared by any image- or text-processing tool (scanned pictures, formatted texts, text&graphics documents, HTML documents),

· use of programs written in any programming language, Java applets, interactive examples, etc.,

· consistent and unified presentation storage, regardless of the presentation type presentation, its structure, editing tool, etc.,

· storage of presentation meta-data (author name, creation date, keywords, abstract, modification history, use history, formatting and presentation attributes, general purpose, etc.),

· storage of some additional information for presentations: add-ons (lists of identifiers/addresses of Internet resources) and sounds,

· copying, moving, editing, renaming, and deleting presentations,

· composing presentation on the base of other presentations or their parts,

· managing sets of presentations by a hierarchy of folders called foilworlds,

· managing users and user privileges,

· enabling different methods of displaying presentations by the use of templates,

· exporting (i.e., displaying) presentations locally and remotely (by the use of Internet) in a form described by a given template,

· extensibility - possibility to define new templates with new attributes which will be stored in existing data structures.

The system described in this document is a result of a common project of Department of Information Technology of The Poznan University of Economics, Poland, and NPAC (Northeast Parallel Architectures Center) at Syracuse University, Syracuse, USA. This project is a continuation of the “WebWisdom” project developed during last few years at NPAC. Main advantages of the described WebWisdom NT are the following: scaleable database-oriented repository for foils and presentations, integration with popular office software, uniform internal data format, multi-user access for teaching material preparation, user-defined templates for displaying presentations, extendible hierarchy of foilworlds and presentations, user access rights and privileges, extended meta-data for presentations and users, tools for managing presentations, foilworlds, users, meta-data, etc., and full graphical user interface.

2. Concepts

2.1. Glossary

Foilworld

Foilworld is a logical folder used for grouping of presentations. The same presentation can be in more than one foilworld at the same time. Foilworlds can be nested and form foilworld tree. The depth of the foilworld tree is not limited. Foilworlds are the unit of user access control. A user can have no access to a foilworld XE "foilworld" , read-only access, or write access. If a user has write access to the foilworld he/she can modify or delete all presentations in the foilworld.

Each foilworld has an owner. The owner has full access to the foilworld by default. Current owner of a foilworld can grant the ownership to another user.

Element

Elements XE "element" are generalization of presentations and components. Elements have identity and gather common attributes of presentations and components (e.g., owner, creation date, and title). Elements can also define values of properties.

Presentation

Presentation is a list of components. Components are foils, foil shadows, presentation shadows and annotations. There are two types of presentations: master presentations and script presentations. Master presentations XE "presentation" can contain foils and annotations. Script presentations can contain foil shadows, presentation shadows and annotations.

Component

Components are basic building blocks of presentations. There are four types of components XE "component" : foils, foil shadows, presentation shadows, and annotations.

Foil

Foils are components that are basic building blocks of master presentations. A foil XE "foil"

 XE "foil" can have a number of educational objects associated with it. The educational objects are displayed when the foil is accessed by the WebWisdom Manager or WWW interface. Foils cannot be shared between presentations, i.e., each foil belongs to one only presentation. However, multiple foil shadows referring to the same foil can be created.

Foil-shadow

Foil-shadows are basic building blocks of script presentations. Foil-shadows XE "foil-shadow" are created inside scripts. A foil-shadow is a reference to another foil or foil-shadow and has its own identity. Foil-shadow inherits all educational objects and properties of the original element it refers. Initially, a foil-shadow is displayed in exactly the same way as the original element. However, a foil-shadow is a separate component and can evolve separately from its source. Foil-shadow can override some or all of the educational objects associated with its source. It can also define other values of properties.

Master Presentation
Master presentation XE "master presentation" is a presentation that does not contain shadows. Master presentation can be created by reading a PPT file or inside Presentation Manager. Master presentation can contain only foils and annotations. Master Presentation can contain sources of foils it consists of.

Script Presentation

Script presentation XE "script presentation" is a list of foil-shadows, presentation-shadows and annotations. Script presentation does not contain foils.

Annotation

Annotation is a comment inside presentation table of contents.

Presentation-shadow

Presentation shadow is a reference to a presentation. Presentation shadows can be used inside script presentations.

Property

Properties are “attributes” that can be defined by a user. Properties XE "properties" are independent of the database schema. Properties can be associated with elements or users. Each property has a default value. Properties are used according to the property inheritance hierarchy.

Educational Object

Educational objects XE "educational objects" are elements that carry pieces of education material, can be associated with foils, and can be visualized or played in the client browser. Examples of educational objects are text, image, sound, annotation, note, and add-on.

2.2. Organization of Data

[image: image3.wmf]Foilworld

Presentation

Component

EduObject

Access

Control

Master

or

Script

Foil,

Foil-shadow,

Presentation-shadow,

Annotation

Text,

Image,

Sound,

Addon,

Note, etc.

Figure 1 . Data hierachy in WebWisdom NT

In the Figure 1, the data hierarchy in WebWisdom NT is presented. On top of the hierarchy are foilworlds. Foilworlds form a tree-like structure. There is one root foilworld. Each foilworld can contain any number of other foilworlds. Each foilworld (except the root foilworld) must belong to exactly one foilworld. The height of the foilworld hierarchy is not limited. User access rights are defined on the level of foilworlds.

Foilworlds contain presentations. One presentation can be in more than one foilworld at the same time. Presentations can be either master presentations or script presentations.

Presentations are ordered lists of components. There are four types of components:

· Foil-masters

· Foil-shadows

· Presentation-shadows

· Annotations

Foil-masters and foil-shadows can contain educational objects. Examples of educational objects are text, image, sound, add-on, and note.

[image: image4.wmf]Master

Script

Master

Foil A

Foil B

Annot

Foil C

Foil-

shadow

Foil D

Foil E

Foil F

Foil G

Foil-

shadow

Foil-

shadow

Pres-

shadow

Foil

Figure 2 . Presentations in the WebWisdom NT system

There are two types of presentations: master presentations and script presentations (called also playlists). Master presentations are lists of real foils (possibly with PowerPoint source). Each foil has a number of educational objects. Scripts are lists of “shadows”. Shadows are entities that have their identity (like a foil) but they also refer to a source foil or source shadow. When created, a shadow inherits educational objects and properties from its source. A shadow may override some or all of the educational objects of its source. Shadows may also define different properties or property values.

[image: image5.wmf]Foil

Shadow

A

Shadow

B

Shadow

C

Sound 1

Text 1

Image 1

Text 2

Sound 2

Annot 1

Text 2

Sound 2

Image 1

Annot 1

Result

Figure 3 . Hierarchical scripting in WebWisdom NT system

WebWisdom NT uses the concept of hierarchical scripting. Hierarchical scripting defines the method of finding the set of educational objects for a shadow foil. In the Figure 3, a sample set of components and their educational objects is presented. There is one Foil in this example. This foil has two educational objects: Text1 and Image1. Shadow A uses this foil as the source and adds one more educational object: Sound1. Shadow B uses Shadow A as the source and adds one more educational object: Annotation 1, and overrides one of the educational objects: Sound2 replaces the Sound1. Shadow C overrides one educational objects of the Shadow B: Text2 replaces the Text1 inherited from the original Foil. As the result, the Shadow C has the following educational objects: Text2, Image1, Sound2, and Annotation1.

2.3. Properties

One of the fundamental concepts of the WebWisdom NT system are properties. The properties allow very detailed customization of both behavior and the look of the exported pages. Properties are used by the TDLServlet to extract values needed for proper publishing of the page. They are also used as configuration parameters of the system.

A WebWisdom NT property is a pair of key and value associated with an object. The keys are represented by character strings, while values may belong to several different data types – Boolean, numeric, string, color, font, etc. The keys are defined in a global key repository together with corresponding default values. Then for each user, presentation, foil, etc. it is possible to override those default settings by supplying new ones. When determining the value of a given property for an object, the system will follow object hierarchy searching for the most relevant property definition.

When looking for the value of a property of a shadow foil, the system first checks if the desired property is defined for the selected shadow foil. If not it finds the source foil of the shadow foil, and checks if it has defined the property sought after. If the property is defined, its value is used. Otherwise, the system continues searching the hierarchy. If the source is a shadow of still another foil, the system repeats the before mentioned process. If the parent is a foil, the system will next check properties defined for the script, where the original shadow-foil belongs. If the script does not contain the desired parameter, the user properties are consulted, and if they do not specify the parameter, the default value is used (Figure 4).

[image: image6.wmf]Shadow

Foil

Foil

Script

User

Defaults

Figure 4 . Search order for the Shadow Foil Properties

When looking for the property of a foil, the system checks properties by following the path presented in the Figure 5.

[image: image7.wmf]Foil

Presentation

User

Defaults

Figure 5 . Search order for the Foil Properties

In case of presentation or script properties, if they do not define the desired property, the system will search first the user- and then the default properties.

[image: image8.wmf]User1

Master1

Foil

Master1

User2

Script2

Foil

Shadow2

User3

Script3

Foil

Shadow3

Default

1

2

3

4

5

6

Figure 6 . Property inheritance tree

In the Figure 6, the path of determining a property for a shadow foil is presented. If the system tries to find a property value for the Foil Shadow 3 it first checks if the Foil Shadow 3 defines this property. If not, the Foil Shadow 2, which is the source of the Foil Shadow 3 is checked. If it does not define the property, the Foil Master 1 is checked. If none of the components define this particular property, the system tries to find the property in the Script 3 containing the Foil Shadow 3. If not defined there, the system checks the property for the User 3, who is the owner of the Script 3. If the property is not defined by any of the previous objects, the default value is used.

Properties are different from attributes, which are also used in the WebWisdom NT system. Attributes simply describe each element of a particular type; e.g., each foil has a title and a creation date. The set of WebWisdom attributes is constant. They are implemented as table attributes in the database schema. Properties in the WebWisdom NT system are a higher-level concept than attributes. Properties are not directly represented in the database schema. A user can change the list of properties without modifying the database schema.

3. WebWisdom NT System Description

3.1. Features

Main features of the WebWisdomNT 3.0 system are the following:

· System is developed around Oracle-7 database

· Content is prepared by the use of Microsoft PowerPoint. MS PowerPoint files can be directly read by the WebWisdom NT without the need to export them in any form

· System allows import of data from legacy WebWisdom system (HTML + Images).

· Presentations can be displayed by the use of any HTML browser (e.g., Netscape Communicator, Microsoft Internet Explorer)

· System allows remote access to the database by the use of Internet

· Output HTML pages are created dynamically by the use of TDL Template Definition Language, which is an application of XML (Extensible Markup Language)

· System allows importing and exporting presentations to XML format

· Exported XML contents can be used by the TDLServlet to serve presentations without the database system.

· Most of the software is coded in Java, small parts in C++ and PL*SQL

3.2. System Architecture

The architecture of the WebWisdom NT system is presented in Figure 7. The system is composed of three main parts:

· Database (repository),

· WebWisdom Manager,

· Dynamic HTML Exporter with XML-based templates.

The Database is the core of the system. It is responsible for:

· storing foils with associated educational objects: image, text, sound, etc.,

· storing presentations as ordered set of foils and/or other presentations,

· storing information about events associated with presentations (name, place, type of the event, etc.)

· storing hierarchy of foilworlds,

· storing source files for individual foils (PowerPoint files *.ppt separated into individual foils),

· storing meta-data about foils, presentations, and foilworlds (author, owner, privileges, descriptions, annotations, etc.),

· storing formatting parameters (preferred image size, type, location, colors, font sizes, etc.),

· storing information about users (name, identifier, password, access rights, etc.),

· storing “technical” images used in the dynamic HTML exporter,

· providing efficient access for writing, updating, and reading foilworlds and presentations, as well as their parts.

[image: image9.wmf]Database

WebWisdom

Manager

TDL

Servlet

Getdata

Servlet

HTTP

Server

Browser

Browser

HTML

XML

XML

PPT

PPT

TDL

Figure 7 . Architecture of the WebWisdom NT 3.0 system

The WebWisdom Manager is the main contents-preparation tool (cf. Section 3.3). It enables management of the database contents, enables reading data to the database (in form of HTML, PPT, and XML presentations), and enables exporting data from the database (in form of PPT and XML presentations) to the file system.

The Dynamic HTML Exporter is composed of the TDLServlet, Getdata servlet, HTTP server, and a set of TDL templates. The main task of the Dynamic HTML Exporter is to retrieve data from the database, format it according to the TDL templates and deliver the dynamically created HTML pages to the client browsers (please refer to the Section 13 for detailed description of the Dynamic HTML Exporter).

3.3. WebWisdom Manager Tools

There is a number of tools that can be used in the WebWisdom Manager. In the Figure 8, the internal architecture of the WebWisdom NT Manager is outlined.

[image: image10.wmf]WebWisdom Manager

Presentation Manager

Foilworld

Manager

Event

Manager

User

Manager

Image

Manager

Property Manager

Property

Editor

User

Defaults

Presentation

Loader

XML

Importer/Exporter

Login

Window

Figure 8 . WebWisdom Manager Architecture
· Presentation Manager
Presentation Manager is the main tool of WebWisdom Manager. Presentation Manager enables browsing foilworlds and presentations, creating new foilworlds, importing presentations, creating new presentations, editing presentations, removing presentations, and starting all other WebWisdom Manager tools (cf. Section 5).

· Foilworld Manager
Foilworld Manager is used for managing the hierarchy of foilworlds. It allows creating foilworlds, copying a foilworld to another place in the hierarchy, moving a foilworld inside the hierarchy, renaming a foilworld, deleting an empty foilworld, changing owner of a foilworld, granting access rights to foilworlds to other users, etc. (cf. Section 10).

· Presentation Loader

Presentation Load Wizard is used for interactive loading of PowerPoint presentations. Interactive loading allows specifying presentation meta-data at the time of loading. All meta-data attributes can be later changed by the use of the Presentation Manager (cf. Section 6). Presentation Loader is integrated with the Presentation Manager.

· User Manager

User Manager allows managing the list of users and authors in the WebWisdom NT system. User manager allows creating a new user, changing user data, changing user privileges, and removing users (cf. Section 8).

· Event Manager

Event Manager is used for editing the list of events defined in the WebWisdom NT system. Event Manager allows adding new events, modifying current events, removing events, associating people with events and defining their roles, etc. (cf. Section 11).

· Image Manager

Image Manager is an application that allows managing “technical” images available in the system. Technical images can be used in export templates. Examples of technical images are: “image for next foil button”, “image for index button”, “background image”, etc. Image manager allows loading new images, editing properties of the existing images, removing images, etc. (cf. Section 7).

· Property Editor

Property Editor is used for management of the list of properties used in the WebWisdom system. Property editor allows creating new properties, creating categories of properties, moving properties between categories, setting default property values, defining use contexts for properties, etc. Technically Property Editor is a part of the Property Manager (cf. Section 9).

· User Defaults

User Defaults application allows defining default values of properties at the level of user. The values defined by user defaults will be used when neither the foil nor presentation does specifies the value of the particular property. Technically User Defaults is a part of the Property Manager (cf. Section 9).

· Login Window

Login Window is used to connect to a database containing WebWisdomNT repository. Login Window is automatically displayed when the Wisdom Manager is started. At any later point in time a user can start the Login Window to reconnect to a different database or to the same database as a different user (cf. Section 4.1).

· XML Importer/Exporter
XML Exporter tool allows exporting presentations in the form of compressed XML files. These XML presentations can be later imported by the XML Importer to the same or another WebWisdom NT database or used by the TDLServlet as data repositories instead of the database system.

All tools are equipped with graphical user interfaces. All tools can be started from the “tools” menu of the Presentation Manager.

4. WebWisdom Manager

4.1. Login Window

To work with the database, a user must first log-in to the system by the use of the Login Window. In WebWisdom 3.01, the Login Window (Figure 9) appears automatically when the WebWisdom Manager is started. No other operations are possible without providing correct user name and password.

[image: image11.png]
Figure 9 . Login window of the WebWisdom NT system

When the Login Window appears, a user must enter his/her name and valid password in the “user name” and “password” fields, respectively. The password does not appear directly on the screen, instead it is marked by the use of ‘*’ characters. After entering the name and the password, the user can press “Connect” button (labeled by [image: image12.png] icon
) to connect to the database. To exit the login window at any time, the user can press “Cancel button” ([image: image13.png] icon). In the later case the WebWisdom Manager will not be started.

In the middle part of the window, the current database connection parameters are displayed. Four fields are provided: “Database name”, “Driver name”, “Host name” and “Port No.”. These fields can be used to enter: database name, driver name used to connect to the database (default: “jdbc:oracle:thin”), DNS host name where Oracle database server is running, and the port number the applet uses to communicate with the database (default: “1521”). User can change value of any of these fields and connect with new parameters.

Four additional buttons are provided below the connection parameters fields. By the use of “Clear parameters” button ([image: image14.png] icon) a user can erase the current contents of these fields, while by the use of “Get defaults” button ([image: image15.png] icon) – he/she can restore the current default values for all the fields. By filling the fields with new values and pressing “Set default” button ([image: image16.png] icon) a user can store new current default parameters. The “For advanced users only” button ([image: image17.png] icon) is used to modify the user and password used to access the database. The use of this button is explained in the next section. This function is reserved only for the database administrator (cf. next section).

In the lower part of the window, there is a sub-window where system messages appear. The messages show the connection status while accessing the database. The most common error messages are “Wrong user name/password”, “Not suitable driver”, “This configuration will be used as the default one”, and “Connection refused”, which are self-explaining.

4.2. Modifying advanced connection parameters

There is one special user defined in the system - “admin” - who can change advanced database connection parameters. These parameters include user name and password used to connect to the database system.

The “admin” user is a local user and the user name and password are verified locally as opposed to the regular users whose names and passwords are verified in the database. As a result the admin user can login to the system even if the database is not accessible (e.g. after entering wrong database user name or password or shutting down the database). To obtain the password for the “admin” user please contact your WebWisdom NT administrator.

[image: image18.png]
Figure 10 . Setting “database” user and password

While the log-in window is open (Figure 9), and the “admin” user name and password is properly set, one can administrate the advanced database connection parameters by pressing “For advanced users only” button ([image: image19.png] icon). As a result, a new window appears (Figure 10), where the administrator may set new name and password for the database user that is used to connect to the database.

Two text fields and four buttons are provided in the window. The text fields are used to enter database user name and password. The „Clear parameters” button ([image: image20.png] icon) is used to erase current contents of the fields, while the “Get defaults” button ([image: image21.png] icon) – to restore the current default values for the fields. By filling the fields with new values and pressing “Set default” button ([image: image22.png] icon) one can store new current default parameters. The “Exit” button ([image: image23.png] icon) is used to close the window and go back to the login window.

4.3. User privileges

Different users may have different privileges in the WebWisdom NT system. The set of tools that is accessible for the user depends on the current user privileges. Also the foilworld accessibility can depend on the user foilworld access privileges. User privileges can be modified by the use of the User Manager (cf. Section 8), foilworld access privileges by the Foilworld Manager (cf. Section 10)

There is a special “root” user, who is the master of the foilworld tree. This user is created during the installation of the system and cannot be deleted. The parameters of the „root” user can be freely changed, including user’s name and password. However, internal database identifier of this user is never changed, thus always allowing him to be foilworld master. The root user can access all foilworlds with the read and write privilege. This user is also the owner of the root foilworld, and consequently, can change ownership of all foilworlds in the system (cf. Section 5.1.2).

5. Presentation Manager

5.1. General Description

5.1.1. Introduction

Presentation Manager is the main application of the WebWisdom Manager.

Main functions of the Presentation Manager are:

· Browsing hierarchy of foilworlds and presentations

· Creating new foilworlds

· Creating new presentations

· Importing presentations

· Creating new foils

· Editing presentations and foils

· Copying and moving presentations between foilworlds

· Editing meta-data for presentations and foils,

· Editing educational objects (e.g., changing foil image, HTML text, PowerPoint source foil file, etc.)

· Editing source PowerPoint files

· Importing and exporting presentations in XML

· Launching all other WebWisdom Manager tools (e.g., Foilworld Manager, Event Manager, User Manager, User Preferences, Image Manager, and Property Editor).

5.1.2. User Interface

The Presentation Manager is equipped with a graphical user interface. View of the main window of the Presentation Manager is presented in Figure 11.

[image: image24.png]
Figure 11 . Main window of the WebWisdom NT Presentation Manager

The main window of the Presentation Manager can be divided into three main areas:

· Foilworld browser – upper left part of the window

· Foil Preview window – upper right part of the window

· Presentation browser – lower part of the window

In addition to the listed areas, there is a menu bar on top of the main Presentation Manager window.

The Foilworld browser is used to browse through the hierarchy of foilworlds in the WebWisdom database. Foilworlds in the tree are displayed in three colors:

· green – means that the currently logged user has full access to the foilworld; The user can create new foilworlds, new presentations, and new scripts. The user can also edit or delete presentations in this foilworld;

· yellow – means that the currently logged user has read-only access to the foilworld. The user can browse the foilworlds and presentations, but cannot change anything in the foilworld.

· red – means the currently logged user does not have access to the foilworld. The user cannot read contents of the foilworld nor its sub-foilworlds.

After the System Administrator logs in, the foilworld hierarchy is displayed in uniform blue color. The blue color indicates that regardless the current access rights, the System Administrator can access any foilworld in the database. The Presentation Manager with System Administrator logged in is presented in the Figure 12.

[image: image25.png]
Figure 12 . Presentation Manager after System Administrator logs-in

The Presentation browser is located in the bottom part of the Presentation Manger. The Presentation browser displays presentations located in currently opened foilworld. Different icons are used to represent different types of presentations: master presentations and script presentations.

The Foil Preview window is displayed in the upper right part of the window. It is used to display and edit the contents of the currently selected foil in the Presentation browser. The educational objects associated with the current foil are displayed on different tab-panels depending on their educational types. Only tabs corresponding to educational types that are present in the current foil, are displayed (Figure 13). The user can browse though the educational types by selecting the requested educational type tab-panel.

[image: image26.png]
Figure 13 . Educational Types associated with a foil

The window is equipped with a set of pull-down menu. In the upper part of the window, there are six menus: File, View, Tools, Print, PowerPoint, and Help.

[image: image27.png]
Figure 14 . The File menu of the Presentation Manger

The File menu (Figure 14) contains five functions:

· Load Presentation – used to load presentations in the form of HTML and image files (cf. Section 6.1),

· Load PowerPoint Presentation – used to load Microsoft PowerPoint files directly (cf. Section 6.2),

· PowerPoint Presentation Wizard – used to load Microsoft PowerPoint files by the use of a special Wizard that allows defining presentation meta-data directly at the time of loading (cf. Section 6.3),

· Load XML Presentation – used to load presentations in XML format exported from the WebWisdom NT system (cf. Section 6.4).

· Exit – used to exit from the WebWisdom Manager.

[image: image28.png]
Figure 15 . View menu

The View menu (Figure 15) contains five functions: by Title, by Name, by Label, by Running Title, and Auto Load Foils.

The first four are used to change the way the presentations are displayed: listing titles of presentations, listing names, labels, or “running” titles. Information about currently selected choice is displayed by the View Mode indicator, above the Presentation browser (Figure 16).

[image: image29.png]
Figure 16 . View Mode indicator

By clicking on the View Mode Indicator one can cyclically change the view mode in the following order: listing by title, by name, by label, and by “running” title.

The fifth function in the View menu is used to switch on and off the Auto Load Foils mode. By default this feature is disabled, which means that the contents of the foil is not automatically displayed in the Foil Preview window when the foil is selected. To display the foil contents a user must double-click the foil icon or press ENTER key. If this function is enabled, each selected foil will be automatically loaded and displayed in the Foil Preview window.

The Tools menu contains the list of tools that are accessible for the user. The list depends on the user privileges (user privileges can be set by the use of the User Manager cf. Section 8). Sample contents of the Tools menu is presented in the Figure 17.

[image: image30.png]
Figure 17 . Sample set of tools in the Tools menu

The menu that is presented in the Figure 17 contains the maximum set of functions that are accessible for users other than System Administrator. There are seven functions in the menu:

· Reconnect – this function can be used to reconnect to the database system. After one selects this function, the Login Window appears (cf. Section 4.1). The user can now connect to the same database as different WebWisdom NT user or can connect to another database.

· User Preferences – this function displays the User Preferences window (cf. Section 9) and enables changing the user default values of the WebWisdom NT properties.

· Foilworld Manager – this function activates the Foilworld Manager. The Foilworld Manager allows modification of the foilworld tree, changing the user access rights, and foilworld ownership (cf. Section 10).

· Event Manager – this function starts the Event Manager – tool used to manage the list of events that can be associated with presentations (cf. Section 11).

· Property Editor – this function activates the Property Editor. Property Editor can be used to manage the list of properties in the WebWisdom NT system. It allows creating new property categories and new properties, changing the default value of the existing properties, etc. (cf. Section 9).

· Image Manager – this function activates the Image Manager. Image Manager can be used to add, remove, and rename images in the WebWisdom NT database (cf. Section 7).

· User Manager – this function activates the User Manager – tool enabling management of the WebWisdom NT users and people associated with other WWNT elements as authors (cf. Section 8).

[image: image31.png]
Figure 18 . The Print menu

The Print menu (Figure 18) contains four functions:

· Print Foil – used to print single foils (cf. Section 5.8.1)

· Print Presentation – used to print whole presentations (cf. Section 5.8.2)

· Print PowerPoint Foil – used to print single foils from the PowerPoint source stored in the database. If available this functions gives maximum printing quality (cf. Section 5.8.3)

· Print PowerPoint Presentation – used to print whole presentations from the PowerPoint source stored in the database. If available this function gives maximum printing quality (cf. Section 5.8.4)

[image: image32.png]
Figure 19 . The PowerPoint menu

The PowerPoint menu contains two functions (Figure 19):

· Save Foil – this function is available when a foil is selected. It allows saving the PowerPoint source associated with the selected foil to a disk file.

· Save Presentation – this function is available when a presentation is selected. It allows saving the PowerPoint source of the whole presentation to a disk file.

The Help menu is used to display help information about the Presentation Manager.

Other Presentation Manager pull-down menus are activated by pressing right mouse button over the Foilworld Browser, the Presentation Browser, and the Foil Preview window. The number of items in a given menu depends both on a context this menu is invoked in, and on user privileges. For example, function “add image” is hidden while there is already an image defined for the current foil.

5.2. Foilworld Menu Functions

5.2.1. Creating New Foilworlds

The user can create a foilworld directly in the Presentation Manager without entering the Foilworld Manager. To create a new foilworld the user should select the parent foilworld, press the right menu button, and from the foilworld pop-up menu (Figure 20) choose the “Insert New Foilworld” item. Then the user is prompted to enter the foilworld name and the foilworld is being created.

5.2.2. Creating New Presentations

To create a new presentation, a foilworld with write access for the user should be selected. After clicking the right mouse button over the foilworld name, a pop-up menu appears (Figure 20). The user should select the “Create New Presentation” menu item.

[image: image33.png]
Figure 20 . Foilworld pop-up menu

After selecting the “Create New Presentation” item from the menu, a new window “Presentation Library Attributes” appears (Figure 74). In this window, the user can enter all library attributes of the presentation, e.g., title, name, label, keywords, associated events, authors (cf. Section 6.1). When the user accepts the data entered in the “Presentation Library Attributes” window, the presentation is being created.

5.2.3. Creating New Scripts

The process of creating a new script is similar to the process of creating a new presentation, except that the user should select the “Create New Script” instead of “Create New Presentation” function in the foilworld pop-up menu.

5.2.4. Refreshing the Foilworld Tree

Since the WebWisdom NT is a multi-user application, multiple users can change the data in the database. All elements displayed in the Presentation Manager except the foilworld tree are refreshed when a user performs habitual tasks. Since the foilworld tree is not refreshed, it can happen, that some users modify the structure of foilworlds when other users still see the old structure. As long as the modifications do not affect directly the other users’ work (e.g., the foilworld used by the other user is deleted) this will not lead to errors, because the foilworlds are referenced by identifiers, not names or positions in the hierarchy.

In some situations, however, it may desirable to see the new modified structure of the foilworlds without the need to reconnect to the database. This task is accomplished by the “Refresh Tree” function in the foilworld pop-up menu (Figure 20).

5.3. Presentation Menu Functions

5.3.1. Creating New Foils

New foils in new or existing presentations can be created by the use of the “Create New Foil” function in the presentation pop-up menu (Figure 21).

[image: image34.png]
Figure 21 . The presentation pop-up menu

After selecting this function, a new window appears as shown in the Figure 22.

[image: image35.png]
Figure 22 . Create New Foil window

The user is prompted to enter the title of the new foil. After entering the title, the foil is being created. Initially, the foil does not contain any educational objects. Educational objects XE "educational objects" can be added to the foil by the use of the preview pop-up menu (Figure 23).

[image: image36.png]
Figure 23 . Preview pop-up menu for an empty foil

5.3.2. Cloning Presentations

Presentations can be cloned (copied to new physical copies) by the use of the “Clone Presentation” or “Clone Presentation to Foilworld” functions in the presentation pop-up menu (Figure 21). The first function creates a clone of the presentation in the current foilworld, while the second one enables the user to select the destination foilworld where the presentation should be cloned.

Cloning XE "presentation:cloning" presentation also clones all objects associated with the presentation, e.g., educational objects and properties.

5.3.3. Exporting Presentations to XML

Presentations can be exported to an interchangeable XML format by the use of the “Export to XML” function of the presentation pop-up menu. See Appendix A for the description of the XML file format. The exported XML presentation can be imported to the same or another database, or can be used by the TDLServlet instead of the database system (cf. Section 13.1.11).

After activating the “Export to XML” function from the presentation pop-up menu, a file browser window appears enabling the user to select the destination directory and the file name of the XML file to be exported. The file name is set by default to the name of the presentation, but the user can change it freely. After the file name and location are fixed, the exporting process starts. During the exporting a progress indicator shows the progress of the export process (Figure 24).

[image: image37.png]
Figure 24 . XML export progress indicator

5.3.4. Sorting Presentations – Slide Sorter

The Slide Sorter is a tool that facilitates composing of presentations. The current version of the slide sorter has two main applications – the user can see the visual composition of the presentation and can change the order of its elements. Slide Sorter may be invoked by selecting “Presentation Sorter” option from the presentation pop-up menu (Figure 21).

After activation of this function, the slide sorter window appears (Figure 25). The window contains the list of slides constituting the presentation. Each slide is represented by its thumbnail. If the thumbnail is not available in the database, a default thumbnail is provided. The foil title is displayed under each slide. If the title is longer than 24 characters, it is truncated and ‘...’ appears at the end of the title.

[image: image38.png]
Figure 25 . Slide Sorter window

Some presentations, called scripts, may contain other presentations. In such case, the component presentation is expanded and displayed as separate foils. If the component presentation includes another presentation, that last presentation will also be expanded. Because the component presentation is defined elsewhere, it is not possible to modify the order of its components (Figure 26). To distinguish this situation, the slides, which form the component sub-presentations, are linked by horizontal lines (Figure 26).

If there are too many slides to fit into the frame, the scrollbar appears at the right side of the window. Sliding it up and down gives access to all slides in the presentation.

Slides in the slide sorter are usually displayed using the thumbnail stored in the database. If the thumbnail is not available, the smallest image of the slide is used instead. It is scaled to 160x120 pixels. This may result in some loss of performance as more data has to be extracted from the database and then the image has to be resized.

The loading of the presentation is separated from loading of slide images. Slides appear at first with substitute images, which are changed into the thumbnails as soon as the thumbnails become available. The loading of the thumbnails is performed in the background, by another thread and using a separate database connection. This approach allows the user to start editing immediately after the main sorter frame appears without waiting for all slide thumbnails to appear.

[image: image39.png]
Figure 26 . Sub-presentations in slide sorter

The slide sorter provides the user with functions for managing slides in the presentation. The user can delete, move, and copy slides within the presentation. The process of copying or moving uses the Windows paradigm. When the mouse cursor is over a slide, left-click selects the slide, while right-click shows a pop-up menu (Figure 27). Selected slide or sub-presentation is surrounded by a red frame.

[image: image40.png]

Figure 27 . Slide pop-up menu

Moving

Moving of the slides is performed with cut and paste operations. The user should select the slide to be moved, then click the right mouse button to access the menu, and select the “Cut” function from the popup menu. Then he/she should select the destination location for the slide, click the right mouse button again, and select a function to “Paste Before” or “Paste After”. The “Paste Before” function moves the slide before the current slide position, while “Paste After” function places the slide after the current slide position. The slide is removed from its original location and placed in the selected space.

Copying

Copying is performed in similar way as moving. The user should select the slide to be copied, then he/she should select the “Copy” option from the menu, and finally paste the slide to the destination position. The slide is duplicated, and its copy appears in the selected location.

Deleting

To delete a slide, the user should select the superfluous slide, click the right mouse button and choose the “Delete” function from the menu. The slide is deleted.

