Petasim: A Performance Estimator for Parallel Hierarchical Memory Systems

Yuhong Wen, Geoffrey C. Fox

Northeast Parallel Architectures Center

Syracuse University

111 College Place

Syracuse, NY, 13244--4100

{wen,gcf}@npac.syr.edu

Abstract

In the design of parallel computer systems and the developing of the applications, it is very important to have some good performance prediction tools to get an estimation result before the real architecture construction and application implementation. This paper describes a new approach -- Petasim, which will get the abstractions of the applications and the underlying machine architecture to give performance estimation. In this approach of performance estimate, one can easily modify all the architecture parameters of a computer system, and the behavior of the application to get the performance and execution cost very quickly, which will greatly help the new computer architecture design and application deign.

Keywords: Performance Estimation, Architecture Description,

Application Execution Script

1. Introduction

Performance prediction for a grand challenge application, such as weather forecasting, oil exploring, etc, is a very important and rather complex problem for scientific computing, especially when involving the massively parallel computers. Provided with a good performance estimator, one can easily construct the application model, adjust the system parameters to find out a suitable computing model. We will introduce a new approach in our design of Petasim, which benefit both the computer system design and the application design.

[image: image1.png]Time (in seconds)

140

120

100

80

60

40

20

Pathfinder Estimation Results

T T T T T gl

Running on SP2 4
PetaSIM Estimate Time
PetaSIM Execution Time/—<—

20

30

40

50 60 70 80 90 100
Processor number

[image: image2.png]Time (in seconds)

Pathfinder Estimation Results (with I/O ratio changed)

40

35 -

PetaSIM Estimate Time -5—
PetaSIM Execution Time -<—

T T
Running on SP2 —+—

10

20

30
T/O Nodes

40

[image: image3.png]Time (in seconds)

100

90

Titan Estimation Results (fixed)

Running on SP2 —+—
PetaSIM Estimate Time 4
PetaSIM

Execution Time

20

30

40

50 60 70
Processor Number

[image: image4.png]Virtual MicroScope Estimation Results

Running on SP2 —+—
PetaSIM Estimate Time -5—

PetaSIM Execution Time —<— 7

Time (in seconds)

30

25

20

15

10

40 50 60 70 80 90 100

Processor Number

Fig.1: The Performance Prediction Process

Performance estimator Petasim is built around the performance prediction process sketched in Fig.1 [1]. The distinctive feather of our approach is the use of machine and problem abstractions which although less accurate than detailed complete representations, can be expected to be more robust and further quite appropriate for the rapid prototype needed in the design of new machines, software and algorithms. The hearts of this performance prediction process are two technologies - PSL (Performance Specification Language) and Petasim [1], [4]. In this paper, we will address the design of Petasim, which will take three key inputs from PSL, which describe respectively the target machines, application, script specifying execution of the application on the machine, to get an estimation of the performance of the application running on the machine. All kinds of research have showed that the performance prediction / estimation has been a very difficult problem, because of different kinds of applications, and different kinds of computer systems. It is important to design a general performance specification language (PSL) to support the performance estimation. In this paper, we will also show that petasim is an initial step to provide such a Performance Specific Language (PSL).

2. Description of Petasim

Performance estimator PETASIM is aimed at supporting the (conceptual and detailed) design phases of parallel algorithms, systems software and hardware architecture. Originally this was designed as a result of the two week long workshops - PAWS and PetaSoft - aimed at understanding hardware and software architectures ten years from now when Petaflop (1015) scale computing can be expected [1], [2]. The most sophisticated PetaKernel was a regular finite difference problem solved by a simple Jacobi iteration, which is of course well understood. These workshops emphasized the need for tools to allow one to describe complex memory hierarchies (present in all future and most current machine designs) and the mapping of problems onto them in a way that allows reliable (if high level) performance estimates in the initial design and rapid prototyping stages.