[image: image41.png]
Figure 28 . Presentation from the Figure 27 after
moving the second foil to the first position

5.3.5. Changing Presentation Library Attributes

A user can modify library attributes of presentations located in foilworlds where the user has write access (displayed in green color). To change the library attributes of a presentation the user should select the presentation in the presentation browser, click the right mouse button, and choose the “Presentation Library Attributes” from the presentation pop-up menu (Figure 21).

A new window appears as shown in the Figure 74. The window is similar to the one that is used while loading presentations (cf. Section 6.1).

5.3.6. Changing Presentation Properties

A user can modify properties of presentations located in foilworlds where the user has write access (displayed in green color). To change the properties of a presentation a user should select the presentation in the presentation browser, click the right mouse button, and choose the “Presentation Preferences” option (Figure 21).

When the function is activated a new window with properties for this foil is displayed (cf. Section 9.1.2).

5.3.7. Copying Presentations between Foilworlds

Presentations can be added to foilworlds (copied between foilworlds). Adding presentation to a foilworlds is an operation on logical references. It does not include any physical copying of presentation data in the database. When the same presentation is added to two different foilworlds the two “copies” of the presentation are in fact references to the same presentation and all changes made to one of them will affect the other. To make a physical copy of a presentation use the “Clone Presentation” function (cf. Section 5.3.2).

To add a presentation to a foilworld a user should select the presentation, click the right mouse button, and choose the “Add to Foilworld” function (Figure 21). When the function is activated, a new window is displayed on the screen asking the user to select the destination foilworld (Figure 29).

[image: image42.png]
Figure 29 . Selecting the destination foilworld

When the selection is done, the user should press the OK button to confirm or Cancel button to abort the operation. If the user selects the OK button, the presentation is added to the destination foilworld. Note that only one copy of a presentation can be in each of the foilworlds, so if the presentation was already in the foilworld, the user will be notified about it, and the presentation will not be added to the destination foilworld (Figure 30).

[image: image43.png]
Figure 30 . User notification that the destination foilworld
contains already the selected presentation

5.3.8. Moving Presentations between Foilworlds

A user can move presentations between foilworlds by the use of the “Move to Foilworld” function of the presentation pop-up menu. When the user activates this function, a new window appears and the user can choose the destination foilworld (Figure 29). If the user confirms the selection by pressing the OK button, the presentation is removed from the current foilworld and added to the selected destination foilworld. The user must have write access to both source and destination foilworlds to perform this operation.

5.3.9. Deleting Presentations

A user can delete a presentation by the use of the “Delete Presentation” function of the presentation pop-up menu. To perform this function the user must have write access to the foilworld where the presentation is located in. The delete function removes the assignment of the presentation to the current foilworld. As long as at least one reference to the presentation exists in any of the foilworlds, the presentation is not being physically deleted from the database. When the current foilworld contains the last reference to the presentation, a warning message is displayed on the screen (Figure 31).

[image: image44.png]
Figure 31 . Warning before deleting the last copy of a presentation

The user may confirm the delete action by pressing the “Yes” button or abort it by pressing the “No” button.

5.4. Foil Menu Functions

5.4.1. Changing Library Attributes of Foils

A user can change library attributes of foils by the use of the “Foil Library Attributes” function in the foil menu. The foil menu is activated by clicking the right mouse button over a foil title (Figure 32).

[image: image45.png]
Figure 32 . Foil pop-up menu

When the function is activated, a new window appears (Figure 33).

[image: image46.png]
Figure 33 . Foil library attributes window

The user can modify the values of the attributes. When the modifications are done the user may incorporate the changes to the database by the use of the OK button, or abort the operation by the use of the Cancel button. For description of the foil library attributes refer to Section 6.1.

5.4.2. Changing Properties for Foils

A user chan change property values for a foil by the use of the “Foil Preferences” function in the foil pop-up menu (Figure 32). When the function is activated, a new window appears (Figure 34).

[image: image47.png]
Figure 34 . Setting properties for foils

The user may modify values of the foil properties and commit the changes by the use of the “Apply” button. For more details about setting property values refer to Section 9.

5.4.3. Inserting annotations

A user may insert annotation into the presentation table of contents. To insert an annotation the user should select a foil in the presentation, click the right mouse button, and select the “Insert Annotation” function from the foil pop-up menu. The annotation will be inserted before the selected foil. After the function is activated, the user is prompted to enter the text of the annotation (Figure 35).

[image: image48.png]
Figure 35 . Entering annotation

If the user commits the change by pressing the OK button, the annotation is inserted into the presentation table of contents. In the Presentation Manager annotations are displayed by the use of “[image: image49.png]” icon (Figure 36).

[image: image50.png]
Figure 36 . Presentation after inserting annotation

5.4.4. Hiding Foils

A user may hide foils or shadows by the use of the “Set Hidden” function in the foil pop-up menu (Figure 32). A hidden component is still contained in the presentation but is not visible through the WWW interface. A hidden component in displayed in red color (Figure 37). The hiding operation can be reverted by the use of the “Unset Hidden” function accessible in the foil pop-up menu when a hidden component is selected (Figure 37). Note that a hidden component can be used as the presentation abstract. In this way, a user may choose not to include the abstract in the presentation list of foils.

[image: image51.png]
Figure 37 . Hidden components

5.4.5. Editing PowerPoint Foils

In case of foils imported from a PowerPoint source, a user may edit the actual foil contents by the use of the “Edit PowerPoint Foil” function in the foil pop-up menu (Figure 32).

If the foil does not contain PowerPoint source appropriate message will be displayed (Figure 38).

[image: image52.png]
Figure 38 . Information that the foil does not have PowerPoint source

If the foil has PowerPoint source, the editing process begins and the PowerPoint window is displayed on the screen (Figure 39).

[image: image53.png]
Figure 39 . Editing a PowerPoint foil

Wisdom menu

When PowerPoint is launched from the Presentation Manager some of the PowerPoint standard menus are disabled and a special “Wisdom” menu is added (Figure 40).

[image: image54.png]
Figure 40 . Wisdom menu in Microsoft PowerPoint

The user may liberally edit the foil contents. When the editing process is completed, the user may want to update the changes in the database or to close PowerPoint window without updating the foil in the database.

To finish work with PowerPoint the user should use functions in the Wisdom menu. There are two functions:

· Cancel - closes the PowerPoint window without updating the foil in the database.

· Update - updates the foil in the database and closes the PowerPoint window.

The user should use one of the Wisdom menu commands to finish the work with PowerPoint. If the user closes PowerPoint or the WebWisdom presentation without using commands in the Wisdom menu, a warning dialog box will appear (Figure 41).

[image: image55.png]
Figure 41 . System reaction for closing PowerPoint
without the use of Wisdom menu

The user has four choices now:

· If the presentation was saved before closing, the system can use the saved file to update the foil in the database. The user should press the Update button to do it.

· If the presentation was saved before closing and the user has closed it by mistake, the system can use the saved file, and allow the user to continue the editing process. In such case, the user should press the Continue button.

· If the user has closed the presentation to cancel the editing, he/she should press the Cancel button now.

· If the user has closed the presentation by mistake and has not saved his job, he/she can use the ReEdit button to start the editing process over again.

Since in WebWisdom NT 3.01 only single foils can be edited, the user should not insert any new foils during the editing process. If the user tries to insert a new slide into the presentation, a warning message will be displayed (Figure 42) and the new slide will be deleted.

[image: image56.png]
Figure 42 . Warning message appearing when the user
tries to insert a new slide

The user should not open any new presentations or switch to already open presentations. If the user tries to perform such action, a warning dialog will be displayed (Figure 43) and the WebWisdom presentation will be made active again.

[image: image57.png]
Figure 43 . Warning message appearing when a user
tries to switch the active presentation

5.5. Annotation Menu Functions

5.5.1. Editing Annotations

Annotations can be edited by the use of “Edit Annotation” function of the annotation pop-up menu. This menu can be accessed by clicking the right mouse button over an annotation in the presentation browser (Figure 44). A user must have write access to the current foilworld to be able to access this menu.

[image: image58.png]
Figure 44 . Annotation pop-up menu

After selecting this function, a new window appears enabling the user to modify the text of the currently selected annotation (Figure 45).

[image: image59.png]
Figure 45 . Editing annotation

The user may press the OK button to commit the changes in the database, or press the Cancel button to close the window without modifying the text of the annotation.

5.5.2. Deleting Annotations

A user may delete annotation by the use of the “Delete Annotation” of the annotation pop-up menu (Figure 44). The user must have write access to the current foilworld to be able to access this function. Note that annotations can be also deleted in the same way as foils in the Slide Sorter (cf. Section 5.3.4).

5.6. Editing Script Presentations

Script presentations can be edited by the use of the “Edit Script” function of the foil pop-up menu (Figure 46). The user must have write access to the current foilworld to be able to access this function.

[image: image60.png]
Figure 46 . Invoking Script Editor

The Presentation Manager uses a special mode of operation during script editing. The presentation browser is divided into two windows (Figure 47). The left window operates as usually; it displays the contents of the currently selected foilworld. The user can browse the presentations and foils. The right window displays the contents of the currently edited script presentation. The user can select a foil shadow to display its contents.

[image: image61.png]
Figure 47 . Presentation Manager with Script Editor activated

When the Presentation Manager is in the script-editing mode, the presentation- and foil- pop-up menus are modified. The usual functions are removed; the only accessible function is “Add To Script” (Figure 48). This function adds a newly created shadow of the selected element (foil or presentation) to the currently edited script.

[image: image62.png]
Figure 48 . Adding elements to script

When the script-editing mode is active, a new menu is added to the Presentation Manager frame (Figure 49). This menu contains two items: “Done Edit” and “Delete”. The “Delete” function can be used to remove currently highlighted shadow from the script. The “Done Edit” function can be used to quit the script-editing mode and return to normal mode of operation.

[image: image63.png]
Figure 49 . The “Script” menu

5.7. Preview Menu Functions

5.7.1. Overview of the Preview Menu Functions

The set of functions accessible in the preview menu depends on multiple factors. The most important factors include user privileges, user access rights to the current foilworld, educational objects associated with the foil, and current context (e.g., the educational object displayed).

Assuming, that the user has full privileges and write access to the current foilworld, the set of functions accessible in the preview pop-up menu consists of two main sets of functions:

· functions of adding educational objects of types not present in the current foil or types that may be represented by multiple educational objects, e.g., add-ons (Figure 50, functions 1-4),

· functions of manipulating the currently displayed educational object (Figure 50, functions 5-7).

[image: image64.png]
Figure 50 . Image preview pop-up menu

5.7.2. Adding Sound to Foils

A user may add sound to a foil that does not have sound educational object by the use of the foil preview menu. A user must have write access to the current foilworld in order to be able to do it. To accomplish this task, the user should select the “Add Sound” function of the foil preview menu. After activating this function, a file browser window is displayed, enabling the user to select the audio file to be added to the foil. The audio file should be in a format that can be played by the browser (e.g., real-audio *.ra).

After the sound file is added to the foil, a new panel (“Sound”) is displayed in the foil preview window and the “Add Sound” item is removed from the foil preview pop-up menu. To change the sound file associated with the foil the user should first remove the currently assigned sound file.

5.7.3. Adding Add-Ons to Foils

A user may add add-ons to a foil by the use of the “Add Add-On” item of the foil preview menu. To be able to accomplish this task the user should have write access to the current foilworld. Since one foil can have unlimited number of add-ons the “Add Add-On” function does not disappear from the foil preview menu once an add-on is added.

After the function is activated, a new window is displayed enabling the user to enter attributes of the newly created add-on (Figure 51).

[image: image65.png]
Figure 51 . Adding foil add-on

These attributes include:

· Title – the title of the add-on. This title will be used in the Presentation Manager and in the WWW browser.

· URL – URL of the web page. Contents of this web page will be displayed in the browser window when the add-on is activated.

· Presentation Mode – attribute describing the mode of activating the add-on. Automatic means that the add-on will be displayed automatically once the user enters the foil page. Manual means that a special control will be displayed on the foil page allowing the user to manually access the page addressed by the add-on.

· Window Attributes – attributes of the browser window displaying the web page addressed by the add-on. The user can specify the size of the window, visibility of various window components, etc.

After the add-on attributes are specified, the user can submit the data to the database by the use of the OK button. At any time, the user may cancel the operation by the use of the Cancel button.

5.7.4. Adding External Links to Foils

A user may add external link to a foil by the use of the “Add External Link” item of the foil preview menu. To be able to accomplish this task, the user must have write access to the current foilworld. Only one external link may be associated with a foil, when an external link is already associated with a foil, the “Add External Link” function disappears from the foil preview menu.

When this function is activated, a special window is displayed which enables the user to enter the URL of the external link (Figure 52).

[image: image66.png]
Figure 52 . Adding external link

The user may submit the data to the database by the use of the OK button, or cancel the operation by the use of the Cancel button.

5.7.5. Adding HTML Pages to Foils

A user can add an HTML page to a foil by the use of the “Add HTML Page” function of the foil preview menu (Figure 50). The user must have write access to the current foilworld to be able to accomplish this task. Only one HTML page may be associated with a foil.

When the function is activated, it starts the HTML importer to import the contents of the web page and store it into the database. Please refer to Section 12 for detailed description of the HTML importer.

5.7.6. Editing Foil Image

A user can edit the image associated with a foil by the use of the “Edit Image” function of the foil preview menu. The user must have write access to the current foilworld in order to be able to do it. In WebWisdom NT 3.01, image editing for multi-resolution images is not allowed (e.g., those obtained while importing PowerPoint presentations).

In order to edit an image, the user should choose the foil containing an image, in the preview window switch to the Image panel, click on the right mouse button, and select the “Edit Image” function from the pop-up menu (Figure 50).

When the function is activated, the Image Editor window appears (Figure 53).

[image: image67.png]
Figure 53 . Image Editor main window

Most of the Image Editor area is used for displaying the image. In the status bar on the bottom of the window, the image size and the image name are displayed. There are two pull-down menus on the top of the window: File menu and Transform menu.

The Transform menu allows the user to edit the image. The possible transformations are:

· Flip (horizontally or vertically),

· Rotate (to the right or to the left with an arbitrary angle),

· Crop (given the top-left corner and the size of the final image),

· Resize (given the size of the final image explicitly or as a percent value of the original size),

· Blur, and

· Sharpen.

The Crop transformation allows the user to preview the result before the changes are imposed on the original image (Figure 54).

[image: image68.png]
Figure 54 . Crop Window

The File menu provides three functions (Figure 55):

· Back to original (all transformations are cancelled but the image remains open in the editor)

· Update (the window is closed and the image is updated in the database)

· Cancel (the window is closed and the image is not modified in the database)

[image: image69.png]
Figure 55 . The File menu of the Image Editor

5.7.7. Saving Foil Image File

A user can save the image associated with a foil by the use of the “Save Image File” function of the foil preview menu (Figure 50). To accomplish this task the user must have read access to the current foilworld.

After this function is activated, a file browser window is displayed enabling the user to select the name and the location of the file to be saved. The default value of the file name is taken from the database.

5.7.8. Removing Foil Image

A user may remove the image associated with a foil by the use of the “Remove Image” function of the foil preview menu (Figure 50). The user must have write access to the current foilworld in order to be able to activate this function. After removing the foil image, the “Remove Image” function disappears from the menu and the “Image” panel is removed from the foil preview window.

5.7.9. Removing Foil Text

A user can remove the HTML text associated with the foil by the use of the “Remove HTML Text” function of the foil preview menu. This function becomes available in the HTML Text preview panel (Figure 56). The user must have write access to the current foilworld to be able to access this function.

[image: image70.png]
Figure 56 . Text preview pop-up menu

5.7.10. Editing Foil Add-ons

A user can edit add-ons associated with a foil by the use of the “Edit Add-On” function of the add-on preview menu. This function becomes available in the Add-on preview panel, after selecting one of the add-ons (Figure 57). The user must have write access to the current foilworld in order to be able to access this function.

After the function is activated, the Add-on edit window appears allowing the user to modify attributes of the selected add-on (Figure 51). The user can commit the changes to the database by the use of the OK button, or cancel the modifications by the use of the Cancel button.

[image: image71.png]
Figure 57 . Add-on preview pop-up menu

5.7.11. Removing Foil Add-ons

After an add-on in the add-on list is selected, a user may delete it by the use of the “Remove Add-On” function of the add-on preview menu. The user must have write access to the current foilworld in order to be able to access this function.

5.7.12. Editing External Links

A user can edit external link associated with a foil by the use of the “Edit External Link” function of the external link preview menu (Figure 58). The user must have write access to the current foilworld to be able to access this function.

[image: image72.png]
Figure 58 . External link preview menu

After the function is activated, a new window appears enabling the user to edit the URL of the external link (Figure 52). The user may commit the changes to the database by the use of the OK button, or cancel the operation by the use of the Cancel button.

5.7.13. Removing External Links

A user can remove an external link associated with a foil by the use of the “Remove External Link” function of the external link preview menu (Figure 58). The user must have write access to the current foilworld in order to access the function.

5.7.14. Removing Foil Sound

A user may remove sound associated with a foil by the use of the “Remove Sound” function of the sound preview menu (Figure 59). The user must have write access to the current foilworld to access this function.

[image: image73.png]
Figure 59 . Sound preview pop-up menu

5.7.15. Displaying Presentation Manager Information

The creation date and version information of the Presentation Manager can be displayed by the use of the “About” function of the Presentation Manager Help menu. After the function is activated, a new window with the version information appears on the screen (Figure 60).

[image: image74.png]
Figure 60 . Presentation Manager About Dialog

5.8. Printing

WebWisdom NT provides many ways to print foils and presentations. Among these possibilities, WebWisdom allows a platform independent Java-based advanced printing of foils and presentations, and source-based high quality printing of slides and presentations directly from the PowerPoint source stored in the database.

5.8.1. Foil Printing

WebWisdom provides functions of advanced printing of foils, allowing the user to choose the educational object to be printed (Text or Image) and add additional information such as foil title, presentation title, folder name, etc.

To print a foil in the Presentation Manager a user should:

1. Select the foil to be printed

2. Open the Print menu of the Presentation Manager

3. Click on the Print Foil item (Figure 61).

[image: image75.png]
Figure 61 . Printing foils

4. A standard printing dialog appears, allowing the user to select the paper size, the page orientation and the margins.

5. If the user clicks the OK button, a new dialog appears and asks the user to choose the educational object to be printed (Text or Image).

6. If the user clicks the OK button ([image: image76.png]), the preview dialog appears (Figure 62).

[image: image77.png]
Figure 62 . Foil print preview dialog

This dialog allows the user to add additional information to the printed foil. To do so, the user must switch-on the Print checkbox associated with the information to be printed. The user can also choose the position of the information on the page. Finally, the user can choose the label to be displayed in front of the corresponding value. In the example presented in the Figure 63, the foilworld name will not be printed. The presentation title will be printed on the left-top corner and with a label “Presentation title:”

The additional information that can be printed with a foil includes:

· The folder name

· The presentation title

· The foil title

· The current date

· The foil number of the current foil in the presentation / the total number of foils in the presentation

· The foil/presentation authors

· The events associated with the presentation

[image: image78.emf]
Figure 63 . Example of additional information to be printed with a foil

7. If the user clicks on the OK button ([image: image79.png]), a standard printing dialog appears, asking the user which printer he/she wants to use and how many copies are needed. If the user clicks on the Cancel button ([image: image80.png]), the print job is cancelled.

5.8.2. Presentation Printing

WebWisdom provides advanced printing for presentations, allowing the user to choose the foils and educational objects (Text or Image) to be printed and add additional information such as the foil title, the presentation title, the folder name, etc.

To print a presentation a user should:

1. Select the presentation to be printed

2. Open the Print menu of the Presentation Manager,

3. Click on the Print Presentation item (Figure 64).

[image: image81.png]
Figure 64 . Printing presentations

From this point, the operation is the same as in case of Foil printing described in Section 5.8.1. WebWisdom NT uses the first foil to generate the preview dialog.

Finally, the last dialog asks the user to enter the range of foils to be printed.

5.8.3. PowerPoint Foil Printing

For foils that have PowerPoint source stored in the database (e.g., foils imported from a PPT file) Presentation Manager allows printing directly from the PowerPoint source. This method of printing does not allow imposing any additional information on the printouts (compare Section 5.8.1) but offers the best printing quality possible.

To print a foil directly from the PowerPoint source, the user should select the foil, open the Print menu, and select the “Print PowerPoint Foil” function (Figure 65).

[image: image82.png]
Figure 65 . Printing foils from the PowerPoint source

When the function is activated, a standard PowerPoint print dialog box is displayed allowing the user to specify printing preferences.

5.8.4. PowerPoint Presentation Printing

In similar way to PowerPoint foil printing, Presentation Manager allows printing directly from the PowerPoint source for presentations that have PowerPoint source stored in the database. This method of printing does not allow imposing any additional information on the printouts (compare Section 5.8.1) but offers the best printing quality possible.

To print a presentation directly from the PowerPoint source, the user should select the foil, open the Print menu, and select the “Print PowerPoint Presentation” function (Figure 66).

[image: image83.png]
Figure 66 . Printing presentations from the PowerPoint source

When the function is activated, the Presentation Manager prepares the presentation to be printed. The process of preparing the presentation is monitored by a progress window (Figure 67).

[image: image84.png]
Figure 67 . Progress monitoring for PowerPoint presentation printing

When the presentation is prepared, a standard PowerPoint print dialog box is displayed allowing the user to specify printing preferences.

5.9. Statistics and Maintenance Tool

Statistics and Maintenance tool may be invoked by the System Administrator from the Tools menu of the Presentation Manager.

Statistics and Maintenance tool is intended to provide the System Administrator with some statistics information about the database and a possibility to clean the database of objects that cannot be on-line removed during normal use of the system.

Immediately after invoking the Statistics and Maintenance window, the system tries to read some statistics from the database. This involves executing several queries. The time of execution of those queries may vary depending on the database configuration and the size of the database.

During the execution of the queries, a progress bar indicates the percentage of the task already completed (Figure 68).

[image: image85.png]
Figure 68 . Reading Statistics Data
When the results from the queries arrive, the progress bar disappears and it is replaced with the statistics data panel (Figure 69).

[image: image86.png]
Figure 69 . Statistics data panel

Statistics data include the total number of users, the total number of foilworlds (regardless of ownership), the total number of presentations, total number of foils, total number of events, and total number of educational objects.

Presentations are further divided into master presentations and script presentations.

Educational Objects field counts only those educational objects that are used by foils. Not-referenced (not used) educational objects are not counted.

5.10. Buttons

There are three buttons on the bottom of the window:

· Refresh
-
rereads statistics data from the database,

· Purge
-
starts removing unused educational objects

· OK
-
closes the Statistics & Maintenance window

5.11. Purge

When the purge button is pressed, the removal of unused educational objects is initiated. The purging process is executed in two stages. First, the Statistics and Maintenance tool tries to determine which educational objects are no longer used. This process may take a while. During this phase, the progress bar appears, together with textual information about the progress and the number of unused elements found.

[image: image87.png]
Figure 70 . Purge panel

During the second stage, the unused objects are removed from the database. Again, the progress is monitored on the progress bar.

During both of the stages, the user may interrupt the process by pressing, the OK button. Since, removal of objects in the second stage is continuously committed, even if the user cancels the operation, the already removed objects disappear from the database. This allows the user to cancel the operation and resume it at later time.

6. Presentation Loader

WebWisdom NT supports four import modes:

· A wizard-like mode to import presentations in WebWisdom NT or WebWisdom HTML format,

· A fast importer importing directly from a PowerPoint file,

· A wizard-like mode to import directly from a PowerPoint file,

· Import from compressed WebWisdom XML presentation files.

The following description provides overview of all these tools.

6.1. HTML Presentation Loader

This mode allows the user to import presentations in WebWisdom NT or WebWisdom HTML format.

In order to use the mode the user should proceed with the following operations:

1. Select the destination folder for the imported presentation,

2. Open the File menu,

3. Click on the Load Presentation item (Figure 71).

[image: image88.png]
Figure 71 . Starting the HTML Presentation Loader

After activating this function, a new window appears (Figure 72), which allows the user to select the directory containing the files to import. The user can browse the existing hierarchy of directories or directly enter the path in the bottom text field. Each time a user selects a directory, the window tells whether the directory is coherent (i.e., contains valid presentation in HTML format).

[image: image89.png]
Figure 72 . Directory browser

If the directory is coherent, a new button appears ([image: image90.png]) allowing the user to proceed with the importing process (Figure 73).

[image: image91.png]
Figure 73 . Directory browser detecting valid presentation

The next window allows the user to define the presentation attributes (Figure 74). The mandatory fields are labeled in red color.

[image: image92.png]
Figure 74 . Presentation Library Attributes window

The meaning of the attributes is defined in the following table.

Field name
Meaning
Mandatory
Sample Value

Title
Title of the presentation
Yes
Java Programming Course

Running Title
“Heading” title – a string of characters displayed as a window title
No
Introduction to Java Programming

Keywords
A few words describing the contents of the presentation
No
Internet, programming, Java

Name
Unique, space-less string of characters which can be used to identify the presentation in the database
Yes
java001

Subject
Knowledge domain of the presentation
Yes
history, chemistry

Signature
A line of text being user’s (enterprise) signature, usually displayed at the bottom of the foil pages *)
No
© J. Smith 1998

Label
Extended name
Yes
Java Course No 001

Prerequisites
Subjects, a user should know to understand the presentation
No
any programming language, e.g. C/C++

Platform
Hardware and software requirements
No
sound card, MPEG player

Learning level
A pair age:skill; 0:0 means that learning level is undefined; age=0..99, skill=0..5
Yes
0:0, 20:1, 15:5

Form
The way the material is to be presented
Yes
Course, Example, Tutorial

Interactivity
Level of interaction between a user and the system
Yes
Low, Middle, High

Authors
Author(s) of the presentation (a list)
Yes
Smith, Johnson

Events
Events associated with the presentations (a list)
No
1998 Annual Meeting

Summer semester 1998

*) Signature is a property and if not defined will be inherited (cf. Section 2.3)

The events and authors related to the presentation are set by the use of pull-down lists and buttons to the right of the corresponding lists. If a list is not visible at a moment (i.e., it is not “pulled-down”), its first item is displayed. If there is no event declared for the presentation, message “No Event associated with this presentation” is displayed instead. After pressing the [image: image93.png] item of a given list, all the elements of this list are displayed in alphabetical order. Note that at the beginning the author list is initialized with one item being the currently logged user.

Defining events

After pressing the “Add event” button, a window appears and enables to choose events from a list of all events defined in the database (Figure 75). The window is divided into two parts. In the lower part, a set of buttons is provided. In the upper part, the list of currently defined events is displayed. There is a checkbox on the left of each event. If the checkbox is set, its event is placed in the event list of the presentation. Clicking over a given checkbox toggles its state from active to inactive and vice-versa.

[image: image94.png]
Figure 75 . Selecting events from the list
of events defined in the database

The user can choose to view only the selected events by clicking on the “View Selected Only” button ([image: image95.png]). If non-selected events are hidden, the “View selected only” button is displayed with dark-gray background (Figure 76).

[image: image96.png]
Figure 76 . List of events (only selected shown)

If the user has the required privilege, he/she can create new Events by clicking on the “Create New Event” button ([image: image97.png]).

If the user clicks on the OK button ([image: image98.png]), the selected event list is set as the list of events associated with the presentation. If the user clicks on the Cancel button ([image: image99.png]), no change takes place.

Defining authors

After pressing the “Add author” button, a window appears and enables to choose authors from a list of all users defined in the database (Figure 77). The window is divided into two parts. In the lower part, a set of buttons is provided. In the upper part, the list of all users is displayed. There is a checkbox on the left of each user name. If the checkbox is set, this user is placed in the author list of the presentation. Clicking over a given checkbox toggles its state from active to inactive and vice-versa. Currently inactive users may be hidden by pressing “View selected only” ([image: image100.png] icon) button located in the right-bottom corner of the window. If inactive users are set to be hidden, the “View selected only” button is displayed with dark-gray background (Figure 78).

[image: image101.png]
Figure 77 . List of authors (all authors shown)

[image: image102.png]
Figure 78 . List of authors (only selected shown)

If the user has the required privilege, he/she can create new Users by clicking on the “Create New User” button ([image: image103.png]).

If the user clicks on the OK button ([image: image104.png]), the selected user list is set as the list of presentation authors.
If the user clicks on the Cancel button ([image: image105.png]), no change takes place.

When the data are entered, the user can click the OK button ([image: image106.png]) to proceed with the presentation loading. The user can cancel the import process by clicking on the Cancel button ([image: image107.png]).

The next window (Figure 79) allows the user to define foil attribute values. The mandatory fields are labeled in red color.

The following attributes are used for foils:

Field name
Meaning
Mandatory
Sample Value

Title
Title of the foil
Yes
Inheritance in Java

Platform
Hardware and software requirements
No
sound card, MPEG player

Keywords
A few words describing the contents of the presentation
No
Internet, programming, Java

Sound
Sound file associated with the foil
No
Foil003.ra

Use Time
Preferred time of displaying foil (if sound file exists – length of the sound file) in seconds
Yes (default 0)
46

Primary (educational type)
Preferred educational type for the foil
Yes
Image

Secondary (educational type)
Educational type to be used if primary is not accessible (e.g. due to slow network)
Yes
Text

Importance
(of the primary educational type)
Importance of the primary educational type in comparison to the secondary educational type
Yes
Essential

Abstract
If set the foil will be used as abstract for the presentation
Yes
Yes

[image: image108.png]
Figure 79 . Foil attributes window

WebWisdom NT can now use every educational type as a potential primary (and secondary) educational object. The list of available educational objects depends on the contents of the directory to be imported. By default, the primary educational type is set to Image and the secondary educational type to Text (when possible). The user can change these values.

Moreover, the importance of the primary educational object in comparison to the secondary can now be set as one of four values (Figure 80)

[image: image109.png]
Figure 80 . Setting educational types and importance

When the data are entered, the user can click on the OK button ([image: image110.png]) to proceed to the next foil.
The user can choose the presentation to be loaded in an automatic way, by clicking on the “OK for All” button. ([image: image111.png])

The user can also cancel the import process by clicking the Cancel button. ([image: image112.png])

6.2. Quick Loader

This mode allows the user to import presentations into the WebWisdom NT system directly from Microsoft PowerPoint files. The import is performed in background with no interaction with the user.

In order to use the mode the user should:

1. Select the destination folder for the imported presentation,

2. Open the File menu,

3. Click on the Load PowerPoint Presentation item (Figure 81).

[image: image113.png]
Figure 81 . Starting the Quick Loader

The user is asked for the location of the Microsoft PowerPoint file (*.ppt) to be imported. When the user selects the file and clicks the OK button, the presentation is automatically imported.

6.3. PowerPoint Presentation Load Wizard

This mode allows the user to import presentations directly from Microsoft PowerPoint files in interactive mode. The wizard allows the user to enter all the attribute values of the presentation and the foils to be imported.

In order to use the mode the user should:

1. Select the destination folder for the imported presentation,

2. Open the File menu,

3. Click on the PowerPoint Presentation Wizard item (Figure 82).

[image: image114.png]
Figure 82 . Starting the PowerPoint Presentation Load Wizard

The user is asked to select the location of the Microsoft PowerPoint file (*.ppt) to be imported. When the user selects the file and clicks the OK button, the presentation is imported in the same way as described in the Section 6.1 (“HTML Presentation Loader”).

6.4. XML Presentation Importer

WebWisdom Manager provides a tool for importing presentations exported into XML format. To activate the XML Presentation Importer a user should open the File menu of the Presentation Manager and select the “Load XML Presentation” function. When the function is activated, a new window is displayed enabling the user to select the file containing compressed XML presentation. The file usually has “.zip” or “.wis” extension. File dialog window is shown in Figure 83.

[image: image115.png]
Figure 83 . File dialog of the XML presentation importer
After the user selects the file, a new window is displayed (Figure 84). This window allows the user to adjust the mapping of references from the XML file to references in the database. Each database table is treated separately.

[image: image116.png]
Figure 84 . Table mapping window

When the user clicks on an item in the “DB Entry” column, a combo box appears with a list of permitted choices taken from the database (Figure 85). Provided it makes sense in a given context an option “NEW ITEM” may also appear on that list. Selecting that option will cause the importer to create a new entry in the database with data copied from the XML entry.

[image: image117.png]
Figure 85 . Choosing alternative value in the database

The user may proceed to the next table by pressing the “Next” button. If the user does not expect any conflicts in imported data, he/she may press the “Finish” button to accept all default mappings. The process of loading will be executed automatically.

If the name of the imported presentation is already used in the database by another presentation, the user is asked for a new name of the presentation (Figure 86). The name must be unique across the whole database.

[image: image118.png]
Figure 86 . Changing presentation name

Some tables are loaded in an automatic fashion, the user is not required to undertake any actions. The progress bar is then displayed to monitor the progress of the importing process (Figure 87).

[image: image119.png]
Figure 87 . Progress monitoring

7. Image Manager

If a user has granted the privilege to manage database images, the “Image Manager” function is added to the Tools menu of the Presentation Manager (Figure 17).

After activating the “Image Manager” function, a new window appears (Figure 88), which enables reading images into the database, and modifying attributes of existing images. The window is composed of a tab-panel and two buttons: Help and Exit.

[image: image120.png]

Figure 88 . Image manager, „Store new images” panel active

The tab-panel is equipped with two tabs: „Store new images” and „Edit images”. The „Store new images” tab (Figure 88) is used to incorporate new images from file system into the database. Two image formats are accepted: GIF (Graphic Interchange Format, including GIF89a animated pictures), and JPEG (Joint Photographic Expert Group, JPEG).

Contents of the currently selected directory is displayed in „Directories and files” list located in the left part of the tab. By clicking over a directory name (including „..” parent directory) one can enter selected directory and display its content in the list. By clicking over a file with GIF/JPEG image, a user can display the image in the right part of the window. Image can be also displayed by selecting its corresponding file name on the list and pressing „Show selected image” button ([image: image121.png] icon). Below the image, its name is displayed. This name will be used in the database. By default, this name is equal to the file name, but it can be freely changed before storing the image into the database. The “.gif” and “.jpg” extensions are not required although can be used.

A name of a currently selected directory is displayed in the text field in the bottom part of the tab. One may enter a new directory name in this field and press „Open directory” button ([image: image122.png] icon). Contents of a newly selected directory is displayed in the „Directories and files” list and a user may proceed browsing through the directory structure as described above.

The method of displaying images can be changed by pull-down menu located in the upper-right part of the window. There are four possibilities:

· „Normal (1:1)” - image is displayed in its real size; if an image is bigger than the display area, only its left-upper corner is displayed;

· „Scaled to fit” - image is scaled to completely fit the display area;

· „Centered” - image is displayed in its real size in the center of the display area;

· „Tiled” - an image is displayed in multiple copies tiled across the display area.

The way of displaying images can be also changed by clicking over the displaying area. The order of changing is the following: „Normal” („Scaled to fit” („Centered” („Tiled”.

The selected image can be stored in the database by pressing the „Store image in database” button (
[image: image123.wmf] icon). If the image name is already in use, i.e., another image has been stored already in the database under the same name, a message appears and the image is not stored.

After the window is closed, all stored images are accessible for the exporter and may be used as icons, buttons, backgrounds, etc.

[image: image124.png]
Figure 89 . Image manager, „Edit images” panel active

The second tab-panel, „Edit images” (Figure 89), is used to browse through already stored images, change their names, and remove unused images from the database.

Names of images already stored in the database are displayed in „Database images” list located in the left part of the tab. After clicking over a name the corresponding image is read from the database and displayed in the right part of the window. Below the image – in the „Image parameters” text field its parameters are displayed: length in bytes, and width and height in pixels. The way of displaying images („Normal”, „Scaled to fit”, „Centered”, „Tiled”) can be changed by the use of pull-down menu similarly to the corresponding menu in the „Store new images” tab-panel.

To edit the image name, one must select it on the list and press the „Edit image name” button ([image: image125.png] icon). A line editor appearing on the screen enables to change the name (Figure 90). To edit the name one should simply correct it and press the „OK” button ([image: image126.png] icon). The name is immediately updated in the database. To exit the line editor with no change, one should press the „Exit” button ([image: image127.png] icon). In such case, no change is made in the database.

[image: image128.png]
Figure 90 . Image manager, changing the image name

To remove an image from the database a user must select its name and press the „Remove image” button ([image: image129.png] icon). The image is immediately removed from the database. However, if the image to be removed is used as a property value (i.e., as a value of any default, user, or element property, cf. Section 2.3), an error message is displayed (Figure 91) and the image is not removed.

[image: image130.png]
Figure 91 . Image manager, error message after attempting to remove a used image

8. User Manager

User Manager is an application that enables management of user information in the database. The user information may describe actual users of the system, or people that are not active users (cannot login to the system) but can be referenced by other data, e.g., as presentation owners.

When the User Manager is activated from the Presentation Manager, a new window is being displayed (Figure 92). In the upper part of the window, a list of currently defined users is displayed. One can choose a user name by clicking on it. The selected name is displayed in different color. There are six buttons in the lower part of the window. The „Edit user” button ([image: image131.png]icon) can be used to change parameters and privileges of an existing user. The „Add new user” button ([image: image132.png]icon) can be used to define a new user. The „Delete user” ([image: image133.png] icon) button is used to remove the selected user from the system. The „Help” button ([image: image134.png]icon) can be used to request additional information about user administration. The „Cancel” ([image: image135.png] icon) button can be used to exit the window with no change in user list, while the „OK” button ([image: image136.png] icon) - to commit changes and exit.

[image: image137.png]
Figure 92 . Main window of the User Manager

To create a new user, one should press the „Add new user” button. A new window appears as presented in the Figure 93. In this window, the parameters of the newly created user account can be entered. The parameters include first name, middle initials, last name, optionally some additional information about the user, information whether the user may log-in to the system („User can login” checkbox), and for users who may login: login name (possibly different than last name), login password (with confirmation in the „Confirm password” field - the two passwords must be identical), and account expiration date. One can also set a photo of a newly created user by pressing „Add/change image” button ([image: image138.png] icon). After pressing this button, file browser window is displayed. The accepted file formats are GIF and JPEG. The loaded photo is displayed in the upper right corner of the “Add new user” window. The image may be removed from the database by pressing the „Clear image” button ([image: image139.png] icon).

[image: image140.png]
Figure 93 . Creating or modifying user account

One can set privileges for the newly created user by pressing „Privileges” button. A new window allowing definition of user privileges appears (Figure 94).

[image: image141.png]
Figure 94 . Setting privileges for a user

One can set and reset each of the privileges by clicking on its corresponding checkbox. To simplify routine tasks, two buttons are provided. With the „Admin” button one can set the administrator’s set of privileges, with the „Standard” button, one can set the usual user privileges. After pressing “Admin” and “Standard” buttons, the set of privileges can be further refined.

There are three buttons located in the bottom part of the window: „Help” ([image: image142.png]icon), „Exit” ([image: image143.png] icon), and „OK” ([image: image144.png] icon). After pressing one of the two latter buttons, the window disappears.

To edit parameters of an existing user, one must press the „Edit user” button ([image: image145.png]icon) in the main window of the User Manager. The procedure of changing user parameters is similar to the one of creating a new user, except two dates that are displayed below the photo: date the account was created, and date the account was modified for the last time.

To delete a user, one must press the „Delete user” ([image: image146.png] icon) button. If the user to be deleted is referenced by other data (e.g., it is an author of a presentation), it cannot be deleted. If the user to be deleted is an owner of some foilworlds, the ownership of these foilworlds and presentations contained in them is changed to the „root” user. The same applies for user images. A user cannot delete himself/herself.

By changing the state of the “User can login” checkbox one may grant (or revoke) the privilege to login to the system. Removing the login privilege does not remove all other privileges of the user. When the user is activated the next time, all user privileges remain unchanged.

9. Property Manager

9.1.1. Property Editor

In order to facilitate managing the properties (cf. Section 2.3), the WebWisdom NT manager includes a property editor. The same dialog windows are used for editing properties for all objects, however the context in which the property editor has been invoked defines the behavior of the property editor.

The property editor may be used to define new properties (default), to define user preferences, to define presentation or script properties, and finally to define properties specific for a single foil master or a foil shadow.

The context of the execution is determined by the way the property editor is invoked.

9.1.2. Property Editor Context

Default Properties

If the editor is invoked by Tools (Property Editor option from the Presentation Manager menu (Figure 95), all operations concern the default properties. Visibility of some editor options may depend on the privileges granted to the user. This is the only mode of the Property Editor where adding new properties is permitted. Other modes allow only defining new values of already existing properties.

[image: image147.png]
Figure 95 . Invoking Property Editor in default properties context

User Properties

If the property editor is invoked from the Tools (User Preferences menu (Figure 96), all operations concern user properties (default values of properties for the current user). In this mode, the user may specify values for properties, which will override the default values. The value of the property defined on the user level will be used only if it is not overridden on the presentation or foil level. User properties allow each user to customize his/her interface without necessity to change those values for each presentation separately.

[image: image148.png]
Figure 96 . Invoking Property Editor in the User Properties context

Presentation Properties

Presentation Properties are invoked from the presentation popup menu (Figure 97). After selecting a presentation in the foilworld, clicking the right button of the mouse will pull down the presentation menu. Among other options, it allows customizing preferences for that presentation – Presentation Preferences. Customizing preferences for a presentation allows for a smoother esthetical blending of the presentation itself and of the surrounding standard WebWisdom NT components.

[image: image149.png]
Figure 97 . Invoking Property Editor in Presentation Context

Foil Properties

Foil Properties are invoked by selecting Foil Preferences option from the foil popup menu (Figure 98), which may be obtained by pressing the right mouse button while the mouse cursor is over a selected foil entry. The Foil Preferences may be used to change some foil specific properties. Some foils, especially those created by external tools and then imported to the WebWisdom NT system may require some changes in color properties to be displayed properly.

[image: image150.png]
Figure 98 . Invoking Property Editor in Foil context

9.1.3. Editor Concepts

The property editor, as it was mentioned in previous chapters, allows managing properties on different levels of the WebWisdom NT hierarchy. Most of these properties may be applied to users, presentations and foils, but some may not make sense in presentation or foil contexts. Those properties must be filtered out. Properties by default are valid in default and user context, but not necessarily in foil or presentation context. Each property has an additional attribute, which determines whether the property should be displayed in Presentation- and Foil-Preferences.

Although some properties might get filtered out, usually a couple of dozens properties remain valid in any given context. As this number would be unmanageable in a simple list, it was decided that properties should be grouped into categories. Categories are currently grouping similar types of properties, but is possible to reorganize those categories to group properties e.g. according to the templates, which they are used in.

In the Editor Dialog (Figure 99) properties are represented by Tabs, each Tab corresponding to a single category. Some tabs might be hidden, depending on the access privileges granted to the user, e.g., only the root user has access to the “System” tab.

Each tab has its own list of properties. Again, not all properties in a given tab will be visible for all users, visibility of some of them may depend on privileges granted to the user.

Those limitations on visibility of properties are imposed on the user to protect some critical properties from accidental modification. Under normal circumstances, properties, which are marked as hidden or system need not be modified in any way. Modification of any of these properties may result in unpredictable behavior of the system.

The panel for each category is divided vertically into two parts. The list of properties in the category is displayed in the left panel. The right panel is used to display detailed data about the property selected in the left panel.

Properties may be of several different types. Each of these types requires different presentation of its data. To accommodate this diversity of property types each type has its own panel layout. Depending on the type of the property, different panels will be displayed in the right window.

[image: image151.wmf]Categories

Property List

Property Data

Property

Pulldown menu

Figure 99 . Property Editor components

9.1.4. Navigation buttons

When the editor is used, all changes are made only in the computer memory, they will not be submitted into the database unless the user explicitly selects such option. To control submitting changes into the database three buttons are available – OK, Apply, and Cancel (Figure 99).

All of them are placed at the bottom of the Property Editor window.

· OK - commits all the changes into the database, and closes the Property Editor window.

· Apply - commits all the changes into the database, but leaves the Property Editor window on the screen. The user may continue editing the properties.

· Cancel - performs the database rollback of any data that might have been sent to database so far (this concerns only new objects – properties or categories, property value changes are not sent to the database until OK or Apply are pressed).

When the Property Editor window is closed and any changes done since the last Apply, are lost.

9.1.5. Property Management Functions

When the Property Editor is executing in the default context, some additional options for managing properties and categories are available. Those options may be accessed through a pull down menu, which will appear when the user clicks the right button of the mouse, while the mouse cursor is over the property list panel.

There are six options altogether – Insert, Edit, Delete, Move, New Category, and Delete Category.

Depending on the contents of the current panel some of the options may be not available.

Insert

Insert allows inserting new properties into the current panel. When this option is selected, a new dialog window appears on the screen (Figure 100). Filling all the fields of this dialog will define the new property.

The user has to select the TYPE of the property. Types available for new properties include NUMERIC, IMAGE, COLOR, TEXT, FONT, and BOOLEAN.

[image: image152.png]
Figure 100 . New Property dialog

The next field is Search Name. Search name value is used as the primary key for searching properties. Although it is not directly visible in the property Editor, this is the name used by the TDL tag-s in the TDLServlet to access property values. To facilitate managing of the properties a Display Name attribute has been provided. Display Name is the text that will be displayed in the property list in the property editor.

Context checkboxes are used to determine whether a given property should be displayed in presentation or foil preferences. Some properties might not make sense in that context.

Finally, the description field allows entering more detailed description of the role the property plays in the system.

When all obligatory fields are filled, the user may press “OK” button, which will add the property to the current category, and close the New Property window.

At any moment, the Cancel button allows discarding any changes and closing the New Property dialog.

It is important to note that when a new property is being defined no default value is required. The system will define the default value by itself. After closing the New Property dialog, the default value may be changed to something more appropriate in the right panel of the Property Editor window

Edit

The Edit option from the property popup menu allows modifying property definition. In Figure 101, the layout of the Edit Property dialog is presented. Property attributes, which may be subject to modification, include Search Name, Display Name, Context, and Description. It is not possible to change the property type. Changing of property type requires deleting the property and then creating it again with another property type. The meaning of the attributes is described in the Insert section.

Edit option does not provide means to change the default value of the property. The default value may be changed in the right panel of the property editor, when the property editor is running in the Default Context.

[image: image153.png]
Figure 101 . Property Edit dialog

Delete

Selecting the Delete option in the property popup menu results in erasing the property from the database. All values of that property defined for user, presentation, or foil will be removed as well. The option is enabled only if the user has necessary privileges, e.g., the Delete will be disabled for any user other than root when trying to manipulate any system property.

Move

The Move option allows moving the property between categories. The user has to select the property to be moved, click the right button of the mouse when cursor is over the selected property to pull down the menu, and select the move option. A Move Property dialog box will appear (Figure 102). Then the user may select a different category from the combo box. After pressing the OK button, the property disappears from the current category and appears in the selected one.

[image: image154.png]
Figure 102 . Moving properties to another category
New Category

Managing of the properties requires tools to modify the categories. There are two options in the popup menu, which concern categories. Those are New Category and Delete Category.

The first one permits adding new categories, while the latter one allows removing categories, which are no longer in use.

When the user selects the New Category option from the popup menu, a New Category dialog appears (Figure 103).

The user has to define the name of the category (that name will be displayed as the title in the corresponding tab-panel) and some description.

After pressing OK button, a new tab-panel should appear in the category list. From now on, it is possible to move, create, and delete properties in that category.

[image: image155.png]
Figure 103 . New Category dialog

Delete Category

Sometimes, to prevent screen littering, it might be useful to remove a category. The delete option of the popup menu enables deleting the current category, if the category does not contain any properties.

The Delete option is enabled only if the category is empty. If the category contains any elements, the option is inaccessible. To activate the delete option it is necessary to empty the category by either deleting or moving properties to different categories.

9.1.6. Property Panels

As stated previously in this document, properties may belong to one of several types. Each of these types represents different kind of data, with different user interface requirements. To accommodate these differences, a separate panel is created for each data type, with the user interface best suited for editing property values of the given type. Those panels appear automatically in the rightmost part of the Property Editor window when a property of a given type is selected from the property list.

Color Property Panel

The color property panel is used to manage Color properties (Figure 104). The panel contains a list of 24 default colors and 16 user defined colors. The user may select the color by clicking the left button of the mouse with the cursor over a box filled with the desired color.

[image: image156.png]
Figure 104 .Color Property panel

It is also possible to define the user-defined colors. To do so, the user has to move the mouse cursor over the User Colors entry, which he/she wants to use, and press the right mouse button. This will cause the Color Choose dialog to pup up (Figure 105).

[image: image157.png]
Figure 105 .Color Choose dialog

The “Choose color” dialog presents colors in HSB model. In the center there is the color plane corresponding to Hue and Saturation values. The user may select a desired HS value by clicking a mouse over the desired color. A small cross icon will mark the selected color on the HS plane. To the right from the HS plane, the Brightness slider is located. The color of the Brightness slider is defined by the location of the cross on the HS plane. The slider allows precise selection of the desired shade. Changing the brightness will also be reflected on the HS plane. All pixels will be displayed with the selected brightness. Both the HS plane, cross, and Brightness slider should always show the same color. That color is also repeated on the larger area, at the bottom of the dialog box. Pressing OK sets the user defined color, while pressing Cancel abandons the operation.

The colors in the Color panel may be browsed in two modes. The user is either presented with the color list (Figure 104) or may select the color directly in the HSB form (Figure 106). Switching between those two modes is possible by the use of the radio buttons: HSB and List located at the bottom of the Color panel.

The currently selected color is displayed in the “Selected” box. If the “Selected” box is crossed, it means that the value will be inherited from the higher levels of the presentation hierarchy. The color, which will be inherited, is displayed in the “Inherited” box. It is also possible to clear the selected property, which results in removing the value from the database. The value from the higher levels in the presentation hierarchy will be used instead.

[image: image158.png]
Figure 106 . Color Panel in HSB mode

Text Style panel

Text Style panel presented in Figure 107 is somehow special. It allows modifying not one but several different properties at the same time. Those properties are very strictly connected with each other, though, and it was decided that benefits of presenting them together outweigh the drawbacks of breaking symmetry of the property editor.

Text Style properties are defined as system properties. That means that it is not possible to add new properties of this type or to delete the existing ones.

Text Style properties define the font attributes the TDLServlet uses to display bulleted lists in foils. Those attributes include bold, italic, subscript, and superscript. Other attributes like the font family, text color are defined by separate properties.

Each item of the Text Style property may have one of four values: SET, RESET, INHERIT, or IGNORE.

· SET – the option is activated regardless the foil text settings

· RESET – the option is not activated regardless the foil text settings

· INHERITED – the value of the option will be inherited from the higher levels of presentation hierarchy.

· IGNORE – don’t try to apply any values (takes values from the foil data).

[image: image159.png]
Figure 107 . Text Style panel

Text Panel

Text panel allows modifying text properties (Figure 108). “Inherited” box contains the value that is inherited from the higher levels of the presentation hierarchy. The user may edit or type a new value in the text box above. When typing is finished the user can press enter to confirm the change. The new value appears in the “Selected” box. The system interprets the empty string as the empty value, and will use inherited value instead of the explicit value in all TDLServlet operations.

[image: image160.png]
Figure 108 .Text panel

Boolean Panel

Boolean panel allows specifying Boolean values (Figure 109). The user may select one of three radio button options – Clear, True, and False.

· Clear – the system will use inherited value

· True – the property is set to logical True

· False – the property is set to logical False

Below the radio buttons, the “Inherited” value box is displayed. When the inherited value equals True, the box is checked, otherwise it remains empty.

[image: image161.png]
Figure 109 . Boolean panel

Font Panel

Font Panel allows selecting one font from the list of available fonts (Figure 110). As in other cases the “Inherit” option is also available, taking the value from higher levels in presentation hierarchy.

[image: image162.png]
Figure 110 . Font Panel

Image panel

Image panel allows setting image values (Figure 111). The available images are presented as a list. The user may select one image from the list. He/she may then preview the image in three different configurations – the images may be Tiled, may be displayed at the Center of the preview area, or can be expanded to Fit the whole preview area.

As in previous panels, the value may be cleared, delegating responsibility for this option to the higher levels in presentation hierarchy.

[image: image163.png]
Figure 111 . Image panel

Number panel

Number panel allows changing numeric values (Figure 112). The value may be entered into the text field. When the Enter key is pressed the entered string will be checked to verify that it forms a valid number. If so, it will appear in the “Selected” box, otherwise a message box will pop up informing that the entered text is not a valid number.

Entering the empty text will clear the value, and cause inherited value to be used instead.

[image: image164.png]
Figure 112 . Number panel

10. Foilworld Manager

In the WebWisdom NT system, presentations are grouped in foilworlds. Foilworlds form directory-like hierarchical tree. Foilworlds are used to restrict user access. The main tool that is used for managing foilworlds is the Foilworld Manager.

The main functions of the Foilworld Manager are:

· editing hierarchy of foilworlds,

· modifying ownership of foilworlds, and

· granting user access privileges to foilworlds

The Foilworld Manager window is presented in the Figure 113.

[image: image165.png]
Figure 113 . Foilworld Manager window

The hierarchy of foilworlds is displayed on the left side of the window. The foilworlds marked by green icons are fully accessible for the user (i.e., he/she has both read and write access rights). The foilworlds marked by yellow icons are accessible read-only mode (i.e., their contents cannot be changed by the user). The foilworlds marked by red icons are not accessible for the user (i.e., their contents cannot be neither read, nor written by the user). The contents of a foilworld can be expanded or hidden by pressing “+” and “-” icons, respectively.

In the bottom part of the window, information about the owner of the selected foilworld is displayed. By pressing the “User info” button one may display some additional information about the owner (Figure 114).

[image: image166.png]
Figure 114 . Sample owner information frame

10.1.1. Creating Foilworlds

To create a new foilworld and place it in the hierarchy, first the parent foilworld must be selected. Then, when the “Insert foilworld” ([image: image167.png] icon) button is pressed, a new window appears. This window enables setting the name of the newly created foilworld (Figure 115). The foilworld is created as a child of the previously selected parent foilworld. The name of the foilworld can be any string of up to 1024 characters.

[image: image168.png]
Figure 115 . Creating a new foilworld

 “Cancel” button enables to return to the previous window without creating any new foilworld. After pressing “OK” button the newly defined foilworld is created and placed in the hierarchy (Figure 116).

[image: image169.png]
Figure 116 . Foilworld hierarchy after creating a new foilworld

10.1.2. Deleting Foilworlds

To delete an empty foilworld from the hierarchy, the user must selected the foilworld and press the “Delete Foilworld” button ([image: image170.png] icon). If the foilworld to be deleted is not empty or a user has no permissions to delete it, a message appears on the screen and the foilworld is not deleted.

10.1.3. Changing Foilworld Name

To change name of a foilworld, a user must select the foilworld and press the “Set attributes” button. A new window that enables changing of the foilworld name appears on the screen. The contents of the window is similar to the one appearing while a new foilworld is created, except the foilworld owner name is displayed in its upper part (Figure 117).

[image: image171.png]
Figure 117 . Changing foilworld name

10.1.4. Granting privileges to foilworlds

To grant foilworld access privileges to a user, the foilworld must be selected and the “User privileges” button must be pressed. A new window appears on the screen (Figure 118). Read and/or write access can be granted to a particular user or all users. User can be selected by the use of a list located in left part of the window, while current access privileges can be changed by the use of “Read” and “Write” checkboxes located in right part of the window. After setting the user privileges, the “Grant to User” button can be used to commit the changes in the database. The previous privileges are overwritten by the current values. After pressing “Exit” button, the window disappears.

[image: image172.png]
Figure 118 . Granting access privileges to a foilworld

10.1.5. Changing foilworld owner

To set a new owner of a foilworld, the foilworld must be selected and the “Set Owner” button must be pressed. A new window appears on the screen. This window enables setting new owner of the selected foilworld (Figure 119). A new owner can be selected by the use of a list. After pressing “OK” button the ownership is granted to the selected user. Pressing “Exit” button leaves the window without ownership modification.

Ownership of a given foilworld can be set only by a user who is the owner of the parent foilworld. A user can change ownership of foilworlds in his/her foilworld even if he/she is not the current owner of the child foilworlds. The “root” user is the owner of the “Root” foilworld that gathers all other foilworlds in the system. Therefore, the “root” user can change ownership to any foilworld.

If the new owner is different from the owner of the parent foilworld, the selected foilworld belongs to, the ownership can be treated as “temporary”. The owner of the parent foilworld always has permissions to set the ownership back to his name (i.e., to take back the selected foilworld).

[image: image173.png]
Figure 119 . Changing owner of a foilworld

10.1.6. Moving foilworld to another place in the hierarchy

Foilworlds can be moved in the hierarchy by placing a foilworld in a buffer and then placing the contents of the buffer to another foilworld. This mechanism is similar to the well know “Cut & Paste” feature. To place a selected foilworld in the buffer the “Cut” button ([image: image174.png] icon) must be pressed. Next, the parent destination foilworld must be selected and “Paste” button ([image: image175.png] icon) must be pressed. As a result, the previously selected foilworld is placed as a direct child of the selected parent foilworld. The movement is recursive, i.e. it is performed together with all sub-foilworlds.

To finish the manipulation on foilworlds, “Exit” button can be pressed. Note that there is no “Cancel” button, i.e., the changes made during the session cannot be rolled-back.

11. Event Manager

Event Manager is an application that enables management of the event information stored in the database. After selecting the “Event Manager” option in the Tools menu of the Presentation Manager, the main window of the Event Manager appears (Figure 120).

[image: image176.png]
Figure 120 . Main window of the Event Manager

In the upper part of the window, the list of all events defined in the database is displayed. Each item in the list is marked by the event type. The event type is displayed in parenthesis left to the event name (e.g., (Meeting), (Course), (Lecture)).

Below the list of the events, a set of six buttons is located. The three leftmost buttons are: Help, Cancel, and OK. To the right, there are tree other buttons: Edit Event, Add Event, and Delete Event.

Pressing the Edit Event button after an item in the list is selected enables modification of the event attributes. A new window is displayed as shown in the Figure 121.

[image: image177.png]
Figure 121 . Edit window of the Event Manager

There is a set of attributes in the upper part of the window. The following attributes are displayed:

· Name – name of the event,

· Place – where the event took place,

· Comment – additional comment describing the event (optional),

· Beginning date – date when the event began,

· Ending date – date when the event ended (optional),

· Event type – type of the event, e.g., “Meeting”, “Conference”, “Lecture”,

· Date Comment – additional information about the time when the event took place, e.g., “Spring Semester 1998” (optional).

In the lower part of the window one people involved in the event and their roles are displayed and can be changed. The left list contains the roles that can be assigned to the users in an event. The roles that have assigned users for the current event are displayed in red. After selecting one of the roles, the list of users having this role in the event is displayed in the right list window. One can change the list of people with a specific role by selecting the role and pressing the “Select Users” button ([image: image178.png] icon). A new window appears as shown in the Figure 122. This window enables selection of the users having the role in the event.

[image: image179.png]
Figure 122 . Changing the list of people with a specific role

If the user is privileged appropriately, he/she can create new users while selecting the list of users having a particular role in an event. The zoom/unzoom function simplifies operation on the list of selected users.

12. HTML Importer

12.1. General Description

HTML Importer may be used to download an HTML page from the web and to store it in the database. Importer downloads not only the main document but most of the embedded objects as well. While loading those objects, all references in the principal document are modified to point to the local copies of those resources. The objects currently supported include images, frames, and backgrounds.

12.2. Principle of operation

The Importer holds a queue of documents that require downloading. When the user specifies the URL of the document to be downloaded, the queue holds only one entry. The Importer then downloads the document, and if the document mime-type identifies it as an HTML document the importer starts parsing its contents.

During the parsing, importer may encounter some HTML tags, which specify URL addresses of the document components. If the importer encounters such a tag, it generates a new name for the resource under consideration, in the parsed document substitutes the URL with the newly generated name, and finally adds the URL together with its new name to the queue.

After the document is parsed, the importer writes it into the database. Then it checks the queue and if it is not empty, the next document is downloaded and parsed.

Importer currently recognizes the following tags: A, AREA, BASE, FRAME, HEAD, BODY, IMG, and TITLE.

A

All references are converted to absolute form, e.g., a relative link: href=”foils” with the base address: http://www.npac.syr.edu/courses/cps616.html will be converted to absolute link: href=”http://www.npac.syr.edu/courses/foils”.

AREA

All references are converted to absolute form (see above).

BASE

The value of the BASE tag is taken into account while calculating the absolute URL-s.

FRAME

The SRC of the frame is substituted with a newly generated URL and the document referenced in the SRC is scheduled for download in the future.

HEAD

Importer adds after the HEAD tag a new BASE tag which points to the original URL of the document.

BODY

URL in BACKGROUND attribute of the BODY tag is substituted and scheduled for downloading.

IMG

URL in SRC attribute of the IMG tag is substituted by a generated name and scheduled for download.

TITLE

Title is recognized and used as a foil title in the database.

12.3. Usage

The process of downloading the document from the Web has been divided into four phases of interaction with the user. These phases are described below. At each of these steps, the Cancel button is available. Using it closes the importer window and performs the rollback operation in the database, thus removing all partially imported data already placed in the database.

12.3.1. Phase I – URL panel

In the first phase, the user is required to enter the URL in the appropriate text field (Figure 123). When the address is already typed, he/she should press Enter key to submit the address. The Importer verifies whether the typed text corresponds to the URL syntax.

[image: image180.wmf]URL Text Area

Cancel Button

Disabled Next Button

Figure 123 . URL Panel
If the URL is correct, the Next button becomes enabled and activated – the focus is transferred to this button (Figure 124). At this point, the user may either change the address or select the Next button by selecting it with the mouse or simply by pressing Enter key on the keyboard. This action changes the contents of the Importer window to the Page Loader Panel (Figure 125).

[image: image181.wmf]Enabled Next button

Figure 124 . URL Panel - “Next” button enabled

12.3.2. Page Loader panel

Page Loader Panel visualizes the process of downloading the selected page. Each downloaded component appears in the download list when its download is completed. While downloading, for each of the components, an additional dialog box appears with the progress information (Figure 125). The progress information consists of the progress bar for the file currently being downloaded and of the designation of the download phase. The download phase may show one of the following:

· Resolving

-
resolving the URL address, trying to find the IP,

· Connecting
-
trying to connect to the host,

· Downloading
-
downloading the document.

[image: image182.wmf]Downloaded URL

Download Progress

Download Cancel Button

Figure 125 . Page Loader Panel – download in progress

If no errors are encountered during the download, the Next button becomes enabled and activated (Figure 126). Simple pressing the Enter key or clicking on the Next button with the mouse swaps the window contents to the Preview Panel. If the user is not satisfied with the result of the download or the download has not been successful, the Previous button allows coming back to the URL panel.

[image: image183.wmf]To URL Panel

Cancel

Next

Downloaded Page Components

Figure 126 . Download finalized

12.3.3. Preview

The Preview Panel uses the HotJava component (Figure 127). The user may see the document he/she has downloaded. The document comes from the original location, as it is not yet committed into the database. At this phase, the user may again make a decision whether he/she wants to proceed or would rather select another document.

[image: image184.wmf]HotJava Panel

Scrollbars – position the page for the snapshot

Figure 127 . HotJava page preview
At this phase, the system generates the snapshot and thumbnail for the downloaded page. The HotJava window allows use of scrollbars. This, together with window resizing allows proper positioning of the document within the HotJava window, which is crucial when taking the snapshot of the page. The links that may occur within the downloaded page are intentionally disabled. HotJava browser starts all the applets that may occur inside the previewed page. After proper positioning of the document, the user should click the Next button. This changes the Importer window contents to the Finalization Panel (Figure 128).

When the Next button is pressed, the Importer forces HotJava browser to paint its contents into the image instead of the screen. This image will be stored in the database for use in the Presentation Manager preview window.

12.3.4. Finalization

[image: image185.wmf]Commit into the database

Image preview

Thumbnail preview

Figure 128 . Finalization Panel – Thumbnail & Image preview

The Finalization Panel presents the snapshot of the HotJava display (Figure 128). The generated image will be written into the database as the image representation of the downloaded HTML page. Upper-left corner of the snapshot area is covered by the thumbnail representation. The thumbnail is a scaled down (usually) version of the snapshot. For scaling, it uses the area averaging algorithm to improve the accuracy of the resulting thumbnail. Thumbnails are generated in the standard WebWisdom NT format 160x120 pixels.

At this point, the download process is complete and pressing the Next button commits the changes into the database. Pressing Previous button switches to the Preview Panel thus allowing for modifications of the snapshot exposition.

13. Dynamic HTML Exporter

The WebWisdom NT Dynamic HTML Exporter is used to access the presentations stored in the database by the use of standard WWW browsers. It reads data from the database, formats it according to the specified set of templates, and delivers to the client browsers. The Dynamic HTML Exporter consists of TDLServlet servlet, Getdata servlet, and a set of TDL templates installed on an HTTP server. All of these elements are described below.

13.1. TDLServlet System

The TDLServlet system is an HTTP server extension designed for user-defined output formatting. The main idea of the system is to present the same data in different views by the use of templates - XML-compliant files describing the way of data formatting. The architecture of the system is presented in Figure 129.

[image: image186.wmf]HTML

BROWSER

JDBC

Local

Database

Management System

HTTP

server

TDLServlet

Internet

Internet

TDL

templates

File system

Zipped XML

presentation

files

HTTP

server

Figure 129 . Architecture of the TDLServlet system

The system is composed of a servlet – a Java program being an extension of a standard HTTP server, and a set of templates. The servlet is capable to access local software systems, mainly database management systems by the use of JDBC. The servlet can also access WWW files and documents via other HTTP servers
. Some files are of special meaning. They are called templates and their role is to define patterns for output formatting. The templates are written in TDL - Template Definition Language, a language specially developed for use in the system.