PETASIM is aimed at a middle ground - half way between detailed instruction level machine simulation and simple "back of the envelope" performance estimates. It takes care of the complexity - memory hierarchy, latencies, adaptability and multiple program components, which make even high-level performance estimates hard. It uses a crucial simplification - dealing with data in the natural blocks (called aggregates in HLAM) suggested by memory systems – which both speeds up the performance simulation and in many cases will lead to greater insight as to the essential issues governing performance. We motivate and illustrate the design of PETASIM by the well-known formulae for parallel performance of simple regular applications on nodes without significant memory hierarchy. Then we will have:

Speed Up = Number of Nodes/(1 + Overhead)

 where the Overhead is proportional to (Grain-Size)-g (tcomm/tcalc)
 where in this case natural data block size is the Grain Size or number of data points in each node. The power g measures edge over area effects and is 1/d for a system of geometric dimension d. (tcomm/tcalc) represents a ratio of communication to compute performance of the hardware. Such a formula shows the importance of identifying natural data block and how such high level analysis allows one to understand the relation of performance to memory sizing, I/O and compute capabilities of the hardware. PETASIM generalizes this "back of the envelope" estimate to more complex problems and machines. It also includes not just primitive messaging performance (node to node as used in above estimate) but also collective (such as multicast) mechanisms, which are present in most applications but ignored in many simple analyses. Note that the simple performance estimate above is valid (with straightforward generalizations) on machines with the simple two level distributed memory hierarchy - namely memory is either on or off processor -which is essentially model built into the current generation of parallel programming systems as typified by HPF or MPI. As we described, it is essential to generalize this machine model whether we want to provide input to either parallel programming tools or to performance estimation systems. Thus we believe our experience with HLAM and PETASIM will be very valuable in helping designing the new generation of parallel programming environments needed for the increasing complex high performance systems coming online.

Fortunately we have good evidence that we can generalize this naive analysis to more complex problems and machines for indeed the Rutgers/UCSB group has studied granularity issues to identify the natural data block sizes and computation clusters based on computation/communication ratios in more general hierarchical memories. They have developed preliminary performance prediction and optimization tools based on task graphs in which the impact of single-processor memory hierarchy is addressed in the intra-task level and the impact of inter-processor communication delay is identified in the inter-task level. These techniques have been shown effective for a number of adaptive and static applications and it will be naturally integrated into PETASIM.

As well as a machine description, PETASIM requires a problem description where we will use the PSL as described above. Note also that application emulators also use the same "aggregate" description of applications needed by PETASIM and these will be used as input. It is not clear yet if we will convert these directly to the PSL or allow a separate API for this style of program description. We will provide even more work here later.

3. The Design of Petasim

3.1 Design Overview of Petasim

One of the most important motivations of petasim is to provide a performance estimation tool for the new computer architecture designer to get a fast and accurate performance prediction during the conceptual architecture design. This requires that petasim should be easy to operate and convenient to modify the features of the computer architecture. We choose Java applet meet for this requirement and design the Petasim as Fig.2.

Fig.2 Overview of Petasim

The heart of the petasim is C++ simulator which takes the computer architecture description and application description to give the performance estimation. Multi-user Java Server provides the service to different Java Applet Client from the global Internet. The designers can download the applet from web site (http://kopernik.npac.syr.edu:4096/petasim/V1.0/PetaSIM.html) to get easy access to the petasim. And the petasim supports both inputs from the emulators (such as University of Maryland Emulators) and hand written codes. (See Fig.3)

Fig.3 Petasim Estimator and Emulators

3.2 The Specifications of Petasim

There are two parts of descriptions in the petasim performance estimation system, architecture description and application description. The most general computer architectures can be specified using the PetaSIM nodeset, linkset while the applications can be specified using dataset, distribution objects.

A nodeset is a collection of entities with current types allowed as:

(memory with cache (with flushing rules) as special case

(disk which is essentially same as a memory.

(CPU where results can be calculated

(pathway such as a bus, switch or network cable which concentrates data

A linkset connects nodesets together in various ways. distributions specify the horizontal (geometrical) connectivity of nodesets and linksets. Typically these are arranged in a natural default for the classic homogeneous architectures. The default mapping is inferred from sizes of nodesets and done in a simple one-dimensional block fashion. The vertical (flow of information) connectivity in the architecture is specified in the execution script with defaults implied in architecture specification.

The application is specified by a dataset object, whose implementation is controlled by a distribution object that specifies classic HPF style geometric decomposition across memories and CPU objects. The computation is specified by the execution script, which also specifies data movement.

nodeset, linkset, dataset and distribution are Java classes that are subclassed as necessary to give particular special cases with particular capabilities. They have methods that are defaulted for simple cases but can be overridden for complicated cases.