The basic way of using the system is the following. A user accesses the HTTP server from his/her HTML browser, providing in URL: (1) a locator of the servlet, (2) a locator of a TDL template, and (3) - some additional parameters. The HTTP server passes the call to the servlet addressed in the user's URL. Basing on the template locator, the servlet reads the template from a given HTTP server. Next, the servlet interprets the contents of the template – tag by tag, in the meanwhile contacting database management system or retrieves data from zipped XML presentation files. Then, the servlet contacts other HTTP servers for data needed to complete the operation, i.e., data being results of an SQL query, a given file, etc. The data is formatted according to the template and the parameters, and sent back to the user as a standard HTML file. For example, to display nth foil of a presentation, a user sends (as URL) a locator of a template together with servlet location and with two parameters – presentation identifier and foil number. The servlet reads the contents of the template, interprets it, invokes some queries to the database or data stored in XML files as defined in the template, and formats query results according to HTML syntax. Then, the servlet adds necessary HTML tags including text formatting tags with font and color definitions, adds a page header (with customer logo for example or with advertisement), and sends the complete HTML document back to the user.

Main TDLServlet features are described below.

· Use of TDL (Template Definition Language)

TDL is a tag-based language for template definition. The language definition is fully extensible, giving to a user a possibility to define his/her own tags. A user-defined Java method is provided for each tag. This method is invoked every time the tag is interpreted by the servlet. This approach gives a possibility to personalize the behavior of the system according to user needs.

· Easy and powerful API for preparing of new tags

· XML compliance

TDL language is an application of the XML standard. Standard XML parser performs the language interpretation. Moreover, correctness of template syntax can be automatically verified to ensure that it can be interpreted correctly.

· Three-level servlet cache

First level of cache is used to store input files (including templates). The second level cache is used by database query subsystem to store database queries. The third level is used to store output cache (HTML-formatted output files). The cache can significantly improve system performance especially in a case, when many users access the same data at the same time (for example a class of students accessing the same course material simultaneously).

· Prefetch capabilities

Special tags can cause the servlet to start additional threads, which retrieve data in background and stores it in the cache. This feature significantly improves servlet performance.

· Database connection pool

The servlet can use a connection pool for the database system. If the servlet requests a new connection, the current pool of free connections is searched. If a free connection is available, it is supplied to the servlet. If not, the new connection is created. In such a way a significant improvement in the database connecting time is achieved, because instead of creating a new connection each time the servlet is invoked, it uses “ready” free connections from the pool.

· Persistent tags

The object used for interpretation of a tag can be re-used, i.e., every time the tag is about to be interpreted, the same object is used with no initialization of its internal data. Thus, one can use “interpretation history” of the tag.

· On-line WWW-based configuration

A set of HTML pages is provided to configure the servlet via WWW.

· Access to templates by HTTP server

Templates can be located on different hosts and maintained by different users. A user does not have to have access to the server to modify his/her templates.

· Properties

Servlet behavior can be modified by the use of properties. There are configuration properties, predefined properties, user-defined properties (read form a file), system-defined properties, variable properties (defined by tags during template interpretation), and addressing properties.

· Powerful expressions

TDL language is equipped with expression evaluator, making it possible to perform some arithmetical, logical, and text-formatting operations on tag parameters.

13.1.1. Servlet architecture

The TDLServlet is developed according to the requirements specified in [http://java.sun.com/products/webserver/features/]. Thus, it can be used with any HTTP server fulfilling these requirements, for example Netscape Enterprise Server or Apache server.

The servlet is composed of several modules (Figure 130): Main Module with Initialization Module, Template Loader with Template Cache, XML Parser, Interpreter with Persistent Data Storage and Tag Implementations, and Sender with Output Cache.

[image: image187.wmf]Servlet Main

Module

Persistent data storage

Tag implementations

Template Cache

HTTP server

Templates

Output cache

Config

files

HTTP call (template, parameters)

HTML output

HTML

browser

HTTP server

Template Loader

XML Parser

Interpreter

Sender

Remote

Configu-

ration

Initialization

Zipped XML

presentations

Figure 130 . Servlet architecture

First time the servlet is invoked, the Initialization module is activated. This module is responsible for reading configuration files, initializing all the data structures used by other modules, and initializing both cache modules.

The servlet can be remotely configured by the use of its HTTP server and a standard HTML browser. The configuration parameters include (among others) cache timings and methods, and names of Java methods to be used for tag interpretation
. The Main Module is responsible for invoking and synchronizing the other modules. The order of invoking is the following. After a call is received from the HTTP server the servlet is linked to, the servlet checks if the output for this call does not exists in the Output Cache (i.e., if the output for such call was already prepared and has not yet expired). If the output is ready in the Output Cache, it is sent directly to the user without activating other modules. If, however, the output for the call is not cached at the moment (or the cache is not active), the Main Module starts to activate other modules to serve this call. First, the Template Loader Module is activated with the template as a parameter. If this template file is stored in the Template Cache, it is passed to the Main Module. If, however, the template file is not cached at the moment, the Template Loader reads it from a given HTTP server, according to template locator. Once read, the template is put to the Template Cache and passed to the Main Module
.

At this moment the template property file “properties.conf” for the retrieved template is read. If the template is a “database” template (i.e. data is retrieved from database) the connection to database is taken from the connection pool.

If the template is a “XML” template (i.e., data is taken from the zipped XML presentations) the presentation directory (and its subdirectories) is searched for zipped presentations. Each zip file found is searched and information about available presentations is stored in the template internal data structures
. If the current request to the servlet includes a presentation id, the zip file containing this presentation is opened, the XML file describing the presentation is read and parsed, and the zip file is closed. The data from the XML document is then passed to tags, which can use it a way similar to a database system. If the request does not contain the presentation id, the data from the default presentation
 is used.

When the template is ready, the Main Module invokes the XML Parser for this template. Therefore, a template derivation tree is generated, being a result of syntactical decomposition of the template. Each tag is stored as a node of the tree, with children nodes being nested tags, text inside tag body, and tag attributes. The root node of the generated parsing tree is passed back to the Main Module.

Once the tree for the template is ready, the Interpreter is invoked to parse the tree recursively, node by node. For every node, the tag type is determined and a corresponding Java method is invoked to generate tag output (i.e., a text in HTML format). The called method recursively calls similar methods for the nested elements of the tag body. Methods can access database management system (via JDBC) to get some data, retrieve data from zipped XML files or XML documents containing presentations, read documents from HTTP servers, generate their own text, etc. As a result of parsing the root node and all its children, a string of characters being HTML-formatted output is generated.

The Interpreter is also equipped in the Persistent Data Storage module, to deal with persistent objects (for example template variables) and to remember an interpretation state for some tags.

The generated HTML output is passed to the Sender, and, at the same time, to the Output Cache. The Sender sends the output via Internet (i.e., the HTTP server the servlet is linked to) back to the user.

In the remaining part of this section, Modules are described in details.

13.1.2. Initialization Module

The Initialization Module is responsible for reading of the configuration files. The Initialization Module is invoked during the servlet startup, i.e., when the first request is served. Please refer to Section 15.4 for detailed description of the configuration files.

13.1.3. Main Module

The Main Module is responsible for synchronizing the work of other modules and for getting calls from the HTTP server. In general, according to a type of a call (HTTP POST or GET), one of the methods of the Main Module is invoked: doPost() or doGet()
. In general, doPost() method is used for servlet configuration, while doGet() – for accessing data. Both methods operate in “stateless” manner (like HTTP servers do). Methods for concurrent user calls are run in multi-threaded environment.

The doPost() method is used to configure the servlet behavior. Main tasks performed by this method are the following:

· cache expiring, programming cache behavior,

· logging users,

· redirecting some of the invocations to others to minimize number of necessary parameters or to increase clarity of parameters
.

All of the performed POST calls are stored in a file TDLDebug.log located in the configuration directory. This file is automatically cleaned when the servlet is restarted.

The doGet() method is used to serve calls for data. This method calls other servlet modules in a cycle (Figure 130). First, the Template Loader module is called to load a template file and store it in the Template Cache. Second, INLINE statements are searched in the template file, and for every such statement found, the content of the pointed file is put into the template text instead of this statement
. Next, “magic” HTML characters ‘<’ being starting characters of non-TDL tag definitions are mapped into special strings of characters. This encoding is required by the XML Parser (invoked as a next module), to suppress confusing this module by unknown tags. Next, the template text is passed to the XML Parser module to build a template derivation tree. Next, interpretation of this tree is started by an invocation of the Interpreter module. A text-based output being a result of tree interpretation is decoded to restore the non-TDL tags and sent by the Sender back to the user as a response for his/her GET invocation.

13.1.4. Template Loader

TDL template collection is a set of template files, stored in a single directory, written in TDL format, and defining a way of formatting output send to a client by the servlet. The TDL format is described in details in the next chapter. Each template collection has a name associated with it by the servlet_templ.conf configuration file. Each file belonging to a template collection is identified by its name. Some arguments may be passed from one template file to another during template interpretation.

Two files are treated in a special way. If the user accesses the template collection without specifying any particular file (for example http://taurus.kti.ae.poznan.pl/cps/), the default “login.tdl” template file is loaded. This file does not differ from other template files. However, if it contains a special tag <WW_LOGINFORM>
, the “SUBMIT” button will redirect control to the second special file – “index.tdl”. Each template that requires user identification should use “login.tdl (index.tdl” mechanism.

During the first attempt to use a template, a file called properties.conf is read (located in the template collection directory) to initialize default values of some template collection properties. Properties are internal template variables. They are identified by names and they may have text values. The format of the properties.conf file conforms to the XML syntax, and is a definition of a single XML tag <PROPERTIES>. Sample file is shown in Figure 131.

There are three property definitions in this file: property CONNECTION_STRING of value “jdbc:oracle:thin:wisdom/passwd@witch.npac.syr.edu:1521:ORCL”, property internal_name of value „P0ABC”, and property display of value „My_comp”. Both property names and values are case-insensitive. Properties are visible in all template files. However, they are local for the template collection and cannot be accessed from another template collection.

<PROPERTIES>

CONNECTION_STRING = jdbc:oracle:thin:wisdom/passwd@witch.npac.syr.edu:1521:ORCL

internal_name = P0ABC

display= My_comp

</PROPERTIES>

Figure 131 . Sample contents of property definition file - properties.conf

Some properties are predefined by the servlet and their value is set while the template is loaded. These properties are presented in the table below.

Property name
Meaning
Sample value

TEMPLATE_LOCATION
URL address of the directory with template files
http://www.npac.syr.edu/wisdom/templates

CONNECTION_STRING
Database or XML file connection string
jdbc:oracle:thin:wisdom/passwd@witch.npac.syr.edu:1521:ORCL

XML:c:\xmlpres

SERVER_PORT
HTTP port number of the HTTP server where the template is located
80

HOST_NAME
Name of the host where the servlet is running
taurus.kti.ae.poznan.pl

SERVLET_DIR
Server directory where servlets are stored (usually server_root/Java/plugins/servlets)
Server_root/plugins/srv

TEMPLATE_ID
internal servlet template identifier

Cps

USID
internal database user identifier of a user who invoked the template
-

XML_GETDATA
Servlets directory and name of the GetdataXML servlet
servlet/getdataXML

DEFAULT_PROPS_FILE
Zipped XML presentation file with defaults
c:\xmlpres\def.zip

Note that properties defined in templates (by the use of WW_SET tag described in the next chapter) are accessible in the same way as predefined properties mentioned above.

Each template file has the following structure:

<?XML version=”1.0”?>

<TDL_DOCUMENT>

...

</TDL_DOCUMENT>

with some tags inside the body of the <TDL_DOCUMENT> tag. The body is written in TDL language described in Section 13.2. The tag definitions and their corresponding Java methods are user-defined. Two complete examples of templates are presented in the Section 14.

13.1.5. Template Cache

Once a template file is read from its HTTP server to the TDLServlet, it is stored in a cache memory called the Template Cache. Each template collection has its own Template Cache entry with parameters set independently of each other. Next time the template file is addressed, the local, cached copy is taken rather than the remote one. The template files are cached once and stored in the Template Cache as long as their cache is not expired manually or by restarting the TDLServlet. Thus, if a servlet is running and a given template file is changed, the cache should be expired to re-read the new version of this file.

13.1.6. XML Parser

The servlet uses IBM XML Parser to parse contents of a template file. This same parser is used for parsing stored XML presentations. The parser is conformant to the standard defined by the W3 Consortium and described in the recommendation RFC-xml-19980210.

Once parsed, the XML document is exposed as a tree.

For general information on XML, see the following:

· W3C activity statement for SGML, XML, and Structured Document Interchange [www.w3.org/MarkUp/SGML/Activity], [http://www.w3.org/XML/]

· W3C recommendation [http://www.w3.org/TR/1998/REC-xml-19980210]

· XML.com [http://www.xml.com]

· W3C overview page for the Document Object Model [www.w3.org/MarkUp/DOM],

· A brief description and Q&A on XML: XML Overview [www.microsoft.com/standards/xml.htm],

· Robin Cover's XML resources page [www.sil.org/sgml/xml.htm],

13.1.7. Interpreter

The interpreter is responsible for parsing the derivation tree generated by the XML parser. As a parsing starting point the root node (corresponding to TDL_DOCUMENT tag) is passed. Starting from the root node, the tree is recursively parsed. For every node, a new instance of its interpreting Java class is loaded, and one selected method of this class is invoked (cf. Section 13.1.2). For tags declared as persistent, if this tag was already detected in the current template file, the previously created instance of the interpreting Java class is used rather than a newly created one. Note that in case of multiple persistent tags related to one Java class (but possibly different methods of this class), their methods can communicate by the use of internal class variables.

Each interpreting method can use built-in servlet method parseChildren(). This method is responsible for recursive parsing of all nodes of the tree corresponding to tags nested in the current tag. If used, this method must be explicitly called from the tag interpreting method.

Each interpreting method may also use another built-in servlet method evaluateExpression(). This method is called with a text as its single argument. The method parses this text and changes all the valid expressions
 to their current values. Parts of text not being valid expressions are not changed. Detailed expression grammar is presented in Section 13.2.1. The evaluateExpression() method is usually used to find current values of arguments passed to the interpreting method
 and current values of variables (properties).

Usually, one interpreting method is build over the following schema:

String interpretingMethod (String arg1, ..., String argN)

{

String result=””;

arg1=evaluateExpression(arg1);

...

arg1=evaluateExpression(argN);

...Java code being tag interpretation and changing the result variable...

result+=parseChildren();

...Java code being tag interpretation and changing the result variable...

return result;

}

13.1.8. Sender

The Sender is responsible for sending output - a string of characters being a result of parsing by the Interpreter the tree generated by the XML parser. The output is sent back to the HTTP server to be further sent to a client.

13.1.9. Output Cache

The output sent by the Sender to the HTTP server is at the same time stored in the Output Cache. If there is a next call to the same template with the same parameters, such cached copy is sent back to avoid performing the whole interpretation cycle described in the previous sections. This approach may significantly improve the servlet performance, especially in the case when multiple users try to access the same data simultaneously (for example students participating in a class). The Output Cache is cleaned after a declared period, usually a few seconds. Cache expiration can be also caused by a specified number of hits. It allows more precise tuning of cache utilization. For example, if previously mentioned class of students consists of 12 people, cache expiration could be set to 13 hits (12+teacher). Thus, if data in the database are updated, a servlet output using this data will be also updated every time the whole class downloads it.

13.1.10. Remote Configuration

The TDLServlet can be configured on-line by the use of an HTML browser. A set of HTML pages for servlet configuration is provided. The configuration pages include some information pages, as well as template and cache management pages.

The configuration site is invoked by an URL http://hostname/servlet_config_dir/config.html, where hostname is DNS name of a server where the servlet is running, and servlet_config_dir is the sub‑directory in the server HTML document root where the configuration pages are stored. After invocation, a page is displayed with basic information about the servlet (Figure 132): general info (servlet name, version, author(s), a short description), and system info (hostname, free memory).

[image: image188.png]
Figure 132 . Servlet on-line configuration starting page

The starting configuration page is divided into three areas. In the upper part there are three buttons: „Servlet”, „Template”, and „Cache”. Pressing each button changes the contents of the two frames located below: menu frame on the left side of the page, and data frame on the right side. At the beginning the „Servlet” button is active (Figure 132). In the menu frame two items can be accessed: „Information” (selected by default) and „Known Tags”. By pressing the latter one, the data frame is filled by a table with currently declared tag definitions (Figure 133).

[image: image189.png]
Figure 133 . Displaying tag definitions

A definition of each tag includes Java class, method and formal parameters (cf. Section 13.1.2). The tag definitions can be changed only by changing the configuration files and restarting the servlet.

By pressing the „Template” button, one can access pages that used to deal with templates (Figure 134). The menu frame is equipped with four items: „List templates”, „Add template”, „Remove Template”, and „Properties”.

[image: image190.png]
Figure 134 . Displaying template info

The „List templates” item (selected by default) displays names and localization (URL addresses) of each template collection defined in the system. To add a new template, one must click on the „Add Template” item in the menu frame, while to remove a template - on the „Remove Template” item
. To display properties of a given template collection, one should click on the „Properties” item in the menu frame. A table containing properties of the template collection is then displayed (Figure 135). System-defined properties are displayed with a red background, while user-defined properties are displayed with orange background. If user-defined properties are not loaded yet (the template was not yet been accessed) appropriate information is displayed below the table. To change a template, one may use a menu located above the table. Only one template can be selected at a time.

[image: image191.png]
Figure 135 . Displaying properties a given template collection

To deal with cache parameters one must press the „Cache” button. The menu frame is changed to three items: „Cache Info”, „Output Cache”, and „Template Cache”. By default, the „Cache Info” item is selected and some information about caching is displayed in the data frame (Figure 136). The information includes:

· indicator whether a given cache is active,

· number of currently cached entries, and

· current cache buffer size in bytes.

There is a button „Expire now” below the information for each cache. This button may be used to clean the cache, i.e., to remove all its entries.

[image: image192.png]
Figure 136 . Displaying cache information

By pressing the „Output cache” item, one can set the Output Cache parameters. The data frame is changed to display current parameter values (Figure 137). By pressing the „On/Off” toggle button one can set the Output Cache to be active or inactive. Information whether the cache is active or not is displayed left to the button. Below the “On/Off” button, information about current cache entries and the amount of memory used is displayed. The button „Expire now” can be used to remove all entries from the cache.

[image: image193.png]
Figure 137 . Setting the Output Cache parameters

The text fields „Cache timeout” and „Cache maximum hits” are used to define cache behavior. The „Timeout” parameter is used to declare maximum period of time an entry is stored. The expiration time should be set to relatively small value (e.g., 60 seconds) to prevent a situation when the data from cache is inaccurate after database update. The „Cache maximum hits” parameter is used to declare maximum number of hits for a single entry. If set to „-1”, there are no limitations. If set to „0”, the cache is not activated (no entries are allowed). If, however, this parameter is greater than zero, it defines how many times a single cache entry can be accessed before refreshing. After setting new values of the parameters one must press the „Apply” button to send the changes to the servlet. After servlet restart, user-defined values are replaced by default ones.

Similar data frame is invoked after pressing the „Template Cache” button, except a name of a template that must be selected (Figure 138). Note that template caching may be activated and parameters can be selected for each template separately.

[image: image194.png]
Figure 138 . Setting the Template Cache parameters

13.1.11. Using TDLServlet with XML Presentations

TDLServlet (starting from version 3B.01) can use XML files instead of database. This section describes how to use TDLServlet with XML files.

1. Export one or more presentations to the XML format, by the use of the Wisdom Manager “Export to XML” function.

2. Create a directory where zipped presentations will be stored. The directory must be visible on the computer where the TDLServlet is running. Additional subdirectories can also be created – the “directory/zip file” tree will be mapped to WebWisdom “folder/presentation” structure as shown on the Figure 139.

3. Copy all presentations exported in the Step 1 to the directory tree created in the Step 2.

[image: image195.wmf]Presentations

Chris

New

Tango_Meeting

ICDCS_17

todo.zip

default.zip

poster_1.zip

paper1399.zip

accessasp97.zip

pres1.zip

Root

Chris

New

Tango_Meeting

ICDCS_17

Next Tango team meeting

Default presentation

Poster Session

Video Data

Storage – new challenges

Overview of Microsoft Access used

with Active Server Pages (ASP)

WebWisdom

 3.0

Filesystem

structure

TDLServlet

structure

Maps to

Figure 139 . Mapping between directory- and foilworld structure

4. Edit the template property file “properties.conf”:

· Add “CONNECTION_STRING=<directory_name>” line, where the <directory_name> is the full path to the root directory
 created in Step 2., for example:

CONNECTION_STRING = XML:d:\presentations

· Add “DEFAULT_PROPS_FILE=<zipfile_name>” line, where <zipfile_name> is the path and file name of the Zip file containing default values of properties, for example:
DEFAULT_PROPS_FILE = d:\presentations\default.zip

In the Wisdom Manager XML exporter, each exported presentation contains all database defaults, so any presentation can be used as the defaults file.

The TDLServlet must be restarted to reread the configuration changes.

13.2. TDL - Template Definition Language

TDL (Template Definition Language) is an application of XML (Extensible Markup Language) for defining templates. The templates are used by the TDLServlet to format data read from the database. TDL is not computing-complete and has similar power to UNIX shells. The language is based on XML definition on one hand, and typical UNIX shell commands and syntax on the other hand.

A template text is a sequence of XML tags with parameters. A tag is a command read and interpreted by a parser. As a parse output for a given tag (a set of tags) a part of HTML document is generated. Tags have names and they may have parameters, according to XML syntax. A parameter has a name and a text value. The values may be computed from expressions with syntax based on reverse Polish Notation (described further in details). Examples of tags are <LOGIN>, <TEXT COLOR=”black” SIZE=”3”>, etc.

Tags are always included inside ‘<’ and ‘>’ brackets. There is no possibility to nest tags, i.e. every ‘<’ character must be accompanied by ‘>’ character before a new ‘<’ character can appear. Nevertheless, the language elements may be nested.

Tags are used to build elements. There are two types of elements. An empty element is a stand-alone command that creates no context while it is parsed. Empty elements are denoted by the use of empty tags. Such tags are pointed out by “/” character before the closing ‘>’ bracket. Examples of empty tags are <DATE/>, <AUTHOR/>, etc.

The second type elements – non-empty elements – are denoted by the use two tags: start tag and end tag. An end tag has the same name as the corresponding start tag, except it has ‘/’ character before its name. Examples of start-end tags are <AUTHOR> </AUTHOR>, <BOLD> </BOLD>, <TEXTEFFECTS BOLD=”on” ITALICS=”off”> </TEXTEFFECTS>, etc. Both start and end tags may have parameters, although the parameters are mainly used for start tags.

Everything between a start-tag and its corresponding end-tag is named element body and is being interpreted according to the element type. Elements may be arbitrarily nested.

Tag names and syntax can be changed by a user, by modifying TDLServlet configuration file (13.1.2).

Several tags are of generic type and they are used to control the process of parsing a template. Control tags are also listed in the configuration file and can be changed by a user.

13.2.1. Expressions

In most places of TDL templates instead of simple values, expressions can be used (e.g., to define current values of parameters of some TDL tags). An expression is a string inside apostrophes (") of valid syntax. Expressions are always string-oriented, i.e., arguments as well as the output are strings of characters. Some strings may contain numeric values, evaluated by Java classes/methods to another strings with numeric values. This approach simplifies the process of defining and using templates as well as the servlet internal structure.

Because expressions are processed outside XML parser, their syntax (described below in details) cannot be changed by a user. There is a possibility, however, to extend expressions by direct calling to Java methods performing specific operations on their parameters. For example, it is possible to implement arithmetic operations, advanced operations on strings, specialized database queries, etc.

To define the order of operations inside an expression, extended Reverse Polish Notation is used.

Boolean values are defined by special strings: false by an empty string, and true by any non-empty string, in particular “true”. This implementation detail, however, should not be explicitly addressed by templates, i.e. one should avoid using syntax like <WW_IF CONDITION=””>.

Expressions are given in ‘”’ characters according to XML rules. Expressions are evaluated from left to right, and every evaluated part is concatenated at the end of the output string. Non-string elements (functions, constants, and variables) are always prefixed by special characters. This approach is similar to the one used in UNIX shell scripts
 and “printf” function in C/C++ programming language
.

The simplified syntax for expressions is given below in BNF-like notation.

Expression ::=
Variable |

Constant |

%equ[al](ExpressionList) |

%dif[ferent] (ExpressionList) |

%or (ExpressionList) |

%and (ExpressionList) |

%gre[ater] (ExpressionList) |

%les[s] (ExpressionList) |

%nog[reater] (ExpressionList) |

%nol[ess] (ExpressionList) |

%tol[ower] (ExpressionList) |

%tou[pper] (ExpressionList) |

%tri[m] (ExpressionList) |

%nos[pace] (ExpressionList) |

%add(ExpressionList) |

%mul[tiply](ExpressionList) |

%div[ide](ExpressionList) |

%sub[stract](ExpressionList) |

%sum(ExpressionList) |

%min[imum](ExpressionList) |

%max[imum](ExpressionList) |

%not (Expression)

ExpressionList ::=
Expression , ExpressionList |

Expression

Variable ::=
${variable_name} |
// access to a value of a variable

`class.method(par)`
//direct Java invocation,

//the string must not contain ‘`’ character

$$ | ${$} |
// ‘$’ character itself

$` | ${`} |
// ‘`’ character itself

$% | ${%} |
// ‘%’ character itself

$, | ${,} |
// ‘,’ character itself

$} |
// ‘}’ character itself

${quot} |
// ’”’ character itself

${true} |
// boolean value “true”

${false} |
// boolean value false, equivalent to an empty
 string

$$

Constant ::=
string |
// string with no delimiters (may have ‘}’ characters inside)

%{string}
// any string of characters with no ‘}’ character inside
Functions prefixed by ‘%’ character can have any number of parameters (separated by ‘,’ characters) starting from one parameter. All the parameters are evaluated from left to right. For example, a call “%equal(ANNA, DOROTHY, EVE)” gives false as a result, while “%equal(2,2,2,2,2)” - true
. Of course, they may be invoked with two parameters as in classical programming languages.

Variable_name is a string-based name of a variable. The name must not contain “}” characters. A value of a variable is also string-based. If a variable was not set before first access to its value, this value is automatically set to an empty string at the time of accessing
. There is a possibility to perform arithmetic operations on variables – in such case, Java methods treat strings as encoded numbers of type “integer” or “real”.

${variable_name} stands for an access to a value of a given variable.

Sub-parts of expressions inside a pair of ‘`’ characters are treated as calls to Java methods. In such case, first all the prefixes inside the sub-expressions are detected and evaluated (recursively) updating the string being a Java call. Next, the resulted string is evaluated as a call to a Java method of a given class with given parameters. For example, a sub-expression:

`math.add(${foil_number},1)`

is first evaluated to (assuming a value of the variable “foil_number” is currently equal to “44”)

`math.add(44,”1”)`

and finally after performing a Java call, to string “45”, while sub-expression:

`string.add(${quot}${foil_name}${quot},${quot} number${quot})`

is first evaluated to (assuming a value of the variable “foil_name” is currently equal to “Appendix”)

`string.add(“Appendix”,” number”)`

and finally after performing a Java call to string “Appendix number”.

Some variables are predefined by the servlet (as properties) and can be used in expressions in the same way as other variables.

Prefix ‘%’ for a string-based constant is added for simplicity, to facilitate entering strings containing special characters that are used as prefixes for functions and variables. For example, one can use any of the below expressions to enter string “100% and $100,00”:

“100${%} and ${$}100,00”

or simply:

“%{100% and $100,00}”

Examples of expressions are:

“some ${var1} have ${var2}” // for var1=animals , var2=eyes, output is “some animals have eyes”
“Author: `databaseDirectCall.getAuthorName()`”

// sample output is “Author: Smith”

13.2.2. Conditional statements

TDL allows for conditional inclusion of fragments of templates. Conditional statements are expressed by the WW_IF element. It is a non-empty tag, whose body part is parsed only when the specified condition is satisfied. This element has an optional part included when the specified condition is not satisfied.

The syntax of the IF statement is the following:

<WW_IF CONDITION=”...”>

<WW_THEN>

</WW_THEN>

<WW_ELSE>

</WW_ELSE>

</WW_IF>

Inside the WW_IF element, an optional WW_ELSE element can be included. If the condition evaluates to true, the code included in the WW_THEN element is interpreted. Otherwise, the part of code included in the WW_ELSE element is interpreted.

The WW_IF tag has only one attribute: CONDITION. This attribute contains an expression string that is evaluated to a Boolean value.

13.2.3. Assigning values to variables

In TDL, one can assign a value to a variable by the use of the WW_SET tag. This is an empty tag and it does not generate any output.

The WW_SET element has the following syntax:

<WW_SET NAME=”...” VALUE=”...”/>

The WW_SET tag uses two attributes.

· NAME – is the name of the variable the value is assigned to. The variable can be later referenced by the use of this name. Variable name cannot contain ‘}’ characters (cf. Section 13.2.1),

· VALUE – is the value that should be assigned to the variable. This can be a simple constant value as well as an expression that must be first evaluated.

13.2.4. Inserting values

Values of variables and dynamically computed expressions can be included into the output by the use of WW_INSERT command. This command is implemented by empty WW_INSERT tag.

The syntax of the WW_INSERT element is the following:

<WW_INSERT VALUE=”...”/>

The parser replaces the WW_INSERT tag with the value calculated from the contents of the VALUE attribute being an expression.

13.2.5. Connecting to database

Before the servlet can connect to a database, it must be provided with some connection parameters. These parameters include:

· DNS/IP of the computer the database is running on,

· Driver name,

· Port number,

· Database name,

· User/password.

Connection to a database is specified by TDL_CONNECT element. The required connection parameters are concatenated into one connection string attribute with JDBC-like syntax.

The syntax of the TDL_CONNECT element is the following:

<TDL_CONNECT CONN_STRING=”...”/>

The TDL_CONNECT element must precede all database access elements.

If the servlet uses a “XML” template, i.e., reads data from an XML file instead of a database, the <TDL_CONNECT> element cannot be used.

13.2.6. Invoking another template file

The control may be passed from one template file to another by the use of <WW_LINK> element. In the attributes of this element, one can specify a filename of a template file the control is passed to, and some parameters
. The parameters are separated by ‘|’ character. Each parameter definition is composed of a parameter name (i.e., a property for a calling template file) and an expression
 reflecting current property value, separated by ‘=’ character. For example, the text ATTR=”PID=1 | FID=${FID}” is a definition of two parameters. The first one with the name PID and value 1, and the second one with the name FID and value equal to current value of variable FID.

The syntax of the WW_LINK element is the following:

<WW_LINK FILENAME=”...” ATTR=”...”/>

13.2.7. Inline command

The WW_INLINE tag is used to include a text of one template file in another template file, before this file is parsed by the XML Parser module. This mechanism is similar to #include preprocessor command known from many programming languages, for example C/C++. The contents of the file indicated by the tag replace the tag itself. The included template file may also contain WW_INLINE tags pointing to other template files.

The syntax of the WW_INLINE element is the following:

 <WW_INLINE FILENAME="filename">

Note that the current property values are passed to the sub-templates. Thus, the WW_INLINE tag can be treated as a kind of a macro definition.

13.3. Getdata Servlets

Getdata is a specialized servlet that allows retrieving of raw data directly from a database. GetdataXML is a functional counterpart of the Getdata servlet, but it retrieves data from the zipped XML presentations instead of the database.

Both of the servlets are used by the TDLServlet and templates to retrieve data (e.g., for
). The Getdata servlet is used when the template accesses a database, GetdataXML servlet is used when the template is retrieving data from XML files.

Getdata servlets have the following features:

· Output cache

Data sent to browser is cached in an internal cache. Data from the cache is sent when an access to the same URL is encountered. The cache can significantly improve system performance especially in the case, when multiple users access the same data at the same time.

· Pre-fetch capability (Getdata servlet only)

A special format of the URL allows storing in the cache data retrieved from the database, when some other data is sent to client browser. It can be used by templates to improve the response time of the servlet. This feature can be very useful, e.g., when the template is used to retrieve sequences of foils.

· Database connections pool (Getdata servlet only);

The servlet is using a set of established connections instead creating the new connection each time it accesses the database.