3.2.1. nodeset Object Structure in PetaSim Estimator

nodeset has the following properties:

(name: one per nodeset object

(type: choose from memory, cache, disk, CPU, pathway
(number: number of members of this nodeset in the computer architecture

(grainsize: size in bytes of each member of this nodeset (only relevant for memory cache or disk

(bandwidth: this is maximum bandwidth allowed in any one member of this nodeset

(floatspeed: performance on floating point arithmetic specified as a time to do a single operation for entities in cache. Only used by a CPU

(calculate(): method for CPU nodesets that performs computation implied by floatspeed and other architectural features.

(cacherule: controls persistence of data in a memory or cache

(portcount: number of ports on each member of nodeset
(portname[]: ports connect to linksets and a member of a nodeset has one or more ports -- each of which has a name. A port corresponds to a class of connections and depending on number of members involved, a given port can correspond to multiple connections

(portlink[]: name of linkset connecting to this port

(nodeset_member_list: list of nodeset members in this nodeset (for nodeset member identification)
3.2.2. linkset Object Structure in PetaSim Estimator

A basic linkset has the following properties. A derived linkset object is gotten by concatenating several basic linksets objects together. Derived linksets could be specified by special scripts or just written directly in Java.

(name: one per linkset object

(type: choose from updown, across. If across, this is a network of given topology, linking members of a single nodeset. If updown, this is a link between two different nodesets

(nodesetbegin: name of initial nodeset joined by this linkset

(nodesetend: name of final nodeset joined by this linkset. Nodesetend and nodesetbegin are identical if type is across

(topology: used for across networks to specify linkage between members of a single nodeset

(duplex: choose from full or half. If half only allow transmission from nodesetbegin to nodesetend. If full allow either direction with bandwidth limiting sum of both directions.

(number: number of members of this linkset in the computer architecture

(latency: time to send zero length message across any member of this linkset

(bandwidth: this is maximum bandwidth in bytes per second allowed across any link in this linkset. Time Tlk to transfer information from nodeset l to nodeset k is expressed as latency + bandwidth number of bytes. Here l refers to nodesetbegin and k to nodesetend

(send(): method that calculates implications of sending information through given linkset. For a derived linkset, this method can include multiple references to properties and methods of basic linksets and nodesets.

(distribution: name of geometric distribution controlling this linkset

(nodeset_member_list: list of nodeset members in this nodeset (for nodeset member identification)
3.2.3. distribution Object Structure in PetaSim Estimator

distribution has the following properties:

(name: one per distribution object

(type: choose from block1dim, block2dim, block3dim (can obviously add more to this in analogy with HPF) to specify geometrical structure of entity being distributed. Note most computer architectures are implicitly done as one-dimensional block distribution
3.2.4. dataset Object Structure in PetaSim Estimator

dataset has the following properties:

(name: one per dataset object

(type: choose from grid1dim, grid2dim, grid3dim, specifies type of dataset

(bytesperunit: number of bytes in each unit. If 5 field values at each grid point and double precision used, then bytesperunit is 40

(floatsperunit: update cost as a floating point arithmetic count. Differences between double or single precision, should be reflected in values of CPUnodeset.floatspeed and dataset.bytesperunit
(operationsperunit: operations in each unit. A dataset contains totalsize of units, operationsperunit then reflects the operations in each unit for the CPUnodeset to calculate the computing time.

(update(): ethod that updates given dataset which is contained in a CPU nodeset and with a grainsize controlled by last memory nodeset visited.

(transmit(): method that calculates cost of transmission of dataset between memory levels including either communication (between distributed nodes) or movement up and down hierarchy. Note classic grid problems are assumed to be done using ghost cells so that edges of regions transmitted.

3.2.5. Computation/Communication Instructions (Execution Script)

Much of execution is controlled by methods in nodeset, linkset and dataset objects. Some typical additional commands that implicitly invoke these methods are:

(send DATAFAMILY from MEM-LEVEL-L to MEM-LEVEL-K

Here DATAFAMILY is a dataset specified by name

MEM-LEVEL-K, MEM-LEVEL-L are nodesets labeled by name which must be linked by a linkset.

(move DATAFAMILY from MEM-LEVEL-L to MEM-LEVEL-K

(Use distribution DISTRIBUTION on NODESET1,…,LINKSET1,…,DATASET1

(compute DATAFAMILY-A,DATAFAMILY-B .. on MEM-LEVEL-L

(synchronize synchronizes all processors (loosely synchronous barrier). Pipelining is stopped by this. Otherwise it is assumed

The difference between the send and move command is that send command will send the data from source node to the destination node, and then after the computing, send the data back to the original source. While move command will just move the data from source to destination, which does not have that "loop" operation.

3.3 Current Status of PetaSim

A prototype of PetaSim performance estimation system has been implemented in NPAC. It's based on the architecture description (nodeset class and linkset class) and application description (dataset class and distribution class, plus execution script to describe the operations on the dataset) as we discussed above. These two kinds of descriptions correspond to the Target Machine Specification, High Level Representation of Application and Execution Script in the design of PSL (Performance Specific Language), which was taken as input in PetaSim performance estimator. University of Maryland has some kinds of emulators right now, which take applications' task graphic and generate the abstractions of the applications. After the initial co-operation with UMD's emulators, we found that in order to make petasim available for the design of PSL, we need to provide the Petasim with the following features:

3.3.1. nodeset member identical

In the current version of PetaSim right now, PetaSim has the ability to describe the architecture's specifications into nodeset and linkset, according the Target Machine's memory hierarchy. In order to describe detail architecture information of the machine, we also need to describe each nodeset member's feature and its linkage features in the architecture description files. Meanwhile, in the execution script, performance estimation also wants to estimate the cost of each nodeset member. So we provide the nodeset member identical in the architecture and application description files. In this case, we can estimate the performance cost on each nodeset member.

3.3.2. dataset hierarchy

In this version of PetaSim, an application may contain a set of dataset, each contains totalsize units of data. In the assumption of PetaSim, all computation is supposed to be in block-block form with both:

("real" blocks of nonzero size and

(the "virtual zero size blocks formed by for instance ghost cells around the edge of domain

The blocks are formed from dataset objects with a particular distribution on a particular memory nodeset.

Each statement in the execution script will operate on a specific dataset, for examples: move one dataset from one nodeset to another nodeset, or compute one dataset on a CPU nodeset.

In some applications, like the applications from UMD, the applications may have the feature of hierarchy. An application contains a set of dataset, and a dataset may contain a bunch of sub-dataset. A statement in execution script may operate on a specific sub-dataset or directly operate on a parent dataset. For example:

An application has dataset1, dataset2, and dataset3, and dataset1 contains sub_data1, sub_data2, sub_data3 and sub_data4.

And the execution script may look like:

move sub_data1 from memory_node to cpu_node

compute sub_data1 on cpu_node

; which works on sub_dataset

move dataset1 from disk_node to cache_node

mode dataset1 from cache_node to memory_node

; which automaticly operates on sub_data1, sub_data2,

 subdata3 and sub_data4

We also provide this feature of dataset hierarchy in the current version of Petasim. This will benefit the application's PSL to generate easy execution script, and make it more readable.

3.3.3. execution script library

Right now, in the execution script of PetaSim, we support four different kinds of statement, send, move, Use distribution, compute and synchronize commands, which is enough to express the abstractions of operations in the applications, data movement and computation. But this simplicity of abstraction somehow will make the execution script of applications very long, especially to the real large applications. So we should build an execution script library, which contains aggregates of data movement and computation in a function call. For example:

The calculation and operation of dataset on CPU_nodeset will involve the following operation statements:

move dataset from disk_nodeset to disk_controller

move dataset from disk_controller to cache_nodeset

move dataset from cache_nodeset to memory_nodeset

compute dataset on CPU_nodeset

In this case, we will make the execution script of applications shorter and easier to read and understand.

3.3.4. data dependency

In the current version of PetaSim, the performance estimation of an application running on a specific machine will based on the features of target machines, dataset of the applications, and the execution script of the application. And the estimation operation is just in the order the statements of the execution script. The petasim will not try to reorder the statements, like the real application execution.