Getdata servlet can be used to retrieve data from the database by the use of standard URL addresses. Every attribute in the database can be addressed by an URL in the one of the following formats:

http://server_name/servlet/getdata/connection_id/ table_name/attribute_name/query_condition/ mime_major/mime_minor/file_name

where:

· server_name is the name of the server,

· connection_id is the connection identifier specified in the wisdom_users.conf file,

· table_name is the name of the table to be accessed (providing that it is not listed in wisdom_tables.conf file),

· attribute_name is the name of the table attribute to be retrieved,

· query_condition is an SQL-like condition in URL-encoded format,

· mime_major is the major MIME-type that should be returned by the server,

· mime_minor is the minor MIME-type that should be returned by the server,

· file_name is the file name returned by the server.

or

http://server_name/servlet/getdata/connection_id/ table_name/attribute_name/query_condition/ mime_major/mime_minor/file_name/prefetch/connection_id_c/ table_name_c/attribute_name_c/query_condition_c/ mime_major_c/mime_minor_c/file_name_c

where:

· server_name is the name of the server,

· connection_id is the connection identifier specified in the wisdom_users.conf file,

· table_name is the name of the table to be accessed (providing that it is not listed in wisdom_tables.conf file),

· attribute_name is the name of the table attribute to be retrieved,

· query_condition is an SQL-like condition in URL-encoded format,

· mime_major is the major MIME-type that should be returned by the server,

· mime_minor is the minor MIME-type that should be returned by the server,

· file_name is the file name returned by the server,

and where attributes with _c suffix have the same meaning but are used for data which will be stored in the cache and not sent to client.

For example, the following URL:

http://host/servlet/getdata/wisdom1/image/data/iid%3d1/image/gif/a.gif

will cause the Getdata to retrieve “data” attribute value from the “image” table, where “iid=1”, and return the result with mime type “image/gif” and file name “a.gif”.

The following URL:

http://host/servlet/getdata/wisdom1/image/data/iid%3d1/image/gif/a.gif/prefetch/wisdom1/image/data/iid%3d2/image/gif/b.gif

will cause the Getdata to retrieve “data” attribute value from the “image” table, where “iid=1”, and return the result with mime type “image/gif” and file name “a.gif”, and to retrieve “data” attribute value from the “image” table where “iid=2” and store the result in the internal servlet cache.

GetdataXML uses a different format of the URL. Every attribute in the XML file can be accessed in the following way:

http://server_name/servlet/getdataXML/table_name/requested_attribute/attribute_name/attribute_name/attribute_value/mime_major/mime_minor/zip_file_name

where:

· server_name is the name of the server,

· table_name is the name of the table to be accessed,

· requested_attribute is the name of the table attribute to be retrieved,

· attribute_name is the name of the table attribute to be used in query “WHERE” clause,

· attribute_value is the value of the table attribute to be used in query “WHERE” clause,

· mime_major is the major MIME-type that should be returned by the server,

· mime_minor is the minor MIME-type that should be returned by the server,

· zip_file_name is the ZIP file name with XML presentation, where the servlet will search for the data (the name is URL encoded).

When accessing data stored in XML files, the requested_attribute field in the XML file contains not the binary data, but a file name where the data are stored. After retrieving the name from the XML file, the servlet restores the actual data from the indicated ZIP file.

For example, the following URL:

http://host/servlet/getdataXML/IMAGE/DATA/IID/16/image/gif/d%3A%5CPresentations%5Cdefault.zip

will cause the GetdataXML servlet to retrieve “data” attribute value from the “image” table, where “iid=16” and ZIP file name is “d:\Presentations\default.zip”, and return the result with mime type “image/gif”.

Please refer to Section 15.4 for description of Getdata configuration files.

14. Examples of Template Collections

14.1. WebWisdom NT 2.01 „CPS” Template Collection

The CPS template collection was developed for WebWisdom NT 2.1. This is a template originally prepared for WebWisdom system and adapted with minor changes for use in WebWisdom NT environment.

14.1.1. Tag definitions

There is a set of tags defined in the servlet configuration file to be used with the „CPS” template collection. The tag names begin with „WW_” prefix. In the table below all tags used by the „CPS” template collection are presented in details. All the tags except WW_COUNTER are declared as non-persistent.

Tag name
Java class/method invoked
Purpose

WW_ABSMISSING
Tags.WW_ABSMISSING (PRESENTATIONID)
inserting a link to the image version of the presentation abstract (more precisely to temptitleabs.tdl file which is the image version of the abstract foil) Presentation is identified by the PRESENTATIONID attribute

WW_ABSTRACTIMAGE
Tags.WW_ABSTRACTIMAGE (PRESENTATIONID)
inserting an image of an abstract of presentation PRESENTATIONID

WW_ABSTRACTTEXT
Tags.WW_ABSTRACTTEXT (PRESENTATIONID)
inserting a text (HTML bulleted list) of an abstract of presentation PRESENTATIONID

WW_ADDON
Tags.WW_ADDON (FOILID, PARENTID)
inserting add-on for foil FOILID in presentation PARENTID

WW_ANNOTATION
Tags.WW_ANNOTATION (PRESENTATIONID, POSITION)
inserting an annotation belonging to presentation PRESENTATIONID at position POSITION

WW_AUTHORNAME
Tags.WW_AUTHORNAME (FOILID, PARENTID)
inserting name of author of foil FOILID in presentation PARENTID

WW_BODYIMAGE
Tags.WW_BODYIMAGE (FOILID, PARENTID)
inserting 'body' HTML tag with background image for image template for foil FOILID in presentation PARENTID

WW_BODYINDEX
Tags.WW_BODYINDEX (PRESENTATIONID)
inserting 'body' HTML tag with background image typical for index files for presentation PRESENTATIONID

WW_BODYSEPHTML
Tags.WW_BODYSEPHTML (FOILID, PRESENTATIONID)
inserting HTML (BODY(tag for templates for displaying text-based HTML version of foil FOILID in presentation PRESENTATIONID rather than its image version

WW_CONNECT
Tags.WW_CONNECT (CONNECTION)
connecting to the database with connection string CONNECTION

WW_COUNTER
Pers.WW_COUNTER()
the only persistent tag counting references to the template

WW_CREATIONDATE
Tags.WW_CREATIONDATE (FOILID)
inserting date of creation of foil FOILID

WW_DBSET
Tags.WW_DBSET (NAME, PROPNAME, PROPTYPE, FOILID, PARENTID)
WW_DBSET retrieves value of a property from the database for current user, presentation and foil. PROPTYPE attribute specifies the property type; PROPNAME specifies the database property name. The value of the property is put into variable given in the NAME attribute. If FOILID is provided, the foil property value is checked. If FOILID is empty and PARENTID is provided, the property scanning starts from the presentation level. If both are empty, the property is read from current user or default settings.

WW_DEFAULTBG
Tags.WW_DEFAULTBG ()
taking default background image for templates

WW_DEFAULTLOGO
Tags.WW_DEFAULTLOGO ()
taking default logo image for templates

WW_DOCUMENT
Tags.WW_DOCUMENT ()
root XML/TDL (document(tag, a container for all other tags (like an 'html' tag in HTML)

WW_ELSE
Tags.WW_ELSE ()
ELSE control statement for WW_IF tag

WW_EVENT
Tags.WW_EVENT (FOILID)
Inserting primary event related to a foil FOILID

WW_EVENTDATE
Tags.WW_EVENTDATE (FOILID)
Inserting primary event date of an event associated with FOILID

WW_EXTERNAL
Tags.WW_EXTERNAL (FOILID, PARENTID)
inserting link to external web page for foil FOILID in presentation PARENTID

WW_FIRSTFOIL
Tags.WW_FIRSTFOIL (PARENTID, NAME)
inserting into NAME variable identifier of the first foil of presentation PARENTID

WW_FOIL
Tags.WW_FOIL (FOILID, PARENTID, MODE)
inserting an image or text-based version of foil FOILID in presentation PARENTID based on MODE value (IMAGE,TEXT or ASNEEDED)

WW_FOILIMAGE
Tags.WW_FOILIMAGE (FOILID, PARENTID)
inserting an image of foil FOILID in presentation PARENTID

WW_FOILLINK
Tags.WW_FOILLINK (FOILID, FILENAME, ATTR)
inserting a HREF link to template file FILENAME with foil FOILID and parameters ATTR; it allows to create an 'index' of all foils contained in a given presentation

WW_FOILLOOP
Tags.WW_FOILLOOP (PARENTID, NAME)
tag iterates for all foils in PARENTID presentation each time assigning current child foil ID to NAME variable

WW_FOILNUMBER
Tags.WW_FOILNUMBER (PARENTID, FOILID)
inserting foil number for foil FOILID in presentation PARENTID

WW_FOILTEXT
Tags.WW_FOILTEXT (FOILID)
inserting HTML bulleted list of foil FOILID

WW_FOILWORLDLINK
Tags.WW_FOILWORLDLINK (FWID, FILENAME, ATTR)
inserting a HREF link to template file FILENAME with foilworld FWID and parameters ATTR; it allows to create an 'index' of all foilworlds contained in a given foilworld

WW_FOILWORLDLOOP
Tags.WW_FOILWORLDLOOP (FWID, NAME)
parsing in a loop contents of foilworld FWID, setting for each loop pass a variable given by NAME attribute. This variable contains an identifier of a 'child' foilworld. The loop is repeated as many times as many child foilworlds the given foilworld contains.

WW_FWPARENTLINK
Tags.WW_FWPARENTLINK (FWID, FILENAME, ATTR)
inserting HREF tag with a pointer to foilworld containing current presentation by the use of template file FILENAME with attributes ATTR

WW_IF
Tags.WW_IF (CONDITION)
IF control statement

WW_IMAGE
Tags.WW_IMAGE (IMAGENAME, FOILID, PARENTID)
inserting image being the value of image property named IMAGENAME for foil FOILID in presentation PARENTID

WW_INSERT
Tags.WW_INSERT (NAME)
inserting current value of an expression to evaluate; an expression could be a variable evaluation

WW_LINK
Tags.WW_LINK (FILENAME, ATTR)
inserting link to another template file FILENAME invoked with parameters ATTR

WW_LOGIN
Tags.WW_LOGIN ()
log-in page to the WebWisdom NT system

WW_LOGINFORM
Tags.WW_LOGINFORM()

user identification form; the (SUBMIT(button of this form redirects control to a special template file – (index.tdl(

WW_MISSING
Tags.WW_MISSING (FOILID, PARENTID)
inserting HTML (HREF(link to the template file that is capable to access an image version of foil FOILID in presentation PARENTID

WW_MODIFICATIONDATE
Tags.WW_MODIFICATIONDATE (FOILID)
inserting date of last modification of foil FOILID

WW_NEXT
Tags.WW_NEXT (PARENTID, FOILID, FILENAME, IMAGENAME)
inserting a button with HREF links to template file FILENAME with next foil in the presentation PARENTID after foil FOILID; IMAGENAME is a name of the property defining image

WW_NOBULLETSIFGIF
Tags.WW_NOBULLETSIFGIF (FOILID)
inserting HTML bulleted text if there is no corresponding image for foil FOILID

WW_NOTE
Tags.WW_NOTE(FOILID, PARENTID)
Inserting a HTML bulleted list of a note of foil FOILID in presentation PARENTID

WW_NUMBEROFFOILS
Tags.WW_NUMBEROFFOILS (PARENTID)
inserting number of foils in presentation PARENTID

WW_OWNERNAME
Tags.WW_OWNERNAME (FOILID)
inserting name of owner of foil FOILID

WW_PASSWORD
Tags.WW_PASSWORD ()

user identification tag – a text field in the log-in form to enter user's password

WW_PRESENTATIONLINK
Tags.WW_PRESENTATIONLINK (PRESENTATIONID, FILENAME, ATTR)
inserting a HREF link to template file FILENAME with presentation PRESENTATIONID and parameters ATTR; it allows to create an 'index' of all presentations contained in a given foilworld

WW_PRESENTATIONLOOP
Tags.WW_PRESENTATIONLOOP (FWID, NAME)
parsing in a loop contents of foilworld PARENTID, setting for each loop pass a variable given by NAME attribute. This variable contains an identifier of a child presentation. The loop is repeated as many times as many presentations the given foilworld contains.

WW_PREV
Tags.WW_PREV (PARENTID, FOILID, FILENAME, IMAGENAME)
inserting a button with HREF links to template file FILENAME with previous foil in the presentation PARENTID before foil FOILID; IMAGENAME is a name of the property defining image

WW_RUNNINGTITLE
Tags.WW_RUNNINGTITLE (FOILID)
inserting foil (running title(of foil FOILID

WW_SELECTADDON
Tags.WW_SELECTADDON (FOILID, NAME)
checking for the existence of add-on in foil FOILID; if an add-on is associated with the specified foil, the ID of the database object containing add-on is inserted into variable given by the NAME attribute.

WW_SELECTCOMMENT
Tags.WW_SELECTCOMMENT (FOILID)
if there is a comment associated with foil FOILID, parsing body of the tag

WW_SELECTDISPMODE
Tags.WW_SELECTDISPMODE (FOILID, NAME)
tag inserts into variable with name given by NAME attribute the preferred display mode of foil FOILID

WW_SELECTEXTERNAL
Tags.WW_SELECTEXTERNAL (FOILID)
if there is an external web page associated with foil FOILID, parsing body of the tag

WW_SELECTIMAGE
Tags.WW_SELECTIMAGE (FOILID)
if there is an image defined for foil FOILID, parsing body of the tag

WW_SELECTNOTE
Tags.WW_SELECTNOTE (FOILID)
if there is a note defined for foil FOILID, parsing body of the tag

WW_SELECTSOUND
Tags.WW_SELECTSOUND (FOILID, NAME)
checking for the existence of sound in foil FOILID; if a sound is associated with the specified foil, the ID of the database object containing sound is inserted into variable given by the NAME attribute.

WW_SELECTSOURCEFOIL
Tags.WW_SELECTSOURCEFOIL (FOILID)
if there is source PowerPoint file defined for foil FOILID, parsing body of the tag

WW_SELECTSOURCEMASTER
Tags.WW_SELECTSOURCEMASTER (FOILID)
if there is source PowerPoint (master(file for foil FOILID, parsing body of the tag

WW_SELECTSOURCEPRES
Tags.WW_SELECTSOURCEPRES (FOILID)
if there is source PowerPoint file with presentation containing source for foil FOILID, parsing body of the tag

WW_SELECTTEXT
Tags.WW_SELECTTEXT (FOILID)
if there is HTML-based text data defined for foil FOILID, parsing body of the tag

WW_SET
Tags.WW_SET (NAME, VALUE)
setting a new value VALUE for a variable (property) NAME

WW_SETPOSITION
Tags.WW_SETPOSITION (PARENTID, FOILID, NAME)
inserting foil position of foil FOILID in presentation PARENTID into variable NAME

WW_SOUND
Tags.WW_SOUND (FOILID, PARENTID)
inserting sound data for foil FOILID in presentation PARENTID

WW_THEN
Tags.WW_THEN ()
THEN control statement

WW_TITLE
Tags.WW_TITLE (FOILID)
inserting foil title of foil FOILID

WW_TITLEFOILWORLD
Tags.WW_TITLEFOILWORLD (FWID)
inserting a title of foilworld FWID

WW_USERNAME
Tags.WW_USERNAME()

user identification tag – a text field in the log-in form to enter user's name

14.1.2. Template files

In the succeeding sections of this chapter the „CPS” templates together with some comments are presented. The TDL tags are printed in bold font.

Main template file

<?WWTEMPLATE>

<?XML VERSION="1.0" CACHE="NO"?>

<WW_DOCUMENT>

<!-- This is a first file of the template.

 If in the URL, after the name of the template, the filename is omitted,

 the index.tdl file is read by default.

-->

<!-- ?WWTEMPLATE and ?XML tags form a header for all template files.

 CACHE attribute of the XML tag specifies whether the servlet should cache

 this file or not.

-->

<!-- The main task of this file is to redirect a user to a list of foilworlds.

 This is implemented by a JavaScript function that redirects to

 the following URL:

 tempfoilworld.tdl?FWID=1.

 The tempfoilworld.tdl file lists all foilworlds and presentations

 in a foilworld identified by FWID parameter (1 identifies the root foilworld)

-->

<html>

<head>

<title>Get WebWisdom NT Started</title>

</head>

<script LANGUAGE="JavaScript">

<!-- function a ()

{top.location.href = "tempfoilworld.tdl?FWID=1";}

-->

</script>

<body background="greymarb.gif" >

<h1>Click The Correct Button to Get to WebWisdom NT</h1>

<form>

Click this if you have Netscape 3.0(but not 2.0 which is confused by Complex Javascript).
 If you don't have a JavaScript Multiframe system,

other links below form will take you to where you want to go with lower technology!

<form>

<input type="button" value="Start Click Here!" onClick="a()">

</form>

WebWisdom NT is a JavaScript and servlet-based system for managing hierarchically arranged information such as you get in Education as you span lectures, courses, degrees, departments, Universities. The database available here illustrates 3 worlds:

Administration,

The Virtual University with Courses(electronic foils) and the

Virtual Family (photo sets)

<center></center>

<center><h2>The Tree of Wisdom </h2></center>

<center></center>

</body>

</html>

</WW_DOCUMENT>

Template file to display foils in form of HTML-bulleted lists

<?WWTEMPLATE>

<?XML VERSION="1.0" CACHE="NO"?>

<WW_DOCUMENT>

<WW_CONNECT CONNECTION=""/>

<!-- See comments in tempfoilsepimage.tdl for detailed info-->

<html>

<head>

<title> Separate HTML for LOCAL Foil

<WW_FOILNUMBER PARENTID="${PID}" FOILID="${FID}"/> <WW_TITLE FOILID="${FID}"/>

</title>

</head>

<WW_BODYSEPHTML/>

<WW_LINK FILENAME="temphelp.tdl" ATTR="">HELP!</WW_LINK>

GREY=local<tt> LOCAL HTML version of Foils prepared

<WW_MODIFICATIONDATE FOILID="${FID}"/> </tt>

<h2> Foil <WW_FOILNUMBER PARENTID="${PID}" FOILID="${FID}"/>

<WW_TITLE FOILID="${FID}"/> </h2>

 <i>From</i>

<WW_RUNNINGTITLE FOILID="${FID}"/>

<WW_EVENT FOILID="${FID}"/> --

<WW_EVENTDATE FOILID="${FID}"/>. <i>by</i>

<WW_AUTHORNAME FOILID="${FID}"/> *

<WW_MISSING FOILID="${FID}" PARENTID="${PID}"/>

<hr>

<!-- WW_NEXT and WW_PREV insert buttons with HREF links to next and

 previous foil in the current presentation. FOILID and PARENTID

 attributes specify IDs of current foil and current presentation,

 FILENAME is a template filename (usually the same as current)

 and IMAGENAME is a name of the property defining image

 that should be used for the button.

-->

<WW_NEXT FOILID="${FID}" PARENTID="${PID}" FILENAME="tempfoilsephtml.tdl" IMAGENAME="ww_next"/>

<WW_PREV FOILID="${FID}" PARENTID="${PID}" FILENAME="tempfoilsephtml.tdl" IMAGENAME="ww_prev"/>

<WW_LINK FILENAME="tempfullindex.tdl" ATTR="PID=${PID}">

<WW_IMAGE IMAGENAME="ww_up" FOILID="${FID}" PARENTID="${PID}"/>

</WW_LINK>

<!-- WW_SELECTSOUND checks for the existence of sound in the

 foil. If a sound is associated with the specified foil, the ID of the

 eduobject containing sound is inserted into variable given by the NAME

 attribute.

 The same is accomplished by WW_SELECTADDON tag for presentation/foil

 add-ons

-->

<WW_SELECTSOUND FOILID="${FID}" NAME="ISSOUND">

<INSERT NAME="${ISSOUND}"/>

</WW_SELECTSOUND>

<WW_SELECTADDON FOILID="${FID}" NAME="ISADDON">

<INSERT NAME="${ISADDON}"/>

</WW_SELECTADDON>

<hr>

<WW_FOILTEXT FOILID="${FID}"/>

<hr>

<WW_NEXT FOILID="${FID}" PARENTID="${PID}" FILENAME="tempfoilsephtml.tdl" IMAGENAME="ww_next"/>

<WW_PREV FOILID="${FID}" PARENTID="${PID}" FILENAME="tempfoilsephtml.tdl" IMAGENAME="ww_prev"/>

<WW_LINK FILENAME="tempfullindex.tdl" ATTR="PID=${PID}">

<WW_IMAGE IMAGENAME="ww_up" FOILID="${FID}" PARENTID="${PID}"/>

</WW_LINK>

<!-- The following pair of tags inserts into output text the signature

 for current foil/presentation.

 First the WW_DBSET tag takes signature value from database property

 in context of current user, presentation, and foil.

 PROPTYPE attribute specifies the type of the property

 ('overall' in case of the signature),

 PROPNAME specifies the database property name.

 The value of the property is assigned to a variable with name given

 by NAME attribute - here: SIG.

 WW_INSERT inserts the value of the signature (here variable value)

 into output text.

-->

<WW_DBSET NAME="SIG" PROPNAME="signature" PROPTYPE="OVERALL" FOILID="${FID}" PARENTID="${PID}"/>

<WW_INSERT NAME="${SIG}"/>

</WW_DOCUMENT>

Template file to display foils as images

<?WWTEMPLATE>

<?XML VERSION="1.0" CACHE="NO"?>

<WW_DOCUMENT>

<!-- ?WWTEMPLATE and ?XML tags form a header for all template files.

 CACHE attribute of the XML tag specifies whether the servlet should

 cache the file or not.

-->

<!-- WW_CONNECT is a tag that establishes a connection to the database.

 Connection string may be supplied in the CONNECTION attribute,

 or if it is omitted (empty string) the default connection string is

 taken from properties.txt file for current template.

-->

<WW_CONNECT CONNECTION=""/>

<html>

<head>

<title> Separate IMAGE for LOCAL foil

<!-- WW_FOILNUMBER tag takes the position of the current foil in the current

 presentation.

 BUG! Because of the presentation nesting it returns false results

 for nested presentations and foils

-->

<WW_FOILNUMBER PARENTID="${PID}" FOILID="${FID}"/>

<!-- WW_TITLE is a tag that allows to insert title of a presentation or foil.

 The presentation/foil is identified by an ID supplied in FOILID attribute.

 PARENTID is not currently used by the WW_TITLE tag, but can be later

 used, e.g. to check the formatting properties, which can be defined on

 the presentation level.

 FID and PID were supplied by the servlet from query attributes of the URL

-->

<WW_TITLE FOILID="${FID}"/> </title>

</head>

<!-- WW_BODYIMAGE inserts a 'body' HTML tag with background image typical

 for foil files. This tag should be reimplemented to take images from DB

-->

<WW_BODYIMAGE/>

<tt>Image Buttons </tt>

<WW_LINK FILENAME="temphelp.tdl" ATTR="">HELP!</WW_LINK>

* GREY=local<tt> LOCAL IMAGE version of Foils prepared

<!-- WW_MODIFICATIONDATE inserts modification date of the current foil -->

<WW_MODIFICATIONDATE FOILID="${FID}"/> </tt>

<h2> Foil <WW_FOILNUMBER PARENTID="${PID}" FOILID="${FID}"/>

<WW_TITLE FOILID="${FID}"/> </h2>

 <i> From </i>

<!-- WW_RUNNINGTITLE inserts running title of the specified foil. WW_EVENT,

 WW_EVENTDATE, and WW_AUTHORNAME get appropriate data for the current foil

 from the database

-->

<WW_RUNNINGTITLE FOILID="${FID}"/>

<WW_EVENT FOILID="${FID}"/> -- <WW_EVENTDATE FOILID="${FID}"/>. <i>by</i> <WW_AUTHORNAME FOILID="${FID}"/>

<!-- This WW_LINK tag inserts a link to the HTML version of the

 current foil -->

<WW_LINK FILENAME="tempfoilsephtml.tdl" ATTR="FID=${FID}|PID=${PID}">* HTML Version</WW_LINK>

<hr>

<!-- WW_NEXT and WW_PREV insert buttons with HREF links to next and

 previous foil in the current presentation. FOILID and PARENTID attributes

 are IDs of current foil and current presentation, FILENAME is a template

 filename (usually the same as the current),

 and IMAGENAME is a property name specifying the image that should be

 used for link button.

-->

<WW_NEXT FOILID="${FID}" PARENTID="${PID}" FILENAME="tempfoilsepimage.tdl" IMAGENAME="ww_next"/>

<WW_PREV FOILID="${FID}" PARENTID="${PID}" FILENAME="tempfoilsepimage.tdl" IMAGENAME="ww_prev"/>

<WW_LINK FILENAME="tempfullindex.tdl" ATTR="PID=${PID}">

<WW_IMAGE IMAGENAME="ww_up" FOILID="${FID}" PARENTID="${PID}"/>

</WW_LINK>

<!-- WW_SELECTSOUND checks for the existence of the sound in the

 foil. If a sound object is associated with the specified foil, the ID of

 the eduobject containing sound is assigned to a variable given by

 NAME attribute.

 The same accomplished by WW_SELECTADDON tag for presentation/foil add-ons

-->

<WW_SELECTSOUND FOILID="${FID}" NAME="ISSOUND">

<INSERT NAME="${ISSOUND}"/>

</WW_SELECTSOUND>

<WW_SELECTADDON FOILID="${FID}" NAME="ISADDON">

<INSERT NAME="${ISADDON}"/>

</WW_SELECTADDON>

<hr>

<!-- WW_NOBULLETSIFGIF checks for existence of the foil image.

 If the foil specified in FOILID attribute has no image, the element

 contents will be parsed.

 Because inside WW_NOBULLETSIFGIF there is a WW_FOILTEXT tag,

 the table with foil text will be displayed if this foil has no image.

 If foil has an image, the contents of WW_NOBULLETSIFGIF will be ignored.

 (this tag should be named WW_IFNOGIF but it is named

 WW_NOBULLETSIFGIF in accordance with original NPAC templates)

-->

<WW_NOBULLETSIFGIF FOILID="${FID}">

<WW_FOILTEXT FOILID="${FID}"/>

</WW_NOBULLETSIFGIF>

<!-- WW_SELECTDISPLAYMODE inserts into variable with name given by NAME

 attribute the preferred display mode of the foil.

 With the following WW_IF, it acts in the same way as the original

 NPAC {select=123} tag.

-->

<WW_SELECTDISPMODE FOILID="${FID}" NAME="QUERY"/>

<WW_IF CONDITION="%OR(%EQU(${QUERY},1),%EQU(${QUERY},2),%EQU(${QUERY},3))">

<WW_THEN>

<!-- WW_FOILIMAGE inserts image for foil given by FOILID

 attribute. The presentation id: PARENTID will be later

 used to determine formatting properties (properties,

 different than the default, can

 be defined on user, presentation, or foil level).

 -->

<WW_FOILIMAGE FOILID="${FID}" PARENTID="${PID}"/>

</WW_THEN>

</WW_IF>

<hr>

<WW_NEXT FOILID="${FID}" PARENTID="${PID}" FILENAME="tempfoilsepimage.tdl" IMAGENAME="ww_next"/>

<WW_PREV FOILID="${FID}" PARENTID="${PID}" FILENAME="tempfoilsepimage.tdl" IMAGENAME="ww_prev"/>

<WW_LINK FILENAME="tempfullindex.tdl" ATTR="PID=${PID}">

<WW_IMAGE IMAGENAME="ww_up" FOILID="${FID}" PARENTID="${PID}"/>

</WW_LINK>

<!-- The following pair of tags inserts the signature of the current

 foil/presentation.

 First WW_DBSET takes the signature value form a database property

 in context of the current user, presentation and foil.

 PROPTYPE attribute specifies the type of the property

 ('overall' in case of signature), PROPNAME supplies the

 database property name. The value of the property assigned to a variable

 given by NAME attribute - here: SIG.

 WW_INSERT inserts the value of the signature into the output text.

-->

<WW_DBSET NAME="SIG" PROPNAME="signature" PROPTYPE="OVERALL" FOILID="${FID}" PARENTID="${PID}"/>

<WW_INSERT NAME="${SIG}"/>

</WW_DOCUMENT>

Template file used to navigate in the foilworld tree

<?WWTEMPLATE>

<?XML VERSION="1.0" CACHE="NO"?>

<WW_DOCUMENT>

<!-- ?WWTEMPLATE and ?XML tags form the header for all template files.

 CACHE attribute of the XML tag specifies whether the servlet should

 cache the file or not.

-->

<!-- WW_CONNECT is a tag that establishes a connection to a database.

 Connection string may be supplied in the CONNECTION attribute,

 or if omitted (empty string) the default

 connection string is taken from properties.txt file, which specific for

 the template.

-->

<WW_CONNECT CONNECTION=""/>

<html>

<head>

<!-- WW_TITLEFOILWORLD is a tag that inserts the foilworld title into output text.

 The foilworld is identified by the FWID attribute. The current value

 of this attribute is taken here from the FWID variable.

 This variable was set automatically by a servlet on the base of the URL

 query parameter.

 NOTE:

 Every parameter passed within an URL is put into a variable of the same

 name before a file is parsed. For instance, before parsing a file

 referenced by an URL:

'file.tdl?A=1&B=3&C=one'

 the following variables will be set:

A with value 1,

B with value 3, and

C with value 'one'.

 All these variables are accessible within the file using ${variable_name} syntax.

-->

<title> Foilworld contents for <WW_TITLEFOILWORLD FWID="${FWID}"/> </title>

</head>

<!-- WW_BODYINDEX inserts a 'body' HTML tag with background image typical

 for index files.

 This tag should be reimplemented to take images from the database

-->

<WW_BODYINDEX/>

<h2><tt>Title for</tt> <WW_TITLEFOILWORLD FWID="${FWID}"/> </h2>

<hr>

<tt>Foilworlds in this foilworld </tt><p>

<!-- WW_FOILWORLDLOOP is a loop tag that for given foilworld ID (passed as FWID

 attribute), parses its contents, setting for each loop pass a variable given by

 NAME attribute.

 This variable contains an identifier of a 'child' foilworld.

 The loop is repeated as many times as many child foilworlds the

 current foilworld contains.

 With following WW_FOILWORLDLINK, which creates a HREF link to same

 file but with child foilworld_id, it allows to create an 'index' of all

 foilworlds contained by the current foilworld.

 In this case the HREF link will have the form:

HREF="tempfoilworld.tdl?FWID=child_id_from_LOCALFWID_var&_

other_attributes_given_in_ATTR"

 The target file can be changed using FILENAME attribute and additional

 attributes may be suplied in the ATTR attribute

-->

<WW_FOILWORLDLOOP FWID="${FWID}" NAME="LOCALFWID">

<WW_FOILWORLDLINK FWID="${LOCALFWID}" FILENAME="tempfoilworld.tdl" ATTR=""/>

</WW_FOILWORLDLOOP>

<hr>

<tt>Presentations in this foilworld </tt><p>

<!-- The same as WW_FOILWORLDLOOP and WW_FOILWORLDLINK pair, but creates

 a list of links to presentations instead of child foilworlds,

 contained by a current foilworld.

 Note that the filename in the FILENAME attribute was changed and points

 to a full index file for presentation

-->

<WW_PRESENTATIONLOOP FWID="${FWID}" NAME="LOCALPID">

<WW_PRESENTATIONLINK PRESENTATIONID="${LOCALPID}" FILENAME="tempfullindex.tdl"

ATTR=""/>

</WW_PRESENTATIONLOOP>

</WW_DOCUMENT>

Template file to create and display index with links to foils

<?WWTEMPLATE>

<?XML VERSION="1.0" CACHE="YES"?>

<WW_DOCUMENT>

<!-- ?WWTEMPLATE and ?XML tags form header for all template files.

 CACHE attribute of the XML tag specifies whether the servlet should

 cache the template file or not.

-->

<WW_CONNECT CONNECTION=""/>

<html>

<head>

<title> Full Index for LOCAL <WW_TITLE FOILID="${PID}"/> </title>

</head>

<!-- WW_BODYINDEX inserts a 'body' HTML tag with background image typical for index

files. This tag should be re-implemented to take images from the database.

-->

<WW_BODYINDEX/>

<!-- WW_LINK inserts HREF link pointing to file given by FILENAME with

 optional attributes specified in the ATTR attribute.

-->

<WW_LINK FILENAME="tempbasicsearch.tdl" ATTR="">Basic Foilset Search

<!-- WW_IMAGE inserts an IMG SRC html tag where SRC is pointing to a program

 (servlet) that allows retrieval of images from the database.

 All parts of the URL are filled in using database properties

 for a given user in context of current presentation and foil

 (given by FOILID and PARENTID attributes).

 Because this file is a presentation index,

 there is no foil context so the same ID is supplied for both.

 Name of the image property is given by the IMAGENAME attribute.

 It is a 'search name' for the database image property(not a gif/jpeg file name).

 The same property can have different values in different

 user/presentation/foil contexts.

-->

<WW_IMAGE IMAGENAME="ww_search" FOILID="${PID}" PARENTID="${PID}"/>

</WW_LINK>

<WW_LINK FILENAME="temphelp.tdl" ATTR="">Help!</WW_LINK>

* GREY=local<tt> Full Index for </tt><h2> LOCAL foilset <WW_TITLE FOILID="${PID}"/> </h2>

Given by

<!-- Following tags get information from the database for the specified

 presentation.