But in the real case, some operations may not have the order of statements in the execution script. They will depend on the finish of previous statements. For examples:

s1: move data1 from node1 to node2

s2: mode data2 from node3 to node2

s3: move data3 from disk2 to node2
; according to the arrival of data1

s4: mode data4 from disk2 to node2
; according to the arrival of data2

In this example, s3, s4 may not the execution order in real execution. They just depend on the finish of s1 and s2. If s1 finish first, s3 may execute first on node2, and if s2 finish first, s4 may execute before s3. They just have the data dependency with the previous statement.

Right now, Petasim doesn't have the mechanism to deal with this kind of data dependency problem. Any way, we will try to support that later.

3.4 Interface Petasim with PSL

Right now, PetaSim takes architecture description and application description input from files. Here, we have 5 files, corresponding to nodeset, linkset, dataset, distribution description, and execution script, respectively. In order to provide Petasim use for PSL design, and try to avoid the large amount of execution script file, we may use socket communication between the Petasim and PSL.

In the architecture Description of Machines, we have two parts, nodeset and linkset, which aimed to describe the detailed memory hierarchy and the linkage relationship between each hierarchy level. In the nodeset description file, it contains all the information about each nodeset, and all of its nodeset members, and the linkage neighbors of this nodeset member. While in the linkset file, it contains the features of all the linkset, and each linkset member, which link two of the nodeset members.

In the aspect of execution script of an application, PetaSim will read the execution script from a file. And it supposes that the total statements of execution script have already existed there. In order to use the socket format to work with PSL, we need to take execution script input dynamically to give estimation. Which means, from the PSL, it will dynamically generate the execution script statements according to the applications and then send to petasim to give estimation. This is also an appropriate way to try to avoid the long execution script of an application.

Here, we plan to send and receive execution script statements in a block way, which means, it supposes that each bunch of execution script statements petasim receive from emulator will have a rather independent execution behavior. Petasim doesn't need to care about the data dependency of the statements in this set with the execution script received from emulator previous or later. Petasim will estimate the cost according to the hardware available now and the execution script received this time.

4. Examples and Experiments

The following figures are some of the real applications' performance estimate results of Petasim, including pathfinder, Titan and Virtual Micro-Scope applications: (The architecture and application description files are all automatically generated by University of Maryland's emulators.)

Fig.4 Some real applications' estimation by Petasim

From the benchmarks we can see that the Petasim estimate results are very close to the real application's running time on SP2 machines. This will be a great help to the system and application design, because of the efficiency and easy operation of petasim.

Performance estimation tool petasim is running on a single processor. The results also show we not only can get the relatively very accurate performance estimation result, but also we can easily deal with different kinds of computer architecture. One can easily modify the parameters of the architecture and even get the detailed usage information of every unit in the architecture.

Petasim provide the ability to easily modify the features of the architecture and application behavior, which helps greatly in the architecture conceptual design and get accurate performance estimation. And petasim provide the interface for both inputs from the emulators (like our experience with UMD's emulators) and from the hand-written code of the system designers, which make it even more convenient.

5. Some Related Work and Further Work

The main approach in the petasim is to provide the computer architecture description, nodeset and linkset, and application description, dataset and distribution, and the data operation description, execution script, of the application, to give the performance estimation. Which has the similar approach with the POEMS group led by University of Texas at Austin. In the POEMS group, they divide the performance estimation into application domain, system and software domain, and hardware domain. In each domain, there will provide a model to describe the feature of the application and architecture. The performance estimation will be based on the information provided. [10]

Compared with some other real performance simulator, petasim has some specific features. Most of the other simulators, such as UMD's performance simulators [9], [11], simulate on the task graphic of the application, which petasim instead operates on the execution script of the application in ASCII format, which is the abstract block operation of the application. And petasim not only can get the general performance of the whole parallel system, petasim also can provide the detail information of every unit in the computer architecture. And another advantage of petasim is that petasim can easily deal with different kinds of computer architecture's performance estimation, while most of the simulators can only deal with the specific computer architecture.

As discussed above, the early experience of Petasim prototype shows that if we can get the correct abstraction of the machine architecture and the execution behavior of the applications, Petasim can produce a performance prediction result in a very short time. This will make great benefit to the new architecture design and the application development.

The early experience also shows that in order to make Petasim more usable to the design of PSL, we may also consider the binary expression in the architecture and application description. Right now, we take the ASCII expression in all the description files, which may make them very large files, especially in the massively parallel computing. The binary code expression will make them in a short size. However, in order not to loose the flexibility of Petasim we may also provide some kind of translator between the ASCII user interface and the binary code expression. We may provide a much attractive programming environment based on our early experience [3].

Typically Petasim is executed on a sequential machine as it is aimed at relatively crude estimation. However if for instance an accurate modeling of cache, requires a small aggregate size (and corresponding large number of aggregates), the performance estimate may become very expensive computationally. Very adaptive problems could lead to a similar situation. In this case, we may need to use parallel estimation and the operation of Petasim} needs to be paralleled.

We are also considering improving Petasim to estimate the program's execution even more detail to make it an application simulator. If it works in a parallel way, we can dynamically simulate the execution behavior of an application on a sequential / parallel machine.

Reference:

[1]. "The Petaflops Systems Workshops", Proceedings of the 1996 Petaflops Architecture Workshop (PAWS), April 21-25, 1996 and Proceedings of the 1996 Petaflops System Software Summer Study (PetaSoft), June 17-21, 1996, edited by Michael J. MacDonald (Performance Issues are described in Chapter7).

[2]. Geoffrey C. Fox, Roy D. Williams, and Paul C. Messina, Morgan Kaufmann, "Parallel Computing Works!”, 1994

[3]. Kivanc Dincer and Geoffrey C. Fox, "Using Java in the Virtual Programming Laboratory: A web-Based Parallel Programming Environment", to be published in special issue of Concurrency: Practice and Experience on Java for Science and Engineering Computation.

[4]. Geoffrey C. Fox and Wojtek Furmanski, Computing on the Web -- New Approaches to Parallel Processing-- Petaop and Exaop Performance in the Year 2007", submitted to IEEE Internet Computing, http://www.npac.syr.edu/users/gcf/petastuff/petaweb/

[5]. M. Rosenblum, S. Herrod, E. Witchel, A. Gupta, "Complete Computer System Simulation: The SimOS Approach", IEEE Parallel and Distributed Technology: Systems and Applications, 3(4), winter, 1995, pp 34-43.

[6]. E. Brewer, A. Colbrook, C. Dellarocas, W. Weihl, "Proteus: A High-Performance Parallel Arhictecture Simulator", Performance Evaluation Review, 20(1) Jun 1992, pp 247-8.

[7]. D. Park, R. Saavedra, "Trojan: A High-Performance Simulator for Shared Memory Archtectures", Proceedings of the 29th Annual Simulation Symposium, April 1996, pp 44-53.

[8]. J. Veenstra, R. Fowler, "MINT: A Front-end for Efficient Simulation of Shared-Memory Multiprocessors", Proceedings of International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Feb 1994, pp 201-7.

[9]. M. Uysal, A. Acharya, R. bennett, J. Saltz, "A Customizable Simulator for Workstation Networks", Proceedings of the International Parallel Processing Symposium, April 1997.

[10]. Deelman, Bagrodia, Dube, Browne, Hoisie, Luo, Lubeck, Wasserman, Oliver, Teller, Sundram-Stukel, Vernon, Adve, Houstis, and Rice, POEMS: End-to-end Performance Design of Large Parallel Adaptive Computational Systems: Technical Report, August 1998

[11]. Mustafa Uysal, Tahsin Kurc, Alan Sussman, Joel Saltz, Performance Prediction Framework for Data Intensive Applications on Large Scale Parallel Machines, University of Maryland Technical Report: CS-TR-3918 and UMIACS-TR-98-39, July 1998

Cost Model

Standard�Java Applet�Client

Standard�Java Applet�Client

Detailed Simulators

Application Emulators

Existing Real Applications

HLAM Design

Architecture Description

Execution Script

PetaSIM Simulator

Estimated Performance

Multi-User

Java Server

C++ Simulator

Applications

Hand Code Applications

Execution Script

UMDEmulators

Dataset distribution

Nodeset & Linkset

Performance Estimation

PetaSIM