 (WW_AUTHORNAME) - name of the author,

 (WW_EVENT) - the event,

 (WW_EVENTDATE) - date of the event,

 and (WW_MODIFICATIONDATE) - presentation modification date

-->

<WW_AUTHORNAME FOILID="${PID}"/> at

<WW_EVENT FOILID="${PID}"/> on

<WW_EVENTDATE FOILID="${PID}"/>. <tt> Foils prepared

<WW_MODIFICATIONDATE FOILID="${PID}"/> </tt>

<WW_LINK FILENAME="temptitleabs.tdl" ATTR="PID=${PID}">More Detail!</WW_LINK> *

Foil Index from this file *

<!-- WW_SELECTSOUND checks for the existence of the sound in the

 foil. If a sound object is associated with the specified foil, the ID of

 the eduobject containing sound is assigned to a variable given by

 NAME attribute.

 The same accomplished by WW_SELECTADDON tag for presentation/foil add-ons

-->

<WW_SELECTSOUND FOILID="${PID}" NAME="ISSOUND">

<WW_INSERT NAME="${ISSOUND}"/>

</WW_SELECTSOUND>

<WW_SELECTADDON FOILID="${PID}" NAME="ISADDON">

<INSERT NAME="${ISADDON}"/>

</WW_SELECTADDON>

<!-- WW_ABSMISSING inserts a link to the image of the presentation

 abstract (more precisely to the temptitleabs.tdl file which is an image

 version of the abstract foil).

 The PRESENTATIONID attribute specifies the presentation.

-->

<WW_ABSMISSING PRESENTATIONID="${PID}"/>

<p>

<!-- WW_ABSTRACT TEXT inserts table with a bulleted text of the abstract

 foil for the presentation specified in the PRESENTATIONID attribute.

-->

<WW_ABSTRACTTEXT PRESENTATIONID="${PID}"/>

<p>

<hr>

<h2>Table of Contents for <WW_TITLE FOILID="${PID}"/> </h2>

A denotes presence of Additional linked information

<WW_IMAGE IMAGENAME="ww_audio" FOILID="${PID}" PARENTID="${PID}"/> Indicates Available audio which is grayed out if missing

<hr>

<!-- Following tags create a index (list) of foils in current presentation.

 First WW_SET sets the COUNTER variable which allows to insert foil numbers

 (this is different from the position of the foil in the presentation

 because of the nested presentations) then WW_FOILLOOP iterates for all

 foils in the current presentation each time assigning current child foild

 ID to LOCALFID variable (given by NAME attribute)

-->

<WW_SET NAME="COUNTER" VALUE="1"/>

<WW_FOILLOOP PARENTID="${PID}" NAME="LOCALFID">

<!-- WW_ANNOTATION inserts the annotation text for the current position

 within presentation given by PRESENTATIONID attribute. The position is

 taken from the COUNTER variable

 (See comment for WW_SET tag above)

-->

<WW_ANNOTATION PRESENTATIONID="${PID}" POSITION="${COUNTER}"/>

<!-- WW_INSERT tag inserts current value of COUNTER variable into the

 output text. This is used both for 'A' html tag to identify

 anchor and to insert current number into the displayed text -->

 <a name="local<WW_INSERT NAME="${COUNTER}"/>">

<WW_INSERT NAME="${COUNTER}"/>

<!-- These two WW_LINK tags insert links to template files with foil

 image and foil text respectively. The foil and presentation IDs

 are suplied in the ATTR attribute.

NOTE:

Because of XML grammar the "&" sign cannot be use in tag attributes.

 Instead, the "|" sign is used. The WW_LINK tag implementation

 replaces the "|" signs with "&" in output text.

-->

<WW_LINK FILENAME="tempfoilsepimage.tdl" ATTR="FID=${LOCALFID}|PID=${PID}">

Separate IMAGE </WW_LINK>

* <WW_LINK FILENAME="tempfoilsephtml.tdl" ATTR="FID=${LOCALFID}|PID=${PID}">

Separate HTML </WW_LINK>

<WW_TITLE FOILID="${LOCALFID}"/>

<!-- This WW_SET increments variable COUNTER (same as Java 'counter++') -->

<WW_SET NAME="COUNTER" VALUE="%ADD(${COUNTER},1)"/>

</WW_FOILLOOP>

<hr>

<WW_LINK FILENAME="tempfullsearch.tdl" ATTR="">Full WebWisdom URL and this Foilset Search<WW_IMAGE IMAGENAME="ww_search" FOILID="${PID}" PARENTID="${PID}"/></WW_LINK>

<WW_LINK FILENAME="tempaliaslist" ATTR="">Alias List</WW_LINK>

This contains all WebWisdom links preceded by those referenced in this foilset

<hr><h2> List of WebWisdom URL's Used in this Foilset </h2>

<WW_DBSET NAME="SIG" PROPNAME="signature" PROPTYPE="OVERALL" FOILID="${PID}" PARENTID="${PID}"/>

<WW_INSERT NAME="${SIG}"/>

</WW_DOCUMENT>
14.1.3. Template Usage

To access presentations in the database by the use of the CPS template collection, a user can use any HTML browser, e.g. Netscape Communicator or Microsoft Internet Explorer. After connecting to the database, a welcome page is displayed (Figure 140). A user is requested to enter user name and corresponding password. If the name or password is not correct, appropriate message is displayed.

[image: image196.png]
Figure 140 . Welcome page of the CPS template

If the name and the password are correct, a new page is invoked in which the foilworld hierarchy is displayed (Figure 141).

[image: image197.png]
Figure 141 . Root of the foilworld hierarchy displayed by the CPS template

A user may browse the foilworld hierarchy. In each foilworld, all sub-foilworlds and presentations are displayed (Figure 142).

[image: image198.png]
Figure 142 . Contents of a foilworld displayed by the template

The contents of a presentation can be displayed by clicking on the presentation title (Figure 143). Usually, foils can be displayed as images or as HTML bulleted lists. Thus, for each foil of the presentation two links are provided: “separate IMAGE” and “separate HTML”. Pressing one of them causes image or text version of the foil to be displayed (Figure 144 and Figure 145).

[image: image199.png]
Figure 143 . Contents of a presentation displayed by the CPS template

[image: image200.png]
Figure 144 . Displaying contents of a foil in graphical form

[image: image201.png]
Figure 145 . Displaying contents of a given foil in text form

14.2. WTC3 Template Collection

This is a sample template used in WebWisdom NT version 3B.01. In Section 14.2.1 the tags are described, in Section 14.2.2 template files are presented, and in Section 14.2.3 a sample property file is presented.

14.2.1. Description of template tags

Tag name
Tag type
Input parameters
Java class/method
Description

TDL_DEFAULTBG
empty
none
tdls.tags.General.TDL_DEFAULTBG

Returns a string used in <BODY BACKGROUND=”...”> tag. Allows retrieving the default background image.

TDL_DEFAULTLOGO
empty
none
tdls.tags.General.TDL_DEFAULTLOGO

Returns a string used in tag. Allows retrieving a default logo image.

TDL_DOCUMENT
non-empty
none
tdls.tags.General.TDL_DOCUMENT
Top level XML tag – container for all other tags. Returns parsed body.

TDL_INSERT
empty
NAME: String – any legal expression
tdls.tags.General.TDL_INSERT
Returns a string with a calculated value of the expression given in the NAME parameter.

TDL_SMALLLOGO
empty
none
tdls.tags.General.TDL_SMALLLOGO
Returns a string used in tag. Allows retrieving a small Wisdom NT logo image.

TDL_LOGINFORM
non-empty
none
tdls.tags.Login.TDL_LOGINFORM
Returns a login form for user authentication. “Submit” and “Clear” buttons are supplied. The default servlet authentication procedure is called (method POST with “login” query string).

TDL_USERNAME
empty
none
tdls.tags.Login.TDL_USERNAME
Returns a string with <INPUT> HTML tag for user name.

TDL_PASSWORD
empty
none
tdls.tags.Login.TDL_PASSWORD
Returns a string with <INPUT> HTML tag for user password. The user-input characters are displayed as asterisks (*).

TDL_FOLDERPROPS
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_FOLDERPROPS
Sets “FOLDER_TITLE” (title of the folder given by folder ID) and “FOLDER_PATH” (full path to the folder given by folder ID beginning from the [Root] folder) template properties. The properties can be used in the template document by the use of the TDL_INSERT tag.

TDL_FOLDERUP
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_FOLDERUP
Returns image and link to the parent folder of the folder given by folder ID. The parent folder name is not displayed.

TDL_NAMEDCURRENTFOLDER
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_NAMEDCURRENTFOLDER
Returns image and link to the current folder given by folder ID. The parent folder name is displayed.

TDL_NAMEDFOLDERUP
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_NAMEDFOLDERUP
Returns image and link to the parent folder of the folder given by folder ID. The parent folder name is displayed.

TDL_SUBFOLDERS
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_SUBFOLDERS
Returns the list of links to subfolders of the folder given by folder ID. Folder name is displayed.

TDL_SUBPRESENTATIONS
empty
FOLDERID: String – folder ID
tdls.tags.Folders.TDL_SUBPRESENTATIONS
Returns the list of links to presentations contained by folder given by folder ID. Presentation name and icons are displayed. Named link connects to the presentation index. Icons connect to first foil of presentation (using primary or secondary foil eduobject), index, and print template.

TDL_FOILINDEX
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID
tdls.tags.Presentation.TDL_FOILINDEX

Returns the list of foils in the presentation given by presentation ID. Icons specifying accessible eduobjects are displayed. Thumbnails (if exists) are displayed.

TDL_FOILTHUMBS
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID
tdls.tags.Presentation.TDL_FOILTHUMBS

Returns the list of thumbnails of foils in the presentation given by presentation ID. Thumbnails are grouped in X columns where X is specified in general properties.

TDL_PRESPROPS
empty
PRESID: String – presentation ID
tdls.tags.Presentation.TDL_PRESPROPS

Sets “PRES_TITLE” (title of the presentation) “, “PRES_AUTHOR” (author(s) of the presentation), and “PRES_EVENT” (event(s) connected with the presentation) template properties. The properties could be used several times in the template document, using TDL_INSERT tags.

TDL_FOIL
empty
PRESID: String – presentation ID,

FOILID: String – foil ID,

SHOW: String – edutype to display,

MODE: String – “rich”, “best way”, or none show mode
tdls.tags.Foil.TDL_FOIL
Returns the foil contents. When MODE is set to “none” the eduobject of type specified by SHOW parameter is displayed. In other case, the primary or secondary importance eduobject is displayed.

TDL_JSFUNCTIONS
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID,

 FOILID: String – foil ID,

SHOW: String – edutype to display,

MODE: String – “rich”, “best way”, or none show mode
tdls.tags.Foil.TDL_JSFUNCTIONS
Returns the JavaScript navigational functions for the lower frame in the foil display. Also provides functions for thumbnails display.

TDL_NAVIGATION
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID,

FOILID: String – foil ID,

SHOW: String – edutype to display,

MODE: String – “rich”, “best way”, or none show mode
tdls.tags.Foil.TDL_NAVIGATION
Returns navigational icons for the lower frame in the foil display. “First”, “Previous”, “Next”, “Last”, “Index”, and edutype icons are displayed.

TDL_PREFETCH
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID,

FOILID: String – foil ID,

SHOW: String – edutype to display,

MODE: String – “rich”, “best way”, or none show mode
tdls.tags.Prefetch.TDL_PREFETCH
Causes servlet to start new threads for retrieving all next foils. Retrieved foils are stored in the servlet cache.

TDL_SUBFRAME
empty
EID: String – Eduobject ID
tdls.tags.Foil.TDL_SUBFRAME
Returns the parsed contents of the subframe.

TDL_TIMER
empty
PRESID: String – presentation ID,

FOILID: String – foil ID
tdls.tags.Foil.TDL_TIMER
Starts a separate window with a timer counting down if the foil has the “USE_TIME” attribute set.

TDL_PRESUP
empty
FOLDERID: String – folder ID,

PRESID: String – presentation ID,

NAME: String – name of the presentation
tdls.tags.Presentation.TDL_PRESUP
Shows a link to the presentation index.

Template files

File: login.tdl
Purpose: enables user authentication

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<html>

<head>

<title>Get WebWisdom Started</title>

</head>

<body background="<TDL_DEFAULTBG/>" text="#FEF5C2">

<TDL_LOGINFORM>

<table border=0 width=100%>

<tr>

<td rowspan=4>

<img src="<TDL_DEFAULTLOGO/>" name="Image1" alt="WWLogo">

</td>

<td colspan=2 align="center">

<h1> Welcome to WebWisdom! </h1>

</td>

</tr>

<tr>

<td align="right">

<i>User Name:</i>

</td>

<td>

<TDL_USERNAME/> </p>

</td>

</tr>

<tr>

<td align="right">

<i>Password:</i>

</td>

<td>

<TDL_PASSWORD/></p>

</td>

</tr>

<tr>

<td colspan=2 align="center">

</TDL_LOGINFORM>

</td>

</tr>

</table>

</body></html>

</TDL_DOCUMENT>

[image: image202.wmf]
Figure 146 . Result of parsing login.tdl template

The first template of the WTC3 template collection that is displayed when a user accesses the TDLServlet the first time is login.tdl. This template enables user authentication. The result of parsing the login.tdl template is presented in the Figure 146. There are two text fields in the right part of the window. The user should enter there a valid user name and the corresponding password. Provided that the user name and password match corresponding values in the database, after pressing the “Login” button the user can proceed to the next template – index.tdl.

File: index.tdl

Purpose: browsing of the root folder contents

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<TDL_FOLDERPROPS FOLDERID="1"/>

<html>

<head>

<title> WebWisdom NT - Folder <TDL_INSERT NAME="${FOLDER_TITLE}"/> </title>

</head>

<body bgcolor="#008080" text="#FFFFFF" link="#FFFF00" vlink="#00FF00">

<center>

<img src="<TDL_SMALLLOGO/>" border=0 align="middle" alt="WWLogo">

<i> WebWisdom NT </i>

</center>

<hr>

 Current folder:

<i><TDL_INSERT NAME="${FOLDER_PATH}"/></i>

<hr>

 Folders:

<p>

<TDL_SUBFOLDERS FOLDERID="1"/>

<hr>

 Presentations:

<p>

<TDL_SUBPRESENTATIONS FOLDERID="1"/>

<hr>

<small><i>WebWisdom NT (C) v. 3.0 template<i></small>

</body>

</html>

</TDL_DOCUMENT>

[image: image203.wmf]
Figure 147 .Result of parsing index.tdl template

The index.tdl template is used to browse the root foilworld. The list of the sub-foilworlds and presentations is displayed. The TDLServlet includes on the list only those sub-foilworlds where the currently logged user has at least “read” access. All sub-foilworlds are browsed using folder.tdl template.
File: folder.tdl
Purpose: browsing contents of folders

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<TDL_FOLDERPROPS FOLDERID="${fld}"/>

<html>

<head>

<title> WebWisdom NT - Folder <TDL_INSERT NAME="${FOLDER_TITLE}"/> </title>

</head>

<body bgcolor="#008080" text="#FFFFFF" link="#FFFF00" vlink="#00FF00">

<center>

<img src="<TDL_SMALLLOGO/>" border=0 align="middle" alt="WWLogo">

 WebWisdom NT

</center>

<hr>

 Current folder:

<i><TDL_INSERT NAME="${FOLDER_PATH}"/> </i>

<hr>

 Folders:<p>

<TDL_FOLDERUP FOLDERID="${fld}"/>

<TDL_SUBFOLDERS FOLDERID="${fld}"/>

<hr>

 Presentations:

<p>

<TDL_SUBPRESENTATIONS FOLDERID="${fld}"/>

<hr>

<small><i>WebWisdom NT (C) v. 3.0 template<i></small>

</body>

</html>

</TDL_DOCUMENT>

[image: image204.wmf]
Figure 148 . Result of parsing folder.tdl template

The sub-foilworlds of the root foilworld can be browsed by the use of the folder.tdl template. Sample result of parsing folder.tdl template is presented in the Figure 148. In the upper part of the window, the list of sub-foilworlds is presented. The first item in the list is a link to the parent foilworlds. In the lower part of the window, the list of presentations belonging to the current foilworld is displayed. Each presentation is presented by a book-icon followed by the presentation title, and four buttons. The first button “Rich show” enables browsing of the presentation primary educational objects (usually images). The second button enables browsing of the presentation in the “best way” mode. In this mode, only those primary educational objects that have high value of the importance attribute are displayed. All other foils are represented by the secondary educational objects (usually HTML text). The third button (with the same link as the presentation title) can be used to access the presentation index. The fourth button points to the print-ready form of presentation.

File: presindex.tdl
Purpose: displaying the presentation index

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<TDL_PRESPROPS PRESID="${pres}"/>

<TDL_FOLDERPROPS FOLDERID="${fld}"/>

<html>

<head>

<title> WebWisdom NT - Folder <TDL_INSERT NAME="${FOLDER_TITLE}"/> - Presentation <TDL_INSERT NAME="${PRES_TITLE}"/> </title>

</head>

<body bgcolor="#008080" text="#FFFFFF" link="#FFFF00" vlink="#00FF00" onLoad="loadTh()">

<center><img src="<TDL_SMALLLOGO/>" border=0 align="middle" alt="WWLogo"> WebWisdom NT </center>

<hr>

<table border=0 width="100%">

 <tr>

 <td> Current folder:

<i><TDL_INSERT NAME="${FOLDER_PATH}"/> </i>

</td>

 <td align="right" width=200>

<TDL_NAMEDCURRENTFOLDER FOLDERID="${fld}"/></td>

 </tr>

</table>

<hr>

<center>

<table border=1>

 <tr>

 <td align="center">

<TDL_INSERT NAME="${PRES_TITLE}"/>
 Index</td>

 </tr>

</table>

</center>

<p>

<center>

<table border=0>

 <tr>

 <td>

Presentation given by
<TDL_INSERT NAME="${PRES_AUTHOR}"/>

<TDL_INSERT NAME="${PRES_EVENT}"/></td>

 </tr>

</table>

</center>

<hr>

<TDL_FOILINDEX FOLDERID="${fld}" PRESID="${pres}"/>

<hr>

<small><i>WebWisdom NT (C) v. 3.0 template<i></small>

</body>

</html>

</TDL_DOCUMENT>

[image: image205.wmf]
Figure 149 . Result of parsing presindex.tdl template

The presindex.tdl template can be used to browse the index of presentation foils. Sample result of parsing the presindex.tdl file is presented in the Figure 149. In the upper part of the window, a link to the current folder is located. Below, the presentation title, authors, and events are displayed. In the lower part of the document, the list of the presentation foils is shown. Each line consists of:

· educational object buttons,

· foil title,

· foil thumbnail.

The educational object buttons show the set of available educational types in the foil. Each button points to the foil.tdl template, with a parameter indicating the educational object to be displayed.

For the performance reasons, thumbnails are loaded after the presentation index is displayed. If there is no thumbnail for a particular foil, corresponding image is displayed.

File: foil.tdl
Purpose: frameset container for browsing of foils

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<TDL_PRESPROPS PRESID="${pres}"/>

<html>

<head>

<title> WebWisdom NT - Presentation <TDL_INSERT NAME="${PRES_TITLE}"/> </title>

</head>

<frameset rows="40,*,145">

 <frame name="upper"

 src="upper.tdl?<TDL_INSERT NAME="${QUERY_STRING}"/>"

 marginwidth="10"

 marginheight="10"

 scrolling="no"

 frameborder="no">

 <frame name="middle"

 src="middle.tdl?<TDL_INSERT NAME="${QUERY_STRING}"/>"

 marginwidth="10"

 marginheight="10"

 scrolling="auto"

 frameborder="no">

 <frame name="lower"

 src="lower.tdl?<TDL_INSERT NAME="${QUERY_STRING}"/>"

 marginwidth="0"

 marginheight="0"

 scrolling="no"

 frameborder="no">

</frameset>

</html>

</TDL_DOCUMENT>

File: upper.tdl
Purpose: upper part of the foil-browsing window

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<TDL_PRESPROPS PRESID="${pres}"/>

<html>

<head>

<title> WebWisdom NT </title>

</head>

<body bgcolor="#008080" text="#FFFFFF" link="#FFFF00" vlink="#00FF00">

<center>

<TDL_PRESUP FOLDERID="${fld}" PRESID="${pres}" NAME="${PRES_TITLE}"/>

</center>

<p>

</body>

</html>

</TDL_DOCUMENT>

File: middle.tdl
Purpose: middle part of the foil-browsing window

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<TDL_FOIL PRESID="${pres}" FOILID="${foil}" SHOW="${show}" MODE="${mode}"/>

<TDL_TIMER FOILID="${foil}" PRESID="${pres}"/>

<TDL_PREFETCH FOLDERID="${fld}" PRESID="${pres}" FOILID="${foil}" SHOW="${show}" MODE="${mode}"/>

</TDL_DOCUMENT>

File: lower.tdl
Purpose: lower, navigational part of the foil-browsing window

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<html>

<head>

<title> WebWisdom NT </title>

</head>

<body bgcolor="#008080" text="#FFFFFF" link="#FFFF00" vlink="#00FF00" onLoad="loadThs()">

<TDL_JSFUNCTIONS FOLDERID="${fld}" PRESID="${pres}" FOILID="${foil}" SHOW="${show}" MODE="${mode}"/>

<TDL_NAVIGATION FOLDERID="${fld}" PRESID="${pres}" FOILID="${foil}" SHOW="${show}" MODE="${mode}"/>

</body>

</html>

</TDL_DOCUMENT>

[image: image206.wmf]
Figure 150 .Result of parsing foil.tdl template

The foil.tdl template can be used to display foils. Sample result of parsing of the foil.tdl file is presented in the Figure 150. In the upper part of the window, presentation title is displayed. This title is a link to the presentation index. In the middle part of the window, current educational object is displayed. Below the navigational panel is presented. The panel consists of:

· navigational buttons,

· index button,

· educational object buttons,

· thumbnails.

Navigational buttons allow showing: the first foil, previous foil, next foil or the last foil. The educational object buttons allow to switch between available educational types for the current foil.

If the presentation is started using “Rich show” or “Best way” buttons from the folder.tdl template, pressing one of the navigational buttons will cause displaying the appropriate foil according to the primary/secondary importance paradigm (regardless the educational object currently displayed). If the presentation is started from the presindex.tdl template, changes in displayed educational type will be permanent, i.e., next foil will be displayed with the same educational type as the current foil.

The index button points to presentation index. Thumbnail images display two subsequent foils.

File: print.tdl
Purpose: printing of foil thumbnails

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<TDL_PRESPROPS PRESID="${pres}"/>

<TDL_FOLDERPROPS FOLDERID="${fld}"/>

<html>

<head>

<title> WebWisdom NT - Folder <TDL_INSERT NAME="${FOLDER_TITLE}"/> - Presentation <TDL_INSERT NAME="${PRES_TITLE}"/> </title>

</head>

<body bgcolor="#FFFFFF" link="#000000">

<table border=0>

 <tr>

<td align="center">

<TDL_INSERT NAME="${PRES_TITLE}"/>
 Index

</td>

 </tr>

</table>

<p>

<hr>

<TDL_FOILTHUMBS FOLDERID="${fld}" PRESID="${pres}"/>

<hr>

<small><i>WebWisdom NT (C) v. 3.0 template<i></small>

</body>

</html>

</TDL_DOCUMENT>

[image: image207.wmf]
Figure 151 .Result of parsing print.tdl template

The print.tdl template enables printing of the presentation thumbnail index. Sample view of the parsed print.tdl template is presented in the Figure 151. Each of the thumbnails is a link to the real-size version of the image.

File: printfoil.tdl
Purpose: printing of foils

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<html>

<head>

<title> WebWisdom NT </title>

</head>

<body bgcolor="#FFFFFF">

<TDL_FOIL PRESID="${pres}" FOILID="${foil}" SHOW="${show}" MODE="${mode}"/>

<hr>

<small><i>WebWisdom NT (C) v. 3.0 template<i></small>

</body>

</html>

</TDL_DOCUMENT>

File: subframe.tdl
Purpose: displaying internally stored HTML pages

<?XML VERSION="1.0" CACHE="YES"?>

<TDL_DOCUMENT>

<TDL_SUBFRAME EID="${eid}"/>

</TDL_DOCUMENT>
14.2.2. Template properties file

Below, an example of a property file for use with XML template is presented

<PROPERTIES>

CONNECTION_STRING = XML:d:\appl\apache\htdocs\wisdom\zipped

HOST_NAME = sirius.kti.ae.poznan.pl

XML_GETDATA = servlet/getdataXML

DEFAULT_PROPS_FILE = d:\appl\apache\htdocs\wisdom\zipped\pres.zip

</PROPERTIES>

15. WebWisdom NT Installation Procedure

15.1. WebWisdom Manager Installation Procedure

In order to install the WebWisdom Manager version 3B.01 on a PC, a user should proceed with the following steps:

1. Make sure that Java 1.2 is installed in the system

2. The Java interpreter (oldjavaw.exe) must in the PATH environment variable

3. Uninstall all previous versions of the WebWisdom NT Manager (version earlier than 3B.01 can be uninstalled by simply removing them)

4. Unzip the contents of the distribution file to a temporary directory

5. Run setup.exe and follow the instructions

The WebWisdom PowerPoint Add-in must be separately installed (cf. Section 15.2).

15.2. WebWisdom PowerPoint Extension Installation Instructions

In order to install the WebWisdom PowerPoint Extension on a PC, a user should proceed with the following steps:

1. Make sure that PowerPoint 97 is installed in the system, and that it is not currently running

2. Uninstall all previous versions of the WebWisdom PowerPoint Extension by the use of Control Panel -> Add/Remove Software utility

3. Unzip the contents of the distribution file to a temporary directory

4. Run setup.exe and follow the instructions

15.3. Servlet Installation Procedure

Basic system requirements to use the TDLServlet are the following:

· installation of any HTTP server implementing standard servlet API (http://jserv.java.sun.com/products/webserver/features/index.html#servlet), for example Netscape Enterprise Server or Apache with JServ extension

· hardware requirements:

· minimum: Pentium 200 MHz with 64 MB RAM,

· recommended: Pentium II 300 MHz with 96 MB RAM;

The servlet can be also used on UNIX computers.

The details of the servlet installation depend on the HTTP server used. In this chapter, the installation procedure for the Netscape Enterprise Server and Apache Web Server are described. File and directory names for other HTTP servers may differ.

15.3.1. Installation for Netscape Enterprise Server

The installation procedure of the servlet includes the following:

· preparing configuration files servlet_tdl.conf and servlet_templ.conf (cf. Section 13.1.2) and storing them in the main configuration directory of the HTTP server (usually “.../https‑server_name/config”, where server_name is the name of the HTTP server),

· storing the compiled Java code of the servlet and the interpretation tags (*.class files) in the main plug-in directory of the HTTP server (usually “.../plugins/Java/servlets”),

· storing servlet configuration pages (cf. Section 13.1.10) a sub-directory of the WWW document “root” directory of the HTTP server,

· restarting the HTTP server.

After completing the above steps, the servlet installation procedure is completed and the servlet can be used. Note, however, that if the servlet uses any Java extension libraries, Java code for these libraries and all the necessary drivers (for example database access drivers and JDBC library) must be installed before the servlet is used for the first time. These classes should be copied to the same directory the servlet Java classes are copied.

15.3.2. Installation for Apache Web Server

The following instructions describe installation procedure of the TDLServlet, getdata, and getdataXML on a PC NT system with Apache WWW server.

In the following description, it is assumed that Apache and Apache JServ are installed in direct subdirectories of the same directory. This directory is referred to as {Apache Group}. Please replace it with the actual directory where the Apache and Apache JServ are installed on your system. The {DIST} symbol denotes directory containing uncompressed files from the servlets distribution package.

Installation of required software

1.
Install JDK 1.1.7 or 1.2

2.
Install Apache 1.3.3

3.
Install Apache as NT service

4.
Install jsdk20-win32.exe

5.
Install ApacheJServ1.0b2-Apche1.3.3.exe

6.
Copy Apache-JServ-1.0b3.jar file to {Apache Group}\Apache JServ\ and rename it to ApacheJServ.jar

Configuration of WWNT servlet software

7.
Create directory: {Apache Group}\Apache JServ\servlet

8.
Copy getdata.jar, getdataXML.jar, TDLServlet.jar, and classes111.zip from {DIST}/servlet-jar/ to the directory created in Step 7.

9.
Go to the {Apache Group}\Apache JServ\conf directory and edit the jserv.properties file

a) In section "# Arguments passed to Java interpreter (optional)" add:

wrapper.bin.parameters=-mx60000000

b) Go to the "# Enable/disable channels, each tracing different actions" section and change to false all log channels except: init and exceptionTracing
c) Make sure that in the section "# The Java Virtual Machine interpreter" the correct version of Java interpreter is set, e.g.,:

 wrapper.bin=C:\jdk1.2\bin\java.exe

10.
In the same directory, edit the zone.properties file

 a) In the"# List of Repositories" section add:

 repositories={Apache Group}\Apache JServ\servlet\TDLServlet.jar,{Apache

 Group}\Apache JServ\servlet\getdata.jar,{Apache Group}\Apache

 JServ\servlet\getdataXML.jar,{Apache Group}\Apache JServ\servlet\classes111.zip

 b) In the "# Servlet Aliases" section add:

 servlet.TDLServlet.code=TDLServlet

 servlet.getdata.code=getdata

 servlet.getdataXML.code=getdataXML

 c) In "# Aliased Servlet Init Parameters" section add:

 servlet.TDLServlet.initArgs=configPath={Apache Group}\Apache JServ\conf\

 servlet.getdata.initArgs=configPath={Apache Group}\Apache JServ\conf\

11.
Go to the {Apache Group}\Apache\conf directory and edit the httpd.conf file.

In section "# Mount point for Servlet zones" change the default value

 ApJServMount /servlets /root

to

 ApJServMount /servlet /root

12.
Create directory {Apache Group}\Apache\htdocs\wisdom_templates and copy xml and db directories from {DIST}\servlet-templates to this directory.

13.
Enter the xml directory and edit the properties.conf file. Change the following properties accordingly to the local configuration:

 CONNECTION_STRING = XML:c:\XMLPresentations

 HOST_NAME = host-name.npac.syr.edu

 DEFAULT_PROPS_FILE = c:\XMLPresentations\defaults.zip

14.
Enter the db directory and edit the properties.conf file. Change the following properties accordingly to the local configuration

 CONNECTION_STRING = jdbc:oracle:thin:user/pass@dbhost.npac.syr.edu:1521:ORCL

 HOST_NAME = host-name.npac.syr.edu

15.
Copy the following configuration files:

 wisdom_tables.conf

 wisdom_tdl.conf

 wisdom_templ.conf

 wisdom_users.conf

from the {DIST}/servlet-config to the config directory defined in Step (10c)

16.
Edit the wisdom_templ.conf file and add the following lines accordingly to the local configuration (cf. Section 15.4)

 db|http://host-name.npac.syr.edu/wisdom_templates/db/

 xml|http://host-name.npac.syr.edu/wisdom_templates/xml/

17.
Edit the wisdom_users.conf file and specify the database connection for the getdata servlet (cf. Section 15.5), e.g.:

 witch|wisdom/passwd@dbhost.npac.syr.edu:1521:ORCL

18.
Copy the tdl_config directory from {DIST}/servlet-configpages to {Apache Group}/Apache/htdocs

19.
Export a few presentations from WebWisdom NT Manager in XML format to the directory defined in the Step (13) in CONNECTION_STRING property. One of the presentations should be named as specified by the DEFAULT_PROPS_FILE property. This presentation will be used to retrieve default property values.

Create any number of subdirectories and place any number of XML ZIP presentation files.

20.
Go to Control Panel -> Services and start the Apache server

21.
Start Netscape Navigator 4.5 and open the following URL:

 http://localhost/tdl_config/

The WebWisdom NT Config Pages should appear (cf. Section 13.1.10)

22.
Go to the following URL:

 http://host-name/servlet/TDLServlet/xml

This template shows presentations exported to XML files.

23.
Go the following URL

 http://host-name/servlet/TDLServlet/db

This template shows presentations retrieved from the database.

15.4. TDLServlet Configuration Files

There are two files used to configure the TDLServlet behavior:

· wisdom_tdl.conf,

· wisdom_templ.conf.

 Both of them are read once, when the servlet is about to perform the first request. The wisdom_tdl.conf file is used to associate tags with their corresponding Java classes and methods. This file is read line by line. Each line has the following syntax:

tag_name | Java_class.method(formal_parameters) | persistency

where:

· tag_name is a name of a TDL tag (see description of the TDL language in the next chapter),

· Java_class is a name of a Java class implementing the tag(s)
,

· method is a name of a method of the class which is invoked once the tag is interpreted,

· formal_parameters is a list of names of parameters passed to the method; all the parameters are of type java.lang.String,

· persistency is an indicator whether the interpreting object should be persistent (persistency=1) or not (persistency=0); if a tag is declared as persistent, each time the tag is interpreted the same instance of the Java_class is used; otherwise, each time the tag is interpreted a new instance of the Java_class is created.

Note that each TDL tag is interpreted in the same way, including control tags (IF, FOR, WHILE, etc.). Thus, the approach gives maximum flexibility to the user, as each tag method can be freely changed according to user’s needs.

Sample configuration file wisdom_tdl.conf is presented below.

WW_DOCUMENT|Tags.WW_DOCUMENT()|0

WW_IMAGE|Tags.WW_IMAGE (IMAGENAME, ID, PARENTID)|0

WW_LOGIN|Tags.WW_LOGIN()|0

WW_IF|Tags.WW_IF (CONDITION)|0

WW_THEN|Tags.WW_THEN ()|0

WW_ELSE|Tags.WW_ELSE ()|0

WW_CONNECT|Tags.WW_CONNECT (CONNECTION)|0

WW_AUTHORNAME|Tags.WW_AUTHORNAME (ID)|0

WW_OWNERNAME|Tags.WW_OWNERNAME (ID)|0

WW_TITLE|Tags.WW_TITLE (ID)|0

WW_CREATIONDATE|Tags.WW_CREATIONDATE (ID)|0

WW_SOUND|Tags.WW_SOUND (SID, ID, PARENTID)|0

WW_USERNAME|Tags.WW_USERNAME()|0

WW_PASSWORD|Tags.WW_PASSWORD()|0

The second configuration file, called wisdom_templ.conf, is used to declare localization of template directories. This file is also read line by line, with every line of the following format:

template_collection_name | location_of_template_collection
where the template_collection_name is the name used by users in template locators (URLs passed to the servlet), and the location_of_template_collection is an URL address of a document pool where the template files are stored. Note that all template files in one template collection must be stored in the same directory. Note also that the directories containing templates do not have to be placed in the local file system of the HTTP server where the TDLServlet is running (however they can be stored locally).

The example wisdom_templ.conf file is presented below.

taurus|http://taurus.kti.ae.poznan.pl/templates/t1/

cps|http://taurus.kti.ae.poznan.pl/templates/cps616dbforvrml/

my_template|http://sandman.npac.syr.edu/~mark/lectures/

15.5. Getdata Configuration Files

The Getdata servlet uses two configuration files:

· wisdom_users.conf – containing list of connections to databases,

· wisdom_tables.conf – containing list of table names that are excluded for Getdata access.

These files should be copied to appropriate HTTP server configuration directory, e.g.:

\netscape\suitespot\https-servername\config

The wisdom_users.conf file contains a list of database connections that can be used by the Getdata utility. The file has the following format:

Connection_identifier|user_name/password@host_name:port_no:database_name

where:

· connection_identifier is the name the connection will be identified in URL,

· user_name – user name used to access the database,

· password – password for database user name,

· host_name – host name of the server the database system is running,

· port_no – port number used by JDBC to connect to the database,

· database_name – name of the database.

For example, a file:

1|user1/password1 @ host.dns.domain.edu:1521:ORCL

second|wisdom|wpas33 @ hostname:1521:ORCL

3|test/test @ kopernik.napc.syr.edu:1521:ORCL

defines three different connections: „1”, „second”, and „3”.

The wisdom_tables.conf file contains a list of table names that should not be accessed by the Getdata server extension.

Contents of a sample wisdom_tables.conf file can be the following:

Users

Presentation

Foilworld

Access_to_foilworld

GetdataXML does not use any configuration files.

16. WebWisdom PowerPoint HTML Exporter

WebWisdom NT 3.01 installation package contains standalone HTML exporter that can be used to export PowerPoint presentation is rich HTML format. The exported presentations preserve text formatting like font sizes, colors, and styles. Multiple frames are also supported.

In order to access the WebWisdom NT HTML exporter a user should open the Foil menu of the PowerPoint and choose the “WWNT Export to HTML” item (Figure 152).

[image: image208.png]
Figure 152 . Exporting presentations by the use
of the WebWisdom HTML Exporter
(polish version of PowerPoint)

The exporter can be used only when a presentation is open. Attempt to use exporter without active presentation generates error message as shown in the Figure 153
[image: image209.png]
Figure 153 . Warning message displayed when
there is no presentation to export

If there is an active presentation that can be exported, the main exporter dialog box is displayed (Figure 154).

When the exporter is used for the first time the user is requested to enter the initial value for the target path (Figure 154, Figure 155). This value will be stored in the system registry and used the next time the exporter is used.

[image: image210.png]
Figure 154 . WebWisdom HTML Exporter window

[image: image211.png]
Figure 155 . Browsing the target directory

After selecting the target directory, only the main exporter window remains on the screen (Figure 154).

The exporter dialog box has three buttons: Export, Cancel, and Browse.

The Export button can be used to start the exporting process.

The Cancel button can be used to cancel the operation.

The Browse button can be used to change the target path. By default, the exporter uses the path used the last time.

Additional checkbox located in the center of the dialog box can be switched on to force the exporter to create a subdirectory named by presentation name in the target path and use it for exporting.

After pressing the Export button, a new window appears (Figure 156). This window enables the user to select size and format of the image files created from the foils.

[image: image212.png]
Figure 156 . Choosing the image size and format

A user can choose among four image sizes: 640 x 480, 800 x 600, 1024 x 768, 1280 x 1024, and two image formats: GIF and JPG. To finish the exporting process the user should press the OK button. All foils of the active presentation will be exported to HTML and image formats. For each of the foils the export progress is visualized by the use of a progress bar (Figure 157).

[image: image213.png]
Figure 157 . Progress bar for exporting foils

The exporter stores in the system registry the recently used values for the target path, the image size, and image type. These values will be used the next time the exporter is used as the default values.

Appendix A. Application Programming Interface of the TDLServlet

The servlet is equipped with a set of methods that can be used in user-defined tag interpretation methods. These methods are defined in abstract class TDLTag. To define an interpretation method for a tag one should first create a new class (of any name) being an extension of the TDLTag class and next provide in it a method to interpret the tag:

public class Tags extends TDLTag {

//private variables

interpretation_method(String param1, …, String paramN) {

…

}

// private functions

}

The interpretation_method may use any of the build-in API functions described in Section A.1. Sample interpretation functions for control tags are described in Section A.2.

The classes and methods for tag interpretation must be declared in the configuration file wisdom_tdl.conf .

A.1. API Functions of TDLTag Class

public abstract class TDLTag {

public TDLTag() {}

// empty contructor

public Connection getConn ()

// returns currently open database connection

public void setConn (Connection connection)

// closes current database connection, sets a new database connection

// and opens it

public InputStream getFileHandle (String fileName);

// returns a handle to current template file

public void removeAttrValue (String name);

// removes a property from property table

public String getStringAttrValue(String name);

// gets a value of a property and returns it as a string
public int getIntAttrValue(String name);

// gets a value of a property and returns it as an integer value

// if the conversion from string to integer cannot be done, returns value 0

public float getFloatAttrValue(String name);

// gets a value of a property and returns it as a float value

// if the conversion from string to integer cannot be done,

// returns value 0.0

public boolean setStringAttrValue(String name, String value);

// sets a string value of a property

// returns true if everything is OK, false if a property cannot be set

public boolean setFloatAttrValue(String name, float value) {

// sets a float value of a property

// returns true if everything is OK, false if a property cannot be set

public boolean setIntAttrValue(String name, int value) {

// sets an integer value of a property

// returns true if everything is OK, false if a property cannot be set

final String parseChildren();

// parses body of the tag

public String evaluateExpression (String expression);

// parses string from left to right

// and evaluates all valid expressions to their current values

// parts of string not being valid expressions remain unchanged

public boolean useXML ()

// true if template is using a XML data instead of database connection

}

A.2. Example implementation of methods for control tags

import java.io.*;

import java.util.*;

import java.sql.*;

import java.sql.Date;

import db.*;

import view.*;

public class Tags extends TDLTag {

...

/**

 * Main tag for all TDL documents. Standard TDL tag implementation.

 * @return Parsed contents

*/

 public String WW_DOCUMENT () {

 return parseChildren();

 // parses all children

 }

/**

 * IF statement. Standard TDL tag implementation.

 * Must be used with THEN and/or ELSE tags.

 * @param condition - <code>if</code> condition

 * @return Parsed contents

*/

 public String WW_IF (String condition) {

 String res="";

 condition = evaluateExpression(condition);

 setIntAttrValue(Constants.IFLevelProperty,

getIntAttrValue(Constants.IFLevelProperty)+1);

 // setting a temporary property with current value of the condition

 if (condition!="")

 setIntAttrValue(Constants.IFLevelConditionProperty+

 getIntAttrValue(Constants.IFLevelProperty),1);

 else

 setIntAttrValue(Constants.IFLevelConditionProperty+

 getIntAttrValue(Constants.IFLevelProperty),0);

 res+=parseChildren();

 // removing temporary property

 removeAttrValue(Constants.IFLevelConditionProperty+

getIntAttrValue(Constants.IFLevelProperty));

 setIntAttrValue(Constants.IFLevelProperty,

getIntAttrValue(Constants.IFLevelProperty)-1);

 return res;

 }

/**

 * THEN statement. Standard TDL tag implementation.

 * Must be used only in IF tag context.

 * @return Parsed contents

*/

 public String WW_THEN () {

 if (getIntAttrValue(Constants.IFLevelConditionProperty+

 getIntAttrValue(Constants.IFLevelProperty))==1)

 return parseChildren();

 else

 return "";

 }

/**

 * ELSE statement. Standard TDL tag implementation.

 * Must be used only in IF tag context.

 * @return Parsed contents

*/

 public String WW_ELSE () {

 if (getIntAttrValue(Constants.IFLevelConditionProperty+

 getIntAttrValue(Constants.IFLevelProperty))==0)

 return parseChildren();

 else

 return "";

 }

/**

 * Inserts result of the calculation or the variable value.

 * Standard TDL tag implementation.

 * @param name - variable or expression

 * @return String with a value

*/

 public String WW_INSERT(String name) {

 return evaluateExpression(name);

 }

/**

 * Inserting result of the calculation or the variable value

 * into <code>name</code> variable. Standard TDL tag implementation.

 * @param name - name of the variable

 * @param value - variable or expression value

 * @return Empty string

*/

 public String WW_SET (String name, String value) {

 name = evaluateExpression(name);

 value = evaluateExpression(value);

 setStringAttrValue(name,value);

 return "";

 }

/**

 * Connecting to database. Standard TDL tag implementation.

 * @param connection - connection string, if <code>connection</code> is empty,

 * default value is taken from property file.

 * @return Empty string

*/

 public String WW_CONNECT (String connection) {

 connection = evaluateExpression(connection);

 if (connection.equals(""))

connection=getStringAttrValue(Constants.ConnectionStringProperty);

 else

setStringAttrValue(Constants.ConnectionStringProperty,connection);

 try {

 setConn (DriverManager.getConnection(connection));

 } catch (SQLException e) {

 ExceptionHandler.handleException(e,"TAGS:WW_CONNECT");

 }

 return "";

 }

...

}

/**

 * Processes its contents inserting into the <code>name</code> variable

 * id’s of foilworlds that are in the foilworld specified by

 * <code>fwid<code>

 *

 * @param fwID - foilworld id

 * @param name - name of the variable

 *

 * @return Parsed contents

 *

 * @version 1.0 07/15/98

 */

 public String WW_FOILWORLDLOOP (String fwID, String name) {

 name = evaluateExpression(name);

 fwID = evaluateExpression(fwID);

 String res = "";

 String query = "SELECT WID FROM FOILWORLD WHERE BUFFER_OWNER_UID IS

NULL AND WID<>1 AND BELONGS_TO_WID = "+fwID+" ORDER BY NAME";

 try {

Statement sqlStatement =

tdlTemplate.getCon().createStatement();

ResultSet rs = sqlStatement.executeQuery(query);

 while (rs.next()) {

 setStringAttrValue(name,rs.getString("WID"));

 res+=parseChildren();

 }

 rs.close(); sqlStatement.close();

 } catch (SQLException e) {

 ExceptionHandler.handleException(e,"TAGS:WW_FOILWORLDLOOP");

 }

 return res;

 }

/**

 * Processes the contents inserting into the <code>name</code> variable

 * id's of presentations from the foilworld specified by <code>fwid<code>

 *

 * @param fwID - foilworld id

 * @param name - name of the variable

 *

 * @return Parsed contents

 *

 * @version 1.0 07/15/98

 */

 public String WW_PRESENTATIONLOOP (String fwID, String name) {

 name = evaluateExpression(name);

 fwID = evaluateExpression(fwID);

 String res = "";

 String query = "SELECT COMPONENT_PID FROM FW_CONTAIN_PR WHERE

CONTAINER_WID="+fwID;

 try {

Statement sqlStatement =

tdlTemplate.getCon().createStatement();

ResultSet rs = sqlStatement.executeQuery(query);

 while (rs.next()) {

 setStringAttrValue(name,rs.getString("COMPONENT_PID"));

 res+=parseChildren();

 }

 rs.close(); sqlStatement.close();

 } catch (SQLException e) {

 ExceptionHandler.handleException(e,"TAGS:WW_PRESENTATIONLOOP");

 }

 return res;

 }

/**

 * Processes the contents inserting into the <code>name</code> variable foil

 * id's from the presentation specified by <code>parentID<code>

 *

 * @param parentID - presentation id

 * @param name - name of the variable

 *

 * @return Parsed contents

 *

 * @version 1.0 07/15/98

 */

 public String WW_FOILLOOP (String parentID, String name) {

 name = evaluateExpression(name);

 parentID = evaluateExpression(parentID);

 String res="";

 Vector vc = new Vector();

 fillFoilID(parentID, vc);

 Enumeration en = vc.elements();

 while (en.hasMoreElements()) {

 setStringAttrValue(name,(String)en.nextElement());

 res+=parseChildren();

 }

 return res;

 }

Appendix B. XML Zip File Format

Zipped XML files are common data exchange format for the WebWisdom NT system. The TDLServlet can use a set of external XML files as a data source instead of the database. The XML files can be imported and exported by the Wisdom Manager, thus enabling data exchange between databases. XML files represent presentations with all data needed to import or display the presentation. Each presentation is kept in a separate ZIP file, which consists of:

· One XML file “presentation.xml” containing actual data as well as meta-data describing the actual contents,

· Multiple “XMLEx???.blob
” files containing raw data from the database (e.g., image data or educational object data.)

WebWisdom XML exchange file has the structure conforming to the following DTD:

<?XML VERSION="1.0"?>

<!DOCTYPE document [

<!ELEMENT document (dbtable)*>

<!ELEMENT dbtable (dbrow)+>

<!ELEMENT dbrow ANY>

<!ATTLIST dbtable

name CDATA #REQUIRED

>

]>
The following script presents a sample fragment of the XML file:

<document>

<dbtable name="PRESENTATION">

<dbrow>

<LABEL>MSAccessASP97</LABEL>

<SUBJECT>Microsoft Access used with Active Server Pages(ASP)</SUBJECT>

<INTERACTIVITY>1</INTERACTIVITY>

<RUNNING_TITLE>Overview of Microsoft Access used with Active Server Pages(ASP)</RUNNING_TITLE>

<ID>1</ID>

<TYPE_TID>1</TYPE_TID>

<EVENT_COMMENT>CPS616 Technologies of Information Age</EVENT_COMMENT>

<NAME>accessasp97</NAME>

<LEARNING_LEVEL>0:0</LEARNING_LEVEL>

<KEYWORDS>Microsoft Access, Active Server Pages(ASP)</KEYWORDS>

</dbrow>

</dbtable>

<dbtable name="PRES_TYPE">

<dbrow>

<TID>1</TID>

<TYPE_NAME>Presentation</TYPE_NAME>

</dbrow>

</dbtable>

<dbtable name="ELEMENT">

<dbrow>

<TITLE>Overview of Microsoft Access used with Active Server Pages(ASP)</TITLE>

<ELEMENT_TYPE>1</ELEMENT_TYPE>

<M_DATE_COMMENT>4 Feb 98</M_DATE_COMMENT>

<AUTHOR_COMMENT>Nancy McCracken and Sangetta Aggarwal</AUTHOR_COMMENT>

<ID>1</ID>

<MODIFICATION_DATE>1998-02-04 00:00:00.0</MODIFICATION_DATE>

<OWNER_UID>2</OWNER_UID>

<C_DATE_COMMENT>Spring 1998</C_DATE_COMMENT>

<CREATION_DATE>1998-02-04 00:00:00.0</CREATION_DATE>

</dbrow>

</dbtable>

<dbtable name="USERS">

<dbrow>

<IMAGE>XMLex0.blob</IMAGE>

<FIRST_NAME>Wisdom</FIRST_NAME>

<LOGIN_NAME>wisdom</LOGIN_NAME>

<ACTIVE>1</ACTIVE>

<USER_PRIVILEGES>_CAN_USE_WM_CAN_USE_WW_</USER_PRIVILEGES>

<LAST_NAME>Wisdom</LAST_NAME>

<MODIFICATION_DATE>1999-02-19 00:00:00.0</MODIFICATION_DATE>

<PASSWORD>wisdom</PASSWORD>

<EXPIRATION_DATE>2001-02-19 00:00:00.0</EXPIRATION_DATE>

<USID>2</USID>

<CREATION_DATE>1999-02-19 00:00:00.0</CREATION_DATE>

<IMAGE_SIZE>0</IMAGE_SIZE>

</dbrow>

</dbtable>

....

</document>

Each database table containing data important for the presentation is denoted by <dbtable> tag with an attribute “name”, which represents the table name:

<dbtable name=”table_name”> </dbtable>

<dbtable> tag consists of one or more <dbrow> tags, which are the representation of the database rows. Each <dbrow> consists of all not null attributes from the database table:

<dbrow>

<attribute_name> attribute_value </attribute_name>

<attribute_name> attribute_value </attribute_name>

....

<attribute_name> attribute_value </attribute_name>

</dbrow>

If the attribute in the database is a binary data, the “attribute_value” element for this attribute tag contains the name of the data file “XMLEx???.blob” where the raw data are stored (<IMAGE> tag of the “users” table in the given example).

All zipped presentations should be stored in the directory specified in the “CONNECTION_STRING” property, set in the template property file “properties.conf” (cf. Section 13.1.4) or in one of its subdirectories
. TDLServlet maps subdirectories to a folder structure.

Appendix C. File Format Exported by WebWisdom PowerPoint Extension

This section describes the extended HTML format exported by the WebWisdom PowerPoint add-in and imported by the WebWisdom NT Manager.

Tags and attributes used by WebWisdom NT

<HEAD> block

<meta name="GENERATOR" content="WebWisdom">
tag indicating the generator

non_exported_objects=x

attribute describing the number of non-exported objects. The x value is the difference between the number of exported text frames and number of all objects in the slide. Empty text frames are treated as non-text objects.

body_background_color=RRGGBB
Body background color of the slide. RRGGBB represents the color. If body_background_color is not set, the body_background_color defined for presentation is used.
<TITLE>Title</TITLE>
Title of the slide, or value: “WebWisdom Slide” if there is no title frame in the slide.

<BODY> block

<WW_FRAME> tag used to represent exported text frames. Frames are “sorted” in the form of a table:

Title frame I=”0” J=”0” SI=”3” SJ=”1”

I=”1” J=”1”

SI=”1” SJ=”1”
I=”1” J=”2”

SI=”1” SJ=”1”
There is no

exported frame

There is no

Exported frame
I=”2” J=”2”

SI=”1” SJ=”1”
I=”2” J=”3”

SI=”1” SJ=”1”

<WW_FRAME> tag attributes:

· I and J represent position of text frame in table. I=”0” and j=”0” are reserved for Title frame
· SI and SJ represent size of the text frame within the table. In the Title frame, SI represents width of the table, in all other cases SI is equal 1. SJ is always equal 1.

· X and Y represent position of the text frame in pixels within original PowerPoint window

· SX and SY represent size of the text frame in pixels

· WSX and WSY are XY sizes of whole slide window in pixels.

· BGCOLOR represents text frame color. If not set, foil background color will be used.

<P> tag:

· BULLET - enable/disable bullet in paragraph

· L - represents indentation level of the paragraph

· ALIGN – alignment of the paragraph

CAUTION: attributes BULLET, L, ALIGN in tag <P>, attributes COLOR, FACE, SIZE in tag , tags: <I>, , <U>, <SUB>, <SUP> are NOT USED if their values are the same as their default values (presentation properties)

Sample extended HTML file

<HTML>

 <HEAD>

 <meta name="GENERATOR" content="WebWisdom">

 non_exported_objects=0

 body_background_color=FFFF99

 <TITLE>Title</TITLE>

 </HEAD>

 <BODY>

 <WW_FRAME I="0" J="0" SI="2" SJ="1" X="54" Y="48" SX="612" SY="90" WSX="720" WSY="540" BGCOLOR="#00CC99">

 <P L="0">Title</P>

 </WW_FRAME>

 <WW_FRAME I="1" J="1" SI="1" SJ="1" X="54" Y="156" SX="204" SY="126" WSX="720" WSY="540" BGCOLOR="#00CC99">

 <P L="1">Use bullet</P>

 </WW_FRAME>

 <WW_FRAME I="2" J="1" SI="1" SJ="1" X="270" Y="156" SX="186" SY="126" WSX="720" WSY="540" BGCOLOR="#00CC99">

 <P BULLET="0" L="1">No bullet</P>

 </WW_FRAME>

 <WW_FRAME I="2" J="2" SI="1" SJ="1" X="270" Y="294" SX="186" SY="120" WSX="720" WSY="540" BGCOLOR="#00CC99">

 <P BULLET="0" L="1">Level 1</P>

 <P BULLET="0" L="2">Level 2</P>

 <P BULLET="0" L="3">Level 3</P>

 </WW_FRAME>

 <WW_FRAME I="3" J="2" SI="1" SJ="1" X="468" Y="294" SX="186" SY="120" WSX="720" WSY="540" BGCOLOR="#00CC99">

 <P L="1">Level 1</P>

 <P L="2">Level 2</P>

 <P L="3">Level 3</P>

 </WW_FRAME>

 </BODY>

</HTML>

Appendix D. WebWisdom PowerPoint Extension Technical Description

Methods of registering the PowerPoint Add-In

Local

 When Add-In is added by the use PowerPoint Tools/Add-ins menu, the following entry is added to the system registry:

HKEY_CURRENT_USER\Software\Microsoft\Office\8.0\PowerPoint\AddIns\WWNT2AUTO

with the sub-entry:

Path = “C:\AddIn_Path\WWNT2AUTO.PPA”

In such case, the user is able to remove the Add-In from the PowerPoint by the use of Tools/Add-ins menu, but the Add-In can only be used by the user who has installed it.

Global

If the Add-In is added manually by the use of the registry editor, a user can add it to the HKEY_LOCAL_MACHINE instead of HKEY_CURRENT_USER master key.

HKEY_LOCAL_MACHINE\Software\Microsoft\Office\8.0\PowerPoint\AddIns\WWNT2AUTO

with sub-entries:

Path = “C:\AddIn_Path\WWNT2AUTO.PPA”

AutoLoad = 0xffffffff

In such case, the Add-In can be used by all users, but they cannot remove it by the use of the “Tools/Add-ins” PowerPoint menu (it is not visible there).

The WebWisdomNT installer uses this mode of registering Add-Ins, but performs it in an automatic way.

How to remove all WWNT Add-Ins from the system

To be sure that all WWNT Add-Ins are removed from system a user should perform the following steps:

1. Run PowerPoint and remove all PowerPoint WWNT Add-Ins by the use of the Tools/Addins menu command

2. Close PowerPoint

3. Remove all WWNT applications using Add/Remove Programs from the Control Panel
4. Run regedit end remove all sub-entries containing the string wwnt (wwnt2auto, wwnt2html) from the HKEY_LOCAL_MACHINE\Software\Microsoft\Office\8.0\PowerPoint\AddIns\
key. The following entries should remain: ACVIZ, PPT2HTML, PPTTOOLS

5. Remove the following files VBExt.dll, wwnt2auto.dll, wwnt2dde.dll from the windows directory and all of its subdirectories.

Files Used by WWNT Add-In

WebWisdom PowerPoint Add-In uses the following files:

· Wwnt2auto.ppa – file containing PowerPoint Add-In. This Add-In is responsible for the improved export to HTML and provides a couple of internal commands accessible via OLEAutomation. This file should be located in any subdirectory of the Program Files directory.

· Panel.gif – must be located in the same directory as Wwnt2auto.ppa.

· VBExt.dll – a VisualBasic library; must be located in Windows or Windows\system directory (system32 in WindowsNT).

· Wwnt2auto.dll – a library providing interface between external applications and PowerPoint via OLEAutomation. This library has to be located directly in the Windows directory. This file is not necessary if the WWNT Add-In is used only as an improved HTML exporter.

Extra files:

· AutomationTest.exe – a program useful in testing internal Add-In commands. One can manually write a command, execute it, and get the result code.

· Vcl35.bpl – library necessary to run AutomationTest.exe, should be located in the same directory, or in Windows\system.
WWNT Add-In commands

Command syntax

pp command[parameters] path [ExtraString]

Implemented commands

· pp p fullpath – prints all foils from a presentation using the default printer
Result: none
Parameters:
(n) – prints n-th slide from presentation

(n-m) – print slides from n to m
Examples:
pp p c:\test.ppt

pp p(2) c:\test.ppt

pp p(1-10) c:\test.ppt

· pp d fullpath – executes Print Dialog in PowerPoint
Result: none
Parameters:
(n) – sets up Print Dialog to print n-th slide from the presentation

(n-m) - sets up Print Dialog to print slides from n to m
Examples:
pp d c:\test.ppt

pp d(2) c:\test.ppt

pp d(1-10) c:\test.ppt

· pp e fullpath – starts PowerPoint with the specified presentation (edit function), switches on the Wisdom menu, Update, and Cancel commands. Hides some other menu commands.
Result: creates wwnt_temp.ppt file in the same directory as the original file
Parameters:
(n) – sets n-th slide as the current one
Examples:
pp e c:\test.ppt

pp e(2) c:\test.ppt

· pp h fullpath – exports presentation to native WWNT HTML format.
Result: creates subdirectory named WWNT in the directory where the presentation is located. In the WWNT subdirectory the following files are being created:
– imgXXX_A.gif, imgXXX_B.gif, imgXXX_C.gif, imgXXX_D.gif, imgXXX_E.gif, imgXXX_F.gif – images with different resolutions. XXX is the slide number.
– wsldXXX.htm – native WWNT HTML generated for slide number XXX
– property.inf – file with properties retrieved from PowerPoint (e.g. background color).
– index.htm – empty HTML file necessary for future extensions
Parameters:
ignored

· pp s fullpath – splits presentation into separate foils
Result: creates WWNT subdirectory in the directory where the presentation is located. In the WWNT subdirectory, files named sldXXX.ppt are being created. XXX is the slide number.
Parameters:
ignored
Example:
pp s c:\test.ppt

· pp c(n,m) path – creates new presentation as a result of joining presentations (slides) located in the specified directory path. Slides to join have to be named: sld001.ppt, sld002.ppt… sldXXn.ppt
Result: wwnt_new_pres.ppt located in the path directory
Parameters:
n – numbers of slides to join

m – the slide number the master should be taken from
Example:
pp c(6,2) c:\

· pp r fullpath s1 s2 s3 s4...
Parameters: ignored
Result: creates new presentation wwnt_sorted_pres.ppt by joining slides s1 s2 s2… from the fullpath presentation in the specified order.
Example:
pp r c:\test.ppt 5 3 4 2 2 1

WWNT Add-In return codes

Value
mnemonic
Meaning

Return codes for editing PowerPoint presentation

2
DLL_ABORT
Editing was aborted

1
DLL_CANCEL
User selects CANCEL command

0
DLL_UPDATE
User selects UPDATE command

General return codes

0
DLL_OK.
Everything was OK

-1
DLL_GENERAL_ERR
It was impossible to execute internal Add-In command. Add-In is not installed/registered or there was an error in previous command. Close PowerPoint and Wisdom Manager.

-2
DLL_AUTNOTINIT
It was impossible to initialize OLE automation.

-3
DLL_NOAUTOMATION
It was impossible to connect to PowerPoint.Application OLE object. There is no PowerPoint in the system at all, or PowerPoint is badly configured/installed.

-4
DLL_WRONGCOMMAND
User tries to executes a wrong command

-5
DLL_NOTIMPLEMENTED
Command is proper but not yet implemented

VBExt.dll export table

@BrowseFolder$qqspci

int BrowseFolder(char *path, int pathsize) – displays window to select location for the Index.htm file. At the beginning, select path (with length pathsize no longer then 256 chars) as active directory. At the end, the selected directory is returned in path. Return value is the path length.

@BrowseFolderTree$qqspci

int BrowseFolderTree(char *path, int pathsize) – does the same as BrowseFolder, but displays folder tree instead of files.

@GetRegVal$qqspct1t1t1i

int GetRegVal(char *key, char *name, char *def, char* buf, int bufsize) – gets string value of sub-entry name in key: HKEY_LOCAL_MACHINE\key; returns length of the string. The string is located in buf, no longer then bufsize.

@SetRegVal$qqspct1t1i

void SetRegVal (char *key, char *name, char *buf, int bufsize) – sets string value of sub-entry name in key: HKEY_LOCAL_MACHINE\key
@VBSleep$qqsi

void VBSleep(int n) – pauses for n milliseconds; does not stop any other programs.

Wwnt2auto.dll export table

@Abort_dll$qv

void Abort_dll() – does nothing. For future extensions.

@Begin$qpc

int Begin(char *commands); processes execution of Add-Ins command provided in commands. Returns execution return code.

@FindWindowByName$qqspc

bool FindWindowByName (char *Name); returns TRUE if there is window in system with name beginning with string Name.

@PostMessageToWindowByName$qqscpcui

void PostMessageToWindowByName (char *Name, UINT Msg); posts message Msg to windows with name beginning with string Name.

Java_wisdom_powerpoint_WWNTJ2Auto_shutDownPP

Implements shutDownPP method in class WWNTJ2Auto

void shutDownPP() – closes PowerPoint Window.

Java_wisdom_powerpoint_WWNTJ2Auto_abort

Implements abort method in class WWNTJ2Auto

Void abort() – does nothing. For future extensions

Java_wisdom_powerpoint_WWNTJ2Auto_getTempPath

Implements getTempPath method in class WWNTJ2Auto

String getTempPath() – returns %TEMP% environment variable.

Java_wisdom_powerpoint_WWNTJ2Auto_executeCommand

Implements executeCommand method in class WWNTJ2Auto

int executeCommand(String command) – executes Add-Ins command provided in commands. Returns execution return code.

Java Native interface to PowerPoint

Class WWNTJ2Auto

package wisdom.powerpoint;

public class WWNTJ2Auto extends Tester

{
public native void abort();

public native void shutDownPP();

public native int executeCommand (String command);

public native String getTempPath ();

}

Registry Entries

AddIn generates various string sub-entries in the key: HKEY_LOCAL_MACHINE\Software\Wisdom\Automation

· „Result” – {“ERROR”, ”CANCEL”, ”RESTORING”, ”RUN”, ”OK”, ”UPDATE”} used to callback communication between wwnt2auto.dll and Add-In.

· „Counter” – counts all successful executions of the Add-In commands

· „Version” – version of the Add-In

· „SourcePath” – location of the Add-In. Used to locate panel.gif

· „ShowWisdomMenu” – {“0”, ”1”}. Value “1” forces PowerPoint to display advanced user menu commands: Export to Wisdom, Split Foils.

· „ExportPath” – last path used in WWNT Export to HTML or Export to Wisdom
· „ExportResolution” – {“1”, ”2”, ”3”, ”4”} WWNT Export to HTML image resolution.

· „ExportExt” – {“GIF”, ”JPG”} WWNT Export to HTML image extension

· „MakeSubFolder” – {“0”, ”1”} whether WWNT Export to HTML should create subfolder with presentation name.

Appendix E. Formats Accepted by the WebWisdom NT Importer

The WebWisdom NT v3.01 Importer supports two data formats:

· compiled WebWisdom format, and

· WebWisdom NT format.

The two formats are distinguished by the index.htm file.

For the compiled WebWisdom format, this file includes the following text:

<head><meta name="generator" content="gcf/wwwfoil[...]</head>

For the WebWisdom NT format, this file include the following text:

<head><meta name="generator" content="webwisdom[...]</head>

16.1. The Compiled WebWisdom format

16.1.1. Directory Structure

The following files should be present in a single directory:

· index.htm

· n files named tsld***.htm, where *** stands for 001, 002, 003, etc.

Some other files are optional:

· m files named img***.gif or img***.jpg (image files), where m (n

· sound files with the following extensions:

.ra, .au, .wav, .aif

· n source files named tsld***.ppt

· a tsld000.htm file that stands for the presentation abstract.

16.1.2. File Contents

Index.htm file

The index.htm file must define:

· the format string (see above),

· the presentation title formatted as follows: title=This is a title example

· the presentation name (must be unique): name=asopMaster95

· the presentation label: label=asopMaster95

· the way the presentation foils may link to other presentation foils(by name or by label): identify=byname|bylabel

In addition to the above, the index.htm file may define:

· the presentation author: author=Bill De La Forge

· the presentation short title: runningtitle=March meeting

· the event linked with the presentation: event=JavaOne99

· the signature associated with every foil of the presentation: signature=Bill De La Forge, MIT

· the creation date: creation_date=14 August 1997

· the modification date: version_date=20 Sept 99

Tsld***.htm files

The tsld***.htm files must define:

· whether the foil is the presentation abstract: isabstract=yes|no

· the foil title as the HTML TITLE tag : <TITLE>A Sample Title </TITLE>

In addition to the above, the tsld***.htm files may define:

· The associated image file name: image=moon.gif

· The foil add-ons: addon=http:\\www.javasoft.com{title=The Java Homepage}

· The annotation before this foil: annotation=my annotation example|none

· The URL to which the foil is pointing: link=http:\\www.webwisdom.com

· The sound associated with this foil: sound=introduction.ra{title=Introduction}{see=}{seconds=12}

· If this foil is a shadow, the identifier of the real foil: copyfrom=presentation name(label)/foilNumber (eg. copyfrom=asopmaster/12)

· The author’s name: author=Bill De La Forge

· The event linked with the foil: event=JavaOne99

· Role of the HTML file in the foil – whether this is TEXT or NOTE educational type. bullet_image=separate denotes TEXT educational type;
bullet_image=together denotes NOTE educational type.

Moreover, the tsld**.htm files can define the relative importance of the primary and the secondary educational objects. In the WebWisdom format, the primary object is always the image, the secondary object is always the text educational object.

The blob_style tag may be present and take values (asHTML|useful). If it is present and equals “asHTML”, the importance is “As_secondary”. If it equals “useful”, the importance is “useful”. Otherwise, the importance is “Essential”.

16.2. The WebWisdom NT format

16.2.1. Directory Structure

The following files should be located in a single directory:

· index.htm

· property.inf

· n files named wsld***.htm, where *** stands for 001, 002, 003, etc.

· n files named img***_A.GIF or img***_A.JPG (image files)

· n files named img***_B.GIF or img***_B.JPG (image files)

· n files named img***_C.GIF or img***_C.JPG (image files)

· n files named img***_D.GIF or img***_D.JPG (image files)

· n files named img***_E.GIF or img***_E.JPG (image files)

· n files named img***_F.GIF or img***_F.JPG (image files)

· n source files named sld***.ppt.

16.2.2. File Contents

Index.htm file

The index.htm file must define:

· the format string (see above)

Property.inf file

The property.inf must define:

· the number of slides in the presentation: number_of_slides=12

· the image format: img_format=jpg

Wsld***.htm files

These files are generated by the WebWisdom PowerPoint extension.

They must define:

· The number of non-exported objects: non_exported_objects=0

Img***_*.*** files

These are image files. The letter (from A to F) identifies the image resolution:

A
160x120
C
480x320
E
800x600

B
320x240
D
640x480
F
1024x768

Sld***.ppt files

These files are generated by the WebWisdom PowerPoint extension.

Appendix F. Installation of WebWisdom NT Database Account

In this section, the process of installation of a database user account for the WebWisdom NT system is described. This process has to be performed only once when the database is being created. There is NO NEED to perform these tasks when the database account is already prepared or database is imported from a database dump file.

The installation of the WebWisdom NT database account can be divided into tree tasks:

· creation of Oracle user account,

· creation of database schema,

· initial database filling.

16.3. Creation of Oracle User Account

WebWisdom NT system operates on one database user account. The account name and password used by WebWisdom Manager can be modified in the login window by a privileged user (admin) – see Section 4.2 for details. User account used by the TDLServlet can be modified in the template properties file: properties.conf (cf. Section 13.1.4). In general, the same database user should be used for schema creation, initial database filling, and later by the Wisdom Manager and the TDLServlet. In the following description, this specific database user is called “webwisdom user”.

To create a database user account for WebWisdom NT system, Oracle Security Manager can be used. Database user name and user password must be provided. User privileges should include at least “connect” and “resource” standard roles, and “unlimited tablespace” privilege.

16.4. Creation of Database Schema

WebWisdom database schema is created by a list of SQL commands executed from Oracle’s SQL*Plus.

Before starting the database schema creation process, database administrator should copy appropriate files into a directory accessible by SQL*Plus (e.g. .../oracle/bin). The following files should be copied:

· wisdom.sql
- main scheme creation file,

· wisdom.tab
- file containing table creation commands,

· wisdom.seq
- file containing sequence creation commands,

· wisdom.con
- file containing constraint commands.

To create the database schema, the database administrator should login to the Oracle Database System by the use of SQL*Plus as the webwisdom user and enter the following command:

Start wisdom;

If the command executes successfully, the WebWisdom database schema is created.

The next step is initial database filling described below.

16.5. Initial database filling

WebWisdom NT system requires that some initial data are entered into the database before the system can start running. Example data include: colors, mime_types, properties, root user account, root foilworld, etc. Initial database filling is performed partially by SQL commands, partially by external Java programs. External Java programs are used for data-types non-manageable directly by SQL*Plus (e.g., images or HTML files).

The whole database filling procedure is divided into four steps:

step 1: filling users, colors, forms, and mime-types,

step 2: filling images,

step 3: filling properties,

step 4: filling “help” files and images.

Step 1 - filling colors, forms, and mime-types

The following files are required during this phase:

· fill1.sql,

· insert_event_types.sql,

· insert_edu_types.sql,

· insert_prop_types.sql,

· insert_mimetypes.sql,

· insert_forms.sql,

· insert_users.sql,

· insert_roles.sql,

· insert_resolutions.sql.

All these files should be copied to a directory which is accessible by SQL*Plus (e.g., .../oracle/bin). To complete this step user should enter the following command in SQL*Plus:

Start fill1;

During this phase, the following data are entered to the database: event types, educational types, property types, MIME types, presentation forms, predefined users, user roles, and standard resolutions.After successful execution all database changes should be committed:

Commit;

Step 2 - filling images

This step is performed by the use of standalone Java program StoreImage. The program reads an image file and stores image bytes into the database. This program requires four parameters: image file name, database image name, WebWisdom NT user name, and connection string (composed of database user name and password, hostname, port and database name). The database image name must be unique – no two images with the same database image name can be stored into the database. To simplify the configuration process, the program stores one image at a time and therefore is invoked many times by script images.bat. This script contains multiple lines in the following format:

set CLASSPATH=.;..\..\classes111.zip

java StoreImage File1.gif ImageName user_name user/password @ hostname:port:database

java StoreImage File2.gif AnotherImage another_user user_name user/password @ hostname:port:database

...

After successful image storing next phase – filling users and properties – can be performed.

Step 3 - filling properties

During this phase the following data are entered to the database:

· property categories,

· image properties, and

· general properties.

This phase is a SQL phase and can be performed from SQL*Plus. The following command should be entered after logging in as the webwisdom user:

Start fill2;

Commit;

The following files are required during this phase:

· fill2.sql,

· insert_prop_cat.sql,

· insert_image_prop.sql,

· insert_general_prop.sql.

All these files should be copied to a directory accessible by SQL*Plus (e.g. .../oracle/bin).

At this point WebWisdom NT database is ready to use. The Managers and the TDLServlet can be used to fill and manage the database contents and for data retrieval.

Appendix G. Importing WebWisdom Presentations

To provide backward compatibility with previous versions of WebWisdom, an importing filter is provided to read into the database error-free presentations stored in WebWisdom directories. To import WebWisdom presentation, some of its files are copied to a temporary directory and then compiled by an importer. The HTML files being result of the compilation are read to the database as succeeding foils of the presentation. After reading, the newly created presentation may be edited, copied, renamed, etc. by the use of the Presentation Manager presented above.

Below the three phases of the importing process are presented: (1) creating a temporary directory and copying files to be imported, (2) compiling files from WebWisdom to HTML format, and (3) reading HTML files to the database.

Phase 1 - Copying WebWisdom presentation to temporary directory

During this phase the type of the WebWisdom presentation is detected (regular presentation, imported presentation, i.e. a presentation that shares some foils with other presentations, and exported list, i.e. a presentations with foils being links to external HTML pages). According to this type, some files are copied to a temporary directory. To perform these two tasks, a set of UNIX shell scripts (of type: Bourne /bin/sh or Korn /bin/ksh shell) is provided to automatically perform the following: creating the temporary directory, checking the type of the WebWisdom presentation, reading WebWisdom files and changing their names. The variables of these scripts can be changed manually according to user requirements and used directory names. To automatically change names of files, which are copied by the scripts, a special program change_name is provided. This program is always invoked with two parameters. The first one is an original file name, and the second one - a file name extension. The program reads the file name, extracts from it the foil number, changes this number into format NNN=000..999, adds a prefix “sld”, adds a suffix - a dot with the file extension, and finally prints the result to standard output. For example, an invocation “change_name foil3.addoinfo adi” will result in string “sld003.adi”.

The scripts perform all the necessary copying and changing of file names. The execution of the last script finishes the first phase of the importing process. Note that the names of “output” files are crucial to perform the second phase of importing. Neither the file names for images and sounds, nor the file names for addon- and sound-info can be changed. Thus, it is recommended to run the scripts to perform copying and changing file names properly, and avoid manual copying and changing file names.

To compile a whole WebWisdom presentation pool (i.e., the existing WebWisdom presentations stored in one consistent file system) the following steps must be performed.

1. Identify a starting directory for all the WebWisdom sub-directories with presentations. This directory is later called the HOME directory.

2. For every HOME sub-directory not being a presentation, create a list of sub-directories to be parsed by compilation process. These lists must be stored in files dirs.ls, one file per directory, one sub-directory name per line, starting from presentations HOME directory.

3. Create HOME/scripts sub-directory and copy to it all the files from the installation directory .../gcf/scripts.
4. Ensure that the wwwalias file is in the HOME directory.

5. Prepare directory structure by running scripts/copy.dirs.sh in every sub-directory not being a presentation, recursively, starting from HOME directory. The script will: (1) link wwwalias file from super-directory, and (2) link dirs.sh file from HOME/scripts.

6. Create WisdomNT sub-directory in every presentation directory by running scripts/mkdirs.sh in every directory not being a presentation and directly containing presentations.

7. Create HOME/logs subdirectory.

8. While in HOME directory run scripts/copy script. This will link all the necessary executables to WisdomNT sub-directories in every presentation directory. There is no need to run it in all non-presentation directories as it calls itself recursively for every directory listed in dirs.ls files.

9. While in HOME directory run scripts/clean to remove all previously compiled files from WisdomNT sub‑directories.

10. While in HOME directory run scripts/prep to link all the files from WebWisdom sub-directories to WisdomNT directory for every presentation (recursively).

Note:
While repeating this step one can avoid copying sounds and images by running scripts/proc script instead of scripts/prep. This script will copy only processed, options, extrainfo and similar files, possibly changed in the meanwhile.

During the first phase of the importing process the following files are copied
 to a temporary directory:

· for regular presentation: file named processed being a result of wwwfoil pass2(3) program; if this file is not present, the perstemp file is taken into consideration;

· for imported (scripted) presentation: file(s) *script* with localization of a script – a file defining an imported presentation;

· for “external” presentation: file original.html with URLs of presentation foils;

· file options with options (i.e. formatting and library parameters)
;

· file extrainfo with some additional information about the presentation;

· files NNN.gif and/or NNN,jpg with images for the presentation foils;

· files foilNNN.addoninfo with information about add-ons;

· files foilNNN.rainfo, foilNNN.ra with information about sounds and the sounds themselves.

During copying, the names of the files are changed according to the table below.

WebWisdom file
Temporary file

extrainfo
beginning part of main translation file (default course.gcf)

processed
ending part of main translation file

perstemp
ending part of main translation file, if file processed could not be found

seporgimagedir/NNN.gif

seporgimagedir/NNN.jpg

seporggifdir/NNN.gif

seporggifdir/NNN.jpg
file sldNNN.gif or sldNNN.jpg - an image for foil number NNN, NNN=000..999

addon/foilMMM.addoninfo
file sldNNN.adi – information about addons for foil number MMM, MMM=0..999

audio.ra/foilMMM.rainfo
file sldNNN.rai – information about sound for foil number MMM

audio.ra/foilMMM.ra
file sldNNN.ra - sound file for foil number MMM

Phase 2 - Compiling WebWisdom presentation to HTML format

The second stage of the importing process is compilation. The following steps must be performed to complete this phase.

1. While in HOME directory run scripts/s2p
 to pre-compile all the presentations being scripts (“play-lists” composed of foils originally belonging to other presentations). As a result, file course.gcf is generated compatible with a standard WebWisdom 1.0 processed file.

2. While in HOME directory run scripts/e2p to pre-compile all the presentations being lists of "exports" ("exported" or "external" HTML pages). As a result, file course.gcf is generated compatible with a standard WebWisdom processed file.

3. While in HOME directory run scripts/aliases to replace {} items by texts from perswww and wwwalias files.

Note:
Some items must be replaced manually while reading to the database. This includes replacing {basedirectory} to `pwd` and {npac} to "http://www.npac.syr.edu". Itmes {} being valid URLs are replaced by <A>... tags with appropriate argument.

4. While in HOME directory run scripts/r2h to create files which will be read directly by the database

5. While in HOME directory run scripts/cpimgs to copy missing images to WisdomNT directories. If any image is copied, go back to the previous step to repeat the compilation.

6. Check if everything is OK by taking a look in HOME/logs directory for “summary” log files (files being concatenation of every standard output for every executed program/shell). If an error occurs, a message about it is preceded by "####" string of characters to identify it easily by the use of any editor. Warnings are preceded by "...." string.

Copied temporary files are read by the compiling programs and processed according to the rules written in configuration file (Figure 158).

[image: image214.wmf]sldNNN.gif

sldNNN.jpg

sldNNN.adi

sldNNN.rai

sldNNN.ra

for MS-DOS Windows:

r2h.exe

for UNIX:

r2h

r2h.ini

sldNNN.gif

sldNNN.jpg

sldNNN.htm

sldNNN.ra

sldNNN.gif

sldNNN.jpg

r2h.out

tsldNNN.htm

Index.htm

configuration utility

*

script*

original

.html

s

course.gcf

s2p

e2p

options

Figure 158 . Files read and written during second phase of the importing process

As a result, a set of HTML files is created. For the whole presentation, an index.htm file is created as an index to all generated foils. For each processed foil, two HTML files: tsldNNN.htm (text form of a foil) and sldNNN.htm (graphical form, i.e. a file with direct link to a foil image) are generated. Only the first file is incorporated into the database. The second one is created only to provide compatibility with a directory structure generated by the standard converter from PowerPoint to HTML format. Thus, the created set of HTML files can be used as a standalone presentation, in the same way the translated PowerPoint presentation can be used.

In WebWisdom system some image files may be shared by multiple presentations. In such case, if a given image is marked as imported from other directory than a presentation default one, a special shell script (Bourne shell script for UNIX and BAT file for DOS/Windows) is generated by the r2h compiler to perform the copying (c.f. previous section). If after compilation the script is not empty, i.e. there is still at least one image file to be copied, a warning message appears after compilation. A user should then verify the generated script and run it to copy the necessary images to the temporary directory. Next, the compiler must be run once again (cf. steps 4 and 5 above) to include the newly copied images into the HTML files (this means the second phase is repeated once again). This process should be repeated until all images are included in the temporary directory, i.e. the script for copying images is empty and there is no warning message after compilation. The sample script for copying images is presented in Figure 159.

!/bin/sh

#

#UNIX Bourne shell script to copy images from other directories

#

OUT_DIR=.

CP=cp

${CP} ../npacresources/june97/sandiego/cps615audio.gif ${OUT_DIR}/sld074.gif

${CP} ../npacresources/june97/sandiego/cps615f95.gif ${OUT_DIR}/sld075.gif

${CP} ../npacresources/june97/sandiego/ecs400f96.gif ${OUT_DIR}/sld079.gif

${CP} ../npacresources/june97/sandiego/ecs400s96.gif ${OUT_DIR}/sld080.gif

${CP} ../npacresources/june97/sandiego/foil_javascriptvpl.gif ${OUT_DIR}/sld081.gif

${CP} ../npacresources/june97/sandiego/foil_perlvpl.gif ${OUT_DIR}/sld082.gif

${CP} ../npacresources/june97/sandiego/woj_sls_faculty.gif ${OUT_DIR}/sld089.gif

${CP} /home/A7F/gcf/foils/npacresources/june97/vpl/compile.gif ${OUT_DIR}/sld090.gif

${CP} /home/A7F/gcf/foils/npacresources/june97/vpl/compile2.gif ${OUT_DIR}/sld091.gif

${CP} /home/A7F/gcf/foils/npacresources/june97/vpl/execute.gif ${OUT_DIR}/sld092.gif

${CP} /home/A7F/gcf/foils/npacresources/june97/vpl/execute2.gif ${OUT_DIR}/sld093.gif

${CP} /home/A7F/gcf/foils/npacresources/june97/vpl/io-summary.gif ${OUT_DIR}/sld094.gif

${CP} /home/A7F/gcf/foils/npacresources/june97/vpl/jpvs.gif ${OUT_DIR}/sld095.gif

${CP} /home/A7F/gcf/foils/npacresources/june97/vpl/jpvs2.gif ${OUT_DIR}/sld096.gif

${CP} /home/A7F/gcf/foils/npacresources/june97/vpl/kiviat.gif ${OUT_DIR}/sld097.gif

${CP} /home/A7F/gcf/foils/npacresources/june97/vpl/pvm-vm.gif ${OUT_DIR}/sld098.gif

${CP} /home/A7F/gcf/foils/npacresources/june97/vpl/ut-anim.gif ${OUT_DIR}/sld099.gif

Figure 159 . Sample script for copying image files from other directories

The main presentation file is a set of commands in wwwfoil-pass2(3) format. The meaning of each processed command is presented in the table below.

Wwwfoil command
Meaning
Possible values
Defaults

contd
continuing previous command
"*"

titleset
command passed directly to the database
"*"
""

signature
command passed directly to the database
"*"
""

title
command passed directly to the database
"*"
""

criticalmissing
command passed directly to the database

somemissing
command passed directly to the database

beginfoil
beginning of the foil definition

endfoil
ending of the foil definition

bulletN
bullet level N
"*"
""

getimagefrom
argument of the command is copied to the <copy_images> script as source directory/file name
"*"
""

noimageversion
command inhibits reading an image from sldNNN.gif(jpg) file

setimagebgfile

imagebgfile
name of the file set as background for the graphics form of all the foils from the presentation
"*"
""

foilimagebgfile
name of the file set as a background for the graphics form of the foil
"*"
""

sethtmlbgfile

htmlbgfile
name of the file set as a background for the text form of all the foils from the presentation
"*"
""

foilhtmlbgfile
name of the file set as background for the text form of the foil
"*"
""

intablefontsize
font size for the table inside a foil for each foil from the presentation
"1..7"
""

foilintablefontsize
font size for the table inside a foil
"1..7"
""

titlefontsize
font size for the foil title for each foil of the presentation
"1..7"
""

foiltitlefontsize
font size for the foil title
"1..7"
""

bgcolor
background color for each foil of the presentation
"*"
""

foilbgcolor
background color for the foil
"*"
""

intablebgcolor
background color for the tables inside a foil for each foil of the presentation
"*"
""

foilintablebgcolor
background color for the tables inside a foil
"*"
""

fgcolor
text color for each foil of the presentation
"*"
""

foilfgcolor
text color for the foil
"*"
""

htmltitlecolor
title color for each text foil of the presentation
"*"
""

foilhtmltitlecolor
title color for the text foil
"*"
""

intablefontcolor
text color for the table for each foil of the presentation
"*"
""

foilintablefontcolor
text color for the table
"*"
""

imagetitlecolor
title color for each graphical foil of the presentation
"*"
""

foilimagetitlecolor
title color for the graphical foil
"*"
""

linkcolor
link color for each foil of the presentation
"*"
""

foillinkcolor
link color for the foil
"*"
""

alinkcolor
active link color for each foil of the presentation
"*"
""

foilalinkcolor
active link color for the foil
"*"
""

vlinkcolor
visited link color for each foil of the presentation
"*"
""

foilvlinkcolor
visited link color for the foil
"*"
""

imagelinkcolor
link color for the graphical form for each foil of the presentation
"*"
""

foilimagelinkcolor
link color for the graphical foil
"*"
""

imagealinkcolor
active link color for the graphical form for each foil of the presentation
"*"
""

foilimagealinkcolor
active link color for the graphical foil
"*"
""

imagevlinkcolor
visited link color for the graphical form for each foil of the presentation
"*"
""

foilimagevlinkcolor
visited link color for the graphical foil
"*"
""

tablelinkcolor
link color for the “table-like” foil for each foil of the presentation
"*"
""

foiltablelinkcolor
link color for the “table-like” foil
"*"
""

tablealinkcolor
active link color for the “table-like” foil for each foil of the presentation
"*"
""

foiltablealinkcolor
active link color for the “table-like” foil
"*"
""

tablevlinkcolor
visited link color for the “table-like” foil for each foil of the presentation
"*"
""

foiltablevlinkcolor
visited link color for the “table-like” foil
"*"
""

horizimagewidth
horizontal size of the foil image for each foil of the presentation
"NNNN"
""

foilhorizimagewidth
horizontal size of the foil image
"NNNN"
""

horizimagestyle
type of setting size of foil image for each foil of the presentation; if does not set to "native", the "horizimagewidth" command is taken into consideration
"maximum", "minimum", "native", "parmvalue",
"native"

foilhorizimagestyle
type of setting size of foil image; if does not set to "native", the "foilhorizimagewidth" command is taken into consideration
"maximum", "minimum", "native", "parmvalue",
"native"

vertimagewidth
vertical size of the foil image for each foil of the presentation
"NNNN"
""

foilvertimagewidth
vertical size of the foil image
"NNNN"
""

vertimagestyle
type of setting size of foil image for each foil of the presentation; if does not set to "native", the "vertimagewidth" command is taken into consideration
"maximum", "minimum", "native", "parmvalue",
"native"

foilvertimagestyle
type of setting size of foil image; if does not set to "native", the "foilvertimagewidth" command is taken into consideration
"maximum", "minimum", "native", "parmvalue",
"native"

sourcepptdir
name of the directory with source PowerPoint file
"*"
""

html
“magic” HTML characters are passed as they are written
-
-

endhtml
“magic” HTML characters are mapped into sequences &..;
-
-

name
presentation name
"*"
""

label
presentation label
"*"
""

author
a comment on author(s) of the presentation
"*"
""

runningtitle
presentation extended title (heading)
"*"
""

event
a comment on primary event related to the presentation
"*"
""

date
creation date
"*"
""

datemod
date of the last modification
"*"
""

htmlline
bullet of the same level as the previous one
"*"
""

bulletsongif
indication whether description should be displayed together with an image (photo) or separately
"on" | "off"
"off"

addsource
command ignored

abstract
command ignored

master
command ignored

script
command ignored (this command is read by the s2p compiler, in the first compilation step (cf. previous section)

abstractsource
command ignored

seealso
command ignored

bestfoilseturl
command ignored

The parameters listed in the WebWisdom command table and the configuration file are mapped into sets of appropriate database attributes. The form of each attribute is “attribute_name=attribute_value”. A definition of every attribute is included in one line of HTML file. There is a general attribute set for a presentation and an individual set for each foil. These sets are included as HTML comments in <HEAD> elements of the generated HTML files, general set in index.htm file and individual sets in tsldNNN.htm files, respectively.

Names of the attributes passed to the database and their meaning are presented in table below.

Name of the attribute
Type
Mapped from WebWisdom 1.0 attribute
Remarks

signature
global
signature
If equal to the standard one, ignored by the database (i.e., taken by the Exporter from the defaults)

body_background_image
global, foil
imagebgfile

body_background
global, foil
htmlbgfile

body_bgcolor
global, foil
bgcolor

body_text
global, foil
fgcolor

font_size_table
global, foil
intablefontsize

font_size_title
global, foil
titlefontsize

font_color_title_html
global, foil
htmltitlecolor

font_color_title_image
global, foil
imagetitlecolor

font_color_table
global, foil
intablefontcolor

body_bgcolor_table
global, foil
intablebgcolor

body_link
global, foil
linkcolor

body_vlink
global, foil
vlinkcolor

body_alink
global, foil
alinkcolor

body_link_image
global, foil
imagelinkcolor

body_vlink_image
global, foil
imagevlinkcolor

body_alink_image
global, foil
imagealinkcolor

body_link_table
global, foil
tablelinkcolor

body_vlink_table
global, foil
tablevlinkcolor

body_alink_table
global, foil
tablealinkcolor,

hor_image_width
global, foil
horizimagewidth

hor_image_style
global, foil
horizimagestyle

ver_image_height
global, foil
vertimagewidth

ver_image_style
global, foil
vertimagestyle

image
foil

in the form “image=file_name”, the file name with image must be present in the temporary directory

addon
foil
copied from file foilN.addoinfo
in the form “addon=sldNNN.adi {title=*}”

sound
foil
copied from file foilN.rainfo
in the form “sound=sldNNN.ra {seconds=N}{title=*}{see=*}, where N is a positive integer

blob_style
foil
criticalmissing, somemissing, nonemissing
“blob_style=asHTML” for nonemissing, “blob_style=useful” for somemissing), not present for criticalmissing

seealso
foil
seealso
ignored by the database

name
global
name

label
global
label

author
global
author

addsource
global
addsource
ignored by the database

runningtitle
global
runningtitle

event
global
event

creation_date
global
date
may be ignored by the database if data format is not recognized properly

version_date
global
datemod
may be ignored by the database if data format is not recognized properly

sourcepptdir
global
sourcepptdir
ignored by the database, although a message is printed by r2h compiler to take a look in this directory and copy manually PowerPoint source file to the temporary directory

Note that information about bullets (WebWisdom command BulletN, where N=1..9) is included in attributes of the <P> tag.

Phase 3 - Incorporating contents of the temporary directory to the database

The temporary directory prepared in the first two phases is passed to the third phase and its content is read into the database. Please refer to Section 6.1 for detail about importing compiled WebWisdom HTML presentations.

Appendix H. Database Schema

� 	Most buttons are labeled by icons only. A text description of a button can be obtained by moving mouse cursor over this button and waiting for a few seconds. The description will be displayed as a tip. It will hide after the cursor is moved or any mouse button is pressed. Actions related to buttons can be also executed by pressing a key, which is underlined in the button name and always explicitly pointed in the tip.

� 	In general, the servlet can access its own or remote HTTP servers, to get documents and files.

� 	In this version of the TDLServlet this feature is limited to browsing of currently available tags.

� 	During the read phase <WW_INLINE> tags are analyzed and necessary additional files are also loaded, thus other template files can be also implicitly cached (cf. next sections).

� 	This process is invoked only once during the first access to the template.

� 	The default presentation is supplied in the template properties file

� 	These names are standardized by servlet API [http://java.sun.com/products/ webserver/features/], as well as “null” implementations for them are provided by Sun.

� 	For example, to avoid human-unreadable identifiers of documents from a database, one can redirect an internal database identifier of a document to its name.

� 	This mechanism is similar to #inline pre-processing commands known from many programming languages, for example C/C++.

� 	This tag allows user authentication

� 	To identify a template at run-time, system-generated identifiers must be used as one template may be used by many users at the same time and the co-existing copies cannot be identified by the same template name.

� 	A valid expression is any part of text complaining to the expression grammar (cf. Section � REF _Ref452555200 \r \h ��13.2.1�).

� 	For arguments of some tags the evaluateExpression() method cannot be called implicitly by the servlet before the tag is going to be interpreted, it must be rather called many times in a loop. A typical example is WW_WHILE tag, where a condition whether to end the loop or not must be evaluated every time the loop is about to be repeated.

� 	In the current version of the TDLServlet, these two configuration functions are not supported.

� Note that there is no trailing slash sign „\” after the directory name.

� 	Here variables are prefixed by ‘$’ character.

� 	Here variables, functions, and constants are prefixed by ‘%’ character.

� 	This mechanism comes from LISP-like programming languages.

� 	This mechanism is similar to the one used in UNIX shell programming.

� 	This is the only way to exchange information among different template files. Any number of parameters may be passed.

� 	This expression is evaluated at run-time every time the tag is about to be interpreted.

� 	IMG and other HTML tags are parsed in the client browser, so the contents of the image is retrieved by a browser and cannot be „inserted” by the TDLServlet.

� 	One Java class can implement several tags

� The „???” denotes subsequent numbers starting from 0

� This directory and its subdirectories should not contain ZIP files, which are not zipped XML presentations. However, they can contain other non-ZIP files.

� 	In the UNIX operating system files are copied only logically by the use of symbolic links (“ln –s” command).

� 	This file is usually already concatenated at the beginning of the processed file, but a check is made if these two files are consistent. If not, settings from the options file replace the corresponding ones from the processed file.

� 	The scripts/s2p compiler cannot detect last foil of a sub-presentation pointed by "end" statement instead of foil number in "script" file. One must correct it manually by going to the pointed presentation, getting its highest foil number and replacing "end" string by this number in the "script" file.

_989233083.doc

Foilworld

Presentation

Component

EduObject

Access

Control

Master

or

Script

Foil,

Foil-shadow,

Presentation-shadow,

Annotation

Text,

Image,

Sound,

Addon,

Note, etc.

_990709781.bin

_990710925.bin

_990711104.bin

_990710049.bin

_990710317.bin

_989319844.doc
[image: image1.png]

_990709097.bin

_990709194.bin

_990708820.bin

_990708958.bin

_989419864.doc

Internet

TDLServlet

HTML BROWSER

Zipped XML presentation files

JDBC

Local Database Management System

HTTP

server

HTTP

server

File system

TDL templates

Internet

_989408553.doc

Presentations

Chris

New

Tango_Meeting

ICDCS_17

todo.zip

default.zip

poster_1.zip

paper1399.zip

accessasp97.zip

pres1.zip

WebWisdom 3.0

Overview of Microsoft Access used with Active Server Pages (ASP)

Video Data Storage – new challenges

Poster Session

Default presentation

Next Tango team meeting

ICDCS_17

Tango_Meeting

New

Chris

Root

Filesystem structure

TDLServlet structure

Maps to

_989306900.doc

Database

WebWisdom�Manager

TDL Servlet

Getdata Servlet

HTTP Server

Browser

Browser

PPT

XML

HTML

XML

PPT

TDL

_989308121.doc

Presentation Manager

Foilworld Manager

Image Manager

User Manager

Event Manager

Property�Editor

Property Manager

WebWisdom Manager

User Defaults

Presentation�Loader

XML�Importer/Exporter

Login�Window

_989241273.doc

Foil

Shadow C

Shadow A

Text 1

Sound 1

Text 2

Image 1

Sound 2

Annot 1

Result

Text 2

Sound 2

Image 1

Annot 1

Shadow B

_985072730.doc

Foil

Presentation

User

Defaults

_988537275.doc

Template Loader

HTTP server

Templates

Template Cache

XML Parser

Interpreter

Sender

Output cache

Tag implementations

Initialization

Config files

Persistent data storage

HTTP call (template, parameters)

HTML output

HTML browser

Remote

Configu-ration

HTTP server

Servlet Main Module

Zipped XML

presentations

_988820232.doc
[image: image1.png]

_988822052.doc
[image: image1.png]

_988822646.doc
[image: image1.png]

_988822795.doc
[image: image1.png]

_988821940.doc
[image: image1.png]

[image: image2.png]
_988820169.doc
[image: image1.png]

_986656207.doc

User1

Master1

Foil Master1

Foil Shadow2

Script2

User2

2

1

Default

Foil Shadow3

Script3

User3

3

4

5

6

_986753935.doc
[image: image1.png]

_986641914.doc

Master

Script

Master

Foil A

Foil B

Annot

Foil C

Pres-shadow

Foil-shadow

Foil-shadow

Foil-shadow

Foil G

Foil F

Foil E

Foil D

Foil

_985416294.doc
[image: image1.png]

Categories

Property List

Property Data

Property Pulldown menu

_984226893.doc
[image: image1.png]

Downloaded URL

Download Progress

Download Cancel Button

_985067883.doc
[image: image1.png]

_985072573.doc

Shadow Foil

Foil

Script

User

Defaults

_984227340.doc
[image: image1.png]

HotJava Panel

Scrollbars – position the page for the snapshot

_984227530.doc
[image: image1.png]

Commit into the database

Image preview

Thumbnail preview

_984227159.doc
[image: image1.png]

To URL Panel

Cancel

Next

Downloaded Page Components

_984225307.doc
[image: image1.png]

URL Text Area

Cancel Button

Disabled Next Button

_984225489.doc
[image: image1.png]

Enabled Next button

_968847802.doc
[image: image1.bmp]

